1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
4 *
5 * Copyright (c) 2014-2020 Broadcom
6 */
7
8#define pr_fmt(fmt)				"bcmgenet: " fmt
9
10#include <linux/acpi.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/sched.h>
14#include <linux/types.h>
15#include <linux/fcntl.h>
16#include <linux/interrupt.h>
17#include <linux/string.h>
18#include <linux/if_ether.h>
19#include <linux/init.h>
20#include <linux/errno.h>
21#include <linux/delay.h>
22#include <linux/platform_device.h>
23#include <linux/dma-mapping.h>
24#include <linux/pm.h>
25#include <linux/clk.h>
26#include <net/arp.h>
27
28#include <linux/mii.h>
29#include <linux/ethtool.h>
30#include <linux/netdevice.h>
31#include <linux/inetdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/in.h>
35#include <linux/ip.h>
36#include <linux/ipv6.h>
37#include <linux/phy.h>
38#include <linux/platform_data/bcmgenet.h>
39
40#include <asm/unaligned.h>
41
42#include "bcmgenet.h"
43
44/* Maximum number of hardware queues, downsized if needed */
45#define GENET_MAX_MQ_CNT	4
46
47/* Default highest priority queue for multi queue support */
48#define GENET_Q0_PRIORITY	0
49
50#define GENET_Q16_RX_BD_CNT	\
51	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52#define GENET_Q16_TX_BD_CNT	\
53	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55#define RX_BUF_LENGTH		2048
56#define SKB_ALIGNMENT		32
57
58/* Tx/Rx DMA register offset, skip 256 descriptors */
59#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
60#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
61
62#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
63				TOTAL_DESC * DMA_DESC_SIZE)
64
65#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
66				TOTAL_DESC * DMA_DESC_SIZE)
67
68/* Forward declarations */
69static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72{
73	/* MIPS chips strapped for BE will automagically configure the
74	 * peripheral registers for CPU-native byte order.
75	 */
76	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77		__raw_writel(value, offset);
78	else
79		writel_relaxed(value, offset);
80}
81
82static inline u32 bcmgenet_readl(void __iomem *offset)
83{
84	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85		return __raw_readl(offset);
86	else
87		return readl_relaxed(offset);
88}
89
90static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91					     void __iomem *d, u32 value)
92{
93	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94}
95
96static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97				    void __iomem *d,
98				    dma_addr_t addr)
99{
100	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102	/* Register writes to GISB bus can take couple hundred nanoseconds
103	 * and are done for each packet, save these expensive writes unless
104	 * the platform is explicitly configured for 64-bits/LPAE.
105	 */
106#ifdef CONFIG_PHYS_ADDR_T_64BIT
107	if (priv->hw_params->flags & GENET_HAS_40BITS)
108		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109#endif
110}
111
112/* Combined address + length/status setter */
113static inline void dmadesc_set(struct bcmgenet_priv *priv,
114			       void __iomem *d, dma_addr_t addr, u32 val)
115{
116	dmadesc_set_addr(priv, d, addr);
117	dmadesc_set_length_status(priv, d, val);
118}
119
120static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121					  void __iomem *d)
122{
123	dma_addr_t addr;
124
125	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126
127	/* Register writes to GISB bus can take couple hundred nanoseconds
128	 * and are done for each packet, save these expensive writes unless
129	 * the platform is explicitly configured for 64-bits/LPAE.
130	 */
131#ifdef CONFIG_PHYS_ADDR_T_64BIT
132	if (priv->hw_params->flags & GENET_HAS_40BITS)
133		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134#endif
135	return addr;
136}
137
138#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
139
140#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141				NETIF_MSG_LINK)
142
143static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144{
145	if (GENET_IS_V1(priv))
146		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147	else
148		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149}
150
151static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152{
153	if (GENET_IS_V1(priv))
154		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155	else
156		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157}
158
159/* These macros are defined to deal with register map change
160 * between GENET1.1 and GENET2. Only those currently being used
161 * by driver are defined.
162 */
163static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164{
165	if (GENET_IS_V1(priv))
166		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167	else
168		return bcmgenet_readl(priv->base +
169				      priv->hw_params->tbuf_offset + TBUF_CTRL);
170}
171
172static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173{
174	if (GENET_IS_V1(priv))
175		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176	else
177		bcmgenet_writel(val, priv->base +
178				priv->hw_params->tbuf_offset + TBUF_CTRL);
179}
180
181static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182{
183	if (GENET_IS_V1(priv))
184		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185	else
186		return bcmgenet_readl(priv->base +
187				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
188}
189
190static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191{
192	if (GENET_IS_V1(priv))
193		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194	else
