18c2ecf20Sopenharmony_ci/***************************************************************************** 28c2ecf20Sopenharmony_ci * * 38c2ecf20Sopenharmony_ci * File: sge.c * 48c2ecf20Sopenharmony_ci * $Revision: 1.26 $ * 58c2ecf20Sopenharmony_ci * $Date: 2005/06/21 18:29:48 $ * 68c2ecf20Sopenharmony_ci * Description: * 78c2ecf20Sopenharmony_ci * DMA engine. * 88c2ecf20Sopenharmony_ci * part of the Chelsio 10Gb Ethernet Driver. * 98c2ecf20Sopenharmony_ci * * 108c2ecf20Sopenharmony_ci * This program is free software; you can redistribute it and/or modify * 118c2ecf20Sopenharmony_ci * it under the terms of the GNU General Public License, version 2, as * 128c2ecf20Sopenharmony_ci * published by the Free Software Foundation. * 138c2ecf20Sopenharmony_ci * * 148c2ecf20Sopenharmony_ci * You should have received a copy of the GNU General Public License along * 158c2ecf20Sopenharmony_ci * with this program; if not, see <http://www.gnu.org/licenses/>. * 168c2ecf20Sopenharmony_ci * * 178c2ecf20Sopenharmony_ci * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * 188c2ecf20Sopenharmony_ci * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * 198c2ecf20Sopenharmony_ci * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * 208c2ecf20Sopenharmony_ci * * 218c2ecf20Sopenharmony_ci * http://www.chelsio.com * 228c2ecf20Sopenharmony_ci * * 238c2ecf20Sopenharmony_ci * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * 248c2ecf20Sopenharmony_ci * All rights reserved. * 258c2ecf20Sopenharmony_ci * * 268c2ecf20Sopenharmony_ci * Maintainers: maintainers@chelsio.com * 278c2ecf20Sopenharmony_ci * * 288c2ecf20Sopenharmony_ci * Authors: Dimitrios Michailidis <dm@chelsio.com> * 298c2ecf20Sopenharmony_ci * Tina Yang <tainay@chelsio.com> * 308c2ecf20Sopenharmony_ci * Felix Marti <felix@chelsio.com> * 318c2ecf20Sopenharmony_ci * Scott Bardone <sbardone@chelsio.com> * 328c2ecf20Sopenharmony_ci * Kurt Ottaway <kottaway@chelsio.com> * 338c2ecf20Sopenharmony_ci * Frank DiMambro <frank@chelsio.com> * 348c2ecf20Sopenharmony_ci * * 358c2ecf20Sopenharmony_ci * History: * 368c2ecf20Sopenharmony_ci * * 378c2ecf20Sopenharmony_ci ****************************************************************************/ 388c2ecf20Sopenharmony_ci 398c2ecf20Sopenharmony_ci#include "common.h" 408c2ecf20Sopenharmony_ci 418c2ecf20Sopenharmony_ci#include <linux/types.h> 428c2ecf20Sopenharmony_ci#include <linux/errno.h> 438c2ecf20Sopenharmony_ci#include <linux/pci.h> 448c2ecf20Sopenharmony_ci#include <linux/ktime.h> 458c2ecf20Sopenharmony_ci#include <linux/netdevice.h> 468c2ecf20Sopenharmony_ci#include <linux/etherdevice.h> 478c2ecf20Sopenharmony_ci#include <linux/if_vlan.h> 488c2ecf20Sopenharmony_ci#include <linux/skbuff.h> 498c2ecf20Sopenharmony_ci#include <linux/mm.h> 508c2ecf20Sopenharmony_ci#include <linux/tcp.h> 518c2ecf20Sopenharmony_ci#include <linux/ip.h> 528c2ecf20Sopenharmony_ci#include <linux/in.h> 538c2ecf20Sopenharmony_ci#include <linux/if_arp.h> 548c2ecf20Sopenharmony_ci#include <linux/slab.h> 558c2ecf20Sopenharmony_ci#include <linux/prefetch.h> 568c2ecf20Sopenharmony_ci 578c2ecf20Sopenharmony_ci#include "cpl5_cmd.h" 588c2ecf20Sopenharmony_ci#include "sge.h" 598c2ecf20Sopenharmony_ci#include "regs.h" 608c2ecf20Sopenharmony_ci#include "espi.h" 618c2ecf20Sopenharmony_ci 628c2ecf20Sopenharmony_ci/* This belongs in if_ether.h */ 638c2ecf20Sopenharmony_ci#define ETH_P_CPL5 0xf 648c2ecf20Sopenharmony_ci 658c2ecf20Sopenharmony_ci#define SGE_CMDQ_N 2 668c2ecf20Sopenharmony_ci#define SGE_FREELQ_N 2 678c2ecf20Sopenharmony_ci#define SGE_CMDQ0_E_N 1024 688c2ecf20Sopenharmony_ci#define SGE_CMDQ1_E_N 128 698c2ecf20Sopenharmony_ci#define SGE_FREEL_SIZE 4096 708c2ecf20Sopenharmony_ci#define SGE_JUMBO_FREEL_SIZE 512 718c2ecf20Sopenharmony_ci#define SGE_FREEL_REFILL_THRESH 16 728c2ecf20Sopenharmony_ci#define SGE_RESPQ_E_N 1024 738c2ecf20Sopenharmony_ci#define SGE_INTRTIMER_NRES 1000 748c2ecf20Sopenharmony_ci#define SGE_RX_SM_BUF_SIZE 1536 758c2ecf20Sopenharmony_ci#define SGE_TX_DESC_MAX_PLEN 16384 768c2ecf20Sopenharmony_ci 778c2ecf20Sopenharmony_ci#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4) 788c2ecf20Sopenharmony_ci 798c2ecf20Sopenharmony_ci/* 808c2ecf20Sopenharmony_ci * Period of the TX buffer reclaim timer. This timer does not need to run 818c2ecf20Sopenharmony_ci * frequently as TX buffers are usually reclaimed by new TX packets. 828c2ecf20Sopenharmony_ci */ 838c2ecf20Sopenharmony_ci#define TX_RECLAIM_PERIOD (HZ / 4) 848c2ecf20Sopenharmony_ci 858c2ecf20Sopenharmony_ci#define M_CMD_LEN 0x7fffffff 868c2ecf20Sopenharmony_ci#define V_CMD_LEN(v) (v) 878c2ecf20Sopenharmony_ci#define G_CMD_LEN(v) ((v) & M_CMD_LEN) 888c2ecf20Sopenharmony_ci#define V_CMD_GEN1(v) ((v) << 31) 898c2ecf20Sopenharmony_ci#define V_CMD_GEN2(v) (v) 908c2ecf20Sopenharmony_ci#define F_CMD_DATAVALID (1 << 1) 918c2ecf20Sopenharmony_ci#define F_CMD_SOP (1 << 2) 928c2ecf20Sopenharmony_ci#define V_CMD_EOP(v) ((v) << 3) 938c2ecf20Sopenharmony_ci 948c2ecf20Sopenharmony_ci/* 958c2ecf20Sopenharmony_ci * Command queue, receive buffer list, and response queue descriptors. 968c2ecf20Sopenharmony_ci */ 978c2ecf20Sopenharmony_ci#if defined(__BIG_ENDIAN_BITFIELD) 988c2ecf20Sopenharmony_cistruct cmdQ_e { 998c2ecf20Sopenharmony_ci u32 addr_lo; 1008c2ecf20Sopenharmony_ci u32 len_gen; 1018c2ecf20Sopenharmony_ci u32 flags; 1028c2ecf20Sopenharmony_ci u32 addr_hi; 1038c2ecf20Sopenharmony_ci}; 1048c2ecf20Sopenharmony_ci 1058c2ecf20Sopenharmony_cistruct freelQ_e { 1068c2ecf20Sopenharmony_ci u32 addr_lo; 1078c2ecf20Sopenharmony_ci u32 len_gen; 1088c2ecf20Sopenharmony_ci u32 gen2; 1098c2ecf20Sopenharmony_ci u32 addr_hi; 1108c2ecf20Sopenharmony_ci}; 1118c2ecf20Sopenharmony_ci 1128c2ecf20Sopenharmony_cistruct respQ_e { 1138c2ecf20Sopenharmony_ci u32 Qsleeping : 4; 1148c2ecf20Sopenharmony_ci u32 Cmdq1CreditReturn : 5; 1158c2ecf20Sopenharmony_ci u32 Cmdq1DmaComplete : 5; 1168c2ecf20Sopenharmony_ci u32 Cmdq0CreditReturn : 5; 1178c2ecf20Sopenharmony_ci u32 Cmdq0DmaComplete : 5; 1188c2ecf20Sopenharmony_ci u32 FreelistQid : 2; 1198c2ecf20Sopenharmony_ci u32 CreditValid : 1; 1208c2ecf20Sopenharmony_ci u32 DataValid : 1; 1218c2ecf20Sopenharmony_ci u32 Offload : 1; 1228c2ecf20Sopenharmony_ci u32 Eop : 1; 1238c2ecf20Sopenharmony_ci u32 Sop : 1; 1248c2ecf20Sopenharmony_ci u32 GenerationBit : 1; 1258c2ecf20Sopenharmony_ci u32 BufferLength; 1268c2ecf20Sopenharmony_ci}; 1278c2ecf20Sopenharmony_ci#elif defined(__LITTLE_ENDIAN_BITFIELD) 1288c2ecf20Sopenharmony_cistruct cmdQ_e { 1298c2ecf20Sopenharmony_ci u32 len_gen; 1308c2ecf20Sopenharmony_ci u32 addr_lo; 1318c2ecf20Sopenharmony_ci u32 addr_hi; 1328c2ecf20Sopenharmony_ci u32 flags; 1338c2ecf20Sopenharmony_ci}; 1348c2ecf20Sopenharmony_ci 1358c2ecf20Sopenharmony_cistruct freelQ_e { 1368c2ecf20Sopenharmony_ci u32 len_gen; 1378c2ecf20Sopenharmony_ci u32 addr_lo; 1388c2ecf20Sopenharmony_ci u32 addr_hi; 1398c2ecf20Sopenharmony_ci u32 gen2; 1408c2ecf20Sopenharmony_ci}; 1418c2ecf20Sopenharmony_ci 1428c2ecf20Sopenharmony_cistruct respQ_e { 1438c2ecf20Sopenharmony_ci u32 BufferLength; 1448c2ecf20Sopenharmony_ci u32 GenerationBit : 1; 1458c2ecf20Sopenharmony_ci u32 Sop : 1; 1468c2ecf20Sopenharmony_ci u32 Eop : 1; 1478c2ecf20Sopenharmony_ci u32 Offload : 1; 1488c2ecf20Sopenharmony_ci u32 DataValid : 1; 1498c2ecf20Sopenharmony_ci u32 CreditValid : 1; 1508c2ecf20Sopenharmony_ci u32 FreelistQid : 2; 1518c2ecf20Sopenharmony_ci u32 Cmdq0DmaComplete : 5; 1528c2ecf20Sopenharmony_ci u32 Cmdq0CreditReturn : 5; 1538c2ecf20Sopenharmony_ci u32 Cmdq1DmaComplete : 5; 1548c2ecf20Sopenharmony_ci u32 Cmdq1CreditReturn : 5; 1558c2ecf20Sopenharmony_ci u32 Qsleeping : 4; 1568c2ecf20Sopenharmony_ci} ; 1578c2ecf20Sopenharmony_ci#endif 1588c2ecf20Sopenharmony_ci 1598c2ecf20Sopenharmony_ci/* 1608c2ecf20Sopenharmony_ci * SW Context Command and Freelist Queue Descriptors 1618c2ecf20Sopenharmony_ci */ 1628c2ecf20Sopenharmony_cistruct cmdQ_ce { 1638c2ecf20Sopenharmony_ci struct sk_buff *skb; 1648c2ecf20Sopenharmony_ci DEFINE_DMA_UNMAP_ADDR(dma_addr); 1658c2ecf20Sopenharmony_ci DEFINE_DMA_UNMAP_LEN(dma_len); 1668c2ecf20Sopenharmony_ci}; 1678c2ecf20Sopenharmony_ci 1688c2ecf20Sopenharmony_cistruct freelQ_ce { 1698c2ecf20Sopenharmony_ci struct sk_buff *skb; 1708c2ecf20Sopenharmony_ci DEFINE_DMA_UNMAP_ADDR(dma_addr); 1718c2ecf20Sopenharmony_ci DEFINE_DMA_UNMAP_LEN(dma_len); 1728c2ecf20Sopenharmony_ci}; 1738c2ecf20Sopenharmony_ci 1748c2ecf20Sopenharmony_ci/* 1758c2ecf20Sopenharmony_ci * SW command, freelist and response rings 1768c2ecf20Sopenharmony_ci */ 1778c2ecf20Sopenharmony_cistruct cmdQ { 1788c2ecf20Sopenharmony_ci unsigned long status; /* HW DMA fetch status */ 1798c2ecf20Sopenharmony_ci unsigned int in_use; /* # of in-use command descriptors */ 1808c2ecf20Sopenharmony_ci unsigned int size; /* # of descriptors */ 1818c2ecf20Sopenharmony_ci unsigned int processed; /* total # of descs HW has processed */ 1828c2ecf20Sopenharmony_ci unsigned int cleaned; /* total # of descs SW has reclaimed */ 1838c2ecf20Sopenharmony_ci unsigned int stop_thres; /* SW TX queue suspend threshold */ 1848c2ecf20Sopenharmony_ci u16 pidx; /* producer index (SW) */ 1858c2ecf20Sopenharmony_ci u16 cidx; /* consumer index (HW) */ 1868c2ecf20Sopenharmony_ci u8 genbit; /* current generation (=valid) bit */ 1878c2ecf20Sopenharmony_ci u8 sop; /* is next entry start of packet? */ 1888c2ecf20Sopenharmony_ci struct cmdQ_e *entries; /* HW command descriptor Q */ 1898c2ecf20Sopenharmony_ci struct cmdQ_ce *centries; /* SW command context descriptor Q */ 1908c2ecf20Sopenharmony_ci dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */ 1918c2ecf20Sopenharmony_ci spinlock_t lock; /* Lock to protect cmdQ enqueuing */ 1928c2ecf20Sopenharmony_ci}; 1938c2ecf20Sopenharmony_ci 1948c2ecf20Sopenharmony_cistruct freelQ { 1958c2ecf20Sopenharmony_ci unsigned int credits; /* # of available RX buffers */ 1968c2ecf20Sopenharmony_ci unsigned int size; /* free list capacity */ 1978c2ecf20Sopenharmony_ci u16 pidx; /* producer index (SW) */ 1988c2ecf20Sopenharmony_ci u16 cidx; /* consumer index (HW) */ 1998c2ecf20Sopenharmony_ci u16 rx_buffer_size; /* Buffer size on this free list */ 2008c2ecf20Sopenharmony_ci u16 dma_offset; /* DMA offset to align IP headers */ 2018c2ecf20Sopenharmony_ci u16 recycleq_idx; /* skb recycle q to use */ 2028c2ecf20Sopenharmony_ci u8 genbit; /* current generation (=valid) bit */ 2038c2ecf20Sopenharmony_ci struct freelQ_e *entries; /* HW freelist descriptor Q */ 2048c2ecf20Sopenharmony_ci struct freelQ_ce *centries; /* SW freelist context descriptor Q */ 2058c2ecf20Sopenharmony_ci dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */ 2068c2ecf20Sopenharmony_ci}; 2078c2ecf20Sopenharmony_ci 2088c2ecf20Sopenharmony_cistruct respQ { 2098c2ecf20Sopenharmony_ci unsigned int credits; /* credits to be returned to SGE */ 2108c2ecf20Sopenharmony_ci unsigned int size; /* # of response Q descriptors */ 2118c2ecf20Sopenharmony_ci u16 cidx; /* consumer index (SW) */ 2128c2ecf20Sopenharmony_ci u8 genbit; /* current generation(=valid) bit */ 2138c2ecf20Sopenharmony_ci struct respQ_e *entries; /* HW response descriptor Q */ 2148c2ecf20Sopenharmony_ci dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */ 2158c2ecf20Sopenharmony_ci}; 2168c2ecf20Sopenharmony_ci 2178c2ecf20Sopenharmony_ci/* Bit flags for cmdQ.status */ 2188c2ecf20Sopenharmony_cienum { 2198c2ecf20Sopenharmony_ci CMDQ_STAT_RUNNING = 1, /* fetch engine is running */ 2208c2ecf20Sopenharmony_ci CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */ 2218c2ecf20Sopenharmony_ci}; 2228c2ecf20Sopenharmony_ci 2238c2ecf20Sopenharmony_ci/* T204 TX SW scheduler */ 2248c2ecf20Sopenharmony_ci 2258c2ecf20Sopenharmony_ci/* Per T204 TX port */ 2268c2ecf20Sopenharmony_cistruct sched_port { 2278c2ecf20Sopenharmony_ci unsigned int avail; /* available bits - quota */ 2288c2ecf20Sopenharmony_ci unsigned int drain_bits_per_1024ns; /* drain rate */ 2298c2ecf20Sopenharmony_ci unsigned int speed; /* drain rate, mbps */ 2308c2ecf20Sopenharmony_ci unsigned int mtu; /* mtu size */ 2318c2ecf20Sopenharmony_ci struct sk_buff_head skbq; /* pending skbs */ 2328c2ecf20Sopenharmony_ci}; 2338c2ecf20Sopenharmony_ci 2348c2ecf20Sopenharmony_ci/* Per T204 device */ 2358c2ecf20Sopenharmony_cistruct sched { 2368c2ecf20Sopenharmony_ci ktime_t last_updated; /* last time quotas were computed */ 2378c2ecf20Sopenharmony_ci unsigned int max_avail; /* max bits to be sent to any port */ 2388c2ecf20Sopenharmony_ci unsigned int port; /* port index (round robin ports) */ 2398c2ecf20Sopenharmony_ci unsigned int num; /* num skbs in per port queues */ 2408c2ecf20Sopenharmony_ci struct sched_port p[MAX_NPORTS]; 2418c2ecf20Sopenharmony_ci struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */ 2428c2ecf20Sopenharmony_ci struct sge *sge; 2438c2ecf20Sopenharmony_ci}; 2448c2ecf20Sopenharmony_ci 2458c2ecf20Sopenharmony_cistatic void restart_sched(struct tasklet_struct *t); 2468c2ecf20Sopenharmony_ci 2478c2ecf20Sopenharmony_ci 2488c2ecf20Sopenharmony_ci/* 2498c2ecf20Sopenharmony_ci * Main SGE data structure 2508c2ecf20Sopenharmony_ci * 2518c2ecf20Sopenharmony_ci * Interrupts are handled by a single CPU and it is likely that on a MP system 2528c2ecf20Sopenharmony_ci * the application is migrated to another CPU. In that scenario, we try to 2538c2ecf20Sopenharmony_ci * separate the RX(in irq context) and TX state in order to decrease memory 2548c2ecf20Sopenharmony_ci * contention. 