1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Cavium, Inc.
4 */
5
6#include <linux/pci.h>
7#include <linux/netdevice.h>
8#include <linux/ip.h>
9#include <linux/etherdevice.h>
10#include <linux/iommu.h>
11#include <net/ip.h>
12#include <net/tso.h>
13
14#include "nic_reg.h"
15#include "nic.h"
16#include "q_struct.h"
17#include "nicvf_queues.h"
18
19static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
20					       int size, u64 data);
21static void nicvf_get_page(struct nicvf *nic)
22{
23	if (!nic->rb_pageref || !nic->rb_page)
24		return;
25
26	page_ref_add(nic->rb_page, nic->rb_pageref);
27	nic->rb_pageref = 0;
28}
29
30/* Poll a register for a specific value */
31static int nicvf_poll_reg(struct nicvf *nic, int qidx,
32			  u64 reg, int bit_pos, int bits, int val)
33{
34	u64 bit_mask;
35	u64 reg_val;
36	int timeout = 10;
37
38	bit_mask = (1ULL << bits) - 1;
39	bit_mask = (bit_mask << bit_pos);
40
41	while (timeout) {
42		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
43		if (((reg_val & bit_mask) >> bit_pos) == val)
44			return 0;
45		usleep_range(1000, 2000);
46		timeout--;
47	}
48	netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
49	return 1;
50}
51
52/* Allocate memory for a queue's descriptors */
53static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
54				  int q_len, int desc_size, int align_bytes)
55{
56	dmem->q_len = q_len;
57	dmem->size = (desc_size * q_len) + align_bytes;
58	/* Save address, need it while freeing */
59	dmem->unalign_base = dma_alloc_coherent(&nic->pdev->dev, dmem->size,
60						&dmem->dma, GFP_KERNEL);
61	if (!dmem->unalign_base)
62		return -ENOMEM;
63
64	/* Align memory address for 'align_bytes' */
65	dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
66	dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
67	return 0;
68}
69
70/* Free queue's descriptor memory */
71static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
72{
73	if (!dmem)
74		return;
75
76	dma_free_coherent(&nic->pdev->dev, dmem->size,
77			  dmem->unalign_base, dmem->dma);
78	dmem->unalign_base = NULL;
79	dmem->base = NULL;
80}
81
82#define XDP_PAGE_REFCNT_REFILL 256
83
84/* Allocate a new page or recycle one if possible
85 *
86 * We cannot optimize dma mapping here, since
87 * 1. It's only one RBDR ring for 8 Rx queues.
88 * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
89 *    and not idx into RBDR ring, so can't refer to saved info.
90 * 3. There are multiple receive buffers per page
91 */
92static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
93					       struct rbdr *rbdr, gfp_t gfp)
94{
95	int ref_count;
96	struct page *page = NULL;
97	struct pgcache *pgcache, *next;
98
99	/* Check if page is already allocated */
100	pgcache = &rbdr->pgcache[rbdr->pgidx];
101	page = pgcache->page;
102	/* Check if page can be recycled */
103	if (page) {
104		ref_count = page_ref_count(page);
105		/* This page can be recycled if internal ref_count and page's
106		 * ref_count are equal, indicating that the page has been used
107		 * once for packet transmission. For non-XDP mode, internal
108		 * ref_count is always '1'.
109		 */
110		if (rbdr->is_xdp) {
111			if (ref_count == pgcache->ref_count)
112				pgcache->ref_count--;
113			else
114				page = NULL;
115		} else if (ref_count != 1) {
116			page = NULL;
117		}
118	}
119
120	if (!page) {
121		page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
122		if (!page)
123			return NULL;
124
125		this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
126
127		/* Check for space */
128		if (rbdr->pgalloc >= rbdr->pgcnt) {
129			/* Page can still be used */
130			nic->rb_page = page;
131			return NULL;
132		}
133
134		/* Save the page in page cache */
135		pgcache->page = page;
136		pgcache->dma_addr = 0;
137		pgcache->ref_count = 0;
138		rbdr->pgalloc++;
139	}
140
141	/* Take additional page references for recycling */
142	if (rbdr->is_xdp) {
143		/* Since there is single RBDR (i.e single core doing
144		 * page recycling) per 8 Rx queues, in XDP mode adjusting
145		 * page references atomically is the biggest bottleneck, so
146		 * take bunch of references at a time.
147		 *
148		 * So here, below reference counts defer by '1'.
149		 */
150		if (!pgcache->ref_count) {
151			pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
152			page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
153		}
154	} else {
155		/* In non-XDP case, single 64K page is divided across multiple
156		 * receive buffers, so cost of recycling is less anyway.
157		 * So we can do with just one extra reference.
158		 */
159		page_ref_add(page, 1);
160	}
161
162	rbdr->pgidx++;
163	rbdr->pgidx &= (rbdr->pgcnt - 1);
164
165	/* Prefetch refcount of next page in page cache */
166	next = &rbdr->pgcache[rbdr->pgidx];
167	page = next->page;
168	if (page)
169		prefetch(&page->_refcount);
170
171	return pgcache;
172}
173
174/* Allocate buffer for packet reception */
175static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
176					 gfp_t gfp, u32 buf_len, u64 *rbuf)
177{
178	struct pgcache *pgcache = NULL;
179
180	/* Check if request can be accomodated in previous allocated page.
181	 * But in XDP mode only one buffer per page is permitted.
182	 */
183	if (!rbdr->is_xdp && nic->rb_page &&
184	    ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
185		nic->rb_pageref++;
186		goto ret;
187	}
188
189	nicvf_get_page(nic);
190	nic->rb_page = NULL;
191
192	/* Get new page, either recycled or new one */
193	pgcache = nicvf_alloc_page(nic, rbdr, gfp);
194	if (!pgcache && !nic->rb_page) {
195		this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
196		return -ENOMEM;
197	}
198
199	nic->rb_page_offset = 0;
200
201	/* Reserve space for header modifications by BPF program */
202	if (rbdr->is_xdp)
203		buf_len += XDP_PACKET_HEADROOM;
204
205	/* Check if it's recycled */
206	if (pgcache)
207		nic->rb_page = pgcache->page;
208ret:
209	if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
210		*rbuf = pgcache->dma_addr;
211	} else {
212		/* HW will ensure data coherency, CPU sync not required */
213		*rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
214						nic->rb_page_offset, buf_len,
215						DMA_FROM_DEVICE,
216						DMA_ATTR_SKIP_CPU_SYNC);
217		if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
218			if (!nic->rb_page_offset)
219				__free_pages(nic->rb_page, 0);
220			nic->rb_page = NULL;
221			return -ENOMEM;
222		}
223		if (pgcache)
224			pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
225		nic->rb_page_offset += buf_len;
226	}
227
228	return 0;
229}
230
231/* Build skb around receive buffer */
232static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
233					   u64 rb_ptr, int len)
234{
235	void *data;
236	struct sk_buff *skb;
237
238	data = phys_to_virt(rb_ptr);
239
240	/* Now build an skb to give to stack */
241	skb = build_skb(data, RCV_FRAG_LEN);
242	if (!skb) {
243		put_page(virt_to_page(data));
244		return NULL;
245	}
246
247	prefetch(skb->data);
248	return skb;
249}
250
251/* Allocate RBDR ring and populate receive buffers */
252static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
253			    int ring_len, int buf_size)
254{
255	int idx;
256	u64 rbuf;
257	struct rbdr_entry_t *desc;
258	int err;
259
260	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
261				     sizeof(struct rbdr_entry_t),
262				     NICVF_RCV_BUF_ALIGN_BYTES);
263	if (err)
264		return err;
265
266	rbdr->desc = rbdr->dmem.base;
267	/* Buffer size has to be in multiples of 128 bytes */
268	rbdr->dma_size = buf_size;
269	rbdr->enable = true;
270	rbdr->thresh = RBDR_THRESH;
271	rbdr->head = 0;
272	rbdr->tail = 0;
273
274	/* Initialize page recycling stuff.