195		bcmgenet_writel(val, priv->base +
196				priv->hw_params->tbuf_offset + TBUF_BP_MC);
197}
198
199/* RX/TX DMA register accessors */
200enum dma_reg {
201	DMA_RING_CFG = 0,
202	DMA_CTRL,
203	DMA_STATUS,
204	DMA_SCB_BURST_SIZE,
205	DMA_ARB_CTRL,
206	DMA_PRIORITY_0,
207	DMA_PRIORITY_1,
208	DMA_PRIORITY_2,
209	DMA_INDEX2RING_0,
210	DMA_INDEX2RING_1,
211	DMA_INDEX2RING_2,
212	DMA_INDEX2RING_3,
213	DMA_INDEX2RING_4,
214	DMA_INDEX2RING_5,
215	DMA_INDEX2RING_6,
216	DMA_INDEX2RING_7,
217	DMA_RING0_TIMEOUT,
218	DMA_RING1_TIMEOUT,
219	DMA_RING2_TIMEOUT,
220	DMA_RING3_TIMEOUT,
221	DMA_RING4_TIMEOUT,
222	DMA_RING5_TIMEOUT,
223	DMA_RING6_TIMEOUT,
224	DMA_RING7_TIMEOUT,
225	DMA_RING8_TIMEOUT,
226	DMA_RING9_TIMEOUT,
227	DMA_RING10_TIMEOUT,
228	DMA_RING11_TIMEOUT,
229	DMA_RING12_TIMEOUT,
230	DMA_RING13_TIMEOUT,
231	DMA_RING14_TIMEOUT,
232	DMA_RING15_TIMEOUT,
233	DMA_RING16_TIMEOUT,
234};
235
236static const u8 bcmgenet_dma_regs_v3plus[] = {
237	[DMA_RING_CFG]		= 0x00,
238	[DMA_CTRL]		= 0x04,
239	[DMA_STATUS]		= 0x08,
240	[DMA_SCB_BURST_SIZE]	= 0x0C,
241	[DMA_ARB_CTRL]		= 0x2C,
242	[DMA_PRIORITY_0]	= 0x30,
243	[DMA_PRIORITY_1]	= 0x34,
244	[DMA_PRIORITY_2]	= 0x38,
245	[DMA_RING0_TIMEOUT]	= 0x2C,
246	[DMA_RING1_TIMEOUT]	= 0x30,
247	[DMA_RING2_TIMEOUT]	= 0x34,
248	[DMA_RING3_TIMEOUT]	= 0x38,
249	[DMA_RING4_TIMEOUT]	= 0x3c,
250	[DMA_RING5_TIMEOUT]	= 0x40,
251	[DMA_RING6_TIMEOUT]	= 0x44,
252	[DMA_RING7_TIMEOUT]	= 0x48,
253	[DMA_RING8_TIMEOUT]	= 0x4c,
254	[DMA_RING9_TIMEOUT]	= 0x50,
255	[DMA_RING10_TIMEOUT]	= 0x54,
256	[DMA_RING11_TIMEOUT]	= 0x58,
257	[DMA_RING12_TIMEOUT]	= 0x5c,
258	[DMA_RING13_TIMEOUT]	= 0x60,
259	[DMA_RING14_TIMEOUT]	= 0x64,
260	[DMA_RING15_TIMEOUT]	= 0x68,
261	[DMA_RING16_TIMEOUT]	= 0x6C,
262	[DMA_INDEX2RING_0]	= 0x70,
263	[DMA_INDEX2RING_1]	= 0x74,
264	[DMA_INDEX2RING_2]	= 0x78,
265	[DMA_INDEX2RING_3]	= 0x7C,
266	[DMA_INDEX2RING_4]	= 0x80,
267	[DMA_INDEX2RING_5]	= 0x84,
268	[DMA_INDEX2RING_6]	= 0x88,
269	[DMA_INDEX2RING_7]	= 0x8C,
270};
271
272static const u8 bcmgenet_dma_regs_v2[] = {
273	[DMA_RING_CFG]		= 0x00,
274	[DMA_CTRL]		= 0x04,
275	[DMA_STATUS]		= 0x08,
276	[DMA_SCB_BURST_SIZE]	= 0x0C,
277	[DMA_ARB_CTRL]		= 0x30,
278	[DMA_PRIORITY_0]	= 0x34,
279	[DMA_PRIORITY_1]	= 0x38,
280	[DMA_PRIORITY_2]	= 0x3C,
281	[DMA_RING0_TIMEOUT]	= 0x2C,
282	[DMA_RING1_TIMEOUT]	= 0x30,
283	[DMA_RING2_TIMEOUT]	= 0x34,
284	[DMA_RING3_TIMEOUT]	= 0x38,
285	[DMA_RING4_TIMEOUT]	= 0x3c,
286	[DMA_RING5_TIMEOUT]	= 0x40,
287	[DMA_RING6_TIMEOUT]	= 0x44,
288	[DMA_RING7_TIMEOUT]	= 0x48,
289	[DMA_RING8_TIMEOUT]	= 0x4c,
290	[DMA_RING9_TIMEOUT]	= 0x50,
291	[DMA_RING10_TIMEOUT]	= 0x54,
292	[DMA_RING11_TIMEOUT]	= 0x58,
293	[DMA_RING12_TIMEOUT]	= 0x5c,
294	[DMA_RING13_TIMEOUT]	= 0x60,
295	[DMA_RING14_TIMEOUT]	= 0x64,
296	[DMA_RING15_TIMEOUT]	= 0x68,
297	[DMA_RING16_TIMEOUT]	= 0x6C,
298};
299
300static const u8 bcmgenet_dma_regs_v1[] = {
301	[DMA_CTRL]		= 0x00,
302	[DMA_STATUS]		= 0x04,
303	[DMA_SCB_BURST_SIZE]	= 0x0C,
304	[DMA_ARB_CTRL]		= 0x30,
305	[DMA_PRIORITY_0]	= 0x34,
306	[DMA_PRIORITY_1]	= 0x38,
307	[DMA_PRIORITY_2]	= 0x3C,
308	[DMA_RING0_TIMEOUT]	= 0x2C,
309	[DMA_RING1_TIMEOUT]	= 0x30,
310	[DMA_RING2_TIMEOUT]	= 0x34,
311	[DMA_RING3_TIMEOUT]	= 0x38,
312	[DMA_RING4_TIMEOUT]	= 0x3c,
313	[DMA_RING5_TIMEOUT]	= 0x40,
314	[DMA_RING6_TIMEOUT]	= 0x44,
315	[DMA_RING7_TIMEOUT]	= 0x48,
316	[DMA_RING8_TIMEOUT]	= 0x4c,
317	[DMA_RING9_TIMEOUT]	= 0x50,
318	[DMA_RING10_TIMEOUT]	= 0x54,
319	[DMA_RING11_TIMEOUT]	= 0x58,
320	[DMA_RING12_TIMEOUT]	= 0x5c,
321	[DMA_RING13_TIMEOUT]	= 0x60,
322	[DMA_RING14_TIMEOUT]	= 0x64,
323	[DMA_RING15_TIMEOUT]	= 0x68,
324	[DMA_RING16_TIMEOUT]	= 0x6C,
325};
326
327/* Set at runtime once bcmgenet version is known */
328static const u8 *bcmgenet_dma_regs;
329
330static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331{
332	return netdev_priv(dev_get_drvdata(dev));
333}
334
335static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336				      enum dma_reg r)
337{
338	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340}
341
342static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343					u32 val, enum dma_reg r)
344{
345	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347}
348
349static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350				      enum dma_reg r)
351{
352	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354}
355
356static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357					u32 val, enum dma_reg r)
358{
359	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361}
362
363/* RDMA/TDMA ring registers and accessors
364 * we merge the common fields and just prefix with T/D the registers
365 * having different meaning depending on the direction
366 */
367enum dma_ring_reg {
368	TDMA_READ_PTR = 0,
369	RDMA_WRITE_PTR = TDMA_READ_PTR,
370	TDMA_READ_PTR_HI,
371	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372	TDMA_CONS_INDEX,
373	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374	TDMA_PROD_INDEX,
375	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376	DMA_RING_BUF_SIZE,
377	DMA_START_ADDR,
378	DMA_START_ADDR_HI,
379	DMA_END_ADDR,
380	DMA_END_ADDR_HI,
381	DMA_MBUF_DONE_THRESH,
382	TDMA_FLOW_PERIOD,
383	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384	TDMA_WRITE_PTR,
385	RDMA_READ_PTR = TDMA_WRITE_PTR,
386	TDMA_WRITE_PTR_HI,
387	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388};
389
390/* GENET v4 supports 40-bits pointer addressing
391 * for obvious reasons the LO and HI word parts
392 * are contiguous, but this offsets the other
393 * registers.