2558c2ecf20Sopenharmony_ci */ 2568c2ecf20Sopenharmony_cistruct sge { 2578c2ecf20Sopenharmony_ci struct adapter *adapter; /* adapter backpointer */ 2588c2ecf20Sopenharmony_ci struct net_device *netdev; /* netdevice backpointer */ 2598c2ecf20Sopenharmony_ci struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */ 2608c2ecf20Sopenharmony_ci struct respQ respQ; /* response Q */ 2618c2ecf20Sopenharmony_ci unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */ 2628c2ecf20Sopenharmony_ci unsigned int rx_pkt_pad; /* RX padding for L2 packets */ 2638c2ecf20Sopenharmony_ci unsigned int jumbo_fl; /* jumbo freelist Q index */ 2648c2ecf20Sopenharmony_ci unsigned int intrtimer_nres; /* no-resource interrupt timer */ 2658c2ecf20Sopenharmony_ci unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */ 2668c2ecf20Sopenharmony_ci struct timer_list tx_reclaim_timer; /* reclaims TX buffers */ 2678c2ecf20Sopenharmony_ci struct timer_list espibug_timer; 2688c2ecf20Sopenharmony_ci unsigned long espibug_timeout; 2698c2ecf20Sopenharmony_ci struct sk_buff *espibug_skb[MAX_NPORTS]; 2708c2ecf20Sopenharmony_ci u32 sge_control; /* shadow value of sge control reg */ 2718c2ecf20Sopenharmony_ci struct sge_intr_counts stats; 2728c2ecf20Sopenharmony_ci struct sge_port_stats __percpu *port_stats[MAX_NPORTS]; 2738c2ecf20Sopenharmony_ci struct sched *tx_sched; 2748c2ecf20Sopenharmony_ci struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp; 2758c2ecf20Sopenharmony_ci}; 2768c2ecf20Sopenharmony_ci 2778c2ecf20Sopenharmony_cistatic const u8 ch_mac_addr[ETH_ALEN] = { 2788c2ecf20Sopenharmony_ci 0x0, 0x7, 0x43, 0x0, 0x0, 0x0 2798c2ecf20Sopenharmony_ci}; 2808c2ecf20Sopenharmony_ci 2818c2ecf20Sopenharmony_ci/* 2828c2ecf20Sopenharmony_ci * stop tasklet and free all pending skb's 2838c2ecf20Sopenharmony_ci */ 2848c2ecf20Sopenharmony_cistatic void tx_sched_stop(struct sge *sge) 2858c2ecf20Sopenharmony_ci{ 2868c2ecf20Sopenharmony_ci struct sched *s = sge->tx_sched; 2878c2ecf20Sopenharmony_ci int i; 2888c2ecf20Sopenharmony_ci 2898c2ecf20Sopenharmony_ci tasklet_kill(&s->sched_tsk); 2908c2ecf20Sopenharmony_ci 2918c2ecf20Sopenharmony_ci for (i = 0; i < MAX_NPORTS; i++) 2928c2ecf20Sopenharmony_ci __skb_queue_purge(&s->p[s->port].skbq); 2938c2ecf20Sopenharmony_ci} 2948c2ecf20Sopenharmony_ci 2958c2ecf20Sopenharmony_ci/* 2968c2ecf20Sopenharmony_ci * t1_sched_update_parms() is called when the MTU or link speed changes. It 2978c2ecf20Sopenharmony_ci * re-computes scheduler parameters to scope with the change. 2988c2ecf20Sopenharmony_ci */ 2998c2ecf20Sopenharmony_ciunsigned int t1_sched_update_parms(struct sge *sge, unsigned int port, 3008c2ecf20Sopenharmony_ci unsigned int mtu, unsigned int speed) 3018c2ecf20Sopenharmony_ci{ 3028c2ecf20Sopenharmony_ci struct sched *s = sge->tx_sched; 3038c2ecf20Sopenharmony_ci struct sched_port *p = &s->p[port]; 3048c2ecf20Sopenharmony_ci unsigned int max_avail_segs; 3058c2ecf20Sopenharmony_ci 3068c2ecf20Sopenharmony_ci pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed); 3078c2ecf20Sopenharmony_ci if (speed) 3088c2ecf20Sopenharmony_ci p->speed = speed; 3098c2ecf20Sopenharmony_ci if (mtu) 3108c2ecf20Sopenharmony_ci p->mtu = mtu; 3118c2ecf20Sopenharmony_ci 3128c2ecf20Sopenharmony_ci if (speed || mtu) { 3138c2ecf20Sopenharmony_ci unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40); 3148c2ecf20Sopenharmony_ci do_div(drain, (p->mtu + 50) * 1000); 3158c2ecf20Sopenharmony_ci p->drain_bits_per_1024ns = (unsigned int) drain; 3168c2ecf20Sopenharmony_ci 3178c2ecf20Sopenharmony_ci if (p->speed < 1000) 3188c2ecf20Sopenharmony_ci p->drain_bits_per_1024ns = 3198c2ecf20Sopenharmony_ci 90 * p->drain_bits_per_1024ns / 100; 3208c2ecf20Sopenharmony_ci } 3218c2ecf20Sopenharmony_ci 3228c2ecf20Sopenharmony_ci if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) { 3238c2ecf20Sopenharmony_ci p->drain_bits_per_1024ns -= 16; 3248c2ecf20Sopenharmony_ci s->max_avail = max(4096U, p->mtu + 16 + 14 + 4); 3258c2ecf20Sopenharmony_ci max_avail_segs = max(1U, 4096 / (p->mtu - 40)); 3268c2ecf20Sopenharmony_ci } else { 3278c2ecf20Sopenharmony_ci s->max_avail = 16384; 3288c2ecf20Sopenharmony_ci max_avail_segs = max(1U, 9000 / (p->mtu - 40)); 3298c2ecf20Sopenharmony_ci } 3308c2ecf20Sopenharmony_ci 3318c2ecf20Sopenharmony_ci pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u " 3328c2ecf20Sopenharmony_ci "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu, 3338c2ecf20Sopenharmony_ci p->speed, s->max_avail, max_avail_segs, 3348c2ecf20Sopenharmony_ci p->drain_bits_per_1024ns); 3358c2ecf20Sopenharmony_ci 3368c2ecf20Sopenharmony_ci return max_avail_segs * (p->mtu - 40); 3378c2ecf20Sopenharmony_ci} 3388c2ecf20Sopenharmony_ci 3398c2ecf20Sopenharmony_ci#if 0 3408c2ecf20Sopenharmony_ci 3418c2ecf20Sopenharmony_ci/* 3428c2ecf20Sopenharmony_ci * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of 3438c2ecf20Sopenharmony_ci * data that can be pushed per port. 3448c2ecf20Sopenharmony_ci */ 3458c2ecf20Sopenharmony_civoid t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val) 3468c2ecf20Sopenharmony_ci{ 3478c2ecf20Sopenharmony_ci struct sched *s = sge->tx_sched; 3488c2ecf20Sopenharmony_ci unsigned int i; 3498c2ecf20Sopenharmony_ci 3508c2ecf20Sopenharmony_ci s->max_avail = val; 3518c2ecf20Sopenharmony_ci for (i = 0; i < MAX_NPORTS; i++) 3528c2ecf20Sopenharmony_ci t1_sched_update_parms(sge, i, 0, 0); 3538c2ecf20Sopenharmony_ci} 3548c2ecf20Sopenharmony_ci 3558c2ecf20Sopenharmony_ci/* 3568c2ecf20Sopenharmony_ci * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port 3578c2ecf20Sopenharmony_ci * is draining. 3588c2ecf20Sopenharmony_ci */ 3598c2ecf20Sopenharmony_civoid t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port, 3608c2ecf20Sopenharmony_ci unsigned int val) 3618c2ecf20Sopenharmony_ci{ 3628c2ecf20Sopenharmony_ci struct sched *s = sge->tx_sched; 3638c2ecf20Sopenharmony_ci struct sched_port *p = &s->p[port]; 3648c2ecf20Sopenharmony_ci p->drain_bits_per_1024ns = val * 1024 / 1000; 3658c2ecf20Sopenharmony_ci t1_sched_update_parms(sge, port, 0, 0); 3668c2ecf20Sopenharmony_ci} 3678c2ecf20Sopenharmony_ci 3688c2ecf20Sopenharmony_ci#endif /* 0 */ 3698c2ecf20Sopenharmony_ci 3708c2ecf20Sopenharmony_ci/* 3718c2ecf20Sopenharmony_ci * tx_sched_init() allocates resources and does basic initialization. 3728c2ecf20Sopenharmony_ci */ 3738c2ecf20Sopenharmony_cistatic int tx_sched_init(struct sge *sge) 3748c2ecf20Sopenharmony_ci{ 3758c2ecf20Sopenharmony_ci struct sched *s; 3768c2ecf20Sopenharmony_ci int i; 3778c2ecf20Sopenharmony_ci 3788c2ecf20Sopenharmony_ci s = kzalloc(sizeof (struct sched), GFP_KERNEL); 3798c2ecf20Sopenharmony_ci if (!s) 3808c2ecf20Sopenharmony_ci return -ENOMEM; 3818c2ecf20Sopenharmony_ci 3828c2ecf20Sopenharmony_ci pr_debug("tx_sched_init\n"); 3838c2ecf20Sopenharmony_ci tasklet_setup(&s->sched_tsk, restart_sched); 3848c2ecf20Sopenharmony_ci s->sge = sge; 3858c2ecf20Sopenharmony_ci sge->tx_sched = s; 3868c2ecf20Sopenharmony_ci 3878c2ecf20Sopenharmony_ci for (i = 0; i < MAX_NPORTS; i++) { 3888c2ecf20Sopenharmony_ci skb_queue_head_init(&s->p[i].skbq); 3898c2ecf20Sopenharmony_ci t1_sched_update_parms(sge, i, 1500, 1000); 3908c2ecf20Sopenharmony_ci } 3918c2ecf20Sopenharmony_ci 3928c2ecf20Sopenharmony_ci return 0; 3938c2ecf20Sopenharmony_ci} 3948c2ecf20Sopenharmony_ci 3958c2ecf20Sopenharmony_ci/* 3968c2ecf20Sopenharmony_ci * sched_update_avail() computes the delta since the last time it was called 3978c2ecf20Sopenharmony_ci * and updates the per port quota (number of bits that can be sent to the any 3988c2ecf20Sopenharmony_ci * port). 3998c2ecf20Sopenharmony_ci */ 4008c2ecf20Sopenharmony_cistatic inline int sched_update_avail(struct sge *sge) 4018c2ecf20Sopenharmony_ci{ 4028c2ecf20Sopenharmony_ci struct sched *s = sge->tx_sched; 4038c2ecf20Sopenharmony_ci ktime_t now = ktime_get(); 4048c2ecf20Sopenharmony_ci unsigned int i; 4058c2ecf20Sopenharmony_ci long long delta_time_ns; 4068c2ecf20Sopenharmony_ci 4078c2ecf20Sopenharmony_ci delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated)); 4088c2ecf20Sopenharmony_ci 4098c2ecf20Sopenharmony_ci pr_debug("sched_update_avail delta=%lld\n", delta_time_ns); 4108c2ecf20Sopenharmony_ci if (delta_time_ns < 15000) 4118c2ecf20Sopenharmony_ci return 0; 4128c2ecf20Sopenharmony_ci 4138c2ecf20Sopenharmony_ci for (i = 0; i < MAX_NPORTS; i++) { 4148c2ecf20Sopenharmony_ci struct sched_port *p = &s->p[i]; 4158c2ecf20Sopenharmony_ci unsigned int delta_avail; 4168c2ecf20Sopenharmony_ci 4178c2ecf20Sopenharmony_ci delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13; 4188c2ecf20Sopenharmony_ci p->avail = min(p->avail + delta_avail, s->max_avail); 4198c2ecf20Sopenharmony_ci } 4208c2ecf20Sopenharmony_ci 4218c2ecf20Sopenharmony_ci s->last_updated = now; 4228c2ecf20Sopenharmony_ci 4238c2ecf20Sopenharmony_ci return 1; 4248c2ecf20Sopenharmony_ci} 4258c2ecf20Sopenharmony_ci 4268c2ecf20Sopenharmony_ci/* 4278c2ecf20Sopenharmony_ci * sched_skb() is called from two different places. In the tx path, any 4288c2ecf20Sopenharmony_ci * packet generating load on an output port will call sched_skb() 4298c2ecf20Sopenharmony_ci * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq 4308c2ecf20Sopenharmony_ci * context (skb == NULL). 4318c2ecf20Sopenharmony_ci * The scheduler only returns a skb (which will then be sent) if the 4328c2ecf20Sopenharmony_ci * length of the skb is <= the current quota of the output port. 4338c2ecf20Sopenharmony_ci */ 4348c2ecf20Sopenharmony_cistatic struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb, 4358c2ecf20Sopenharmony_ci unsigned int credits) 4368c2ecf20Sopenharmony_ci{ 4378c2ecf20Sopenharmony_ci struct sched *s = sge->tx_sched; 4388c2ecf20Sopenharmony_ci struct sk_buff_head *skbq; 4398c2ecf20Sopenharmony_ci unsigned int i, len, update = 1; 4408c2ecf20Sopenharmony_ci 4418c2ecf20Sopenharmony_ci pr_debug("sched_skb %p\n", skb); 4428c2ecf20Sopenharmony_ci if (!skb) { 4438c2ecf20Sopenharmony_ci if (!s->num) 4448c2ecf20Sopenharmony_ci return NULL; 4458c2ecf20Sopenharmony_ci } else { 4468c2ecf20Sopenharmony_ci skbq = &s->p[skb->dev->if_port].skbq; 4478c2ecf20Sopenharmony_ci __skb_queue_tail(skbq, skb); 4488c2ecf20Sopenharmony_ci s->num++; 4498c2ecf20Sopenharmony_ci skb = NULL; 4508c2ecf20Sopenharmony_ci } 4518c2ecf20Sopenharmony_ci 4528c2ecf20Sopenharmony_ci if (credits < MAX_SKB_FRAGS + 1) 4538c2ecf20Sopenharmony_ci goto out; 4548c2ecf20Sopenharmony_ci 4558c2ecf20Sopenharmony_ciagain: 4568c2ecf20Sopenharmony_ci for (i = 0; i < MAX_NPORTS; i++) { 4578c2ecf20Sopenharmony_ci s->port = (s->port + 1) & (MAX_NPORTS - 1); 4588c2ecf20Sopenharmony_ci skbq = &s->p[s->port].skbq; 4598c2ecf20Sopenharmony_ci 4608c2ecf20Sopenharmony_ci skb = skb_peek(skbq); 4618c2ecf20Sopenharmony_ci 4628c2ecf20Sopenharmony_ci if (!skb) 4638c2ecf20Sopenharmony_ci continue; 4648c2ecf20Sopenharmony_ci 4658c2ecf20Sopenharmony_ci len = skb->len; 4668c2ecf20Sopenharmony_ci if (len <= s->p[s->port].avail) { 4678c2ecf20Sopenharmony_ci s->p[s->port].avail -= len; 4688c2ecf20Sopenharmony_ci s->num--; 4698c2ecf20Sopenharmony_ci __skb_unlink(skb, skbq); 4708c2ecf20Sopenharmony_ci goto out; 4718c2ecf20Sopenharmony_ci } 4728c2ecf20Sopenharmony_ci skb = NULL; 4738c2ecf20Sopenharmony_ci } 4748c2ecf20Sopenharmony_ci 4758c2ecf20Sopenharmony_ci if (update-- && sched_update_avail(sge)) 4768c2ecf20Sopenharmony_ci goto again; 4778c2ecf20Sopenharmony_ci 4788c2ecf20Sopenharmony_ciout: 4798c2ecf20Sopenharmony_ci /* If there are more pending skbs, we use the hardware to schedule us 4808c2ecf20Sopenharmony_ci * again. 4818c2ecf20Sopenharmony_ci */ 4828c2ecf20Sopenharmony_ci if (s->num && !skb) { 4838c2ecf20Sopenharmony_ci struct cmdQ *q = &sge->cmdQ[0]; 4848c2ecf20Sopenharmony_ci clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 4858c2ecf20Sopenharmony_ci if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { 4868c2ecf20Sopenharmony_ci set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 4878c2ecf20Sopenharmony_ci writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL); 4888c2ecf20Sopenharmony_ci } 4898c2ecf20Sopenharmony_ci } 4908c2ecf20Sopenharmony_ci pr_debug("sched_skb ret %p\n", skb); 4918c2ecf20Sopenharmony_ci 4928c2ecf20Sopenharmony_ci return skb; 4938c2ecf20Sopenharmony_ci} 4948c2ecf20Sopenharmony_ci 4958c2ecf20Sopenharmony_ci/* 4968c2ecf20Sopenharmony_ci * PIO to indicate that memory mapped Q contains valid descriptor(s). 4978c2ecf20Sopenharmony_ci */ 4988c2ecf20Sopenharmony_cistatic inline void doorbell_pio(struct adapter *adapter, u32 val) 4998c2ecf20Sopenharmony_ci{ 5008c2ecf20Sopenharmony_ci wmb(); 5018c2ecf20Sopenharmony_ci writel(val, adapter->regs + A_SG_DOORBELL); 5028c2ecf20Sopenharmony_ci} 5038c2ecf20Sopenharmony_ci 5048c2ecf20Sopenharmony_ci/* 5058c2ecf20Sopenharmony_ci * Frees all RX buffers on the freelist Q. The caller must make sure that 5068c2ecf20Sopenharmony_ci * the SGE is turned off before calling this function. 5078c2ecf20Sopenharmony_ci */ 5088c2ecf20Sopenharmony_cistatic void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q) 5098c2ecf20Sopenharmony_ci{ 5108c2ecf20Sopenharmony_ci unsigned int cidx = q->cidx; 5118c2ecf20Sopenharmony_ci 5128c2ecf20Sopenharmony_ci while (q->credits--) { 5138c2ecf20Sopenharmony_ci struct freelQ_ce *ce = &q->centries[cidx]; 5148c2ecf20Sopenharmony_ci 5158c2ecf20Sopenharmony_ci dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr), 5168c2ecf20Sopenharmony_ci dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE); 5178c2ecf20Sopenharmony_ci dev_kfree_skb(ce->skb); 5188c2ecf20Sopenharmony_ci ce->skb = NULL; 5198c2ecf20Sopenharmony_ci if (++cidx == q->size) 5208c2ecf20Sopenharmony_ci cidx = 0; 5218c2ecf20Sopenharmony_ci } 5228c2ecf20Sopenharmony_ci} 5238c2ecf20Sopenharmony_ci 5248c2ecf20Sopenharmony_ci/* 5258c2ecf20Sopenharmony_ci * Free RX free list and response queue resources. 5268c2ecf20Sopenharmony_ci */ 5278c2ecf20Sopenharmony_cistatic void free_rx_resources(struct sge *sge) 5288c2ecf20Sopenharmony_ci{ 5298c2ecf20Sopenharmony_ci struct pci_dev *pdev = sge->adapter->pdev; 5308c2ecf20Sopenharmony_ci unsigned int size, i; 5318c2ecf20Sopenharmony_ci 5328c2ecf20Sopenharmony_ci if (sge->respQ.entries) { 5338c2ecf20Sopenharmony_ci size = sizeof(struct respQ_e) * sge->respQ.size; 5348c2ecf20Sopenharmony_ci dma_free_coherent(&pdev->dev, size, sge->respQ.entries, 5358c2ecf20Sopenharmony_ci sge->respQ.dma_addr); 5368c2ecf20Sopenharmony_ci } 5378c2ecf20Sopenharmony_ci 5388c2ecf20Sopenharmony_ci for (i = 0; i < SGE_FREELQ_N; i++) { 5398c2ecf20Sopenharmony_ci struct freelQ *q = &sge->freelQ[i]; 5408c2ecf20Sopenharmony_ci 5418c2ecf20Sopenharmony_ci if (q->centries) { 5428c2ecf20Sopenharmony_ci free_freelQ_buffers(pdev, q); 5438c2ecf20Sopenharmony_ci kfree(q->centries); 5448c2ecf20Sopenharmony_ci } 5458c2ecf20Sopenharmony_ci if (q->entries) { 5468c2ecf20Sopenharmony_ci size = sizeof(struct freelQ_e) * q->size; 5478c2ecf20Sopenharmony_ci dma_free_coherent(&pdev->dev, size, q->entries, 5488c2ecf20Sopenharmony_ci q->dma_addr); 5498c2ecf20Sopenharmony_ci } 5508c2ecf20Sopenharmony_ci } 5518c2ecf20Sopenharmony_ci} 5528c2ecf20Sopenharmony_ci 5538c2ecf20Sopenharmony_ci/* 5548c2ecf20Sopenharmony_ci * Allocates basic RX resources, consisting of memory mapped freelist Qs and a 5558c2ecf20Sopenharmony_ci * response queue. 