275	 *
276	 * Can't use single buffer per page especially with 64K pages.
277	 * On embedded platforms i.e 81xx/83xx available memory itself
278	 * is low and minimum ring size of RBDR is 8K, that takes away
279	 * lots of memory.
280	 *
281	 * But for XDP it has to be a single buffer per page.
282	 */
283	if (!nic->pnicvf->xdp_prog) {
284		rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
285		rbdr->is_xdp = false;
286	} else {
287		rbdr->pgcnt = ring_len;
288		rbdr->is_xdp = true;
289	}
290	rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
291	rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache),
292				GFP_KERNEL);
293	if (!rbdr->pgcache)
294		return -ENOMEM;
295	rbdr->pgidx = 0;
296	rbdr->pgalloc = 0;
297
298	nic->rb_page = NULL;
299	for (idx = 0; idx < ring_len; idx++) {
300		err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
301					     RCV_FRAG_LEN, &rbuf);
302		if (err) {
303			/* To free already allocated and mapped ones */
304			rbdr->tail = idx - 1;
305			return err;
306		}
307
308		desc = GET_RBDR_DESC(rbdr, idx);
309		desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
310	}
311
312	nicvf_get_page(nic);
313
314	return 0;
315}
316
317/* Free RBDR ring and its receive buffers */
318static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
319{
320	int head, tail;
321	u64 buf_addr, phys_addr;
322	struct pgcache *pgcache;
323	struct rbdr_entry_t *desc;
324
325	if (!rbdr)
326		return;
327
328	rbdr->enable = false;
329	if (!rbdr->dmem.base)
330		return;
331
332	head = rbdr->head;
333	tail = rbdr->tail;
334
335	/* Release page references */
336	while (head != tail) {
337		desc = GET_RBDR_DESC(rbdr, head);
338		buf_addr = desc->buf_addr;
339		phys_addr = nicvf_iova_to_phys(nic, buf_addr);
340		dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
341				     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
342		if (phys_addr)
343			put_page(virt_to_page(phys_to_virt(phys_addr)));
344		head++;
345		head &= (rbdr->dmem.q_len - 1);
346	}
347	/* Release buffer of tail desc */
348	desc = GET_RBDR_DESC(rbdr, tail);
349	buf_addr = desc->buf_addr;
350	phys_addr = nicvf_iova_to_phys(nic, buf_addr);
351	dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
352			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
353	if (phys_addr)
354		put_page(virt_to_page(phys_to_virt(phys_addr)));
355
356	/* Sync page cache info */
357	smp_rmb();
358
359	/* Release additional page references held for recycling */
360	head = 0;
361	while (head < rbdr->pgcnt) {
362		pgcache = &rbdr->pgcache[head];
363		if (pgcache->page && page_ref_count(pgcache->page) != 0) {
364			if (rbdr->is_xdp) {
365				page_ref_sub(pgcache->page,
366					     pgcache->ref_count - 1);
367			}
368			put_page(pgcache->page);
369		}
370		head++;
371	}
372
373	/* Free RBDR ring */
374	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
375}
376
377/* Refill receive buffer descriptors with new buffers.
378 */
379static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
380{
381	struct queue_set *qs = nic->qs;
382	int rbdr_idx = qs->rbdr_cnt;
383	int tail, qcount;
384	int refill_rb_cnt;
385	struct rbdr *rbdr;
386	struct rbdr_entry_t *desc;
387	u64 rbuf;
388	int new_rb = 0;
389
390refill:
391	if (!rbdr_idx)
392		return;
393	rbdr_idx--;
394	rbdr = &qs->rbdr[rbdr_idx];
395	/* Check if it's enabled */
396	if (!rbdr->enable)
397		goto next_rbdr;
398
399	/* Get no of desc's to be refilled */
400	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
401	qcount &= 0x7FFFF;
402	/* Doorbell can be ringed with a max of ring size minus 1 */
403	if (qcount >= (qs->rbdr_len - 1))
404		goto next_rbdr;
405	else
406		refill_rb_cnt = qs->rbdr_len - qcount - 1;
407
408	/* Sync page cache info */
409	smp_rmb();
410
411	/* Start filling descs from tail */
412	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
413	while (refill_rb_cnt) {
414		tail++;
415		tail &= (rbdr->dmem.q_len - 1);
416
417		if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
418			break;
419
420		desc = GET_RBDR_DESC(rbdr, tail);
421		desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
422		refill_rb_cnt--;
423		new_rb++;
424	}
425
426	nicvf_get_page(nic);
427
428	/* make sure all memory stores are done before ringing doorbell */
429	smp_wmb();
430
431	/* Check if buffer allocation failed */
432	if (refill_rb_cnt)
433		nic->rb_alloc_fail = true;
434	else
435		nic->rb_alloc_fail = false;
436
437	/* Notify HW */
438	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
439			      rbdr_idx, new_rb);
440next_rbdr:
441	/* Re-enable RBDR interrupts only if buffer allocation is success */
442	if (!nic->rb_alloc_fail && rbdr->enable &&
443	    netif_running(nic->pnicvf->netdev))
444		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
445
446	if (rbdr_idx)
447		goto refill;
448}
449
450/* Alloc rcv buffers in non-atomic mode for better success */
451void nicvf_rbdr_work(struct work_struct *work)
452{
453	struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
454
455	nicvf_refill_rbdr(nic, GFP_KERNEL);
456	if (nic->rb_alloc_fail)
457		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
458	else
459		nic->rb_work_scheduled = false;
460}
461
462/* In Softirq context, alloc rcv buffers in atomic mode */
463void nicvf_rbdr_task(struct tasklet_struct *t)
464{
465	struct nicvf *nic = from_tasklet(nic, t, rbdr_task);
466
467	nicvf_refill_rbdr(nic, GFP_ATOMIC);
468	if (nic->rb_alloc_fail) {
469		nic->rb_work_scheduled = true;
470		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
471	}
472}
473
474/* Initialize completion queue */
475static int nicvf_init_cmp_queue(struct nicvf *nic,