394 */
395static const u8 genet_dma_ring_regs_v4[] = {
396	[TDMA_READ_PTR]			= 0x00,
397	[TDMA_READ_PTR_HI]		= 0x04,
398	[TDMA_CONS_INDEX]		= 0x08,
399	[TDMA_PROD_INDEX]		= 0x0C,
400	[DMA_RING_BUF_SIZE]		= 0x10,
401	[DMA_START_ADDR]		= 0x14,
402	[DMA_START_ADDR_HI]		= 0x18,
403	[DMA_END_ADDR]			= 0x1C,
404	[DMA_END_ADDR_HI]		= 0x20,
405	[DMA_MBUF_DONE_THRESH]		= 0x24,
406	[TDMA_FLOW_PERIOD]		= 0x28,
407	[TDMA_WRITE_PTR]		= 0x2C,
408	[TDMA_WRITE_PTR_HI]		= 0x30,
409};
410
411static const u8 genet_dma_ring_regs_v123[] = {
412	[TDMA_READ_PTR]			= 0x00,
413	[TDMA_CONS_INDEX]		= 0x04,
414	[TDMA_PROD_INDEX]		= 0x08,
415	[DMA_RING_BUF_SIZE]		= 0x0C,
416	[DMA_START_ADDR]		= 0x10,
417	[DMA_END_ADDR]			= 0x14,
418	[DMA_MBUF_DONE_THRESH]		= 0x18,
419	[TDMA_FLOW_PERIOD]		= 0x1C,
420	[TDMA_WRITE_PTR]		= 0x20,
421};
422
423/* Set at runtime once GENET version is known */
424static const u8 *genet_dma_ring_regs;
425
426static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427					   unsigned int ring,
428					   enum dma_ring_reg r)
429{
430	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431			      (DMA_RING_SIZE * ring) +
432			      genet_dma_ring_regs[r]);
433}
434
435static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436					     unsigned int ring, u32 val,
437					     enum dma_ring_reg r)
438{
439	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440			(DMA_RING_SIZE * ring) +
441			genet_dma_ring_regs[r]);
442}
443
444static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445					   unsigned int ring,
446					   enum dma_ring_reg r)
447{
448	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449			      (DMA_RING_SIZE * ring) +
450			      genet_dma_ring_regs[r]);
451}
452
453static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454					     unsigned int ring, u32 val,
455					     enum dma_ring_reg r)
456{
457	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458			(DMA_RING_SIZE * ring) +
459			genet_dma_ring_regs[r]);
460}
461
462static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463{
464	u32 offset;
465	u32 reg;
466
467	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468	reg = bcmgenet_hfb_reg_readl(priv, offset);
469	reg |= (1 << (f_index % 32));
470	bcmgenet_hfb_reg_writel(priv, reg, offset);
471	reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472	reg |= RBUF_HFB_EN;
473	bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474}
475
476static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477{
478	u32 offset, reg, reg1;
479
480	offset = HFB_FLT_ENABLE_V3PLUS;
481	reg = bcmgenet_hfb_reg_readl(priv, offset);
482	reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483	if  (f_index < 32) {
484		reg1 &= ~(1 << (f_index % 32));
485		bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486	} else {
487		reg &= ~(1 << (f_index % 32));
488		bcmgenet_hfb_reg_writel(priv, reg, offset);
489	}
490	if (!reg && !reg1) {
491		reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492		reg &= ~RBUF_HFB_EN;
493		bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494	}
495}
496
497static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498						     u32 f_index, u32 rx_queue)
499{
500	u32 offset;
501	u32 reg;
502
503	offset = f_index / 8;
504	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505	reg &= ~(0xF << (4 * (f_index % 8)));
506	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508}
509
510static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511					   u32 f_index, u32 f_length)
512{
513	u32 offset;
514	u32 reg;
515
516	offset = HFB_FLT_LEN_V3PLUS +
517		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518		 sizeof(u32);
519	reg = bcmgenet_hfb_reg_readl(priv, offset);
520	reg &= ~(0xFF << (8 * (f_index % 4)));
521	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522	bcmgenet_hfb_reg_writel(priv, reg, offset);
523}
524
525static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526{
527	while (size) {
528		switch (*(unsigned char *)mask++) {
529		case 0x00:
530		case 0x0f:
531		case 0xf0:
532		case 0xff:
533			size--;
534			continue;
535		default:
536			return -EINVAL;
537		}
538	}
539
540	return 0;
541}
542
543#define VALIDATE_MASK(x) \
544	bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545
546static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547				    u32 offset, void *val, void *mask,
548				    size_t size)
549{
550	u32 index, tmp;
551
552	index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553	tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554
555	while (size--) {
556		if (offset++ & 1) {
557			tmp &= ~0x300FF;
558			tmp |= (*(unsigned char *)val++);
559			switch ((*(unsigned char *)mask++)) {
560			case 0xFF:
561				tmp |= 0x30000;
562				break;
563			case 0xF0:
564				tmp |= 0x20000;
565				break;
566			case 0x0F:
567				tmp |= 0x10000;
568				break;
569			}
570			bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571			if (size)
572				tmp = bcmgenet_hfb_readl(priv,
573							 index * sizeof(u32));
574		} else {
575			tmp &= ~0xCFF00;
576			tmp |= (*(unsigned char *)val++) << 8;
577			switch ((*(unsigned char *)mask++)) {
578			case 0xFF:
579				tmp |= 0xC0000;
580				break;
581			case 0xF0:
582				tmp |= 0x80000;
583				break;
584			case 0x0F:
585				tmp |= 0x40000;
586				break;
587			}
588			if (!size)
589				bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590		}
591	}
592
593	return 0;
594}
595
596static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597					     struct bcmgenet_rxnfc_rule *rule)
598{
599	struct ethtool_rx_flow_spec *fs = &rule->fs;
600	u32 offset = 0, f_length = 0, f;
601	u8 val_8, mask_8;
602	__be16 val_16;
603	u16 mask_16;
604	size_t size;
605
606	f = fs->location;
607	if (fs->flow_type & FLOW_MAC_EXT) {
608		bcmgenet_hfb_insert_data(priv, f, 0,
609					 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610					 sizeof(fs->h_ext.h_dest));
611	}
612
613	if (fs->flow_type & FLOW_EXT) {
614		if (fs->m_ext.vlan_etype ||
615		    fs->m_ext.vlan_tci) {
616			bcmgenet_hfb_insert_data(priv, f, 12,
617						 &fs->h_ext.vlan_etype,
618						 &fs->m_ext.vlan_etype,
619						 sizeof(fs->h_ext.vlan_etype));
620			bcmgenet_hfb_insert_data(priv, f, 14,
621						 &fs->h_ext.vlan_tci,
622						 &fs->m_ext.vlan_tci,
623						 sizeof(fs->h_ext.vlan_tci));
624			offset += VLAN_HLEN;
625			f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626		}
627	}
628
629	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630	case ETHER_FLOW:
631		f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632		bcmgenet_hfb_insert_data(priv, f, 0,
633					 &fs->h_u.ether_spec.h_dest,