5568c2ecf20Sopenharmony_ci */ 5578c2ecf20Sopenharmony_cistatic int alloc_rx_resources(struct sge *sge, struct sge_params *p) 5588c2ecf20Sopenharmony_ci{ 5598c2ecf20Sopenharmony_ci struct pci_dev *pdev = sge->adapter->pdev; 5608c2ecf20Sopenharmony_ci unsigned int size, i; 5618c2ecf20Sopenharmony_ci 5628c2ecf20Sopenharmony_ci for (i = 0; i < SGE_FREELQ_N; i++) { 5638c2ecf20Sopenharmony_ci struct freelQ *q = &sge->freelQ[i]; 5648c2ecf20Sopenharmony_ci 5658c2ecf20Sopenharmony_ci q->genbit = 1; 5668c2ecf20Sopenharmony_ci q->size = p->freelQ_size[i]; 5678c2ecf20Sopenharmony_ci q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN; 5688c2ecf20Sopenharmony_ci size = sizeof(struct freelQ_e) * q->size; 5698c2ecf20Sopenharmony_ci q->entries = dma_alloc_coherent(&pdev->dev, size, 5708c2ecf20Sopenharmony_ci &q->dma_addr, GFP_KERNEL); 5718c2ecf20Sopenharmony_ci if (!q->entries) 5728c2ecf20Sopenharmony_ci goto err_no_mem; 5738c2ecf20Sopenharmony_ci 5748c2ecf20Sopenharmony_ci size = sizeof(struct freelQ_ce) * q->size; 5758c2ecf20Sopenharmony_ci q->centries = kzalloc(size, GFP_KERNEL); 5768c2ecf20Sopenharmony_ci if (!q->centries) 5778c2ecf20Sopenharmony_ci goto err_no_mem; 5788c2ecf20Sopenharmony_ci } 5798c2ecf20Sopenharmony_ci 5808c2ecf20Sopenharmony_ci /* 5818c2ecf20Sopenharmony_ci * Calculate the buffer sizes for the two free lists. FL0 accommodates 5828c2ecf20Sopenharmony_ci * regular sized Ethernet frames, FL1 is sized not to exceed 16K, 5838c2ecf20Sopenharmony_ci * including all the sk_buff overhead. 5848c2ecf20Sopenharmony_ci * 5858c2ecf20Sopenharmony_ci * Note: For T2 FL0 and FL1 are reversed. 5868c2ecf20Sopenharmony_ci */ 5878c2ecf20Sopenharmony_ci sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE + 5888c2ecf20Sopenharmony_ci sizeof(struct cpl_rx_data) + 5898c2ecf20Sopenharmony_ci sge->freelQ[!sge->jumbo_fl].dma_offset; 5908c2ecf20Sopenharmony_ci 5918c2ecf20Sopenharmony_ci size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5928c2ecf20Sopenharmony_ci 5938c2ecf20Sopenharmony_ci sge->freelQ[sge->jumbo_fl].rx_buffer_size = size; 5948c2ecf20Sopenharmony_ci 5958c2ecf20Sopenharmony_ci /* 5968c2ecf20Sopenharmony_ci * Setup which skb recycle Q should be used when recycling buffers from 5978c2ecf20Sopenharmony_ci * each free list. 5988c2ecf20Sopenharmony_ci */ 5998c2ecf20Sopenharmony_ci sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0; 6008c2ecf20Sopenharmony_ci sge->freelQ[sge->jumbo_fl].recycleq_idx = 1; 6018c2ecf20Sopenharmony_ci 6028c2ecf20Sopenharmony_ci sge->respQ.genbit = 1; 6038c2ecf20Sopenharmony_ci sge->respQ.size = SGE_RESPQ_E_N; 6048c2ecf20Sopenharmony_ci sge->respQ.credits = 0; 6058c2ecf20Sopenharmony_ci size = sizeof(struct respQ_e) * sge->respQ.size; 6068c2ecf20Sopenharmony_ci sge->respQ.entries = 6078c2ecf20Sopenharmony_ci dma_alloc_coherent(&pdev->dev, size, &sge->respQ.dma_addr, 6088c2ecf20Sopenharmony_ci GFP_KERNEL); 6098c2ecf20Sopenharmony_ci if (!sge->respQ.entries) 6108c2ecf20Sopenharmony_ci goto err_no_mem; 6118c2ecf20Sopenharmony_ci return 0; 6128c2ecf20Sopenharmony_ci 6138c2ecf20Sopenharmony_cierr_no_mem: 6148c2ecf20Sopenharmony_ci free_rx_resources(sge); 6158c2ecf20Sopenharmony_ci return -ENOMEM; 6168c2ecf20Sopenharmony_ci} 6178c2ecf20Sopenharmony_ci 6188c2ecf20Sopenharmony_ci/* 6198c2ecf20Sopenharmony_ci * Reclaims n TX descriptors and frees the buffers associated with them. 6208c2ecf20Sopenharmony_ci */ 6218c2ecf20Sopenharmony_cistatic void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n) 6228c2ecf20Sopenharmony_ci{ 6238c2ecf20Sopenharmony_ci struct cmdQ_ce *ce; 6248c2ecf20Sopenharmony_ci struct pci_dev *pdev = sge->adapter->pdev; 6258c2ecf20Sopenharmony_ci unsigned int cidx = q->cidx; 6268c2ecf20Sopenharmony_ci 6278c2ecf20Sopenharmony_ci q->in_use -= n; 6288c2ecf20Sopenharmony_ci ce = &q->centries[cidx]; 6298c2ecf20Sopenharmony_ci while (n--) { 6308c2ecf20Sopenharmony_ci if (likely(dma_unmap_len(ce, dma_len))) { 6318c2ecf20Sopenharmony_ci dma_unmap_single(&pdev->dev, 6328c2ecf20Sopenharmony_ci dma_unmap_addr(ce, dma_addr), 6338c2ecf20Sopenharmony_ci dma_unmap_len(ce, dma_len), 6348c2ecf20Sopenharmony_ci DMA_TO_DEVICE); 6358c2ecf20Sopenharmony_ci if (q->sop) 6368c2ecf20Sopenharmony_ci q->sop = 0; 6378c2ecf20Sopenharmony_ci } 6388c2ecf20Sopenharmony_ci if (ce->skb) { 6398c2ecf20Sopenharmony_ci dev_kfree_skb_any(ce->skb); 6408c2ecf20Sopenharmony_ci q->sop = 1; 6418c2ecf20Sopenharmony_ci } 6428c2ecf20Sopenharmony_ci ce++; 6438c2ecf20Sopenharmony_ci if (++cidx == q->size) { 6448c2ecf20Sopenharmony_ci cidx = 0; 6458c2ecf20Sopenharmony_ci ce = q->centries; 6468c2ecf20Sopenharmony_ci } 6478c2ecf20Sopenharmony_ci } 6488c2ecf20Sopenharmony_ci q->cidx = cidx; 6498c2ecf20Sopenharmony_ci} 6508c2ecf20Sopenharmony_ci 6518c2ecf20Sopenharmony_ci/* 6528c2ecf20Sopenharmony_ci * Free TX resources. 6538c2ecf20Sopenharmony_ci * 6548c2ecf20Sopenharmony_ci * Assumes that SGE is stopped and all interrupts are disabled. 6558c2ecf20Sopenharmony_ci */ 6568c2ecf20Sopenharmony_cistatic void free_tx_resources(struct sge *sge) 6578c2ecf20Sopenharmony_ci{ 6588c2ecf20Sopenharmony_ci struct pci_dev *pdev = sge->adapter->pdev; 6598c2ecf20Sopenharmony_ci unsigned int size, i; 6608c2ecf20Sopenharmony_ci 6618c2ecf20Sopenharmony_ci for (i = 0; i < SGE_CMDQ_N; i++) { 6628c2ecf20Sopenharmony_ci struct cmdQ *q = &sge->cmdQ[i]; 6638c2ecf20Sopenharmony_ci 6648c2ecf20Sopenharmony_ci if (q->centries) { 6658c2ecf20Sopenharmony_ci if (q->in_use) 6668c2ecf20Sopenharmony_ci free_cmdQ_buffers(sge, q, q->in_use); 6678c2ecf20Sopenharmony_ci kfree(q->centries); 6688c2ecf20Sopenharmony_ci } 6698c2ecf20Sopenharmony_ci if (q->entries) { 6708c2ecf20Sopenharmony_ci size = sizeof(struct cmdQ_e) * q->size; 6718c2ecf20Sopenharmony_ci dma_free_coherent(&pdev->dev, size, q->entries, 6728c2ecf20Sopenharmony_ci q->dma_addr); 6738c2ecf20Sopenharmony_ci } 6748c2ecf20Sopenharmony_ci } 6758c2ecf20Sopenharmony_ci} 6768c2ecf20Sopenharmony_ci 6778c2ecf20Sopenharmony_ci/* 6788c2ecf20Sopenharmony_ci * Allocates basic TX resources, consisting of memory mapped command Qs. 6798c2ecf20Sopenharmony_ci */ 6808c2ecf20Sopenharmony_cistatic int alloc_tx_resources(struct sge *sge, struct sge_params *p) 6818c2ecf20Sopenharmony_ci{ 6828c2ecf20Sopenharmony_ci struct pci_dev *pdev = sge->adapter->pdev; 6838c2ecf20Sopenharmony_ci unsigned int size, i; 6848c2ecf20Sopenharmony_ci 6858c2ecf20Sopenharmony_ci for (i = 0; i < SGE_CMDQ_N; i++) { 6868c2ecf20Sopenharmony_ci struct cmdQ *q = &sge->cmdQ[i]; 6878c2ecf20Sopenharmony_ci 6888c2ecf20Sopenharmony_ci q->genbit = 1; 6898c2ecf20Sopenharmony_ci q->sop = 1; 6908c2ecf20Sopenharmony_ci q->size = p->cmdQ_size[i]; 6918c2ecf20Sopenharmony_ci q->in_use = 0; 6928c2ecf20Sopenharmony_ci q->status = 0; 6938c2ecf20Sopenharmony_ci q->processed = q->cleaned = 0; 6948c2ecf20Sopenharmony_ci q->stop_thres = 0; 6958c2ecf20Sopenharmony_ci spin_lock_init(&q->lock); 6968c2ecf20Sopenharmony_ci size = sizeof(struct cmdQ_e) * q->size; 6978c2ecf20Sopenharmony_ci q->entries = dma_alloc_coherent(&pdev->dev, size, 6988c2ecf20Sopenharmony_ci &q->dma_addr, GFP_KERNEL); 6998c2ecf20Sopenharmony_ci if (!q->entries) 7008c2ecf20Sopenharmony_ci goto err_no_mem; 7018c2ecf20Sopenharmony_ci 7028c2ecf20Sopenharmony_ci size = sizeof(struct cmdQ_ce) * q->size; 7038c2ecf20Sopenharmony_ci q->centries = kzalloc(size, GFP_KERNEL); 7048c2ecf20Sopenharmony_ci if (!q->centries) 7058c2ecf20Sopenharmony_ci goto err_no_mem; 7068c2ecf20Sopenharmony_ci } 7078c2ecf20Sopenharmony_ci 7088c2ecf20Sopenharmony_ci /* 7098c2ecf20Sopenharmony_ci * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE 7108c2ecf20Sopenharmony_ci * only. For queue 0 set the stop threshold so we can handle one more 7118c2ecf20Sopenharmony_ci * packet from each port, plus reserve an additional 24 entries for 7128c2ecf20Sopenharmony_ci * Ethernet packets only. Queue 1 never suspends nor do we reserve 7138c2ecf20Sopenharmony_ci * space for Ethernet packets. 7148c2ecf20Sopenharmony_ci */ 7158c2ecf20Sopenharmony_ci sge->cmdQ[0].stop_thres = sge->adapter->params.nports * 7168c2ecf20Sopenharmony_ci (MAX_SKB_FRAGS + 1); 7178c2ecf20Sopenharmony_ci return 0; 7188c2ecf20Sopenharmony_ci 7198c2ecf20Sopenharmony_cierr_no_mem: 7208c2ecf20Sopenharmony_ci free_tx_resources(sge); 7218c2ecf20Sopenharmony_ci return -ENOMEM; 7228c2ecf20Sopenharmony_ci} 7238c2ecf20Sopenharmony_ci 7248c2ecf20Sopenharmony_cistatic inline void setup_ring_params(struct adapter *adapter, u64 addr, 7258c2ecf20Sopenharmony_ci u32 size, int base_reg_lo, 7268c2ecf20Sopenharmony_ci int base_reg_hi, int size_reg) 7278c2ecf20Sopenharmony_ci{ 7288c2ecf20Sopenharmony_ci writel((u32)addr, adapter->regs + base_reg_lo); 7298c2ecf20Sopenharmony_ci writel(addr >> 32, adapter->regs + base_reg_hi); 7308c2ecf20Sopenharmony_ci writel(size, adapter->regs + size_reg); 7318c2ecf20Sopenharmony_ci} 7328c2ecf20Sopenharmony_ci 7338c2ecf20Sopenharmony_ci/* 7348c2ecf20Sopenharmony_ci * Enable/disable VLAN acceleration. 7358c2ecf20Sopenharmony_ci */ 7368c2ecf20Sopenharmony_civoid t1_vlan_mode(struct adapter *adapter, netdev_features_t features) 7378c2ecf20Sopenharmony_ci{ 7388c2ecf20Sopenharmony_ci struct sge *sge = adapter->sge; 7398c2ecf20Sopenharmony_ci 7408c2ecf20Sopenharmony_ci if (features & NETIF_F_HW_VLAN_CTAG_RX) 7418c2ecf20Sopenharmony_ci sge->sge_control |= F_VLAN_XTRACT; 7428c2ecf20Sopenharmony_ci else 7438c2ecf20Sopenharmony_ci sge->sge_control &= ~F_VLAN_XTRACT; 7448c2ecf20Sopenharmony_ci if (adapter->open_device_map) { 7458c2ecf20Sopenharmony_ci writel(sge->sge_control, adapter->regs + A_SG_CONTROL); 7468c2ecf20Sopenharmony_ci readl(adapter->regs + A_SG_CONTROL); /* flush */ 7478c2ecf20Sopenharmony_ci } 7488c2ecf20Sopenharmony_ci} 7498c2ecf20Sopenharmony_ci 7508c2ecf20Sopenharmony_ci/* 7518c2ecf20Sopenharmony_ci * Programs the various SGE registers. However, the engine is not yet enabled, 7528c2ecf20Sopenharmony_ci * but sge->sge_control is setup and ready to go. 7538c2ecf20Sopenharmony_ci */ 7548c2ecf20Sopenharmony_cistatic void configure_sge(struct sge *sge, struct sge_params *p) 7558c2ecf20Sopenharmony_ci{ 7568c2ecf20Sopenharmony_ci struct adapter *ap = sge->adapter; 7578c2ecf20Sopenharmony_ci 7588c2ecf20Sopenharmony_ci writel(0, ap->regs + A_SG_CONTROL); 7598c2ecf20Sopenharmony_ci setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size, 7608c2ecf20Sopenharmony_ci A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE); 7618c2ecf20Sopenharmony_ci setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size, 7628c2ecf20Sopenharmony_ci A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE); 7638c2ecf20Sopenharmony_ci setup_ring_params(ap, sge->freelQ[0].dma_addr, 7648c2ecf20Sopenharmony_ci sge->freelQ[0].size, A_SG_FL0BASELWR, 7658c2ecf20Sopenharmony_ci A_SG_FL0BASEUPR, A_SG_FL0SIZE); 7668c2ecf20Sopenharmony_ci setup_ring_params(ap, sge->freelQ[1].dma_addr, 7678c2ecf20Sopenharmony_ci sge->freelQ[1].size, A_SG_FL1BASELWR, 7688c2ecf20Sopenharmony_ci A_SG_FL1BASEUPR, A_SG_FL1SIZE); 7698c2ecf20Sopenharmony_ci 7708c2ecf20Sopenharmony_ci /* The threshold comparison uses <. */ 7718c2ecf20Sopenharmony_ci writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD); 7728c2ecf20Sopenharmony_ci 7738c2ecf20Sopenharmony_ci setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size, 7748c2ecf20Sopenharmony_ci A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE); 7758c2ecf20Sopenharmony_ci writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT); 7768c2ecf20Sopenharmony_ci 7778c2ecf20Sopenharmony_ci sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE | 7788c2ecf20Sopenharmony_ci F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE | 7798c2ecf20Sopenharmony_ci V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE | 7808c2ecf20Sopenharmony_ci V_RX_PKT_OFFSET(sge->rx_pkt_pad); 7818c2ecf20Sopenharmony_ci 7828c2ecf20Sopenharmony_ci#if defined(__BIG_ENDIAN_BITFIELD) 7838c2ecf20Sopenharmony_ci sge->sge_control |= F_ENABLE_BIG_ENDIAN; 7848c2ecf20Sopenharmony_ci#endif 7858c2ecf20Sopenharmony_ci 7868c2ecf20Sopenharmony_ci /* Initialize no-resource timer */ 7878c2ecf20Sopenharmony_ci sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap); 7888c2ecf20Sopenharmony_ci 7898c2ecf20Sopenharmony_ci t1_sge_set_coalesce_params(sge, p); 7908c2ecf20Sopenharmony_ci} 7918c2ecf20Sopenharmony_ci 7928c2ecf20Sopenharmony_ci/* 7938c2ecf20Sopenharmony_ci * Return the payload capacity of the jumbo free-list buffers. 7948c2ecf20Sopenharmony_ci */ 7958c2ecf20Sopenharmony_cistatic inline unsigned int jumbo_payload_capacity(const struct sge *sge) 7968c2ecf20Sopenharmony_ci{ 7978c2ecf20Sopenharmony_ci return sge->freelQ[sge->jumbo_fl].rx_buffer_size - 7988c2ecf20Sopenharmony_ci sge->freelQ[sge->jumbo_fl].dma_offset - 7998c2ecf20Sopenharmony_ci sizeof(struct cpl_rx_data); 8008c2ecf20Sopenharmony_ci} 8018c2ecf20Sopenharmony_ci 8028c2ecf20Sopenharmony_ci/* 8038c2ecf20Sopenharmony_ci * Frees all SGE related resources and the sge structure itself 8048c2ecf20Sopenharmony_ci */ 8058c2ecf20Sopenharmony_civoid t1_sge_destroy(struct sge *sge) 8068c2ecf20Sopenharmony_ci{ 8078c2ecf20Sopenharmony_ci int i; 8088c2ecf20Sopenharmony_ci 8098c2ecf20Sopenharmony_ci for_each_port(sge->adapter, i) 8108c2ecf20Sopenharmony_ci free_percpu(sge->port_stats[i]); 8118c2ecf20Sopenharmony_ci 8128c2ecf20Sopenharmony_ci kfree(sge->tx_sched); 8138c2ecf20Sopenharmony_ci free_tx_resources(sge); 8148c2ecf20Sopenharmony_ci free_rx_resources(sge); 8158c2ecf20Sopenharmony_ci kfree(sge); 8168c2ecf20Sopenharmony_ci} 8178c2ecf20Sopenharmony_ci 8188c2ecf20Sopenharmony_ci/* 8198c2ecf20Sopenharmony_ci * Allocates new RX buffers on the freelist Q (and tracks them on the freelist 8208c2ecf20Sopenharmony_ci * context Q) until the Q is full or alloc_skb fails. 