476				struct cmp_queue *cq, int q_len)
477{
478	int err;
479
480	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
481				     NICVF_CQ_BASE_ALIGN_BYTES);
482	if (err)
483		return err;
484
485	cq->desc = cq->dmem.base;
486	cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
487	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
488
489	return 0;
490}
491
492static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
493{
494	if (!cq)
495		return;
496	if (!cq->dmem.base)
497		return;
498
499	nicvf_free_q_desc_mem(nic, &cq->dmem);
500}
501
502/* Initialize transmit queue */
503static int nicvf_init_snd_queue(struct nicvf *nic,
504				struct snd_queue *sq, int q_len, int qidx)
505{
506	int err;
507
508	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
509				     NICVF_SQ_BASE_ALIGN_BYTES);
510	if (err)
511		return err;
512
513	sq->desc = sq->dmem.base;
514	sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
515	if (!sq->skbuff)
516		return -ENOMEM;
517
518	sq->head = 0;
519	sq->tail = 0;
520	sq->thresh = SND_QUEUE_THRESH;
521
522	/* Check if this SQ is a XDP TX queue */
523	if (nic->sqs_mode)
524		qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
525	if (qidx < nic->pnicvf->xdp_tx_queues) {
526		/* Alloc memory to save page pointers for XDP_TX */
527		sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
528		if (!sq->xdp_page)
529			return -ENOMEM;
530		sq->xdp_desc_cnt = 0;
531		sq->xdp_free_cnt = q_len - 1;
532		sq->is_xdp = true;
533	} else {
534		sq->xdp_page = NULL;
535		sq->xdp_desc_cnt = 0;
536		sq->xdp_free_cnt = 0;
537		sq->is_xdp = false;
538
539		atomic_set(&sq->free_cnt, q_len - 1);
540
541		/* Preallocate memory for TSO segment's header */
542		sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
543						  q_len * TSO_HEADER_SIZE,
544						  &sq->tso_hdrs_phys,
545						  GFP_KERNEL);
546		if (!sq->tso_hdrs)
547			return -ENOMEM;
548	}
549
550	return 0;
551}
552
553void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
554			      int hdr_sqe, u8 subdesc_cnt)
555{
556	u8 idx;
557	struct sq_gather_subdesc *gather;
558
559	/* Unmap DMA mapped skb data buffers */
560	for (idx = 0; idx < subdesc_cnt; idx++) {
561		hdr_sqe++;
562		hdr_sqe &= (sq->dmem.q_len - 1);
563		gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
564		/* HW will ensure data coherency, CPU sync not required */
565		dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
566				     gather->size, DMA_TO_DEVICE,
567				     DMA_ATTR_SKIP_CPU_SYNC);
568	}
569}
570
571static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
572{
573	struct sk_buff *skb;
574	struct page *page;
575	struct sq_hdr_subdesc *hdr;
576	struct sq_hdr_subdesc *tso_sqe;
577
578	if (!sq)
579		return;
580	if (!sq->dmem.base)
581		return;
582
583	if (sq->tso_hdrs) {
584		dma_free_coherent(&nic->pdev->dev,
585				  sq->dmem.q_len * TSO_HEADER_SIZE,
586				  sq->tso_hdrs, sq->tso_hdrs_phys);
587		sq->tso_hdrs = NULL;
588	}
589
590	/* Free pending skbs in the queue */
591	smp_rmb();
592	while (sq->head != sq->tail) {
593		skb = (struct sk_buff *)sq->skbuff[sq->head];
594		if (!skb || !sq->xdp_page)
595			goto next;
596
597		page = (struct page *)sq->xdp_page[sq->head];
598		if (!page)
599			goto next;
600		else
601			put_page(page);
602
603		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
604		/* Check for dummy descriptor used for HW TSO offload on 88xx */
605		if (hdr->dont_send) {
606			/* Get actual TSO descriptors and unmap them */
607			tso_sqe =
608			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
609			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
610						 tso_sqe->subdesc_cnt);
611		} else {
612			nicvf_unmap_sndq_buffers(nic, sq, sq->head,
613						 hdr->subdesc_cnt);
614		}
615		if (skb)
616			dev_kfree_skb_any(skb);
617next:
618		sq->head++;
619		sq->head &= (sq->dmem.q_len - 1);
620	}
621	kfree(sq->skbuff);
622	kfree(sq->xdp_page);
623	nicvf_free_q_desc_mem(nic, &sq->dmem);
624}
625
626static void nicvf_reclaim_snd_queue(struct nicvf *nic,
627				    struct queue_set *qs, int qidx)
628{
629	/* Disable send queue */
630	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
631	/* Check if SQ is stopped */
632	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
633		return;
634	/* Reset send queue */
635	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
636}
637
638static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
639				    struct queue_set *qs, int qidx)
640{
641	union nic_mbx mbx = {};
642
643	/* Make sure all packets in the pipeline are written back into mem */
644	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
645	nicvf_send_msg_to_pf(nic, &mbx);
646}
647
648static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
649				    struct queue_set *qs, int qidx)
650{
651	/* Disable timer threshold (doesn't get reset upon CQ reset */
652	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
653	/* Disable completion queue */
654	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
655	/* Reset completion queue */
656	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
657}
658
659static void nicvf_reclaim_rbdr(struct nicvf *nic,
660			       struct rbdr *rbdr, int qidx)
661{
662	u64 tmp, fifo_state;
663	int timeout = 10;
664
665	/* Save head and tail pointers for feeing up buffers */
666	rbdr->head = nicvf_queue_reg_read(nic,
667					  NIC_QSET_RBDR_0_1_HEAD,
668					  qidx) >> 3;
669	rbdr->tail = nicvf_queue_reg_read(nic,
670					  NIC_QSET_RBDR_0_1_TAIL,
671					  qidx) >> 3;
672
673	/* If RBDR FIFO is in 'FAIL' state then do a reset first
674	 * before relaiming.