634					 &fs->m_u.ether_spec.h_dest,
635					 sizeof(fs->h_u.ether_spec.h_dest));
636		bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637					 &fs->h_u.ether_spec.h_source,
638					 &fs->m_u.ether_spec.h_source,
639					 sizeof(fs->h_u.ether_spec.h_source));
640		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641					 &fs->h_u.ether_spec.h_proto,
642					 &fs->m_u.ether_spec.h_proto,
643					 sizeof(fs->h_u.ether_spec.h_proto));
644		break;
645	case IP_USER_FLOW:
646		f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647		/* Specify IP Ether Type */
648		val_16 = htons(ETH_P_IP);
649		mask_16 = 0xFFFF;
650		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651					 &val_16, &mask_16, sizeof(val_16));
652		bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653					 &fs->h_u.usr_ip4_spec.tos,
654					 &fs->m_u.usr_ip4_spec.tos,
655					 sizeof(fs->h_u.usr_ip4_spec.tos));
656		bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657					 &fs->h_u.usr_ip4_spec.proto,
658					 &fs->m_u.usr_ip4_spec.proto,
659					 sizeof(fs->h_u.usr_ip4_spec.proto));
660		bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661					 &fs->h_u.usr_ip4_spec.ip4src,
662					 &fs->m_u.usr_ip4_spec.ip4src,
663					 sizeof(fs->h_u.usr_ip4_spec.ip4src));
664		bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665					 &fs->h_u.usr_ip4_spec.ip4dst,
666					 &fs->m_u.usr_ip4_spec.ip4dst,
667					 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668		if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669			break;
670
671		/* Only supports 20 byte IPv4 header */
672		val_8 = 0x45;
673		mask_8 = 0xFF;
674		bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675					 &val_8, &mask_8,
676					 sizeof(val_8));
677		size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678		bcmgenet_hfb_insert_data(priv, f,
679					 ETH_HLEN + 20 + offset,
680					 &fs->h_u.usr_ip4_spec.l4_4_bytes,
681					 &fs->m_u.usr_ip4_spec.l4_4_bytes,
682					 size);
683		f_length += DIV_ROUND_UP(size, 2);
684		break;
685	}
686
687	bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688	if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689		/* Ring 0 flows can be handled by the default Descriptor Ring
690		 * We'll map them to ring 0, but don't enable the filter
691		 */
692		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693		rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694	} else {
695		/* Other Rx rings are direct mapped here */
696		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697							 fs->ring_cookie);
698		bcmgenet_hfb_enable_filter(priv, f);
699		rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700	}
701}
702
703/* bcmgenet_hfb_clear
704 *
705 * Clear Hardware Filter Block and disable all filtering.
706 */
707static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708{
709	u32 base, i;
710
711	base = f_index * priv->hw_params->hfb_filter_size;
712	for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713		bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714}
715
716static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717{
718	u32 i;
719
720	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721		return;
722
723	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726
727	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728		bcmgenet_rdma_writel(priv, 0x0, i);
729
730	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731		bcmgenet_hfb_reg_writel(priv, 0x0,
732					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733
734	for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735		bcmgenet_hfb_clear_filter(priv, i);
736}
737
738static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739{
740	int i;
741
742	INIT_LIST_HEAD(&priv->rxnfc_list);
743	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744		return;
745
746	for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747		INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748		priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749	}
750
751	bcmgenet_hfb_clear(priv);
752}
753
754static int bcmgenet_begin(struct net_device *dev)
755{
756	struct bcmgenet_priv *priv = netdev_priv(dev);
757
758	/* Turn on the clock */
759	return clk_prepare_enable(priv->clk);
760}
761
762static void bcmgenet_complete(struct net_device *dev)
763{
764	struct bcmgenet_priv *priv = netdev_priv(dev);
765
766	/* Turn off the clock */
767	clk_disable_unprepare(priv->clk);
768}
769
770static int bcmgenet_get_link_ksettings(struct net_device *dev,
771				       struct ethtool_link_ksettings *cmd)
772{
773	if (!netif_running(dev))
774		return -EINVAL;
775
776	if (!dev->phydev)
777		return -ENODEV;
778
779	phy_ethtool_ksettings_get(dev->phydev, cmd);
780
781	return 0;
782}
783
784static int bcmgenet_set_link_ksettings(struct net_device *dev,
785				       const struct ethtool_link_ksettings *cmd)
786{
787	if (!netif_running(dev))
788		return -EINVAL;
789
790	if (!dev->phydev)
791		return -ENODEV;
792
793	return phy_ethtool_ksettings_set(dev->phydev, cmd);
794}
795
796static int bcmgenet_set_features(struct net_device *dev,
797				 netdev_features_t features)
798{
799	struct bcmgenet_priv *priv = netdev_priv(dev);
800	u32 reg;
801	int ret;
802
803	ret = clk_prepare_enable(priv->clk);
804	if (ret)
805		return ret;
806
807	/* Make sure we reflect the value of CRC_CMD_FWD */
808	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810
811	clk_disable_unprepare(priv->clk);
812
813	return ret;
814}
815
816static u32 bcmgenet_get_msglevel(struct net_device *dev)
817{
818	struct bcmgenet_priv *priv = netdev_priv(dev);
819
820	return priv->msg_enable;
821}
822
823static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824{
825	struct bcmgenet_priv *priv = netdev_priv(dev);
826
827	priv->msg_enable = level;
828}
829
830static int bcmgenet_get_coalesce(struct net_device *dev,
831				 struct ethtool_coalesce *ec)
832{
833	struct bcmgenet_priv *priv = netdev_priv(dev);
834	struct bcmgenet_rx_ring *ring;
835	unsigned int i;
836
837	ec->tx_max_coalesced_frames =
838		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
839					 DMA_MBUF_DONE_THRESH);
840	ec->rx_max_coalesced_frames =
841		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
842					 DMA_MBUF_DONE_THRESH);
843	ec->rx_coalesce_usecs =
844		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
845
846	for (i = 0; i < priv->hw_params->rx_queues; i++) {
847		ring = &priv->rx_rings[i];
848		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
849	}
850	ring = &priv->rx_rings[DESC_INDEX];
851	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
852