8218c2ecf20Sopenharmony_ci * 8228c2ecf20Sopenharmony_ci * It is possible that the generation bits already match, indicating that the 8238c2ecf20Sopenharmony_ci * buffer is already valid and nothing needs to be done. This happens when we 8248c2ecf20Sopenharmony_ci * copied a received buffer into a new sk_buff during the interrupt processing. 8258c2ecf20Sopenharmony_ci * 8268c2ecf20Sopenharmony_ci * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad), 8278c2ecf20Sopenharmony_ci * we specify a RX_OFFSET in order to make sure that the IP header is 4B 8288c2ecf20Sopenharmony_ci * aligned. 8298c2ecf20Sopenharmony_ci */ 8308c2ecf20Sopenharmony_cistatic void refill_free_list(struct sge *sge, struct freelQ *q) 8318c2ecf20Sopenharmony_ci{ 8328c2ecf20Sopenharmony_ci struct pci_dev *pdev = sge->adapter->pdev; 8338c2ecf20Sopenharmony_ci struct freelQ_ce *ce = &q->centries[q->pidx]; 8348c2ecf20Sopenharmony_ci struct freelQ_e *e = &q->entries[q->pidx]; 8358c2ecf20Sopenharmony_ci unsigned int dma_len = q->rx_buffer_size - q->dma_offset; 8368c2ecf20Sopenharmony_ci 8378c2ecf20Sopenharmony_ci while (q->credits < q->size) { 8388c2ecf20Sopenharmony_ci struct sk_buff *skb; 8398c2ecf20Sopenharmony_ci dma_addr_t mapping; 8408c2ecf20Sopenharmony_ci 8418c2ecf20Sopenharmony_ci skb = dev_alloc_skb(q->rx_buffer_size); 8428c2ecf20Sopenharmony_ci if (!skb) 8438c2ecf20Sopenharmony_ci break; 8448c2ecf20Sopenharmony_ci 8458c2ecf20Sopenharmony_ci skb_reserve(skb, q->dma_offset); 8468c2ecf20Sopenharmony_ci mapping = dma_map_single(&pdev->dev, skb->data, dma_len, 8478c2ecf20Sopenharmony_ci DMA_FROM_DEVICE); 8488c2ecf20Sopenharmony_ci skb_reserve(skb, sge->rx_pkt_pad); 8498c2ecf20Sopenharmony_ci 8508c2ecf20Sopenharmony_ci ce->skb = skb; 8518c2ecf20Sopenharmony_ci dma_unmap_addr_set(ce, dma_addr, mapping); 8528c2ecf20Sopenharmony_ci dma_unmap_len_set(ce, dma_len, dma_len); 8538c2ecf20Sopenharmony_ci e->addr_lo = (u32)mapping; 8548c2ecf20Sopenharmony_ci e->addr_hi = (u64)mapping >> 32; 8558c2ecf20Sopenharmony_ci e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit); 8568c2ecf20Sopenharmony_ci wmb(); 8578c2ecf20Sopenharmony_ci e->gen2 = V_CMD_GEN2(q->genbit); 8588c2ecf20Sopenharmony_ci 8598c2ecf20Sopenharmony_ci e++; 8608c2ecf20Sopenharmony_ci ce++; 8618c2ecf20Sopenharmony_ci if (++q->pidx == q->size) { 8628c2ecf20Sopenharmony_ci q->pidx = 0; 8638c2ecf20Sopenharmony_ci q->genbit ^= 1; 8648c2ecf20Sopenharmony_ci ce = q->centries; 8658c2ecf20Sopenharmony_ci e = q->entries; 8668c2ecf20Sopenharmony_ci } 8678c2ecf20Sopenharmony_ci q->credits++; 8688c2ecf20Sopenharmony_ci } 8698c2ecf20Sopenharmony_ci} 8708c2ecf20Sopenharmony_ci 8718c2ecf20Sopenharmony_ci/* 8728c2ecf20Sopenharmony_ci * Calls refill_free_list for both free lists. If we cannot fill at least 1/4 8738c2ecf20Sopenharmony_ci * of both rings, we go into 'few interrupt mode' in order to give the system 8748c2ecf20Sopenharmony_ci * time to free up resources. 8758c2ecf20Sopenharmony_ci */ 8768c2ecf20Sopenharmony_cistatic void freelQs_empty(struct sge *sge) 8778c2ecf20Sopenharmony_ci{ 8788c2ecf20Sopenharmony_ci struct adapter *adapter = sge->adapter; 8798c2ecf20Sopenharmony_ci u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE); 8808c2ecf20Sopenharmony_ci u32 irqholdoff_reg; 8818c2ecf20Sopenharmony_ci 8828c2ecf20Sopenharmony_ci refill_free_list(sge, &sge->freelQ[0]); 8838c2ecf20Sopenharmony_ci refill_free_list(sge, &sge->freelQ[1]); 8848c2ecf20Sopenharmony_ci 8858c2ecf20Sopenharmony_ci if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) && 8868c2ecf20Sopenharmony_ci sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) { 8878c2ecf20Sopenharmony_ci irq_reg |= F_FL_EXHAUSTED; 8888c2ecf20Sopenharmony_ci irqholdoff_reg = sge->fixed_intrtimer; 8898c2ecf20Sopenharmony_ci } else { 8908c2ecf20Sopenharmony_ci /* Clear the F_FL_EXHAUSTED interrupts for now */ 8918c2ecf20Sopenharmony_ci irq_reg &= ~F_FL_EXHAUSTED; 8928c2ecf20Sopenharmony_ci irqholdoff_reg = sge->intrtimer_nres; 8938c2ecf20Sopenharmony_ci } 8948c2ecf20Sopenharmony_ci writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER); 8958c2ecf20Sopenharmony_ci writel(irq_reg, adapter->regs + A_SG_INT_ENABLE); 8968c2ecf20Sopenharmony_ci 8978c2ecf20Sopenharmony_ci /* We reenable the Qs to force a freelist GTS interrupt later */ 8988c2ecf20Sopenharmony_ci doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE); 8998c2ecf20Sopenharmony_ci} 9008c2ecf20Sopenharmony_ci 9018c2ecf20Sopenharmony_ci#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA) 9028c2ecf20Sopenharmony_ci#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) 9038c2ecf20Sopenharmony_ci#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \ 9048c2ecf20Sopenharmony_ci F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) 9058c2ecf20Sopenharmony_ci 9068c2ecf20Sopenharmony_ci/* 9078c2ecf20Sopenharmony_ci * Disable SGE Interrupts 9088c2ecf20Sopenharmony_ci */ 9098c2ecf20Sopenharmony_civoid t1_sge_intr_disable(struct sge *sge) 9108c2ecf20Sopenharmony_ci{ 9118c2ecf20Sopenharmony_ci u32 val = readl(sge->adapter->regs + A_PL_ENABLE); 9128c2ecf20Sopenharmony_ci 9138c2ecf20Sopenharmony_ci writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); 9148c2ecf20Sopenharmony_ci writel(0, sge->adapter->regs + A_SG_INT_ENABLE); 9158c2ecf20Sopenharmony_ci} 9168c2ecf20Sopenharmony_ci 9178c2ecf20Sopenharmony_ci/* 9188c2ecf20Sopenharmony_ci * Enable SGE interrupts. 9198c2ecf20Sopenharmony_ci */ 9208c2ecf20Sopenharmony_civoid t1_sge_intr_enable(struct sge *sge) 9218c2ecf20Sopenharmony_ci{ 9228c2ecf20Sopenharmony_ci u32 en = SGE_INT_ENABLE; 9238c2ecf20Sopenharmony_ci u32 val = readl(sge->adapter->regs + A_PL_ENABLE); 9248c2ecf20Sopenharmony_ci 9258c2ecf20Sopenharmony_ci if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO) 9268c2ecf20Sopenharmony_ci en &= ~F_PACKET_TOO_BIG; 9278c2ecf20Sopenharmony_ci writel(en, sge->adapter->regs + A_SG_INT_ENABLE); 9288c2ecf20Sopenharmony_ci writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); 9298c2ecf20Sopenharmony_ci} 9308c2ecf20Sopenharmony_ci 9318c2ecf20Sopenharmony_ci/* 9328c2ecf20Sopenharmony_ci * Clear SGE interrupts. 9338c2ecf20Sopenharmony_ci */ 9348c2ecf20Sopenharmony_civoid t1_sge_intr_clear(struct sge *sge) 9358c2ecf20Sopenharmony_ci{ 9368c2ecf20Sopenharmony_ci writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE); 9378c2ecf20Sopenharmony_ci writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE); 9388c2ecf20Sopenharmony_ci} 9398c2ecf20Sopenharmony_ci 9408c2ecf20Sopenharmony_ci/* 9418c2ecf20Sopenharmony_ci * SGE 'Error' interrupt handler 9428c2ecf20Sopenharmony_ci */ 9438c2ecf20Sopenharmony_ciint t1_sge_intr_error_handler(struct sge *sge) 9448c2ecf20Sopenharmony_ci{ 9458c2ecf20Sopenharmony_ci struct adapter *adapter = sge->adapter; 9468c2ecf20Sopenharmony_ci u32 cause = readl(adapter->regs + A_SG_INT_CAUSE); 9478c2ecf20Sopenharmony_ci 9488c2ecf20Sopenharmony_ci if (adapter->port[0].dev->hw_features & NETIF_F_TSO) 9498c2ecf20Sopenharmony_ci cause &= ~F_PACKET_TOO_BIG; 9508c2ecf20Sopenharmony_ci if (cause & F_RESPQ_EXHAUSTED) 9518c2ecf20Sopenharmony_ci sge->stats.respQ_empty++; 9528c2ecf20Sopenharmony_ci if (cause & F_RESPQ_OVERFLOW) { 9538c2ecf20Sopenharmony_ci sge->stats.respQ_overflow++; 9548c2ecf20Sopenharmony_ci pr_alert("%s: SGE response queue overflow\n", 9558c2ecf20Sopenharmony_ci adapter->name); 9568c2ecf20Sopenharmony_ci } 9578c2ecf20Sopenharmony_ci if (cause & F_FL_EXHAUSTED) { 9588c2ecf20Sopenharmony_ci sge->stats.freelistQ_empty++; 9598c2ecf20Sopenharmony_ci freelQs_empty(sge); 9608c2ecf20Sopenharmony_ci } 9618c2ecf20Sopenharmony_ci if (cause & F_PACKET_TOO_BIG) { 9628c2ecf20Sopenharmony_ci sge->stats.pkt_too_big++; 9638c2ecf20Sopenharmony_ci pr_alert("%s: SGE max packet size exceeded\n", 9648c2ecf20Sopenharmony_ci adapter->name); 9658c2ecf20Sopenharmony_ci } 9668c2ecf20Sopenharmony_ci if (cause & F_PACKET_MISMATCH) { 9678c2ecf20Sopenharmony_ci sge->stats.pkt_mismatch++; 9688c2ecf20Sopenharmony_ci pr_alert("%s: SGE packet mismatch\n", adapter->name); 9698c2ecf20Sopenharmony_ci } 9708c2ecf20Sopenharmony_ci if (cause & SGE_INT_FATAL) 9718c2ecf20Sopenharmony_ci t1_fatal_err(adapter); 9728c2ecf20Sopenharmony_ci 9738c2ecf20Sopenharmony_ci writel(cause, adapter->regs + A_SG_INT_CAUSE); 9748c2ecf20Sopenharmony_ci return 0; 9758c2ecf20Sopenharmony_ci} 9768c2ecf20Sopenharmony_ci 9778c2ecf20Sopenharmony_ciconst struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge) 9788c2ecf20Sopenharmony_ci{ 9798c2ecf20Sopenharmony_ci return &sge->stats; 9808c2ecf20Sopenharmony_ci} 9818c2ecf20Sopenharmony_ci 9828c2ecf20Sopenharmony_civoid t1_sge_get_port_stats(const struct sge *sge, int port, 9838c2ecf20Sopenharmony_ci struct sge_port_stats *ss) 9848c2ecf20Sopenharmony_ci{ 9858c2ecf20Sopenharmony_ci int cpu; 9868c2ecf20Sopenharmony_ci 9878c2ecf20Sopenharmony_ci memset(ss, 0, sizeof(*ss)); 9888c2ecf20Sopenharmony_ci for_each_possible_cpu(cpu) { 9898c2ecf20Sopenharmony_ci struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu); 9908c2ecf20Sopenharmony_ci 9918c2ecf20Sopenharmony_ci ss->rx_cso_good += st->rx_cso_good; 9928c2ecf20Sopenharmony_ci ss->tx_cso += st->tx_cso; 9938c2ecf20Sopenharmony_ci ss->tx_tso += st->tx_tso; 9948c2ecf20Sopenharmony_ci ss->tx_need_hdrroom += st->tx_need_hdrroom; 9958c2ecf20Sopenharmony_ci ss->vlan_xtract += st->vlan_xtract; 9968c2ecf20Sopenharmony_ci ss->vlan_insert += st->vlan_insert; 9978c2ecf20Sopenharmony_ci } 9988c2ecf20Sopenharmony_ci} 9998c2ecf20Sopenharmony_ci 10008c2ecf20Sopenharmony_ci/** 10018c2ecf20Sopenharmony_ci * recycle_fl_buf - recycle a free list buffer 10028c2ecf20Sopenharmony_ci * @fl: the free list 10038c2ecf20Sopenharmony_ci * @idx: index of buffer to recycle 10048c2ecf20Sopenharmony_ci * 10058c2ecf20Sopenharmony_ci * Recycles the specified buffer on the given free list by adding it at 10068c2ecf20Sopenharmony_ci * the next available slot on the list. 10078c2ecf20Sopenharmony_ci */ 10088c2ecf20Sopenharmony_cistatic void recycle_fl_buf(struct freelQ *fl, int idx) 10098c2ecf20Sopenharmony_ci{ 10108c2ecf20Sopenharmony_ci struct freelQ_e *from = &fl->entries[idx]; 10118c2ecf20Sopenharmony_ci struct freelQ_e *to = &fl->entries[fl->pidx]; 10128c2ecf20Sopenharmony_ci 10138c2ecf20Sopenharmony_ci fl->centries[fl->pidx] = fl->centries[idx]; 10148c2ecf20Sopenharmony_ci to->addr_lo = from->addr_lo; 10158c2ecf20Sopenharmony_ci to->addr_hi = from->addr_hi; 10168c2ecf20Sopenharmony_ci to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit); 10178c2ecf20Sopenharmony_ci wmb(); 10188c2ecf20Sopenharmony_ci to->gen2 = V_CMD_GEN2(fl->genbit); 10198c2ecf20Sopenharmony_ci fl->credits++; 10208c2ecf20Sopenharmony_ci 10218c2ecf20Sopenharmony_ci if (++fl->pidx == fl->size) { 10228c2ecf20Sopenharmony_ci fl->pidx = 0; 10238c2ecf20Sopenharmony_ci fl->genbit ^= 1; 10248c2ecf20Sopenharmony_ci } 10258c2ecf20Sopenharmony_ci} 10268c2ecf20Sopenharmony_ci 10278c2ecf20Sopenharmony_cistatic int copybreak __read_mostly = 256; 10288c2ecf20Sopenharmony_cimodule_param(copybreak, int, 0); 10298c2ecf20Sopenharmony_ciMODULE_PARM_DESC(copybreak, "Receive copy threshold"); 10308c2ecf20Sopenharmony_ci 10318c2ecf20Sopenharmony_ci/** 10328c2ecf20Sopenharmony_ci * get_packet - return the next ingress packet buffer 10338c2ecf20Sopenharmony_ci * @adapter: the adapter that received the packet 10348c2ecf20Sopenharmony_ci * @fl: the SGE free list holding the packet 10358c2ecf20Sopenharmony_ci * @len: the actual packet length, excluding any SGE padding 10368c2ecf20Sopenharmony_ci * 10378c2ecf20Sopenharmony_ci * Get the next packet from a free list and complete setup of the 10388c2ecf20Sopenharmony_ci * sk_buff. If the packet is small we make a copy and recycle the 10398c2ecf20Sopenharmony_ci * original buffer, otherwise we use the original buffer itself. If a 10408c2ecf20Sopenharmony_ci * positive drop threshold is supplied packets are dropped and their 10418c2ecf20Sopenharmony_ci * buffers recycled if (a) the number of remaining buffers is under the 10428c2ecf20Sopenharmony_ci * threshold and the packet is too big to copy, or (b) the packet should 10438c2ecf20Sopenharmony_ci * be copied but there is no memory for the copy. 10448c2ecf20Sopenharmony_ci */ 10458c2ecf20Sopenharmony_cistatic inline struct sk_buff *get_packet(struct adapter *adapter, 10468c2ecf20Sopenharmony_ci struct freelQ *fl, unsigned int len) 10478c2ecf20Sopenharmony_ci{ 10488c2ecf20Sopenharmony_ci const struct freelQ_ce *ce = &fl->centries[fl->cidx]; 10498c2ecf20Sopenharmony_ci struct pci_dev *pdev = adapter->pdev; 10508c2ecf20Sopenharmony_ci struct sk_buff *skb; 10518c2ecf20Sopenharmony_ci 10528c2ecf20Sopenharmony_ci if (len < copybreak) { 10538c2ecf20Sopenharmony_ci skb = napi_alloc_skb(&adapter->napi, len); 10548c2ecf20Sopenharmony_ci if (!skb) 10558c2ecf20Sopenharmony_ci goto use_orig_buf; 10568c2ecf20Sopenharmony_ci 10578c2ecf20Sopenharmony_ci skb_put(skb, len); 10588c2ecf20Sopenharmony_ci dma_sync_single_for_cpu(&pdev->dev, 10598c2ecf20Sopenharmony_ci dma_unmap_addr(ce, dma_addr), 10608c2ecf20Sopenharmony_ci dma_unmap_len(ce, dma_len), 10618c2ecf20Sopenharmony_ci DMA_FROM_DEVICE); 10628c2ecf20Sopenharmony_ci skb_copy_from_linear_data(ce->skb, skb->data, len); 10638c2ecf20Sopenharmony_ci dma_sync_single_for_device(&pdev->dev, 10648c2ecf20Sopenharmony_ci dma_unmap_addr(ce, dma_addr), 10658c2ecf20Sopenharmony_ci dma_unmap_len(ce, dma_len), 10668c2ecf20Sopenharmony_ci DMA_FROM_DEVICE); 10678c2ecf20Sopenharmony_ci recycle_fl_buf(fl, fl->cidx); 10688c2ecf20Sopenharmony_ci return skb; 10698c2ecf20Sopenharmony_ci } 10708c2ecf20Sopenharmony_ci 10718c2ecf20Sopenharmony_ciuse_orig_buf: 10728c2ecf20Sopenharmony_ci if (fl->credits < 2) { 10738c2ecf20Sopenharmony_ci recycle_fl_buf(fl, fl->cidx); 10748c2ecf20Sopenharmony_ci return NULL; 10758c2ecf20Sopenharmony_ci } 10768c2ecf20Sopenharmony_ci 10778c2ecf20Sopenharmony_ci dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr), 10788c2ecf20Sopenharmony_ci dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE); 10798c2ecf20Sopenharmony_ci skb = ce->skb; 10808c2ecf20Sopenharmony_ci prefetch(skb->data); 10818c2ecf20Sopenharmony_ci 10828c2ecf20Sopenharmony_ci skb_put(skb, len); 10838c2ecf20Sopenharmony_ci return skb; 10848c2ecf20Sopenharmony_ci} 10858c2ecf20Sopenharmony_ci 10868c2ecf20Sopenharmony_ci/** 10878c2ecf20Sopenharmony_ci * unexpected_offload - handle an unexpected offload packet 10888c2ecf20Sopenharmony_ci * @adapter: the adapter 10898c2ecf20Sopenharmony_ci * @fl: the free list that received the packet 10908c2ecf20Sopenharmony_ci * 10918c2ecf20Sopenharmony_ci * Called when we receive an unexpected offload packet (e.g., the TOE 10928c2ecf20Sopenharmony_ci * function is disabled or the card is a NIC). Prints a message and 10938c2ecf20Sopenharmony_ci * recycles the buffer. 