675	 */
676	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
677	if (((fifo_state >> 62) & 0x03) == 0x3)
678		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
679				      qidx, NICVF_RBDR_RESET);
680
681	/* Disable RBDR */
682	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
683	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
684		return;
685	while (1) {
686		tmp = nicvf_queue_reg_read(nic,
687					   NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
688					   qidx);
689		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
690			break;
691		usleep_range(1000, 2000);
692		timeout--;
693		if (!timeout) {
694			netdev_err(nic->netdev,
695				   "Failed polling on prefetch status\n");
696			return;
697		}
698	}
699	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
700			      qidx, NICVF_RBDR_RESET);
701
702	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
703		return;
704	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
705	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
706		return;
707}
708
709void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
710{
711	u64 rq_cfg;
712	int sqs;
713
714	rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
715
716	/* Enable first VLAN stripping */
717	if (features & NETIF_F_HW_VLAN_CTAG_RX)
718		rq_cfg |= (1ULL << 25);
719	else
720		rq_cfg &= ~(1ULL << 25);
721	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
722
723	/* Configure Secondary Qsets, if any */
724	for (sqs = 0; sqs < nic->sqs_count; sqs++)
725		if (nic->snicvf[sqs])
726			nicvf_queue_reg_write(nic->snicvf[sqs],
727					      NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
728}
729
730static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
731{
732	union nic_mbx mbx = {};
733
734	/* Reset all RQ/SQ and VF stats */
735	mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
736	mbx.reset_stat.rx_stat_mask = 0x3FFF;
737	mbx.reset_stat.tx_stat_mask = 0x1F;
738	mbx.reset_stat.rq_stat_mask = 0xFFFF;
739	mbx.reset_stat.sq_stat_mask = 0xFFFF;
740	nicvf_send_msg_to_pf(nic, &mbx);
741}
742
743/* Configures receive queue */
744static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
745				   int qidx, bool enable)
746{
747	union nic_mbx mbx = {};
748	struct rcv_queue *rq;
749	struct rq_cfg rq_cfg;
750
751	rq = &qs->rq[qidx];
752	rq->enable = enable;
753
754	/* Disable receive queue */
755	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
756
757	if (!rq->enable) {
758		nicvf_reclaim_rcv_queue(nic, qs, qidx);
759		xdp_rxq_info_unreg(&rq->xdp_rxq);
760		return;
761	}
762
763	rq->cq_qs = qs->vnic_id;
764	rq->cq_idx = qidx;
765	rq->start_rbdr_qs = qs->vnic_id;
766	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
767	rq->cont_rbdr_qs = qs->vnic_id;
768	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
769	/* all writes of RBDR data to be loaded into L2 Cache as well*/
770	rq->caching = 1;
771
772	/* Driver have no proper error path for failed XDP RX-queue info reg */
773	WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx) < 0);
774
775	/* Send a mailbox msg to PF to config RQ */
776	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
777	mbx.rq.qs_num = qs->vnic_id;
778	mbx.rq.rq_num = qidx;
779	mbx.rq.cfg = ((u64)rq->caching << 26) | (rq->cq_qs << 19) |
780			  (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
781			  (rq->cont_qs_rbdr_idx << 8) |
782			  (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
783	nicvf_send_msg_to_pf(nic, &mbx);
784
785	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
786	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
787		     (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
788		     (qs->vnic_id << 0);
789	nicvf_send_msg_to_pf(nic, &mbx);
790
791	/* RQ drop config
792	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
793	 */
794	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
795	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
796		     (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
797		     (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
798	nicvf_send_msg_to_pf(nic, &mbx);
799
800	if (!nic->sqs_mode && (qidx == 0)) {
801		/* Enable checking L3/L4 length and TCP/UDP checksums
802		 * Also allow IPv6 pkts with zero UDP checksum.
803		 */
804		nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
805				      (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
806		nicvf_config_vlan_stripping(nic, nic->netdev->features);
807	}
808
809	/* Enable Receive queue */
810	memset(&rq_cfg, 0, sizeof(struct rq_cfg));
811	rq_cfg.ena = 1;
812	rq_cfg.tcp_ena = 0;
813	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
814}
815
816/* Configures completion queue */
817void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
818			    int qidx, bool enable)
819{
820	struct cmp_queue *cq;
821	struct cq_cfg cq_cfg;
822
823	cq = &qs->cq[qidx];
824	cq->enable = enable;
825
826	if (!cq->enable) {
827		nicvf_reclaim_cmp_queue(nic, qs, qidx);
828		return;
829	}
830
831	/* Reset completion queue */
832	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
833
834	if (!cq->enable)
835		return;
836
837	spin_lock_init(&cq->lock);
838	/* Set completion queue base address */
839	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
840			      qidx, (u64)(cq->dmem.phys_base));
841
842	/* Enable Completion queue */
843	memset(&cq_cfg, 0, sizeof(struct cq_cfg));
844	cq_cfg.ena = 1;
845	cq_cfg.reset = 0;
846	cq_cfg.caching = 0;
847	cq_cfg.qsize = ilog2(qs->cq_len >> 10);
848	cq_cfg.avg_con = 0;
849	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
850
851	/* Set threshold value for interrupt generation */
852	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
853	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
854			      qidx, CMP_QUEUE_TIMER_THRESH);
855}
856
857/* Configures transmit queue */
858static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
859				   int qidx, bool enable)
860{
861	union nic_mbx mbx = {};
862	struct snd_queue *sq;
863	struct sq_cfg sq_cfg;
864
865	sq = &qs->sq[qidx];
866	sq->enable = enable;
867
868	if (!sq->enable) {
869		nicvf_reclaim_snd_queue(nic, qs, qidx);
870		return;
871	}
872
873	/* Reset send queue */
874	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
875
876	sq->cq_qs = qs->vnic_id;
877	sq->cq_idx = qidx;
878
879	/* Send a mailbox msg to PF to config SQ */
880	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
881	mbx.sq.qs_num = qs->vnic_id;
882	mbx.sq.sq_num = qidx;
883	mbx.sq.sqs_mode = nic->sqs_mode;
884	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
885	nicvf_send_msg_to_pf(nic, &mbx);
886
887	/* Set queue base address */
888	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
889			      qidx, (u64)(sq->dmem.phys_base));
890
891	/* Enable send queue  & set queue size */
892	memset(&sq_cfg, 0, sizeof(struct sq_cfg));
893	sq_cfg.ena = 1;
894	sq_cfg.reset = 0;
895	sq_cfg.ldwb = 0;
896	sq_cfg.qsize = ilog2(qs->sq_len >> 10);
897	sq_cfg.tstmp_bgx_intf = 0;
898	/* CQ's level at which HW will stop processing SQEs to avoid
899	 * transmitting a pkt with no space in CQ to post CQE_TX.