853	return 0;
854}
855
856static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
857				     u32 usecs, u32 pkts)
858{
859	struct bcmgenet_priv *priv = ring->priv;
860	unsigned int i = ring->index;
861	u32 reg;
862
863	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
864
865	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
866	reg &= ~DMA_TIMEOUT_MASK;
867	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
868	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
869}
870
871static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
872					  struct ethtool_coalesce *ec)
873{
874	struct dim_cq_moder moder;
875	u32 usecs, pkts;
876
877	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
878	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
879	usecs = ring->rx_coalesce_usecs;
880	pkts = ring->rx_max_coalesced_frames;
881
882	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
883		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
884		usecs = moder.usec;
885		pkts = moder.pkts;
886	}
887
888	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
889	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
890}
891
892static int bcmgenet_set_coalesce(struct net_device *dev,
893				 struct ethtool_coalesce *ec)
894{
895	struct bcmgenet_priv *priv = netdev_priv(dev);
896	unsigned int i;
897
898	/* Base system clock is 125Mhz, DMA timeout is this reference clock
899	 * divided by 1024, which yields roughly 8.192us, our maximum value
900	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
901	 */
902	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
903	    ec->tx_max_coalesced_frames == 0 ||
904	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
905	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
906		return -EINVAL;
907
908	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
909		return -EINVAL;
910
911	/* GENET TDMA hardware does not support a configurable timeout, but will
912	 * always generate an interrupt either after MBDONE packets have been
913	 * transmitted, or when the ring is empty.
914	 */
915
916	/* Program all TX queues with the same values, as there is no
917	 * ethtool knob to do coalescing on a per-queue basis
918	 */
919	for (i = 0; i < priv->hw_params->tx_queues; i++)
920		bcmgenet_tdma_ring_writel(priv, i,
921					  ec->tx_max_coalesced_frames,
922					  DMA_MBUF_DONE_THRESH);
923	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
924				  ec->tx_max_coalesced_frames,
925				  DMA_MBUF_DONE_THRESH);
926
927	for (i = 0; i < priv->hw_params->rx_queues; i++)
928		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
929	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
930
931	return 0;
932}
933
934/* standard ethtool support functions. */
935enum bcmgenet_stat_type {
936	BCMGENET_STAT_NETDEV = -1,
937	BCMGENET_STAT_MIB_RX,
938	BCMGENET_STAT_MIB_TX,
939	BCMGENET_STAT_RUNT,
940	BCMGENET_STAT_MISC,
941	BCMGENET_STAT_SOFT,
942};
943
944struct bcmgenet_stats {
945	char stat_string[ETH_GSTRING_LEN];
946	int stat_sizeof;
947	int stat_offset;
948	enum bcmgenet_stat_type type;
949	/* reg offset from UMAC base for misc counters */
950	u16 reg_offset;
951};
952
953#define STAT_NETDEV(m) { \
954	.stat_string = __stringify(m), \
955	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
956	.stat_offset = offsetof(struct net_device_stats, m), \
957	.type = BCMGENET_STAT_NETDEV, \
958}
959
960#define STAT_GENET_MIB(str, m, _type) { \
961	.stat_string = str, \
962	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
963	.stat_offset = offsetof(struct bcmgenet_priv, m), \
964	.type = _type, \
965}
966
967#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
968#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
969#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
970#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
971
972#define STAT_GENET_MISC(str, m, offset) { \
973	.stat_string = str, \
974	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
975	.stat_offset = offsetof(struct bcmgenet_priv, m), \
976	.type = BCMGENET_STAT_MISC, \
977	.reg_offset = offset, \
978}
979
980#define STAT_GENET_Q(num) \
981	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
982			tx_rings[num].packets), \
983	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
984			tx_rings[num].bytes), \
985	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
986			rx_rings[num].bytes),	 \
987	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
988			rx_rings[num].packets), \
989	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
990			rx_rings[num].errors), \
991	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
992			rx_rings[num].dropped)
993
994/* There is a 0xC gap between the end of RX and beginning of TX stats and then
995 * between the end of TX stats and the beginning of the RX RUNT
996 */
997#define BCMGENET_STAT_OFFSET	0xc
998
999/* Hardware counters must be kept in sync because the order/offset
1000 * is important here (order in structure declaration = order in hardware)
1001 */
1002static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1003	/* general stats */
1004	STAT_NETDEV(rx_packets),
1005	STAT_NETDEV(tx_packets),
1006	STAT_NETDEV(rx_bytes),
1007	STAT_NETDEV(tx_bytes),
1008	STAT_NETDEV(rx_errors),
1009	STAT_NETDEV(tx_errors),
1010	STAT_NETDEV(rx_dropped),
1011	STAT_NETDEV(tx_dropped),
1012	STAT_NETDEV(multicast),
1013	/* UniMAC RSV counters */
1014	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1015	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1016	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1017	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1018	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1019	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1020	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1021	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1022	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1023	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1024	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1025	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1026	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1027	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1028	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1029	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1030	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1031	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1032	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1033	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1034	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1035	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1036	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1037	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1038	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1039	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1040	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1041	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1042	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1043	/* UniMAC TSV counters */