10948c2ecf20Sopenharmony_ci */ 10958c2ecf20Sopenharmony_cistatic void unexpected_offload(struct adapter *adapter, struct freelQ *fl) 10968c2ecf20Sopenharmony_ci{ 10978c2ecf20Sopenharmony_ci struct freelQ_ce *ce = &fl->centries[fl->cidx]; 10988c2ecf20Sopenharmony_ci struct sk_buff *skb = ce->skb; 10998c2ecf20Sopenharmony_ci 11008c2ecf20Sopenharmony_ci dma_sync_single_for_cpu(&adapter->pdev->dev, 11018c2ecf20Sopenharmony_ci dma_unmap_addr(ce, dma_addr), 11028c2ecf20Sopenharmony_ci dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE); 11038c2ecf20Sopenharmony_ci pr_err("%s: unexpected offload packet, cmd %u\n", 11048c2ecf20Sopenharmony_ci adapter->name, *skb->data); 11058c2ecf20Sopenharmony_ci recycle_fl_buf(fl, fl->cidx); 11068c2ecf20Sopenharmony_ci} 11078c2ecf20Sopenharmony_ci 11088c2ecf20Sopenharmony_ci/* 11098c2ecf20Sopenharmony_ci * T1/T2 SGE limits the maximum DMA size per TX descriptor to 11108c2ecf20Sopenharmony_ci * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the 11118c2ecf20Sopenharmony_ci * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner. 11128c2ecf20Sopenharmony_ci * Note that the *_large_page_tx_descs stuff will be optimized out when 11138c2ecf20Sopenharmony_ci * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN. 11148c2ecf20Sopenharmony_ci * 11158c2ecf20Sopenharmony_ci * compute_large_page_descs() computes how many additional descriptors are 11168c2ecf20Sopenharmony_ci * required to break down the stack's request. 11178c2ecf20Sopenharmony_ci */ 11188c2ecf20Sopenharmony_cistatic inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb) 11198c2ecf20Sopenharmony_ci{ 11208c2ecf20Sopenharmony_ci unsigned int count = 0; 11218c2ecf20Sopenharmony_ci 11228c2ecf20Sopenharmony_ci if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) { 11238c2ecf20Sopenharmony_ci unsigned int nfrags = skb_shinfo(skb)->nr_frags; 11248c2ecf20Sopenharmony_ci unsigned int i, len = skb_headlen(skb); 11258c2ecf20Sopenharmony_ci while (len > SGE_TX_DESC_MAX_PLEN) { 11268c2ecf20Sopenharmony_ci count++; 11278c2ecf20Sopenharmony_ci len -= SGE_TX_DESC_MAX_PLEN; 11288c2ecf20Sopenharmony_ci } 11298c2ecf20Sopenharmony_ci for (i = 0; nfrags--; i++) { 11308c2ecf20Sopenharmony_ci const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 11318c2ecf20Sopenharmony_ci len = skb_frag_size(frag); 11328c2ecf20Sopenharmony_ci while (len > SGE_TX_DESC_MAX_PLEN) { 11338c2ecf20Sopenharmony_ci count++; 11348c2ecf20Sopenharmony_ci len -= SGE_TX_DESC_MAX_PLEN; 11358c2ecf20Sopenharmony_ci } 11368c2ecf20Sopenharmony_ci } 11378c2ecf20Sopenharmony_ci } 11388c2ecf20Sopenharmony_ci return count; 11398c2ecf20Sopenharmony_ci} 11408c2ecf20Sopenharmony_ci 11418c2ecf20Sopenharmony_ci/* 11428c2ecf20Sopenharmony_ci * Write a cmdQ entry. 11438c2ecf20Sopenharmony_ci * 11448c2ecf20Sopenharmony_ci * Since this function writes the 'flags' field, it must not be used to 11458c2ecf20Sopenharmony_ci * write the first cmdQ entry. 11468c2ecf20Sopenharmony_ci */ 11478c2ecf20Sopenharmony_cistatic inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping, 11488c2ecf20Sopenharmony_ci unsigned int len, unsigned int gen, 11498c2ecf20Sopenharmony_ci unsigned int eop) 11508c2ecf20Sopenharmony_ci{ 11518c2ecf20Sopenharmony_ci BUG_ON(len > SGE_TX_DESC_MAX_PLEN); 11528c2ecf20Sopenharmony_ci 11538c2ecf20Sopenharmony_ci e->addr_lo = (u32)mapping; 11548c2ecf20Sopenharmony_ci e->addr_hi = (u64)mapping >> 32; 11558c2ecf20Sopenharmony_ci e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen); 11568c2ecf20Sopenharmony_ci e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen); 11578c2ecf20Sopenharmony_ci} 11588c2ecf20Sopenharmony_ci 11598c2ecf20Sopenharmony_ci/* 11608c2ecf20Sopenharmony_ci * See comment for previous function. 11618c2ecf20Sopenharmony_ci * 11628c2ecf20Sopenharmony_ci * write_tx_descs_large_page() writes additional SGE tx descriptors if 11638c2ecf20Sopenharmony_ci * *desc_len exceeds HW's capability. 11648c2ecf20Sopenharmony_ci */ 11658c2ecf20Sopenharmony_cistatic inline unsigned int write_large_page_tx_descs(unsigned int pidx, 11668c2ecf20Sopenharmony_ci struct cmdQ_e **e, 11678c2ecf20Sopenharmony_ci struct cmdQ_ce **ce, 11688c2ecf20Sopenharmony_ci unsigned int *gen, 11698c2ecf20Sopenharmony_ci dma_addr_t *desc_mapping, 11708c2ecf20Sopenharmony_ci unsigned int *desc_len, 11718c2ecf20Sopenharmony_ci unsigned int nfrags, 11728c2ecf20Sopenharmony_ci struct cmdQ *q) 11738c2ecf20Sopenharmony_ci{ 11748c2ecf20Sopenharmony_ci if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) { 11758c2ecf20Sopenharmony_ci struct cmdQ_e *e1 = *e; 11768c2ecf20Sopenharmony_ci struct cmdQ_ce *ce1 = *ce; 11778c2ecf20Sopenharmony_ci 11788c2ecf20Sopenharmony_ci while (*desc_len > SGE_TX_DESC_MAX_PLEN) { 11798c2ecf20Sopenharmony_ci *desc_len -= SGE_TX_DESC_MAX_PLEN; 11808c2ecf20Sopenharmony_ci write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN, 11818c2ecf20Sopenharmony_ci *gen, nfrags == 0 && *desc_len == 0); 11828c2ecf20Sopenharmony_ci ce1->skb = NULL; 11838c2ecf20Sopenharmony_ci dma_unmap_len_set(ce1, dma_len, 0); 11848c2ecf20Sopenharmony_ci *desc_mapping += SGE_TX_DESC_MAX_PLEN; 11858c2ecf20Sopenharmony_ci if (*desc_len) { 11868c2ecf20Sopenharmony_ci ce1++; 11878c2ecf20Sopenharmony_ci e1++; 11888c2ecf20Sopenharmony_ci if (++pidx == q->size) { 11898c2ecf20Sopenharmony_ci pidx = 0; 11908c2ecf20Sopenharmony_ci *gen ^= 1; 11918c2ecf20Sopenharmony_ci ce1 = q->centries; 11928c2ecf20Sopenharmony_ci e1 = q->entries; 11938c2ecf20Sopenharmony_ci } 11948c2ecf20Sopenharmony_ci } 11958c2ecf20Sopenharmony_ci } 11968c2ecf20Sopenharmony_ci *e = e1; 11978c2ecf20Sopenharmony_ci *ce = ce1; 11988c2ecf20Sopenharmony_ci } 11998c2ecf20Sopenharmony_ci return pidx; 12008c2ecf20Sopenharmony_ci} 12018c2ecf20Sopenharmony_ci 12028c2ecf20Sopenharmony_ci/* 12038c2ecf20Sopenharmony_ci * Write the command descriptors to transmit the given skb starting at 12048c2ecf20Sopenharmony_ci * descriptor pidx with the given generation. 12058c2ecf20Sopenharmony_ci */ 12068c2ecf20Sopenharmony_cistatic inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb, 12078c2ecf20Sopenharmony_ci unsigned int pidx, unsigned int gen, 12088c2ecf20Sopenharmony_ci struct cmdQ *q) 12098c2ecf20Sopenharmony_ci{ 12108c2ecf20Sopenharmony_ci dma_addr_t mapping, desc_mapping; 12118c2ecf20Sopenharmony_ci struct cmdQ_e *e, *e1; 12128c2ecf20Sopenharmony_ci struct cmdQ_ce *ce; 12138c2ecf20Sopenharmony_ci unsigned int i, flags, first_desc_len, desc_len, 12148c2ecf20Sopenharmony_ci nfrags = skb_shinfo(skb)->nr_frags; 12158c2ecf20Sopenharmony_ci 12168c2ecf20Sopenharmony_ci e = e1 = &q->entries[pidx]; 12178c2ecf20Sopenharmony_ci ce = &q->centries[pidx]; 12188c2ecf20Sopenharmony_ci 12198c2ecf20Sopenharmony_ci mapping = dma_map_single(&adapter->pdev->dev, skb->data, 12208c2ecf20Sopenharmony_ci skb_headlen(skb), DMA_TO_DEVICE); 12218c2ecf20Sopenharmony_ci 12228c2ecf20Sopenharmony_ci desc_mapping = mapping; 12238c2ecf20Sopenharmony_ci desc_len = skb_headlen(skb); 12248c2ecf20Sopenharmony_ci 12258c2ecf20Sopenharmony_ci flags = F_CMD_DATAVALID | F_CMD_SOP | 12268c2ecf20Sopenharmony_ci V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) | 12278c2ecf20Sopenharmony_ci V_CMD_GEN2(gen); 12288c2ecf20Sopenharmony_ci first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ? 12298c2ecf20Sopenharmony_ci desc_len : SGE_TX_DESC_MAX_PLEN; 12308c2ecf20Sopenharmony_ci e->addr_lo = (u32)desc_mapping; 12318c2ecf20Sopenharmony_ci e->addr_hi = (u64)desc_mapping >> 32; 12328c2ecf20Sopenharmony_ci e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen); 12338c2ecf20Sopenharmony_ci ce->skb = NULL; 12348c2ecf20Sopenharmony_ci dma_unmap_len_set(ce, dma_len, 0); 12358c2ecf20Sopenharmony_ci 12368c2ecf20Sopenharmony_ci if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN && 12378c2ecf20Sopenharmony_ci desc_len > SGE_TX_DESC_MAX_PLEN) { 12388c2ecf20Sopenharmony_ci desc_mapping += first_desc_len; 12398c2ecf20Sopenharmony_ci desc_len -= first_desc_len; 12408c2ecf20Sopenharmony_ci e1++; 12418c2ecf20Sopenharmony_ci ce++; 12428c2ecf20Sopenharmony_ci if (++pidx == q->size) { 12438c2ecf20Sopenharmony_ci pidx = 0; 12448c2ecf20Sopenharmony_ci gen ^= 1; 12458c2ecf20Sopenharmony_ci e1 = q->entries; 12468c2ecf20Sopenharmony_ci ce = q->centries; 12478c2ecf20Sopenharmony_ci } 12488c2ecf20Sopenharmony_ci pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen, 12498c2ecf20Sopenharmony_ci &desc_mapping, &desc_len, 12508c2ecf20Sopenharmony_ci nfrags, q); 12518c2ecf20Sopenharmony_ci 12528c2ecf20Sopenharmony_ci if (likely(desc_len)) 12538c2ecf20Sopenharmony_ci write_tx_desc(e1, desc_mapping, desc_len, gen, 12548c2ecf20Sopenharmony_ci nfrags == 0); 12558c2ecf20Sopenharmony_ci } 12568c2ecf20Sopenharmony_ci 12578c2ecf20Sopenharmony_ci ce->skb = NULL; 12588c2ecf20Sopenharmony_ci dma_unmap_addr_set(ce, dma_addr, mapping); 12598c2ecf20Sopenharmony_ci dma_unmap_len_set(ce, dma_len, skb_headlen(skb)); 12608c2ecf20Sopenharmony_ci 12618c2ecf20Sopenharmony_ci for (i = 0; nfrags--; i++) { 12628c2ecf20Sopenharmony_ci skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 12638c2ecf20Sopenharmony_ci e1++; 12648c2ecf20Sopenharmony_ci ce++; 12658c2ecf20Sopenharmony_ci if (++pidx == q->size) { 12668c2ecf20Sopenharmony_ci pidx = 0; 12678c2ecf20Sopenharmony_ci gen ^= 1; 12688c2ecf20Sopenharmony_ci e1 = q->entries; 12698c2ecf20Sopenharmony_ci ce = q->centries; 12708c2ecf20Sopenharmony_ci } 12718c2ecf20Sopenharmony_ci 12728c2ecf20Sopenharmony_ci mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0, 12738c2ecf20Sopenharmony_ci skb_frag_size(frag), DMA_TO_DEVICE); 12748c2ecf20Sopenharmony_ci desc_mapping = mapping; 12758c2ecf20Sopenharmony_ci desc_len = skb_frag_size(frag); 12768c2ecf20Sopenharmony_ci 12778c2ecf20Sopenharmony_ci pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen, 12788c2ecf20Sopenharmony_ci &desc_mapping, &desc_len, 12798c2ecf20Sopenharmony_ci nfrags, q); 12808c2ecf20Sopenharmony_ci if (likely(desc_len)) 12818c2ecf20Sopenharmony_ci write_tx_desc(e1, desc_mapping, desc_len, gen, 12828c2ecf20Sopenharmony_ci nfrags == 0); 12838c2ecf20Sopenharmony_ci ce->skb = NULL; 12848c2ecf20Sopenharmony_ci dma_unmap_addr_set(ce, dma_addr, mapping); 12858c2ecf20Sopenharmony_ci dma_unmap_len_set(ce, dma_len, skb_frag_size(frag)); 12868c2ecf20Sopenharmony_ci } 12878c2ecf20Sopenharmony_ci ce->skb = skb; 12888c2ecf20Sopenharmony_ci wmb(); 12898c2ecf20Sopenharmony_ci e->flags = flags; 12908c2ecf20Sopenharmony_ci} 12918c2ecf20Sopenharmony_ci 12928c2ecf20Sopenharmony_ci/* 12938c2ecf20Sopenharmony_ci * Clean up completed Tx buffers. 12948c2ecf20Sopenharmony_ci */ 12958c2ecf20Sopenharmony_cistatic inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q) 12968c2ecf20Sopenharmony_ci{ 12978c2ecf20Sopenharmony_ci unsigned int reclaim = q->processed - q->cleaned; 12988c2ecf20Sopenharmony_ci 12998c2ecf20Sopenharmony_ci if (reclaim) { 13008c2ecf20Sopenharmony_ci pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n", 13018c2ecf20Sopenharmony_ci q->processed, q->cleaned); 13028c2ecf20Sopenharmony_ci free_cmdQ_buffers(sge, q, reclaim); 13038c2ecf20Sopenharmony_ci q->cleaned += reclaim; 13048c2ecf20Sopenharmony_ci } 13058c2ecf20Sopenharmony_ci} 13068c2ecf20Sopenharmony_ci 13078c2ecf20Sopenharmony_ci/* 13088c2ecf20Sopenharmony_ci * Called from tasklet. Checks the scheduler for any 13098c2ecf20Sopenharmony_ci * pending skbs that can be sent. 13108c2ecf20Sopenharmony_ci */ 13118c2ecf20Sopenharmony_cistatic void restart_sched(struct tasklet_struct *t) 13128c2ecf20Sopenharmony_ci{ 13138c2ecf20Sopenharmony_ci struct sched *s = from_tasklet(s, t, sched_tsk); 13148c2ecf20Sopenharmony_ci struct sge *sge = s->sge; 13158c2ecf20Sopenharmony_ci struct adapter *adapter = sge->adapter; 13168c2ecf20Sopenharmony_ci struct cmdQ *q = &sge->cmdQ[0]; 13178c2ecf20Sopenharmony_ci struct sk_buff *skb; 13188c2ecf20Sopenharmony_ci unsigned int credits, queued_skb = 0; 13198c2ecf20Sopenharmony_ci 13208c2ecf20Sopenharmony_ci spin_lock(&q->lock); 13218c2ecf20Sopenharmony_ci reclaim_completed_tx(sge, q); 13228c2ecf20Sopenharmony_ci 13238c2ecf20Sopenharmony_ci credits = q->size - q->in_use; 13248c2ecf20Sopenharmony_ci pr_debug("restart_sched credits=%d\n", credits); 13258c2ecf20Sopenharmony_ci while ((skb = sched_skb(sge, NULL, credits)) != NULL) { 13268c2ecf20Sopenharmony_ci unsigned int genbit, pidx, count; 13278c2ecf20Sopenharmony_ci count = 1 + skb_shinfo(skb)->nr_frags; 13288c2ecf20Sopenharmony_ci count += compute_large_page_tx_descs(skb); 13298c2ecf20Sopenharmony_ci q->in_use += count; 13308c2ecf20Sopenharmony_ci genbit = q->genbit; 13318c2ecf20Sopenharmony_ci pidx = q->pidx; 13328c2ecf20Sopenharmony_ci q->pidx += count; 13338c2ecf20Sopenharmony_ci if (q->pidx >= q->size) { 13348c2ecf20Sopenharmony_ci q->pidx -= q->size; 13358c2ecf20Sopenharmony_ci q->genbit ^= 1; 13368c2ecf20Sopenharmony_ci } 13378c2ecf20Sopenharmony_ci write_tx_descs(adapter, skb, pidx, genbit, q); 13388c2ecf20Sopenharmony_ci credits = q->size - q->in_use; 13398c2ecf20Sopenharmony_ci queued_skb = 1; 13408c2ecf20Sopenharmony_ci } 13418c2ecf20Sopenharmony_ci 13428c2ecf20Sopenharmony_ci if (queued_skb) { 13438c2ecf20Sopenharmony_ci clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 13448c2ecf20Sopenharmony_ci if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { 13458c2ecf20Sopenharmony_ci set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 13468c2ecf20Sopenharmony_ci writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); 13478c2ecf20Sopenharmony_ci } 13488c2ecf20Sopenharmony_ci } 13498c2ecf20Sopenharmony_ci spin_unlock(&q->lock); 13508c2ecf20Sopenharmony_ci} 13518c2ecf20Sopenharmony_ci 13528c2ecf20Sopenharmony_ci/** 13538c2ecf20Sopenharmony_ci * sge_rx - process an ingress ethernet packet 13548c2ecf20Sopenharmony_ci * @sge: the sge structure 13558c2ecf20Sopenharmony_ci * @fl: the free list that contains the packet buffer 13568c2ecf20Sopenharmony_ci * @len: the packet length 13578c2ecf20Sopenharmony_ci * 13588c2ecf20Sopenharmony_ci * Process an ingress ethernet pakcet and deliver it to the stack. 