900	 */
901	sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
902	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
903
904	/* Set threshold value for interrupt generation */
905	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
906
907	/* Set queue:cpu affinity for better load distribution */
908	if (cpu_online(qidx)) {
909		cpumask_set_cpu(qidx, &sq->affinity_mask);
910		netif_set_xps_queue(nic->netdev,
911				    &sq->affinity_mask, qidx);
912	}
913}
914
915/* Configures receive buffer descriptor ring */
916static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
917			      int qidx, bool enable)
918{
919	struct rbdr *rbdr;
920	struct rbdr_cfg rbdr_cfg;
921
922	rbdr = &qs->rbdr[qidx];
923	nicvf_reclaim_rbdr(nic, rbdr, qidx);
924	if (!enable)
925		return;
926
927	/* Set descriptor base address */
928	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
929			      qidx, (u64)(rbdr->dmem.phys_base));
930
931	/* Enable RBDR  & set queue size */
932	/* Buffer size should be in multiples of 128 bytes */
933	memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
934	rbdr_cfg.ena = 1;
935	rbdr_cfg.reset = 0;
936	rbdr_cfg.ldwb = 0;
937	rbdr_cfg.qsize = RBDR_SIZE;
938	rbdr_cfg.avg_con = 0;
939	rbdr_cfg.lines = rbdr->dma_size / 128;
940	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
941			      qidx, *(u64 *)&rbdr_cfg);
942
943	/* Notify HW */
944	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
945			      qidx, qs->rbdr_len - 1);
946
947	/* Set threshold value for interrupt generation */
948	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
949			      qidx, rbdr->thresh - 1);
950}
951
952/* Requests PF to assign and enable Qset */
953void nicvf_qset_config(struct nicvf *nic, bool enable)
954{
955	union nic_mbx mbx = {};
956	struct queue_set *qs = nic->qs;
957	struct qs_cfg *qs_cfg;
958
959	if (!qs) {
960		netdev_warn(nic->netdev,
961			    "Qset is still not allocated, don't init queues\n");
962		return;
963	}
964
965	qs->enable = enable;
966	qs->vnic_id = nic->vf_id;
967
968	/* Send a mailbox msg to PF to config Qset */
969	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
970	mbx.qs.num = qs->vnic_id;
971	mbx.qs.sqs_count = nic->sqs_count;
972
973	mbx.qs.cfg = 0;
974	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
975	if (qs->enable) {
976		qs_cfg->ena = 1;
977#ifdef __BIG_ENDIAN
978		qs_cfg->be = 1;
979#endif
980		qs_cfg->vnic = qs->vnic_id;
981		/* Enable Tx timestamping capability */
982		if (nic->ptp_clock)
983			qs_cfg->send_tstmp_ena = 1;
984	}
985	nicvf_send_msg_to_pf(nic, &mbx);
986}
987
988static void nicvf_free_resources(struct nicvf *nic)
989{
990	int qidx;
991	struct queue_set *qs = nic->qs;
992
993	/* Free receive buffer descriptor ring */
994	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
995		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
996
997	/* Free completion queue */
998	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
999		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1000
1001	/* Free send queue */
1002	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1003		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1004}
1005
1006static int nicvf_alloc_resources(struct nicvf *nic)
1007{
1008	int qidx;
1009	struct queue_set *qs = nic->qs;
1010
1011	/* Alloc receive buffer descriptor ring */
1012	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1013		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1014				    DMA_BUFFER_LEN))
1015			goto alloc_fail;
1016	}
1017
1018	/* Alloc send queue */
1019	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1020		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1021			goto alloc_fail;
1022	}
1023
1024	/* Alloc completion queue */
1025	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1026		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
1027			goto alloc_fail;
1028	}
1029
1030	return 0;
1031alloc_fail:
1032	nicvf_free_resources(nic);
1033	return -ENOMEM;
1034}
1035
1036int nicvf_set_qset_resources(struct nicvf *nic)
1037{
1038	struct queue_set *qs;
1039
1040	qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
1041	if (!qs)
1042		return -ENOMEM;
1043	nic->qs = qs;
1044
1045	/* Set count of each queue */
1046	qs->rbdr_cnt = DEFAULT_RBDR_CNT;
1047	qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
1048	qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
1049	qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1050
1051	/* Set queue lengths */
1052	qs->rbdr_len = RCV_BUF_COUNT;
1053	qs->sq_len = SND_QUEUE_LEN;
1054	qs->cq_len = CMP_QUEUE_LEN;
1055
1056	nic->rx_queues = qs->rq_cnt;
1057	nic->tx_queues = qs->sq_cnt;
1058	nic->xdp_tx_queues = 0;
1059
1060	return 0;
1061}
1062
1063int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
1064{
1065	bool disable = false;
1066	struct queue_set *qs = nic->qs;
1067	struct queue_set *pqs = nic->pnicvf->qs;
1068	int qidx;
1069
1070	if (!qs)
1071		return 0;
1072
1073	/* Take primary VF's queue lengths.
1074	 * This is needed to take queue lengths set from ethtool
1075	 * into consideration.
1076	 */
1077	if (nic->sqs_mode && pqs) {
1078		qs->cq_len = pqs->cq_len;
1079		qs->sq_len = pqs->sq_len;
1080	}
1081
1082	if (enable) {
1083		if (nicvf_alloc_resources(nic))
1084			return -ENOMEM;
1085
1086		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1087			nicvf_snd_queue_config(nic, qs, qidx, enable);
1088		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1089			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1090		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1091			nicvf_rbdr_config(nic, qs, qidx, enable);
1092		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1093			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1094	} else {
1095		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1096			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1097		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1098			nicvf_rbdr_config(nic, qs, qidx, disable);
1099		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1100			nicvf_snd_queue_config(nic, qs, qidx, disable);
1101		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1102			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1103
1104		nicvf_free_resources(nic);
1105	}
1106
1107	/* Reset RXQ's stats.
1108	 * SQ's stats will get reset automatically once SQ is reset.
1109	 */
1110	nicvf_reset_rcv_queue_stats(nic);
1111
1112	return 0;
1113}
1114
1115/* Get a free desc from SQ
1116 * returns descriptor ponter & descriptor number
1117 */
1118static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1119{
1120	int qentry;
1121
1122	qentry = sq->tail;
1123	if (!sq->is_xdp)
1124		atomic_sub(desc_cnt, &sq->free_cnt);
1125	else
1126		sq->xdp_free_cnt -= desc_cnt;
1127	sq->tail += desc_cnt;
1128	sq->tail &= (sq->dmem.q_len - 1);
1129
1130	return qentry;
1131}
1132
1133/* Rollback to previous tail pointer when descriptors not used */
1134static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
1135					  int qentry, int desc_cnt)
1136{
1137	sq->tail = qentry;
1138	atomic_add(desc_cnt, &sq->free_cnt);
1139}
1140
1141/* Free descriptor back to SQ for future use */
1142void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1143{
1144	if (!sq->is_xdp)
1145		atomic_add(desc_cnt, &sq->free_cnt);
1146	else
1147		sq->xdp_free_cnt += desc_cnt;
1148	sq->head += desc_cnt;
1149	sq->head &= (sq->dmem.q_len - 1);
1150}
1151
1152static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1153{
1154	qentry++;
1155	qentry &= (sq->dmem.q_len - 1);
1156	return qentry;
1157}
1158
1159void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1160{
1161	u64 sq_cfg;
1162
1163	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1164	sq_cfg |= NICVF_SQ_EN;
1165	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1166	/* Ring doorbell so that H/W restarts processing SQEs */
1167	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1168}
1169
1170void nicvf_sq_disable(struct nicvf *nic, int qidx)
1171{
1172	u64 sq_cfg;
1173
1174	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1175	sq_cfg &= ~NICVF_SQ_EN;
1176	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1177}
1178
1179void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
1180			      int qidx)
1181{
1182	u64 head;
1183	struct sk_buff *skb;
1184	struct nicvf *nic = netdev_priv(netdev);
1185	struct sq_hdr_subdesc *hdr;
1186
1187	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1188	while (sq->head != head) {
1189		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1190		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1191			nicvf_put_sq_desc(sq, 1);
1192			continue;
1193		}
1194		skb = (struct sk_buff *)sq->skbuff[sq->head];
1195		if (skb)
1196			dev_kfree_skb_any(skb);
1197		atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1198		atomic64_add(hdr->tot_len,
1199			     (atomic64_t *)&netdev->stats.tx_bytes);
1200		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1201	}
1202}
1203
1204/* XDP Transmit APIs */
1205void nicvf_xdp_sq_doorbell(struct nicvf *nic,
1206			   struct snd_queue *sq, int sq_num)
1207{
1208	if (!sq->xdp_desc_cnt)
1209		return;
1210
1211	/* make sure all memory stores are done before ringing doorbell */
1212	wmb();
1213
1214	/* Inform HW to xmit all TSO segments */
1215	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1216			      sq_num, sq->xdp_desc_cnt);
1217	sq->xdp_desc_cnt = 0;
1218}
1219
1220static inline void
1221nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1222			     int subdesc_cnt, u64 data, int len)
1223{
1224	struct sq_hdr_subdesc *hdr;
1225
1226	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1227	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1228	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1229	hdr->subdesc_cnt = subdesc_cnt;
1230	hdr->tot_len = len;
1231	hdr->post_cqe = 1;
1232	sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
1233}
1234
1235int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
1236			    u64 bufaddr, u64 dma_addr, u16 len)
1237{
1238	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1239	int qentry;
1240
1241	if (subdesc_cnt > sq->xdp_free_cnt)
1242		return 0;
1243
1244	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1245
1246	nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
1247
1248	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1249	nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
1250
1251	sq->xdp_desc_cnt += subdesc_cnt;
1252
1253	return 1;
1254}
1255
1256/* Calculate no of SQ subdescriptors needed to transmit all
1257 * segments of this TSO packet.