1044	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1045	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1046	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1047	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1048	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1049	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1050	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1051	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1052	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1053	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1054	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1055	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1056	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1057	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1058	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1059	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1060	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1061	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1062	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1063	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1064	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1065	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1066	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1067	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1068	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1069	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1070	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1071	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1072	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1073	/* UniMAC RUNT counters */
1074	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1075	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1076	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1077	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1078	/* Misc UniMAC counters */
1079	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1080			UMAC_RBUF_OVFL_CNT_V1),
1081	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1082			UMAC_RBUF_ERR_CNT_V1),
1083	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1084	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1085	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1086	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1087	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1088	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1089			    mib.tx_realloc_tsb_failed),
1090	/* Per TX queues */
1091	STAT_GENET_Q(0),
1092	STAT_GENET_Q(1),
1093	STAT_GENET_Q(2),
1094	STAT_GENET_Q(3),
1095	STAT_GENET_Q(16),
1096};
1097
1098#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
1099
1100static void bcmgenet_get_drvinfo(struct net_device *dev,
1101				 struct ethtool_drvinfo *info)
1102{
1103	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1104}
1105
1106static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1107{
1108	switch (string_set) {
1109	case ETH_SS_STATS:
1110		return BCMGENET_STATS_LEN;
1111	default:
1112		return -EOPNOTSUPP;
1113	}
1114}
1115
1116static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1117				 u8 *data)
1118{
1119	int i;
1120
1121	switch (stringset) {
1122	case ETH_SS_STATS:
1123		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1124			memcpy(data + i * ETH_GSTRING_LEN,
1125			       bcmgenet_gstrings_stats[i].stat_string,
1126			       ETH_GSTRING_LEN);
1127		}
1128		break;
1129	}
1130}
1131
1132static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1133{
1134	u16 new_offset;
1135	u32 val;
1136
1137	switch (offset) {
1138	case UMAC_RBUF_OVFL_CNT_V1:
1139		if (GENET_IS_V2(priv))
1140			new_offset = RBUF_OVFL_CNT_V2;
1141		else
1142			new_offset = RBUF_OVFL_CNT_V3PLUS;
1143
1144		val = bcmgenet_rbuf_readl(priv,	new_offset);
1145		/* clear if overflowed */
1146		if (val == ~0)
1147			bcmgenet_rbuf_writel(priv, 0, new_offset);
1148		break;
1149	case UMAC_RBUF_ERR_CNT_V1:
1150		if (GENET_IS_V2(priv))
1151			new_offset = RBUF_ERR_CNT_V2;
1152		else
1153			new_offset = RBUF_ERR_CNT_V3PLUS;
1154
1155		val = bcmgenet_rbuf_readl(priv,	new_offset);
1156		/* clear if overflowed */
1157		if (val == ~0)
1158			bcmgenet_rbuf_writel(priv, 0, new_offset);
1159		break;
1160	default:
1161		val = bcmgenet_umac_readl(priv, offset);
1162		/* clear if overflowed */
1163		if (val == ~0)
1164			bcmgenet_umac_writel(priv, 0, offset);
1165		break;
1166	}
1167
1168	return val;
1169}
1170
1171static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1172{
1173	int i, j = 0;
1174
1175	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1176		const struct bcmgenet_stats *s;
1177		u8 offset = 0;
1178		u32 val = 0;
1179		char *p;
1180
1181		s = &bcmgenet_gstrings_stats[i];
1182		switch (s->type) {
1183		case BCMGENET_STAT_NETDEV:
1184		case BCMGENET_STAT_SOFT:
1185			continue;
1186		case BCMGENET_STAT_RUNT:
1187			offset += BCMGENET_STAT_OFFSET;
1188			fallthrough;
1189		case BCMGENET_STAT_MIB_TX:
1190			offset += BCMGENET_STAT_OFFSET;
1191			fallthrough;
1192		case BCMGENET_STAT_MIB_RX:
1193			val = bcmgenet_umac_readl(priv,
1194						  UMAC_MIB_START + j + offset);
1195			offset = 0;	/* Reset Offset */
1196			break;
1197		case BCMGENET_STAT_MISC:
1198			if (GENET_IS_V1(priv)) {
1199				val = bcmgenet_umac_readl(priv, s->reg_offset);
1200				/* clear if overflowed */
1201				if (val == ~0)
1202					bcmgenet_umac_writel(priv, 0,
1203							     s->reg_offset);
1204			} else {
1205				val = bcmgenet_update_stat_misc(priv,
1206								s->reg_offset);
1207			}
1208			break;
1209		}
1210
1211		j += s->stat_sizeof;
1212		p = (char *)priv + s->stat_offset;
1213		*(u32 *)p = val;
1214	}
1215}
1216
1217static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1218				       struct ethtool_stats *stats,
1219				       u64 *data)
1220{
1221	struct bcmgenet_priv *priv = netdev_priv(dev);
1222	int i;
1223
1224	if (netif_running(dev))
1225		bcmgenet_update_mib_counters(priv);
1226
1227	dev->netdev_ops->ndo_get_stats(dev);
1228
1229	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1230		const struct bcmgenet_stats *s;