13598c2ecf20Sopenharmony_ci */ 13608c2ecf20Sopenharmony_cistatic void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len) 13618c2ecf20Sopenharmony_ci{ 13628c2ecf20Sopenharmony_ci struct sk_buff *skb; 13638c2ecf20Sopenharmony_ci const struct cpl_rx_pkt *p; 13648c2ecf20Sopenharmony_ci struct adapter *adapter = sge->adapter; 13658c2ecf20Sopenharmony_ci struct sge_port_stats *st; 13668c2ecf20Sopenharmony_ci struct net_device *dev; 13678c2ecf20Sopenharmony_ci 13688c2ecf20Sopenharmony_ci skb = get_packet(adapter, fl, len - sge->rx_pkt_pad); 13698c2ecf20Sopenharmony_ci if (unlikely(!skb)) { 13708c2ecf20Sopenharmony_ci sge->stats.rx_drops++; 13718c2ecf20Sopenharmony_ci return; 13728c2ecf20Sopenharmony_ci } 13738c2ecf20Sopenharmony_ci 13748c2ecf20Sopenharmony_ci p = (const struct cpl_rx_pkt *) skb->data; 13758c2ecf20Sopenharmony_ci if (p->iff >= adapter->params.nports) { 13768c2ecf20Sopenharmony_ci kfree_skb(skb); 13778c2ecf20Sopenharmony_ci return; 13788c2ecf20Sopenharmony_ci } 13798c2ecf20Sopenharmony_ci __skb_pull(skb, sizeof(*p)); 13808c2ecf20Sopenharmony_ci 13818c2ecf20Sopenharmony_ci st = this_cpu_ptr(sge->port_stats[p->iff]); 13828c2ecf20Sopenharmony_ci dev = adapter->port[p->iff].dev; 13838c2ecf20Sopenharmony_ci 13848c2ecf20Sopenharmony_ci skb->protocol = eth_type_trans(skb, dev); 13858c2ecf20Sopenharmony_ci if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff && 13868c2ecf20Sopenharmony_ci skb->protocol == htons(ETH_P_IP) && 13878c2ecf20Sopenharmony_ci (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) { 13888c2ecf20Sopenharmony_ci ++st->rx_cso_good; 13898c2ecf20Sopenharmony_ci skb->ip_summed = CHECKSUM_UNNECESSARY; 13908c2ecf20Sopenharmony_ci } else 13918c2ecf20Sopenharmony_ci skb_checksum_none_assert(skb); 13928c2ecf20Sopenharmony_ci 13938c2ecf20Sopenharmony_ci if (p->vlan_valid) { 13948c2ecf20Sopenharmony_ci st->vlan_xtract++; 13958c2ecf20Sopenharmony_ci __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan)); 13968c2ecf20Sopenharmony_ci } 13978c2ecf20Sopenharmony_ci netif_receive_skb(skb); 13988c2ecf20Sopenharmony_ci} 13998c2ecf20Sopenharmony_ci 14008c2ecf20Sopenharmony_ci/* 14018c2ecf20Sopenharmony_ci * Returns true if a command queue has enough available descriptors that 14028c2ecf20Sopenharmony_ci * we can resume Tx operation after temporarily disabling its packet queue. 14038c2ecf20Sopenharmony_ci */ 14048c2ecf20Sopenharmony_cistatic inline int enough_free_Tx_descs(const struct cmdQ *q) 14058c2ecf20Sopenharmony_ci{ 14068c2ecf20Sopenharmony_ci unsigned int r = q->processed - q->cleaned; 14078c2ecf20Sopenharmony_ci 14088c2ecf20Sopenharmony_ci return q->in_use - r < (q->size >> 1); 14098c2ecf20Sopenharmony_ci} 14108c2ecf20Sopenharmony_ci 14118c2ecf20Sopenharmony_ci/* 14128c2ecf20Sopenharmony_ci * Called when sufficient space has become available in the SGE command queues 14138c2ecf20Sopenharmony_ci * after the Tx packet schedulers have been suspended to restart the Tx path. 14148c2ecf20Sopenharmony_ci */ 14158c2ecf20Sopenharmony_cistatic void restart_tx_queues(struct sge *sge) 14168c2ecf20Sopenharmony_ci{ 14178c2ecf20Sopenharmony_ci struct adapter *adap = sge->adapter; 14188c2ecf20Sopenharmony_ci int i; 14198c2ecf20Sopenharmony_ci 14208c2ecf20Sopenharmony_ci if (!enough_free_Tx_descs(&sge->cmdQ[0])) 14218c2ecf20Sopenharmony_ci return; 14228c2ecf20Sopenharmony_ci 14238c2ecf20Sopenharmony_ci for_each_port(adap, i) { 14248c2ecf20Sopenharmony_ci struct net_device *nd = adap->port[i].dev; 14258c2ecf20Sopenharmony_ci 14268c2ecf20Sopenharmony_ci if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) && 14278c2ecf20Sopenharmony_ci netif_running(nd)) { 14288c2ecf20Sopenharmony_ci sge->stats.cmdQ_restarted[2]++; 14298c2ecf20Sopenharmony_ci netif_wake_queue(nd); 14308c2ecf20Sopenharmony_ci } 14318c2ecf20Sopenharmony_ci } 14328c2ecf20Sopenharmony_ci} 14338c2ecf20Sopenharmony_ci 14348c2ecf20Sopenharmony_ci/* 14358c2ecf20Sopenharmony_ci * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0 14368c2ecf20Sopenharmony_ci * information. 14378c2ecf20Sopenharmony_ci */ 14388c2ecf20Sopenharmony_cistatic unsigned int update_tx_info(struct adapter *adapter, 14398c2ecf20Sopenharmony_ci unsigned int flags, 14408c2ecf20Sopenharmony_ci unsigned int pr0) 14418c2ecf20Sopenharmony_ci{ 14428c2ecf20Sopenharmony_ci struct sge *sge = adapter->sge; 14438c2ecf20Sopenharmony_ci struct cmdQ *cmdq = &sge->cmdQ[0]; 14448c2ecf20Sopenharmony_ci 14458c2ecf20Sopenharmony_ci cmdq->processed += pr0; 14468c2ecf20Sopenharmony_ci if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) { 14478c2ecf20Sopenharmony_ci freelQs_empty(sge); 14488c2ecf20Sopenharmony_ci flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE); 14498c2ecf20Sopenharmony_ci } 14508c2ecf20Sopenharmony_ci if (flags & F_CMDQ0_ENABLE) { 14518c2ecf20Sopenharmony_ci clear_bit(CMDQ_STAT_RUNNING, &cmdq->status); 14528c2ecf20Sopenharmony_ci 14538c2ecf20Sopenharmony_ci if (cmdq->cleaned + cmdq->in_use != cmdq->processed && 14548c2ecf20Sopenharmony_ci !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) { 14558c2ecf20Sopenharmony_ci set_bit(CMDQ_STAT_RUNNING, &cmdq->status); 14568c2ecf20Sopenharmony_ci writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); 14578c2ecf20Sopenharmony_ci } 14588c2ecf20Sopenharmony_ci if (sge->tx_sched) 14598c2ecf20Sopenharmony_ci tasklet_hi_schedule(&sge->tx_sched->sched_tsk); 14608c2ecf20Sopenharmony_ci 14618c2ecf20Sopenharmony_ci flags &= ~F_CMDQ0_ENABLE; 14628c2ecf20Sopenharmony_ci } 14638c2ecf20Sopenharmony_ci 14648c2ecf20Sopenharmony_ci if (unlikely(sge->stopped_tx_queues != 0)) 14658c2ecf20Sopenharmony_ci restart_tx_queues(sge); 14668c2ecf20Sopenharmony_ci 14678c2ecf20Sopenharmony_ci return flags; 14688c2ecf20Sopenharmony_ci} 14698c2ecf20Sopenharmony_ci 14708c2ecf20Sopenharmony_ci/* 14718c2ecf20Sopenharmony_ci * Process SGE responses, up to the supplied budget. Returns the number of 14728c2ecf20Sopenharmony_ci * responses processed. A negative budget is effectively unlimited. 14738c2ecf20Sopenharmony_ci */ 14748c2ecf20Sopenharmony_cistatic int process_responses(struct adapter *adapter, int budget) 14758c2ecf20Sopenharmony_ci{ 14768c2ecf20Sopenharmony_ci struct sge *sge = adapter->sge; 14778c2ecf20Sopenharmony_ci struct respQ *q = &sge->respQ; 14788c2ecf20Sopenharmony_ci struct respQ_e *e = &q->entries[q->cidx]; 14798c2ecf20Sopenharmony_ci int done = 0; 14808c2ecf20Sopenharmony_ci unsigned int flags = 0; 14818c2ecf20Sopenharmony_ci unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; 14828c2ecf20Sopenharmony_ci 14838c2ecf20Sopenharmony_ci while (done < budget && e->GenerationBit == q->genbit) { 14848c2ecf20Sopenharmony_ci flags |= e->Qsleeping; 14858c2ecf20Sopenharmony_ci 14868c2ecf20Sopenharmony_ci cmdq_processed[0] += e->Cmdq0CreditReturn; 14878c2ecf20Sopenharmony_ci cmdq_processed[1] += e->Cmdq1CreditReturn; 14888c2ecf20Sopenharmony_ci 14898c2ecf20Sopenharmony_ci /* We batch updates to the TX side to avoid cacheline 14908c2ecf20Sopenharmony_ci * ping-pong of TX state information on MP where the sender 14918c2ecf20Sopenharmony_ci * might run on a different CPU than this function... 14928c2ecf20Sopenharmony_ci */ 14938c2ecf20Sopenharmony_ci if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) { 14948c2ecf20Sopenharmony_ci flags = update_tx_info(adapter, flags, cmdq_processed[0]); 14958c2ecf20Sopenharmony_ci cmdq_processed[0] = 0; 14968c2ecf20Sopenharmony_ci } 14978c2ecf20Sopenharmony_ci 14988c2ecf20Sopenharmony_ci if (unlikely(cmdq_processed[1] > 16)) { 14998c2ecf20Sopenharmony_ci sge->cmdQ[1].processed += cmdq_processed[1]; 15008c2ecf20Sopenharmony_ci cmdq_processed[1] = 0; 15018c2ecf20Sopenharmony_ci } 15028c2ecf20Sopenharmony_ci 15038c2ecf20Sopenharmony_ci if (likely(e->DataValid)) { 15048c2ecf20Sopenharmony_ci struct freelQ *fl = &sge->freelQ[e->FreelistQid]; 15058c2ecf20Sopenharmony_ci 15068c2ecf20Sopenharmony_ci BUG_ON(!e->Sop || !e->Eop); 15078c2ecf20Sopenharmony_ci if (unlikely(e->Offload)) 15088c2ecf20Sopenharmony_ci unexpected_offload(adapter, fl); 15098c2ecf20Sopenharmony_ci else 15108c2ecf20Sopenharmony_ci sge_rx(sge, fl, e->BufferLength); 15118c2ecf20Sopenharmony_ci 15128c2ecf20Sopenharmony_ci ++done; 15138c2ecf20Sopenharmony_ci 15148c2ecf20Sopenharmony_ci /* 15158c2ecf20Sopenharmony_ci * Note: this depends on each packet consuming a 15168c2ecf20Sopenharmony_ci * single free-list buffer; cf. the BUG above. 15178c2ecf20Sopenharmony_ci */ 15188c2ecf20Sopenharmony_ci if (++fl->cidx == fl->size) 15198c2ecf20Sopenharmony_ci fl->cidx = 0; 15208c2ecf20Sopenharmony_ci prefetch(fl->centries[fl->cidx].skb); 15218c2ecf20Sopenharmony_ci 15228c2ecf20Sopenharmony_ci if (unlikely(--fl->credits < 15238c2ecf20Sopenharmony_ci fl->size - SGE_FREEL_REFILL_THRESH)) 15248c2ecf20Sopenharmony_ci refill_free_list(sge, fl); 15258c2ecf20Sopenharmony_ci } else 15268c2ecf20Sopenharmony_ci sge->stats.pure_rsps++; 15278c2ecf20Sopenharmony_ci 15288c2ecf20Sopenharmony_ci e++; 15298c2ecf20Sopenharmony_ci if (unlikely(++q->cidx == q->size)) { 15308c2ecf20Sopenharmony_ci q->cidx = 0; 15318c2ecf20Sopenharmony_ci q->genbit ^= 1; 15328c2ecf20Sopenharmony_ci e = q->entries; 15338c2ecf20Sopenharmony_ci } 15348c2ecf20Sopenharmony_ci prefetch(e); 15358c2ecf20Sopenharmony_ci 15368c2ecf20Sopenharmony_ci if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { 15378c2ecf20Sopenharmony_ci writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); 15388c2ecf20Sopenharmony_ci q->credits = 0; 15398c2ecf20Sopenharmony_ci } 15408c2ecf20Sopenharmony_ci } 15418c2ecf20Sopenharmony_ci 15428c2ecf20Sopenharmony_ci flags = update_tx_info(adapter, flags, cmdq_processed[0]); 15438c2ecf20Sopenharmony_ci sge->cmdQ[1].processed += cmdq_processed[1]; 15448c2ecf20Sopenharmony_ci 15458c2ecf20Sopenharmony_ci return done; 15468c2ecf20Sopenharmony_ci} 15478c2ecf20Sopenharmony_ci 15488c2ecf20Sopenharmony_cistatic inline int responses_pending(const struct adapter *adapter) 15498c2ecf20Sopenharmony_ci{ 15508c2ecf20Sopenharmony_ci const struct respQ *Q = &adapter->sge->respQ; 15518c2ecf20Sopenharmony_ci const struct respQ_e *e = &Q->entries[Q->cidx]; 15528c2ecf20Sopenharmony_ci 15538c2ecf20Sopenharmony_ci return e->GenerationBit == Q->genbit; 15548c2ecf20Sopenharmony_ci} 15558c2ecf20Sopenharmony_ci 15568c2ecf20Sopenharmony_ci/* 15578c2ecf20Sopenharmony_ci * A simpler version of process_responses() that handles only pure (i.e., 15588c2ecf20Sopenharmony_ci * non data-carrying) responses. Such respones are too light-weight to justify 15598c2ecf20Sopenharmony_ci * calling a softirq when using NAPI, so we handle them specially in hard 15608c2ecf20Sopenharmony_ci * interrupt context. The function is called with a pointer to a response, 15618c2ecf20Sopenharmony_ci * which the caller must ensure is a valid pure response. Returns 1 if it 15628c2ecf20Sopenharmony_ci * encounters a valid data-carrying response, 0 otherwise. 15638c2ecf20Sopenharmony_ci */ 15648c2ecf20Sopenharmony_cistatic int process_pure_responses(struct adapter *adapter) 15658c2ecf20Sopenharmony_ci{ 15668c2ecf20Sopenharmony_ci struct sge *sge = adapter->sge; 15678c2ecf20Sopenharmony_ci struct respQ *q = &sge->respQ; 15688c2ecf20Sopenharmony_ci struct respQ_e *e = &q->entries[q->cidx]; 15698c2ecf20Sopenharmony_ci const struct freelQ *fl = &sge->freelQ[e->FreelistQid]; 15708c2ecf20Sopenharmony_ci unsigned int flags = 0; 15718c2ecf20Sopenharmony_ci unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; 15728c2ecf20Sopenharmony_ci 15738c2ecf20Sopenharmony_ci prefetch(fl->centries[fl->cidx].skb); 15748c2ecf20Sopenharmony_ci if (e->DataValid) 15758c2ecf20Sopenharmony_ci return 1; 15768c2ecf20Sopenharmony_ci 15778c2ecf20Sopenharmony_ci do { 15788c2ecf20Sopenharmony_ci flags |= e->Qsleeping; 15798c2ecf20Sopenharmony_ci 15808c2ecf20Sopenharmony_ci cmdq_processed[0] += e->Cmdq0CreditReturn; 15818c2ecf20Sopenharmony_ci cmdq_processed[1] += e->Cmdq1CreditReturn; 15828c2ecf20Sopenharmony_ci 15838c2ecf20Sopenharmony_ci e++; 15848c2ecf20Sopenharmony_ci if (unlikely(++q->cidx == q->size)) { 15858c2ecf20Sopenharmony_ci q->cidx = 0; 15868c2ecf20Sopenharmony_ci q->genbit ^= 1; 15878c2ecf20Sopenharmony_ci e = q->entries; 15888c2ecf20Sopenharmony_ci } 15898c2ecf20Sopenharmony_ci prefetch(e); 15908c2ecf20Sopenharmony_ci 15918c2ecf20Sopenharmony_ci if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { 15928c2ecf20Sopenharmony_ci writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); 15938c2ecf20Sopenharmony_ci q->credits = 0; 15948c2ecf20Sopenharmony_ci } 15958c2ecf20Sopenharmony_ci sge->stats.pure_rsps++; 15968c2ecf20Sopenharmony_ci } while (e->GenerationBit == q->genbit && !e->DataValid); 15978c2ecf20Sopenharmony_ci 15988c2ecf20Sopenharmony_ci flags = update_tx_info(adapter, flags, cmdq_processed[0]); 15998c2ecf20Sopenharmony_ci sge->cmdQ[1].processed += cmdq_processed[1]; 16008c2ecf20Sopenharmony_ci 16018c2ecf20Sopenharmony_ci return e->GenerationBit == q->genbit; 16028c2ecf20Sopenharmony_ci} 16038c2ecf20Sopenharmony_ci 16048c2ecf20Sopenharmony_ci/* 16058c2ecf20Sopenharmony_ci * Handler for new data events when using NAPI. This does not need any locking 16068c2ecf20Sopenharmony_ci * or protection from interrupts as data interrupts are off at this point and 16078c2ecf20Sopenharmony_ci * other adapter interrupts do not interfere. 