1258 * Taken from 'Tilera network driver' with a minor modification.
1259 */
1260static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1261{
1262	struct skb_shared_info *sh = skb_shinfo(skb);
1263	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1264	unsigned int data_len = skb->len - sh_len;
1265	unsigned int p_len = sh->gso_size;
1266	long f_id = -1;    /* id of the current fragment */
1267	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1268	long f_used = 0;  /* bytes used from the current fragment */
1269	long n;            /* size of the current piece of payload */
1270	int num_edescs = 0;
1271	int segment;
1272
1273	for (segment = 0; segment < sh->gso_segs; segment++) {
1274		unsigned int p_used = 0;
1275
1276		/* One edesc for header and for each piece of the payload. */
1277		for (num_edescs++; p_used < p_len; num_edescs++) {
1278			/* Advance as needed. */
1279			while (f_used >= f_size) {
1280				f_id++;
1281				f_size = skb_frag_size(&sh->frags[f_id]);
1282				f_used = 0;
1283			}
1284
1285			/* Use bytes from the current fragment. */
1286			n = p_len - p_used;
1287			if (n > f_size - f_used)
1288				n = f_size - f_used;
1289			f_used += n;
1290			p_used += n;
1291		}
1292
1293		/* The last segment may be less than gso_size. */
1294		data_len -= p_len;
1295		if (data_len < p_len)
1296			p_len = data_len;
1297	}
1298
1299	/* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1300	return num_edescs + sh->gso_segs;
1301}
1302
1303#define POST_CQE_DESC_COUNT 2
1304
1305/* Get the number of SQ descriptors needed to xmit this skb */
1306static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1307{
1308	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1309
1310	if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1311		subdesc_cnt = nicvf_tso_count_subdescs(skb);
1312		return subdesc_cnt;
1313	}
1314
1315	/* Dummy descriptors to get TSO pkt completion notification */
1316	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1317		subdesc_cnt += POST_CQE_DESC_COUNT;
1318
1319	if (skb_shinfo(skb)->nr_frags)
1320		subdesc_cnt += skb_shinfo(skb)->nr_frags;
1321
1322	return subdesc_cnt;
1323}
1324
1325/* Add SQ HEADER subdescriptor.
1326 * First subdescriptor for every send descriptor.
1327 */
1328static inline void
1329nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1330			 int subdesc_cnt, struct sk_buff *skb, int len)
1331{
1332	int proto;
1333	struct sq_hdr_subdesc *hdr;
1334	union {
1335		struct iphdr *v4;
1336		struct ipv6hdr *v6;
1337		unsigned char *hdr;
1338	} ip;
1339
1340	ip.hdr = skb_network_header(skb);
1341	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1342	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1343	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1344
1345	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1346		/* post_cqe = 0, to avoid HW posting a CQE for every TSO
1347		 * segment transmitted on 88xx.
1348		 */
1349		hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1350	} else {
1351		sq->skbuff[qentry] = (u64)skb;
1352		/* Enable notification via CQE after processing SQE */
1353		hdr->post_cqe = 1;
1354		/* No of subdescriptors following this */
1355		hdr->subdesc_cnt = subdesc_cnt;
1356	}
1357	hdr->tot_len = len;
1358
1359	/* Offload checksum calculation to HW */
1360	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1361		if (ip.v4->version == 4)
1362			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1363		hdr->l3_offset = skb_network_offset(skb);
1364		hdr->l4_offset = skb_transport_offset(skb);
1365
1366		proto = (ip.v4->version == 4) ? ip.v4->protocol :
1367			ip.v6->nexthdr;
1368
1369		switch (proto) {
1370		case IPPROTO_TCP:
1371			hdr->csum_l4 = SEND_L4_CSUM_TCP;
1372			break;
1373		case IPPROTO_UDP:
1374			hdr->csum_l4 = SEND_L4_CSUM_UDP;
1375			break;
1376		case IPPROTO_SCTP:
1377			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1378			break;
1379		}
1380	}
1381
1382	if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1383		hdr->tso = 1;
1384		hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
1385		hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1386		/* For non-tunneled pkts, point this to L2 ethertype */
1387		hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1388		this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1389	}
1390
1391	/* Check if timestamp is requested */
1392	if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1393		skb_tx_timestamp(skb);
1394		return;
1395	}
1396
1397	/* Tx timestamping not supported along with TSO, so ignore request */
1398	if (skb_shinfo(skb)->gso_size)
1399		return;
1400
1401	/* HW supports only a single outstanding packet to timestamp */
1402	if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1))
1403		return;
1404
1405	/* Mark the SKB for later reference */
1406	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1407
1408	/* Finally enable timestamp generation
1409	 * Since 'post_cqe' is also set, two CQEs will be posted
1410	 * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP.
1411	 */
1412	hdr->tstmp = 1;
1413}
1414
1415/* SQ GATHER subdescriptor
1416 * Must follow HDR descriptor
1417 */
1418static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1419					       int size, u64 data)
1420{
1421	struct sq_gather_subdesc *gather;
1422
1423	qentry &= (sq->dmem.q_len - 1);
1424	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1425
1426	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1427	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1428	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1429	gather->size = size;
1430	gather->addr = data;
1431}
1432
1433/* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1434 * packet so that a CQE is posted as a notifation for transmission of
1435 * TSO packet.