1231		char *p;
1232
1233		s = &bcmgenet_gstrings_stats[i];
1234		if (s->type == BCMGENET_STAT_NETDEV)
1235			p = (char *)&dev->stats;
1236		else
1237			p = (char *)priv;
1238		p += s->stat_offset;
1239		if (sizeof(unsigned long) != sizeof(u32) &&
1240		    s->stat_sizeof == sizeof(unsigned long))
1241			data[i] = *(unsigned long *)p;
1242		else
1243			data[i] = *(u32 *)p;
1244	}
1245}
1246
1247void bcmgenet_eee_enable_set(struct net_device *dev, bool enable,
1248			     bool tx_lpi_enabled)
1249{
1250	struct bcmgenet_priv *priv = netdev_priv(dev);
1251	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1252	u32 reg;
1253
1254	if (enable && !priv->clk_eee_enabled) {
1255		clk_prepare_enable(priv->clk_eee);
1256		priv->clk_eee_enabled = true;
1257	}
1258
1259	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1260	if (enable)
1261		reg |= EEE_EN;
1262	else
1263		reg &= ~EEE_EN;
1264	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1265
1266	/* Enable EEE and switch to a 27Mhz clock automatically */
1267	reg = bcmgenet_readl(priv->base + off);
1268	if (tx_lpi_enabled)
1269		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1270	else
1271		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1272	bcmgenet_writel(reg, priv->base + off);
1273
1274	/* Do the same for thing for RBUF */
1275	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1276	if (enable)
1277		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1278	else
1279		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1280	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1281
1282	if (!enable && priv->clk_eee_enabled) {
1283		clk_disable_unprepare(priv->clk_eee);
1284		priv->clk_eee_enabled = false;
1285	}
1286
1287	priv->eee.eee_enabled = enable;
1288	priv->eee.eee_active = enable;
1289	priv->eee.tx_lpi_enabled = tx_lpi_enabled;
1290}
1291
1292static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1293{
1294	struct bcmgenet_priv *priv = netdev_priv(dev);
1295	struct ethtool_eee *p = &priv->eee;
1296
1297	if (GENET_IS_V1(priv))
1298		return -EOPNOTSUPP;
1299
1300	if (!dev->phydev)
1301		return -ENODEV;
1302
1303	e->eee_enabled = p->eee_enabled;
1304	e->eee_active = p->eee_active;
1305	e->tx_lpi_enabled = p->tx_lpi_enabled;
1306	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1307
1308	return phy_ethtool_get_eee(dev->phydev, e);
1309}
1310
1311static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1312{
1313	struct bcmgenet_priv *priv = netdev_priv(dev);
1314	struct ethtool_eee *p = &priv->eee;
1315
1316	if (GENET_IS_V1(priv))
1317		return -EOPNOTSUPP;
1318
1319	if (!dev->phydev)
1320		return -ENODEV;
1321
1322	p->eee_enabled = e->eee_enabled;
1323
1324	if (!p->eee_enabled) {
1325		bcmgenet_eee_enable_set(dev, false, false);
1326	} else {
1327		p->eee_active = phy_init_eee(dev->phydev, false) >= 0;
1328		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1329		bcmgenet_eee_enable_set(dev, p->eee_active, e->tx_lpi_enabled);
1330	}
1331
1332	return phy_ethtool_set_eee(dev->phydev, e);
1333}
1334
1335static int bcmgenet_validate_flow(struct net_device *dev,
1336				  struct ethtool_rxnfc *cmd)
1337{
1338	struct ethtool_usrip4_spec *l4_mask;
1339	struct ethhdr *eth_mask;
1340
1341	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1342		netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1343			   cmd->fs.location);
1344		return -EINVAL;
1345	}
1346
1347	switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1348	case IP_USER_FLOW:
1349		l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1350		/* don't allow mask which isn't valid */
1351		if (VALIDATE_MASK(l4_mask->ip4src) ||
1352		    VALIDATE_MASK(l4_mask->ip4dst) ||
1353		    VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1354		    VALIDATE_MASK(l4_mask->proto) ||
1355		    VALIDATE_MASK(l4_mask->ip_ver) ||
1356		    VALIDATE_MASK(l4_mask->tos)) {
1357			netdev_err(dev, "rxnfc: Unsupported mask\n");
1358			return -EINVAL;
1359		}
1360		break;
1361	case ETHER_FLOW:
1362		eth_mask = &cmd->fs.m_u.ether_spec;
1363		/* don't allow mask which isn't valid */
1364		if (VALIDATE_MASK(eth_mask->h_dest) ||
1365		    VALIDATE_MASK(eth_mask->h_source) ||
1366		    VALIDATE_MASK(eth_mask->h_proto)) {
1367			netdev_err(dev, "rxnfc: Unsupported mask\n");
1368			return -EINVAL;
1369		}
1370		break;
1371	default:
1372		netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1373			   cmd->fs.flow_type);
1374		return -EINVAL;
1375	}
1376
1377	if ((cmd->fs.flow_type & FLOW_EXT)) {
1378		/* don't allow mask which isn't valid */
1379		if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1380		    VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1381			netdev_err(dev, "rxnfc: Unsupported mask\n");
1382			return -EINVAL;
1383		}
1384		if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1385			netdev_err(dev, "rxnfc: user-def not supported\n");
1386			return -EINVAL;
1387		}
1388	}
1389
1390	if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1391		/* don't allow mask which isn't valid */
1392		if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1393			netdev_err(dev, "rxnfc: Unsupported mask\n");
1394			return -EINVAL;
1395		}
1396	}
1397
1398	return 0;
1399}
1400
1401static int bcmgenet_insert_flow(struct net_device *dev,
1402				struct ethtool_rxnfc *cmd)
1403{
1404	struct bcmgenet_priv *priv = netdev_priv(dev);
1405	struct bcmgenet_rxnfc_rule *loc_rule;
1406	int err;
1407
1408	if (priv->hw_params->hfb_filter_size < 128) {
1409		netdev_err(dev, "rxnfc: Not supported by this device\n");
1410		return -EINVAL;
1411	}
1412
1413	if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1414	    cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1415		netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1416			   cmd->fs.ring_cookie);
1417		return -EINVAL;
1418	}
1419
1420	err = bcmgenet_validate_flow(dev, cmd);
1421	if (err)
1422		return err;
1423
1424	loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1425	if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1426		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1427	if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1428		list_del(&loc_rule->list);
1429		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1430	}
1431	loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1432	memcpy(&loc_rule->fs, &cmd->fs,
1433	       sizeof(struct ethtool_rx_flow_spec));
1434
1435	bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1436
1437	list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1438
1439	return 0;
1440}
1441