16088c2ecf20Sopenharmony_ci */ 16098c2ecf20Sopenharmony_ciint t1_poll(struct napi_struct *napi, int budget) 16108c2ecf20Sopenharmony_ci{ 16118c2ecf20Sopenharmony_ci struct adapter *adapter = container_of(napi, struct adapter, napi); 16128c2ecf20Sopenharmony_ci int work_done = process_responses(adapter, budget); 16138c2ecf20Sopenharmony_ci 16148c2ecf20Sopenharmony_ci if (likely(work_done < budget)) { 16158c2ecf20Sopenharmony_ci napi_complete_done(napi, work_done); 16168c2ecf20Sopenharmony_ci writel(adapter->sge->respQ.cidx, 16178c2ecf20Sopenharmony_ci adapter->regs + A_SG_SLEEPING); 16188c2ecf20Sopenharmony_ci } 16198c2ecf20Sopenharmony_ci return work_done; 16208c2ecf20Sopenharmony_ci} 16218c2ecf20Sopenharmony_ci 16228c2ecf20Sopenharmony_ciirqreturn_t t1_interrupt(int irq, void *data) 16238c2ecf20Sopenharmony_ci{ 16248c2ecf20Sopenharmony_ci struct adapter *adapter = data; 16258c2ecf20Sopenharmony_ci struct sge *sge = adapter->sge; 16268c2ecf20Sopenharmony_ci int handled; 16278c2ecf20Sopenharmony_ci 16288c2ecf20Sopenharmony_ci if (likely(responses_pending(adapter))) { 16298c2ecf20Sopenharmony_ci writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); 16308c2ecf20Sopenharmony_ci 16318c2ecf20Sopenharmony_ci if (napi_schedule_prep(&adapter->napi)) { 16328c2ecf20Sopenharmony_ci if (process_pure_responses(adapter)) 16338c2ecf20Sopenharmony_ci __napi_schedule(&adapter->napi); 16348c2ecf20Sopenharmony_ci else { 16358c2ecf20Sopenharmony_ci /* no data, no NAPI needed */ 16368c2ecf20Sopenharmony_ci writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING); 16378c2ecf20Sopenharmony_ci /* undo schedule_prep */ 16388c2ecf20Sopenharmony_ci napi_enable(&adapter->napi); 16398c2ecf20Sopenharmony_ci } 16408c2ecf20Sopenharmony_ci } 16418c2ecf20Sopenharmony_ci return IRQ_HANDLED; 16428c2ecf20Sopenharmony_ci } 16438c2ecf20Sopenharmony_ci 16448c2ecf20Sopenharmony_ci spin_lock(&adapter->async_lock); 16458c2ecf20Sopenharmony_ci handled = t1_slow_intr_handler(adapter); 16468c2ecf20Sopenharmony_ci spin_unlock(&adapter->async_lock); 16478c2ecf20Sopenharmony_ci 16488c2ecf20Sopenharmony_ci if (!handled) 16498c2ecf20Sopenharmony_ci sge->stats.unhandled_irqs++; 16508c2ecf20Sopenharmony_ci 16518c2ecf20Sopenharmony_ci return IRQ_RETVAL(handled != 0); 16528c2ecf20Sopenharmony_ci} 16538c2ecf20Sopenharmony_ci 16548c2ecf20Sopenharmony_ci/* 16558c2ecf20Sopenharmony_ci * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it. 16568c2ecf20Sopenharmony_ci * 16578c2ecf20Sopenharmony_ci * The code figures out how many entries the sk_buff will require in the 16588c2ecf20Sopenharmony_ci * cmdQ and updates the cmdQ data structure with the state once the enqueue 16598c2ecf20Sopenharmony_ci * has complete. Then, it doesn't access the global structure anymore, but 16608c2ecf20Sopenharmony_ci * uses the corresponding fields on the stack. In conjunction with a spinlock 16618c2ecf20Sopenharmony_ci * around that code, we can make the function reentrant without holding the 16628c2ecf20Sopenharmony_ci * lock when we actually enqueue (which might be expensive, especially on 16638c2ecf20Sopenharmony_ci * architectures with IO MMUs). 16648c2ecf20Sopenharmony_ci * 16658c2ecf20Sopenharmony_ci * This runs with softirqs disabled. 16668c2ecf20Sopenharmony_ci */ 16678c2ecf20Sopenharmony_cistatic int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, 16688c2ecf20Sopenharmony_ci unsigned int qid, struct net_device *dev) 16698c2ecf20Sopenharmony_ci{ 16708c2ecf20Sopenharmony_ci struct sge *sge = adapter->sge; 16718c2ecf20Sopenharmony_ci struct cmdQ *q = &sge->cmdQ[qid]; 16728c2ecf20Sopenharmony_ci unsigned int credits, pidx, genbit, count, use_sched_skb = 0; 16738c2ecf20Sopenharmony_ci 16748c2ecf20Sopenharmony_ci spin_lock(&q->lock); 16758c2ecf20Sopenharmony_ci 16768c2ecf20Sopenharmony_ci reclaim_completed_tx(sge, q); 16778c2ecf20Sopenharmony_ci 16788c2ecf20Sopenharmony_ci pidx = q->pidx; 16798c2ecf20Sopenharmony_ci credits = q->size - q->in_use; 16808c2ecf20Sopenharmony_ci count = 1 + skb_shinfo(skb)->nr_frags; 16818c2ecf20Sopenharmony_ci count += compute_large_page_tx_descs(skb); 16828c2ecf20Sopenharmony_ci 16838c2ecf20Sopenharmony_ci /* Ethernet packet */ 16848c2ecf20Sopenharmony_ci if (unlikely(credits < count)) { 16858c2ecf20Sopenharmony_ci if (!netif_queue_stopped(dev)) { 16868c2ecf20Sopenharmony_ci netif_stop_queue(dev); 16878c2ecf20Sopenharmony_ci set_bit(dev->if_port, &sge->stopped_tx_queues); 16888c2ecf20Sopenharmony_ci sge->stats.cmdQ_full[2]++; 16898c2ecf20Sopenharmony_ci pr_err("%s: Tx ring full while queue awake!\n", 16908c2ecf20Sopenharmony_ci adapter->name); 16918c2ecf20Sopenharmony_ci } 16928c2ecf20Sopenharmony_ci spin_unlock(&q->lock); 16938c2ecf20Sopenharmony_ci return NETDEV_TX_BUSY; 16948c2ecf20Sopenharmony_ci } 16958c2ecf20Sopenharmony_ci 16968c2ecf20Sopenharmony_ci if (unlikely(credits - count < q->stop_thres)) { 16978c2ecf20Sopenharmony_ci netif_stop_queue(dev); 16988c2ecf20Sopenharmony_ci set_bit(dev->if_port, &sge->stopped_tx_queues); 16998c2ecf20Sopenharmony_ci sge->stats.cmdQ_full[2]++; 17008c2ecf20Sopenharmony_ci } 17018c2ecf20Sopenharmony_ci 17028c2ecf20Sopenharmony_ci /* T204 cmdQ0 skbs that are destined for a certain port have to go 17038c2ecf20Sopenharmony_ci * through the scheduler. 17048c2ecf20Sopenharmony_ci */ 17058c2ecf20Sopenharmony_ci if (sge->tx_sched && !qid && skb->dev) { 17068c2ecf20Sopenharmony_ciuse_sched: 17078c2ecf20Sopenharmony_ci use_sched_skb = 1; 17088c2ecf20Sopenharmony_ci /* Note that the scheduler might return a different skb than 17098c2ecf20Sopenharmony_ci * the one passed in. 17108c2ecf20Sopenharmony_ci */ 17118c2ecf20Sopenharmony_ci skb = sched_skb(sge, skb, credits); 17128c2ecf20Sopenharmony_ci if (!skb) { 17138c2ecf20Sopenharmony_ci spin_unlock(&q->lock); 17148c2ecf20Sopenharmony_ci return NETDEV_TX_OK; 17158c2ecf20Sopenharmony_ci } 17168c2ecf20Sopenharmony_ci pidx = q->pidx; 17178c2ecf20Sopenharmony_ci count = 1 + skb_shinfo(skb)->nr_frags; 17188c2ecf20Sopenharmony_ci count += compute_large_page_tx_descs(skb); 17198c2ecf20Sopenharmony_ci } 17208c2ecf20Sopenharmony_ci 17218c2ecf20Sopenharmony_ci q->in_use += count; 17228c2ecf20Sopenharmony_ci genbit = q->genbit; 17238c2ecf20Sopenharmony_ci pidx = q->pidx; 17248c2ecf20Sopenharmony_ci q->pidx += count; 17258c2ecf20Sopenharmony_ci if (q->pidx >= q->size) { 17268c2ecf20Sopenharmony_ci q->pidx -= q->size; 17278c2ecf20Sopenharmony_ci q->genbit ^= 1; 17288c2ecf20Sopenharmony_ci } 17298c2ecf20Sopenharmony_ci spin_unlock(&q->lock); 17308c2ecf20Sopenharmony_ci 17318c2ecf20Sopenharmony_ci write_tx_descs(adapter, skb, pidx, genbit, q); 17328c2ecf20Sopenharmony_ci 17338c2ecf20Sopenharmony_ci /* 17348c2ecf20Sopenharmony_ci * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring 17358c2ecf20Sopenharmony_ci * the doorbell if the Q is asleep. There is a natural race, where 17368c2ecf20Sopenharmony_ci * the hardware is going to sleep just after we checked, however, 17378c2ecf20Sopenharmony_ci * then the interrupt handler will detect the outstanding TX packet 17388c2ecf20Sopenharmony_ci * and ring the doorbell for us. 17398c2ecf20Sopenharmony_ci */ 17408c2ecf20Sopenharmony_ci if (qid) 17418c2ecf20Sopenharmony_ci doorbell_pio(adapter, F_CMDQ1_ENABLE); 17428c2ecf20Sopenharmony_ci else { 17438c2ecf20Sopenharmony_ci clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 17448c2ecf20Sopenharmony_ci if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { 17458c2ecf20Sopenharmony_ci set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 17468c2ecf20Sopenharmony_ci writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); 17478c2ecf20Sopenharmony_ci } 17488c2ecf20Sopenharmony_ci } 17498c2ecf20Sopenharmony_ci 17508c2ecf20Sopenharmony_ci if (use_sched_skb) { 17518c2ecf20Sopenharmony_ci if (spin_trylock(&q->lock)) { 17528c2ecf20Sopenharmony_ci credits = q->size - q->in_use; 17538c2ecf20Sopenharmony_ci skb = NULL; 17548c2ecf20Sopenharmony_ci goto use_sched; 17558c2ecf20Sopenharmony_ci } 17568c2ecf20Sopenharmony_ci } 17578c2ecf20Sopenharmony_ci return NETDEV_TX_OK; 17588c2ecf20Sopenharmony_ci} 17598c2ecf20Sopenharmony_ci 17608c2ecf20Sopenharmony_ci#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14)) 17618c2ecf20Sopenharmony_ci 17628c2ecf20Sopenharmony_ci/* 17638c2ecf20Sopenharmony_ci * eth_hdr_len - return the length of an Ethernet header 17648c2ecf20Sopenharmony_ci * @data: pointer to the start of the Ethernet header 17658c2ecf20Sopenharmony_ci * 17668c2ecf20Sopenharmony_ci * Returns the length of an Ethernet header, including optional VLAN tag. 17678c2ecf20Sopenharmony_ci */ 17688c2ecf20Sopenharmony_cistatic inline int eth_hdr_len(const void *data) 17698c2ecf20Sopenharmony_ci{ 17708c2ecf20Sopenharmony_ci const struct ethhdr *e = data; 17718c2ecf20Sopenharmony_ci 17728c2ecf20Sopenharmony_ci return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN; 17738c2ecf20Sopenharmony_ci} 17748c2ecf20Sopenharmony_ci 17758c2ecf20Sopenharmony_ci/* 17768c2ecf20Sopenharmony_ci * Adds the CPL header to the sk_buff and passes it to t1_sge_tx. 17778c2ecf20Sopenharmony_ci */ 17788c2ecf20Sopenharmony_cinetdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev) 17798c2ecf20Sopenharmony_ci{ 17808c2ecf20Sopenharmony_ci struct adapter *adapter = dev->ml_priv; 17818c2ecf20Sopenharmony_ci struct sge *sge = adapter->sge; 17828c2ecf20Sopenharmony_ci struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]); 17838c2ecf20Sopenharmony_ci struct cpl_tx_pkt *cpl; 17848c2ecf20Sopenharmony_ci struct sk_buff *orig_skb = skb; 17858c2ecf20Sopenharmony_ci int ret; 17868c2ecf20Sopenharmony_ci 17878c2ecf20Sopenharmony_ci if (skb->protocol == htons(ETH_P_CPL5)) 17888c2ecf20Sopenharmony_ci goto send; 17898c2ecf20Sopenharmony_ci 17908c2ecf20Sopenharmony_ci /* 17918c2ecf20Sopenharmony_ci * We are using a non-standard hard_header_len. 17928c2ecf20Sopenharmony_ci * Allocate more header room in the rare cases it is not big enough. 17938c2ecf20Sopenharmony_ci */ 17948c2ecf20Sopenharmony_ci if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) { 17958c2ecf20Sopenharmony_ci skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso)); 17968c2ecf20Sopenharmony_ci ++st->tx_need_hdrroom; 17978c2ecf20Sopenharmony_ci dev_kfree_skb_any(orig_skb); 17988c2ecf20Sopenharmony_ci if (!skb) 17998c2ecf20Sopenharmony_ci return NETDEV_TX_OK; 18008c2ecf20Sopenharmony_ci } 18018c2ecf20Sopenharmony_ci 18028c2ecf20Sopenharmony_ci if (skb_shinfo(skb)->gso_size) { 18038c2ecf20Sopenharmony_ci int eth_type; 18048c2ecf20Sopenharmony_ci struct cpl_tx_pkt_lso *hdr; 18058c2ecf20Sopenharmony_ci 18068c2ecf20Sopenharmony_ci ++st->tx_tso; 18078c2ecf20Sopenharmony_ci 18088c2ecf20Sopenharmony_ci eth_type = skb_network_offset(skb) == ETH_HLEN ? 18098c2ecf20Sopenharmony_ci CPL_ETH_II : CPL_ETH_II_VLAN; 18108c2ecf20Sopenharmony_ci 18118c2ecf20Sopenharmony_ci hdr = skb_push(skb, sizeof(*hdr)); 18128c2ecf20Sopenharmony_ci hdr->opcode = CPL_TX_PKT_LSO; 18138c2ecf20Sopenharmony_ci hdr->ip_csum_dis = hdr->l4_csum_dis = 0; 18148c2ecf20Sopenharmony_ci hdr->ip_hdr_words = ip_hdr(skb)->ihl; 18158c2ecf20Sopenharmony_ci hdr->tcp_hdr_words = tcp_hdr(skb)->doff; 18168c2ecf20Sopenharmony_ci hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type, 18178c2ecf20Sopenharmony_ci skb_shinfo(skb)->gso_size)); 18188c2ecf20Sopenharmony_ci hdr->len = htonl(skb->len - sizeof(*hdr)); 18198c2ecf20Sopenharmony_ci cpl = (struct cpl_tx_pkt *)hdr; 18208c2ecf20Sopenharmony_ci } else { 18218c2ecf20Sopenharmony_ci /* 18228c2ecf20Sopenharmony_ci * Packets shorter than ETH_HLEN can break the MAC, drop them 18238c2ecf20Sopenharmony_ci * early. Also, we may get oversized packets because some 18248c2ecf20Sopenharmony_ci * parts of the kernel don't handle our unusual hard_header_len 18258c2ecf20Sopenharmony_ci * right, drop those too. 18268c2ecf20Sopenharmony_ci */ 18278c2ecf20Sopenharmony_ci if (unlikely(skb->len < ETH_HLEN || 18288c2ecf20Sopenharmony_ci skb->len > dev->mtu + eth_hdr_len(skb->data))) { 18298c2ecf20Sopenharmony_ci netdev_dbg(dev, "packet size %d hdr %d mtu%d\n", 18308c2ecf20Sopenharmony_ci skb->len, eth_hdr_len(skb->data), dev->mtu); 18318c2ecf20Sopenharmony_ci dev_kfree_skb_any(skb); 18328c2ecf20Sopenharmony_ci return NETDEV_TX_OK; 18338c2ecf20Sopenharmony_ci } 18348c2ecf20Sopenharmony_ci 18358c2ecf20Sopenharmony_ci if (skb->ip_summed == CHECKSUM_PARTIAL && 18368c2ecf20Sopenharmony_ci ip_hdr(skb)->protocol == IPPROTO_UDP) { 18378c2ecf20Sopenharmony_ci if (unlikely(skb_checksum_help(skb))) { 18388c2ecf20Sopenharmony_ci netdev_dbg(dev, "unable to do udp checksum\n"); 18398c2ecf20Sopenharmony_ci dev_kfree_skb_any(skb); 18408c2ecf20Sopenharmony_ci return NETDEV_TX_OK; 18418c2ecf20Sopenharmony_ci } 18428c2ecf20Sopenharmony_ci } 18438c2ecf20Sopenharmony_ci 18448c2ecf20Sopenharmony_ci /* Hmmm, assuming to catch the gratious arp... and we'll use 18458c2ecf20Sopenharmony_ci * it to flush out stuck espi packets... 18468c2ecf20Sopenharmony_ci */ 18478c2ecf20Sopenharmony_ci if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) { 18488c2ecf20Sopenharmony_ci if (skb->protocol == htons(ETH_P_ARP) && 18498c2ecf20Sopenharmony_ci arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) { 18508c2ecf20Sopenharmony_ci adapter->sge->espibug_skb[dev->if_port] = skb; 18518c2ecf20Sopenharmony_ci /* We want to re-use this skb later. We 18528c2ecf20Sopenharmony_ci * simply bump the reference count and it 18538c2ecf20Sopenharmony_ci * will not be freed... 