1436 */
1437static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1438					    int tso_sqe, struct sk_buff *skb)
1439{
1440	struct sq_imm_subdesc *imm;
1441	struct sq_hdr_subdesc *hdr;
1442
1443	sq->skbuff[qentry] = (u64)skb;
1444
1445	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1446	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1447	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1448	/* Enable notification via CQE after processing SQE */
1449	hdr->post_cqe = 1;
1450	/* There is no packet to transmit here */
1451	hdr->dont_send = 1;
1452	hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1453	hdr->tot_len = 1;
1454	/* Actual TSO header SQE index, needed for cleanup */
1455	hdr->rsvd2 = tso_sqe;
1456
1457	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1458	imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1459	memset(imm, 0, SND_QUEUE_DESC_SIZE);
1460	imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1461	imm->len = 1;
1462}
1463
1464static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1465				     int sq_num, int desc_cnt)
1466{
1467	struct netdev_queue *txq;
1468
1469	txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1470				  skb_get_queue_mapping(skb));
1471
1472	netdev_tx_sent_queue(txq, skb->len);
1473
1474	/* make sure all memory stores are done before ringing doorbell */
1475	smp_wmb();
1476
1477	/* Inform HW to xmit all TSO segments */
1478	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1479			      sq_num, desc_cnt);
1480}
1481
1482/* Segment a TSO packet into 'gso_size' segments and append
1483 * them to SQ for transfer
1484 */
1485static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1486			       int sq_num, int qentry, struct sk_buff *skb)
1487{
1488	struct tso_t tso;
1489	int seg_subdescs = 0, desc_cnt = 0;
1490	int seg_len, total_len, data_left;
1491	int hdr_qentry = qentry;
1492	int hdr_len;
1493
1494	hdr_len = tso_start(skb, &tso);
1495
1496	total_len = skb->len - hdr_len;
1497	while (total_len > 0) {
1498		char *hdr;
1499
1500		/* Save Qentry for adding HDR_SUBDESC at the end */
1501		hdr_qentry = qentry;
1502
1503		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1504		total_len -= data_left;
1505
1506		/* Add segment's header */
1507		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1508		hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1509		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1510		nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1511					    sq->tso_hdrs_phys +
1512					    qentry * TSO_HEADER_SIZE);
1513		/* HDR_SUDESC + GATHER */
1514		seg_subdescs = 2;
1515		seg_len = hdr_len;
1516
1517		/* Add segment's payload fragments */
1518		while (data_left > 0) {
1519			int size;
1520
1521			size = min_t(int, tso.size, data_left);
1522
1523			qentry = nicvf_get_nxt_sqentry(sq, qentry);
1524			nicvf_sq_add_gather_subdesc(sq, qentry, size,
1525						    virt_to_phys(tso.data));
1526			seg_subdescs++;
1527			seg_len += size;
1528
1529			data_left -= size;
1530			tso_build_data(skb, &tso, size);
1531		}
1532		nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1533					 seg_subdescs - 1, skb, seg_len);
1534		sq->skbuff[hdr_qentry] = (u64)NULL;
1535		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1536
1537		desc_cnt += seg_subdescs;
1538	}
1539	/* Save SKB in the last segment for freeing */
1540	sq->skbuff[hdr_qentry] = (u64)skb;
1541
1542	nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1543
1544	this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1545	return 1;
1546}
1547
1548/* Append an skb to a SQ for packet transfer. */
1549int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1550			struct sk_buff *skb, u8 sq_num)
1551{
1552	int i, size;
1553	int subdesc_cnt, hdr_sqe = 0;
1554	int qentry;
1555	u64 dma_addr;
1556
1557	subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1558	if (subdesc_cnt > atomic_read(&sq->free_cnt))
1559		goto append_fail;
1560
1561	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1562
1563	/* Check if its a TSO packet */
1564	if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1565		return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1566
1567	/* Add SQ header subdesc */
1568	nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1569				 skb, skb->len);
1570	hdr_sqe = qentry;
1571
1572	/* Add SQ gather subdescs */
1573	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1574	size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1575	/* HW will ensure data coherency, CPU sync not required */
1576	dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1577				      offset_in_page(skb->data), size,
1578				      DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1579	if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1580		nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1581		return 0;
1582	}
1583
1584	nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1585
1586	/* Check for scattered buffer */
1587	if (!skb_is_nonlinear(skb))
1588		goto doorbell;
1589
1590	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1591		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1592
1593		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1594		size = skb_frag_size(frag);
1595		dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1596					      skb_frag_page(frag),
1597					      skb_frag_off(frag), size,
1598					      DMA_TO_DEVICE,
1599					      DMA_ATTR_SKIP_CPU_SYNC);
1600		if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1601			/* Free entire chain of mapped buffers
1602			 * here 'i' = frags mapped + above mapped skb->data
1603			 */
1604			nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1605			nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1606			return 0;
1607		}
1608		nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1609	}
1610
1611doorbell:
1612	if (nic->t88 && skb_shinfo(skb)->gso_size) {
1613		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1614		nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1615	}
1616
1617	nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1618
1619	return 1;
1620
1621append_fail:
1622	/* Use original PCI dev for debug log */
1623	nic = nic->pnicvf;
1624	netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1625	return 0;
1626}
1627
1628static inline unsigned frag_num(unsigned i)
1629{
1630#ifdef __BIG_ENDIAN
1631	return (i & ~3) + 3 - (i & 3);
1632#else
1633	return i;
1634#endif
1635}
1636
1637static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
1638				   u64 buf_addr, bool xdp)
1639{
1640	struct page *page = NULL;
1641	int len = RCV_FRAG_LEN;
1642
1643	if (xdp) {
1644		page = virt_to_page(phys_to_virt(buf_addr));
1645		/* Check if it's a recycled page, if not
1646		 * unmap the DMA mapping.
1647		 *
1648		 * Recycled page holds an extra reference.
1649		 */
1650		if (page_ref_count(page) != 1)
1651			return;
1652
1653		len += XDP_PACKET_HEADROOM;
1654		/* Receive buffers in XDP mode are mapped from page start */
1655		dma_addr &= PAGE_MASK;
1656	}
1657	dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
1658			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1659}
1660
1661/* Returns SKB for a received packet */
1662struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
1663				  struct cqe_rx_t *cqe_rx, bool xdp)
1664{
1665	int frag;
1666	int payload_len = 0;
1667	struct sk_buff *skb = NULL;
1668	struct page *page;
1669	int offset;
1670	u16 *rb_lens = NULL;
1671	u64 *rb_ptrs = NULL;
1672	u64 phys_addr;
1673
1674	rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1675	/* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1676	 * CQE_RX at word6, hence buffer pointers move by word
1677	 *
1678	 * Use existing 'hw_tso' flag which will be set for all chips
1679	 * except 88xx pass1 instead of a additional cache line
1680	 * access (or miss) by using pci dev's revision.