18548c2ecf20Sopenharmony_ci */ 18558c2ecf20Sopenharmony_ci skb = skb_get(skb); 18568c2ecf20Sopenharmony_ci } 18578c2ecf20Sopenharmony_ci } 18588c2ecf20Sopenharmony_ci 18598c2ecf20Sopenharmony_ci cpl = __skb_push(skb, sizeof(*cpl)); 18608c2ecf20Sopenharmony_ci cpl->opcode = CPL_TX_PKT; 18618c2ecf20Sopenharmony_ci cpl->ip_csum_dis = 1; /* SW calculates IP csum */ 18628c2ecf20Sopenharmony_ci cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1; 18638c2ecf20Sopenharmony_ci /* the length field isn't used so don't bother setting it */ 18648c2ecf20Sopenharmony_ci 18658c2ecf20Sopenharmony_ci st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL); 18668c2ecf20Sopenharmony_ci } 18678c2ecf20Sopenharmony_ci cpl->iff = dev->if_port; 18688c2ecf20Sopenharmony_ci 18698c2ecf20Sopenharmony_ci if (skb_vlan_tag_present(skb)) { 18708c2ecf20Sopenharmony_ci cpl->vlan_valid = 1; 18718c2ecf20Sopenharmony_ci cpl->vlan = htons(skb_vlan_tag_get(skb)); 18728c2ecf20Sopenharmony_ci st->vlan_insert++; 18738c2ecf20Sopenharmony_ci } else 18748c2ecf20Sopenharmony_ci cpl->vlan_valid = 0; 18758c2ecf20Sopenharmony_ci 18768c2ecf20Sopenharmony_cisend: 18778c2ecf20Sopenharmony_ci ret = t1_sge_tx(skb, adapter, 0, dev); 18788c2ecf20Sopenharmony_ci 18798c2ecf20Sopenharmony_ci /* If transmit busy, and we reallocated skb's due to headroom limit, 18808c2ecf20Sopenharmony_ci * then silently discard to avoid leak. 18818c2ecf20Sopenharmony_ci */ 18828c2ecf20Sopenharmony_ci if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) { 18838c2ecf20Sopenharmony_ci dev_kfree_skb_any(skb); 18848c2ecf20Sopenharmony_ci ret = NETDEV_TX_OK; 18858c2ecf20Sopenharmony_ci } 18868c2ecf20Sopenharmony_ci return ret; 18878c2ecf20Sopenharmony_ci} 18888c2ecf20Sopenharmony_ci 18898c2ecf20Sopenharmony_ci/* 18908c2ecf20Sopenharmony_ci * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled. 18918c2ecf20Sopenharmony_ci */ 18928c2ecf20Sopenharmony_cistatic void sge_tx_reclaim_cb(struct timer_list *t) 18938c2ecf20Sopenharmony_ci{ 18948c2ecf20Sopenharmony_ci int i; 18958c2ecf20Sopenharmony_ci struct sge *sge = from_timer(sge, t, tx_reclaim_timer); 18968c2ecf20Sopenharmony_ci 18978c2ecf20Sopenharmony_ci for (i = 0; i < SGE_CMDQ_N; ++i) { 18988c2ecf20Sopenharmony_ci struct cmdQ *q = &sge->cmdQ[i]; 18998c2ecf20Sopenharmony_ci 19008c2ecf20Sopenharmony_ci if (!spin_trylock(&q->lock)) 19018c2ecf20Sopenharmony_ci continue; 19028c2ecf20Sopenharmony_ci 19038c2ecf20Sopenharmony_ci reclaim_completed_tx(sge, q); 19048c2ecf20Sopenharmony_ci if (i == 0 && q->in_use) { /* flush pending credits */ 19058c2ecf20Sopenharmony_ci writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL); 19068c2ecf20Sopenharmony_ci } 19078c2ecf20Sopenharmony_ci spin_unlock(&q->lock); 19088c2ecf20Sopenharmony_ci } 19098c2ecf20Sopenharmony_ci mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); 19108c2ecf20Sopenharmony_ci} 19118c2ecf20Sopenharmony_ci 19128c2ecf20Sopenharmony_ci/* 19138c2ecf20Sopenharmony_ci * Propagate changes of the SGE coalescing parameters to the HW. 19148c2ecf20Sopenharmony_ci */ 19158c2ecf20Sopenharmony_ciint t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p) 19168c2ecf20Sopenharmony_ci{ 19178c2ecf20Sopenharmony_ci sge->fixed_intrtimer = p->rx_coalesce_usecs * 19188c2ecf20Sopenharmony_ci core_ticks_per_usec(sge->adapter); 19198c2ecf20Sopenharmony_ci writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER); 19208c2ecf20Sopenharmony_ci return 0; 19218c2ecf20Sopenharmony_ci} 19228c2ecf20Sopenharmony_ci 19238c2ecf20Sopenharmony_ci/* 19248c2ecf20Sopenharmony_ci * Allocates both RX and TX resources and configures the SGE. However, 19258c2ecf20Sopenharmony_ci * the hardware is not enabled yet. 19268c2ecf20Sopenharmony_ci */ 19278c2ecf20Sopenharmony_ciint t1_sge_configure(struct sge *sge, struct sge_params *p) 19288c2ecf20Sopenharmony_ci{ 19298c2ecf20Sopenharmony_ci if (alloc_rx_resources(sge, p)) 19308c2ecf20Sopenharmony_ci return -ENOMEM; 19318c2ecf20Sopenharmony_ci if (alloc_tx_resources(sge, p)) { 19328c2ecf20Sopenharmony_ci free_rx_resources(sge); 19338c2ecf20Sopenharmony_ci return -ENOMEM; 19348c2ecf20Sopenharmony_ci } 19358c2ecf20Sopenharmony_ci configure_sge(sge, p); 19368c2ecf20Sopenharmony_ci 19378c2ecf20Sopenharmony_ci /* 19388c2ecf20Sopenharmony_ci * Now that we have sized the free lists calculate the payload 19398c2ecf20Sopenharmony_ci * capacity of the large buffers. Other parts of the driver use 19408c2ecf20Sopenharmony_ci * this to set the max offload coalescing size so that RX packets 19418c2ecf20Sopenharmony_ci * do not overflow our large buffers. 19428c2ecf20Sopenharmony_ci */ 19438c2ecf20Sopenharmony_ci p->large_buf_capacity = jumbo_payload_capacity(sge); 19448c2ecf20Sopenharmony_ci return 0; 19458c2ecf20Sopenharmony_ci} 19468c2ecf20Sopenharmony_ci 19478c2ecf20Sopenharmony_ci/* 19488c2ecf20Sopenharmony_ci * Disables the DMA engine. 19498c2ecf20Sopenharmony_ci */ 19508c2ecf20Sopenharmony_civoid t1_sge_stop(struct sge *sge) 19518c2ecf20Sopenharmony_ci{ 19528c2ecf20Sopenharmony_ci int i; 19538c2ecf20Sopenharmony_ci writel(0, sge->adapter->regs + A_SG_CONTROL); 19548c2ecf20Sopenharmony_ci readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ 19558c2ecf20Sopenharmony_ci 19568c2ecf20Sopenharmony_ci if (is_T2(sge->adapter)) 19578c2ecf20Sopenharmony_ci del_timer_sync(&sge->espibug_timer); 19588c2ecf20Sopenharmony_ci 19598c2ecf20Sopenharmony_ci del_timer_sync(&sge->tx_reclaim_timer); 19608c2ecf20Sopenharmony_ci if (sge->tx_sched) 19618c2ecf20Sopenharmony_ci tx_sched_stop(sge); 19628c2ecf20Sopenharmony_ci 19638c2ecf20Sopenharmony_ci for (i = 0; i < MAX_NPORTS; i++) 19648c2ecf20Sopenharmony_ci kfree_skb(sge->espibug_skb[i]); 19658c2ecf20Sopenharmony_ci} 19668c2ecf20Sopenharmony_ci 19678c2ecf20Sopenharmony_ci/* 19688c2ecf20Sopenharmony_ci * Enables the DMA engine. 19698c2ecf20Sopenharmony_ci */ 19708c2ecf20Sopenharmony_civoid t1_sge_start(struct sge *sge) 19718c2ecf20Sopenharmony_ci{ 19728c2ecf20Sopenharmony_ci refill_free_list(sge, &sge->freelQ[0]); 19738c2ecf20Sopenharmony_ci refill_free_list(sge, &sge->freelQ[1]); 19748c2ecf20Sopenharmony_ci 19758c2ecf20Sopenharmony_ci writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL); 19768c2ecf20Sopenharmony_ci doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE); 19778c2ecf20Sopenharmony_ci readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ 19788c2ecf20Sopenharmony_ci 19798c2ecf20Sopenharmony_ci mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); 19808c2ecf20Sopenharmony_ci 19818c2ecf20Sopenharmony_ci if (is_T2(sge->adapter)) 19828c2ecf20Sopenharmony_ci mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); 19838c2ecf20Sopenharmony_ci} 19848c2ecf20Sopenharmony_ci 19858c2ecf20Sopenharmony_ci/* 19868c2ecf20Sopenharmony_ci * Callback for the T2 ESPI 'stuck packet feature' workaorund 19878c2ecf20Sopenharmony_ci */ 19888c2ecf20Sopenharmony_cistatic void espibug_workaround_t204(struct timer_list *t) 19898c2ecf20Sopenharmony_ci{ 19908c2ecf20Sopenharmony_ci struct sge *sge = from_timer(sge, t, espibug_timer); 19918c2ecf20Sopenharmony_ci struct adapter *adapter = sge->adapter; 19928c2ecf20Sopenharmony_ci unsigned int nports = adapter->params.nports; 19938c2ecf20Sopenharmony_ci u32 seop[MAX_NPORTS]; 19948c2ecf20Sopenharmony_ci 19958c2ecf20Sopenharmony_ci if (adapter->open_device_map & PORT_MASK) { 19968c2ecf20Sopenharmony_ci int i; 19978c2ecf20Sopenharmony_ci 19988c2ecf20Sopenharmony_ci if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0) 19998c2ecf20Sopenharmony_ci return; 20008c2ecf20Sopenharmony_ci 20018c2ecf20Sopenharmony_ci for (i = 0; i < nports; i++) { 20028c2ecf20Sopenharmony_ci struct sk_buff *skb = sge->espibug_skb[i]; 20038c2ecf20Sopenharmony_ci 20048c2ecf20Sopenharmony_ci if (!netif_running(adapter->port[i].dev) || 20058c2ecf20Sopenharmony_ci netif_queue_stopped(adapter->port[i].dev) || 20068c2ecf20Sopenharmony_ci !seop[i] || ((seop[i] & 0xfff) != 0) || !skb) 20078c2ecf20Sopenharmony_ci continue; 20088c2ecf20Sopenharmony_ci 20098c2ecf20Sopenharmony_ci if (!skb->cb[0]) { 20108c2ecf20Sopenharmony_ci skb_copy_to_linear_data_offset(skb, 20118c2ecf20Sopenharmony_ci sizeof(struct cpl_tx_pkt), 20128c2ecf20Sopenharmony_ci ch_mac_addr, 20138c2ecf20Sopenharmony_ci ETH_ALEN); 20148c2ecf20Sopenharmony_ci skb_copy_to_linear_data_offset(skb, 20158c2ecf20Sopenharmony_ci skb->len - 10, 20168c2ecf20Sopenharmony_ci ch_mac_addr, 20178c2ecf20Sopenharmony_ci ETH_ALEN); 20188c2ecf20Sopenharmony_ci skb->cb[0] = 0xff; 20198c2ecf20Sopenharmony_ci } 20208c2ecf20Sopenharmony_ci 20218c2ecf20Sopenharmony_ci /* bump the reference count to avoid freeing of 20228c2ecf20Sopenharmony_ci * the skb once the DMA has completed. 20238c2ecf20Sopenharmony_ci */ 20248c2ecf20Sopenharmony_ci skb = skb_get(skb); 20258c2ecf20Sopenharmony_ci t1_sge_tx(skb, adapter, 0, adapter->port[i].dev); 20268c2ecf20Sopenharmony_ci } 20278c2ecf20Sopenharmony_ci } 20288c2ecf20Sopenharmony_ci mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); 20298c2ecf20Sopenharmony_ci} 20308c2ecf20Sopenharmony_ci 20318c2ecf20Sopenharmony_cistatic void espibug_workaround(struct timer_list *t) 20328c2ecf20Sopenharmony_ci{ 20338c2ecf20Sopenharmony_ci struct sge *sge = from_timer(sge, t, espibug_timer); 20348c2ecf20Sopenharmony_ci struct adapter *adapter = sge->adapter; 20358c2ecf20Sopenharmony_ci 20368c2ecf20Sopenharmony_ci if (netif_running(adapter->port[0].dev)) { 20378c2ecf20Sopenharmony_ci struct sk_buff *skb = sge->espibug_skb[0]; 20388c2ecf20Sopenharmony_ci u32 seop = t1_espi_get_mon(adapter, 0x930, 0); 20398c2ecf20Sopenharmony_ci 20408c2ecf20Sopenharmony_ci if ((seop & 0xfff0fff) == 0xfff && skb) { 20418c2ecf20Sopenharmony_ci if (!skb->cb[0]) { 20428c2ecf20Sopenharmony_ci skb_copy_to_linear_data_offset(skb, 20438c2ecf20Sopenharmony_ci sizeof(struct cpl_tx_pkt), 20448c2ecf20Sopenharmony_ci ch_mac_addr, 20458c2ecf20Sopenharmony_ci ETH_ALEN); 20468c2ecf20Sopenharmony_ci skb_copy_to_linear_data_offset(skb, 20478c2ecf20Sopenharmony_ci skb->len - 10, 20488c2ecf20Sopenharmony_ci ch_mac_addr, 20498c2ecf20Sopenharmony_ci ETH_ALEN); 20508c2ecf20Sopenharmony_ci skb->cb[0] = 0xff; 20518c2ecf20Sopenharmony_ci } 20528c2ecf20Sopenharmony_ci 20538c2ecf20Sopenharmony_ci /* bump the reference count to avoid freeing of the 20548c2ecf20Sopenharmony_ci * skb once the DMA has completed. 20558c2ecf20Sopenharmony_ci */ 20568c2ecf20Sopenharmony_ci skb = skb_get(skb); 20578c2ecf20Sopenharmony_ci t1_sge_tx(skb, adapter, 0, adapter->port[0].dev); 20588c2ecf20Sopenharmony_ci } 20598c2ecf20Sopenharmony_ci } 20608c2ecf20Sopenharmony_ci mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); 20618c2ecf20Sopenharmony_ci} 20628c2ecf20Sopenharmony_ci 20638c2ecf20Sopenharmony_ci/* 20648c2ecf20Sopenharmony_ci * Creates a t1_sge structure and returns suggested resource parameters. 20658c2ecf20Sopenharmony_ci */ 20668c2ecf20Sopenharmony_cistruct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p) 20678c2ecf20Sopenharmony_ci{ 20688c2ecf20Sopenharmony_ci struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL); 20698c2ecf20Sopenharmony_ci int i; 20708c2ecf20Sopenharmony_ci 20718c2ecf20Sopenharmony_ci if (!sge) 20728c2ecf20Sopenharmony_ci return NULL; 20738c2ecf20Sopenharmony_ci 20748c2ecf20Sopenharmony_ci sge->adapter = adapter; 20758c2ecf20Sopenharmony_ci sge->netdev = adapter->port[0].dev; 20768c2ecf20Sopenharmony_ci sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2; 20778c2ecf20Sopenharmony_ci sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0; 20788c2ecf20Sopenharmony_ci 20798c2ecf20Sopenharmony_ci for_each_port(adapter, i) { 20808c2ecf20Sopenharmony_ci sge->port_stats[i] = alloc_percpu(struct sge_port_stats); 20818c2ecf20Sopenharmony_ci if (!sge->port_stats[i]) 20828c2ecf20Sopenharmony_ci goto nomem_port; 20838c2ecf20Sopenharmony_ci } 20848c2ecf20Sopenharmony_ci 20858c2ecf20Sopenharmony_ci timer_setup(&sge->tx_reclaim_timer, sge_tx_reclaim_cb, 0); 20868c2ecf20Sopenharmony_ci 20878c2ecf20Sopenharmony_ci if (is_T2(sge->adapter)) { 20888c2ecf20Sopenharmony_ci timer_setup(&sge->espibug_timer, 20898c2ecf20Sopenharmony_ci adapter->params.nports > 1 ? espibug_workaround_t204 : espibug_workaround, 20908c2ecf20Sopenharmony_ci 0); 20918c2ecf20Sopenharmony_ci 20928c2ecf20Sopenharmony_ci if (adapter->params.nports > 1) 20938c2ecf20Sopenharmony_ci tx_sched_init(sge); 20948c2ecf20Sopenharmony_ci 20958c2ecf20Sopenharmony_ci sge->espibug_timeout = 1; 20968c2ecf20Sopenharmony_ci /* for T204, every 10ms */ 20978c2ecf20Sopenharmony_ci if (adapter->params.nports > 1) 20988c2ecf20Sopenharmony_ci sge->espibug_timeout = HZ/100; 20998c2ecf20Sopenharmony_ci } 21008c2ecf20Sopenharmony_ci 21018c2ecf20Sopenharmony_ci 21028c2ecf20Sopenharmony_ci p->cmdQ_size[0] = SGE_CMDQ0_E_N; 21038c2ecf20Sopenharmony_ci p->cmdQ_size[1] = SGE_CMDQ1_E_N; 21048c2ecf20Sopenharmony_ci p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE; 21058c2ecf20Sopenharmony_ci p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE; 21068c2ecf20Sopenharmony_ci if (sge->tx_sched) { 21078c2ecf20Sopenharmony_ci if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) 21088c2ecf20Sopenharmony_ci p->rx_coalesce_usecs = 15; 21098c2ecf20Sopenharmony_ci else 21108c2ecf20Sopenharmony_ci p->rx_coalesce_usecs = 50; 21118c2ecf20Sopenharmony_ci } else 21128c2ecf20Sopenharmony_ci p->rx_coalesce_usecs = 50; 21138c2ecf20Sopenharmony_ci 21148c2ecf20Sopenharmony_ci p->coalesce_enable = 0; 21158c2ecf20Sopenharmony_ci p->sample_interval_usecs = 0; 21168c2ecf20Sopenharmony_ci 21178c2ecf20Sopenharmony_ci return sge; 21188c2ecf20Sopenharmony_cinomem_port: 21198c2ecf20Sopenharmony_ci while (i >= 0) { 21208c2ecf20Sopenharmony_ci free_percpu(sge->port_stats[i]); 21218c2ecf20Sopenharmony_ci --i; 21228c2ecf20Sopenharmony_ci } 21238c2ecf20Sopenharmony_ci kfree(sge); 21248c2ecf20Sopenharmony_ci return NULL; 21258c2ecf20Sopenharmony_ci 21268c2ecf20Sopenharmony_ci} 2127