1681	 */
1682	if (!nic->hw_tso)
1683		rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1684	else
1685		rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1686
1687	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1688		payload_len = rb_lens[frag_num(frag)];
1689		phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1690		if (!phys_addr) {
1691			if (skb)
1692				dev_kfree_skb_any(skb);
1693			return NULL;
1694		}
1695
1696		if (!frag) {
1697			/* First fragment */
1698			nicvf_unmap_rcv_buffer(nic,
1699					       *rb_ptrs - cqe_rx->align_pad,
1700					       phys_addr, xdp);
1701			skb = nicvf_rb_ptr_to_skb(nic,
1702						  phys_addr - cqe_rx->align_pad,
1703						  payload_len);
1704			if (!skb)
1705				return NULL;
1706			skb_reserve(skb, cqe_rx->align_pad);
1707			skb_put(skb, payload_len);
1708		} else {
1709			/* Add fragments */
1710			nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1711			page = virt_to_page(phys_to_virt(phys_addr));
1712			offset = phys_to_virt(phys_addr) - page_address(page);
1713			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1714					offset, payload_len, RCV_FRAG_LEN);
1715		}
1716		/* Next buffer pointer */
1717		rb_ptrs++;
1718	}
1719	return skb;
1720}
1721
1722static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1723{
1724	u64 reg_val;
1725
1726	switch (int_type) {
1727	case NICVF_INTR_CQ:
1728		reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1729		break;
1730	case NICVF_INTR_SQ:
1731		reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1732		break;
1733	case NICVF_INTR_RBDR:
1734		reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1735		break;
1736	case NICVF_INTR_PKT_DROP:
1737		reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1738		break;
1739	case NICVF_INTR_TCP_TIMER:
1740		reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1741		break;
1742	case NICVF_INTR_MBOX:
1743		reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1744		break;
1745	case NICVF_INTR_QS_ERR:
1746		reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1747		break;
1748	default:
1749		reg_val = 0;
1750	}
1751
1752	return reg_val;
1753}
1754
1755/* Enable interrupt */
1756void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1757{
1758	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1759
1760	if (!mask) {
1761		netdev_dbg(nic->netdev,
1762			   "Failed to enable interrupt: unknown type\n");
1763		return;
1764	}
1765	nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1766			nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1767}
1768
1769/* Disable interrupt */
1770void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1771{
1772	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1773
1774	if (!mask) {
1775		netdev_dbg(nic->netdev,
1776			   "Failed to disable interrupt: unknown type\n");
1777		return;
1778	}
1779
1780	nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1781}
1782
1783/* Clear interrupt */
1784void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1785{
1786	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1787
1788	if (!mask) {
1789		netdev_dbg(nic->netdev,
1790			   "Failed to clear interrupt: unknown type\n");
1791		return;
1792	}
1793
1794	nicvf_reg_write(nic, NIC_VF_INT, mask);
1795}
1796
1797/* Check if interrupt is enabled */
1798int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1799{
1800	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1801	/* If interrupt type is unknown, we treat it disabled. */
1802	if (!mask) {
1803		netdev_dbg(nic->netdev,
1804			   "Failed to check interrupt enable: unknown type\n");
1805		return 0;
1806	}
1807
1808	return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1809}
1810
1811void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1812{
1813	struct rcv_queue *rq;
1814
1815#define GET_RQ_STATS(reg) \
1816	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1817			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1818
1819	rq = &nic->qs->rq[rq_idx];
1820	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1821	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1822}
1823
1824void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1825{
1826	struct snd_queue *sq;
1827
1828#define GET_SQ_STATS(reg) \
1829	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1830			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1831
1832	sq = &nic->qs->sq[sq_idx];
1833	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1834	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1835}
1836
1837/* Check for errors in the receive cmp.queue entry */
1838int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1839{
1840	netif_err(nic, rx_err, nic->netdev,
1841		  "RX error CQE err_level 0x%x err_opcode 0x%x\n",
1842		  cqe_rx->err_level, cqe_rx->err_opcode);
1843
1844	switch (cqe_rx->err_opcode) {
1845	case CQ_RX_ERROP_RE_PARTIAL:
1846		this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1847		break;
1848	case CQ_RX_ERROP_RE_JABBER:
1849		this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1850		break;
1851	case CQ_RX_ERROP_RE_FCS:
1852		this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1853		break;
1854	case CQ_RX_ERROP_RE_RX_CTL:
1855		this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1856		break;
1857	case CQ_RX_ERROP_PREL2_ERR:
1858		this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1859		break;
1860	case CQ_RX_ERROP_L2_MAL:
1861		this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1862		break;
1863	case CQ_RX_ERROP_L2_OVERSIZE:
1864		this_cpu_inc(nic->drv_stats->rx_oversize);
1865		break;
1866	case CQ_RX_ERROP_L2_UNDERSIZE:
1867		this_cpu_inc(nic->drv_stats->rx_undersize);
1868		break;
1869	case CQ_RX_ERROP_L2_LENMISM:
1870		this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1871		break;
1872	case CQ_RX_ERROP_L2_PCLP:
1873		this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1874		break;
1875	case CQ_RX_ERROP_IP_NOT:
1876		this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1877		break;
1878	case CQ_RX_ERROP_IP_CSUM_ERR:
1879		this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1880		break;
1881	case CQ_RX_ERROP_IP_MAL:
1882		this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1883		break;
1884	case CQ_RX_ERROP_IP_MALD:
1885		this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1886		break;
1887	case CQ_RX_ERROP_IP_HOP:
1888		this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1889		break;
1890	case CQ_RX_ERROP_L3_PCLP:
1891		this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1892		break;
1893	case CQ_RX_ERROP_L4_MAL:
1894		this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1895		break;
1896	case CQ_RX_ERROP_L4_CHK:
1897		this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1898		break;
1899	case CQ_RX_ERROP_UDP_LEN:
1900		this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1901		break;
1902	case CQ_RX_ERROP_L4_PORT:
1903		this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1904		break;
1905	case CQ_RX_ERROP_TCP_FLAG:
1906		this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1907		break;
1908	case CQ_RX_ERROP_TCP_OFFSET:
1909		this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1910		break;
1911	case CQ_RX_ERROP_L4_PCLP:
1912		this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1913		break;
1914	case CQ_RX_ERROP_RBDR_TRUNC:
1915		this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1916		break;
1917	}
1918
1919	return 1;
1920}
1921
1922/* Check for errors in the send cmp.queue entry */
1923int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1924{
1925	switch (cqe_tx->send_status) {
1926	case CQ_TX_ERROP_DESC_FAULT:
1927		this_cpu_inc(nic->drv_stats->tx_desc_fault);
1928		break;
1929	case CQ_TX_ERROP_HDR_CONS_ERR:
1930		this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1931		break;
1932	case CQ_TX_ERROP_SUBDC_ERR:
1933		this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1934		break;
1935	case CQ_TX_ERROP_MAX_SIZE_VIOL:
1936		this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1937		break;
1938	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1939		this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1940		break;
1941	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1942		this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1943		break;
1944	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1945		this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1946		break;
1947	case CQ_TX_ERROP_LOCK_VIOL:
1948		this_cpu_inc(nic->drv_stats->tx_lock_viol);
1949		break;
1950	case CQ_TX_ERROP_DATA_FAULT:
1951		this_cpu_inc(nic->drv_stats->tx_data_fault);
1952		break;
1953	case CQ_TX_ERROP_TSTMP_CONFLICT:
1954		this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1955		break;
1956	case CQ_TX_ERROP_TSTMP_TIMEOUT:
1957		this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1958		break;
1959	case CQ_TX_ERROP_MEM_FAULT:
1960		this_cpu_inc(nic->drv_stats->tx_mem_fault);
1961		break;
1962	case CQ_TX_ERROP_CK_OVERLAP:
1963		this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1964		break;
1965	case CQ_TX_ERROP_CK_OFLOW:
1966		this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1967		break;
1968	}
1969
1970	return 1;
1971}
1972