1442static int bcmgenet_delete_flow(struct net_device *dev,
1443				struct ethtool_rxnfc *cmd)
1444{
1445	struct bcmgenet_priv *priv = netdev_priv(dev);
1446	struct bcmgenet_rxnfc_rule *rule;
1447	int err = 0;
1448
1449	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1450		return -EINVAL;
1451
1452	rule = &priv->rxnfc_rules[cmd->fs.location];
1453	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1454		err =  -ENOENT;
1455		goto out;
1456	}
1457
1458	if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1459		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1460	if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1461		list_del(&rule->list);
1462		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1463	}
1464	rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1465	memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1466
1467out:
1468	return err;
1469}
1470
1471static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1472{
1473	struct bcmgenet_priv *priv = netdev_priv(dev);
1474	int err = 0;
1475
1476	switch (cmd->cmd) {
1477	case ETHTOOL_SRXCLSRLINS:
1478		err = bcmgenet_insert_flow(dev, cmd);
1479		break;
1480	case ETHTOOL_SRXCLSRLDEL:
1481		err = bcmgenet_delete_flow(dev, cmd);
1482		break;
1483	default:
1484		netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1485			    cmd->cmd);
1486		return -EINVAL;
1487	}
1488
1489	return err;
1490}
1491
1492static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1493			     int loc)
1494{
1495	struct bcmgenet_priv *priv = netdev_priv(dev);
1496	struct bcmgenet_rxnfc_rule *rule;
1497	int err = 0;
1498
1499	if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1500		return -EINVAL;
1501
1502	rule = &priv->rxnfc_rules[loc];
1503	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1504		err = -ENOENT;
1505	else
1506		memcpy(&cmd->fs, &rule->fs,
1507		       sizeof(struct ethtool_rx_flow_spec));
1508
1509	return err;
1510}
1511
1512static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1513{
1514	struct list_head *pos;
1515	int res = 0;
1516
1517	list_for_each(pos, &priv->rxnfc_list)
1518		res++;
1519
1520	return res;
1521}
1522
1523static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1524			      u32 *rule_locs)
1525{
1526	struct bcmgenet_priv *priv = netdev_priv(dev);
1527	struct bcmgenet_rxnfc_rule *rule;
1528	int err = 0;
1529	int i = 0;
1530
1531	switch (cmd->cmd) {
1532	case ETHTOOL_GRXRINGS:
1533		cmd->data = priv->hw_params->rx_queues ?: 1;
1534		break;
1535	case ETHTOOL_GRXCLSRLCNT:
1536		cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1537		cmd->data = MAX_NUM_OF_FS_RULES;
1538		break;
1539	case ETHTOOL_GRXCLSRULE:
1540		err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1541		break;
1542	case ETHTOOL_GRXCLSRLALL:
1543		list_for_each_entry(rule, &priv->rxnfc_list, list)
1544			if (i < cmd->rule_cnt)
1545				rule_locs[i++] = rule->fs.location;
1546		cmd->rule_cnt = i;
1547		cmd->data = MAX_NUM_OF_FS_RULES;
1548		break;
1549	default:
1550		err = -EOPNOTSUPP;
1551		break;
1552	}
1553
1554	return err;
1555}
1556
1557/* standard ethtool support functions. */
1558static const struct ethtool_ops bcmgenet_ethtool_ops = {
1559	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1560				     ETHTOOL_COALESCE_MAX_FRAMES |
1561				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1562	.begin			= bcmgenet_begin,
1563	.complete		= bcmgenet_complete,
1564	.get_strings		= bcmgenet_get_strings,
1565	.get_sset_count		= bcmgenet_get_sset_count,
1566	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1567	.get_drvinfo		= bcmgenet_get_drvinfo,
1568	.get_link		= ethtool_op_get_link,
1569	.get_msglevel		= bcmgenet_get_msglevel,
1570	.set_msglevel		= bcmgenet_set_msglevel,
1571	.get_wol		= bcmgenet_get_wol,
1572	.set_wol		= bcmgenet_set_wol,
1573	.get_eee		= bcmgenet_get_eee,
1574	.set_eee		= bcmgenet_set_eee,
1575	.nway_reset		= phy_ethtool_nway_reset,
1576	.get_coalesce		= bcmgenet_get_coalesce,
1577	.set_coalesce		= bcmgenet_set_coalesce,
1578	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1579	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1580	.get_ts_info		= ethtool_op_get_ts_info,
1581	.get_rxnfc		= bcmgenet_get_rxnfc,
1582	.set_rxnfc		= bcmgenet_set_rxnfc,
1583};
1584
1585/* Power down the unimac, based on mode. */
1586static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1587				enum bcmgenet_power_mode mode)
1588{
1589	int ret = 0;
1590	u32 reg;
1591
1592	switch (mode) {
1593	case GENET_POWER_CABLE_SENSE:
1594		phy_detach(priv->dev->phydev);
1595		break;
1596
1597	case GENET_POWER_WOL_MAGIC:
1598		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1599		break;
1600
1601	case GENET_POWER_PASSIVE:
1602		/* Power down LED */
1603		if (priv->hw_params->flags & GENET_HAS_EXT) {
1604			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1605			if (GENET_IS_V5(priv))
1606				reg |= EXT_PWR_DOWN_PHY_EN |
1607				       EXT_PWR_DOWN_PHY_RD |
1608				       EXT_PWR_DOWN_PHY_SD |
1609				       EXT_PWR_DOWN_PHY_RX |
1610				       EXT_PWR_DOWN_PHY_TX |
1611				       EXT_IDDQ_GLBL_PWR;
1612			else
1613				reg |= EXT_PWR_DOWN_PHY;
1614
1615			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1616			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1617
1618			bcmgenet_phy_power_set(priv->dev, false);
1619		}
1620		break;
1621	default:
1622		break;
1623	}
1624
1625	return ret;
1626}
1627
1628static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1629			      enum bcmgenet_power_mode mode)
1630{
1631	u32 reg;
1632
1633	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1634		return;
1635
1636	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1637
1638	switch (mode) {
1639	case GENET_POWER_PASSIVE:
1640		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1641			 EXT_ENERGY_DET_MASK);
1642		if (GENET_IS_V5(priv)) {
1643			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1644				 EXT_PWR_DOWN_PHY_RD |
1645				 EXT_PWR_DOWN_PHY_SD |
1646				 EXT_PWR_DOWN_PHY_RX |
1647				 EXT_PWR_DOWN_PHY_TX |
1648				 EXT_IDDQ_GLBL_PWR);
1649			reg |=   EXT_PHY_RESET;
1650			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1651			mdelay(1);
1652
1653			reg &=  ~EXT_PHY_RESET;
1654		} else {
1655			reg &= ~EXT_PWR_DOWN_PHY;
1656			reg |= EXT_PWR_DN_EN_LD;
1657		}
1658		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1659		bcmgenet_phy_power_set(priv->dev, true);
1660		break;
1661
1662	case GENET_POWER_CABLE_SENSE:
1663		/* enable APD */
1664		if (!GENET_IS_V5(priv)) {
1665			reg |= EXT_PWR_DN_EN_LD;
1666			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1667		}
1668		break;
1669	case GENET_POWER_WOL_MAGIC:
1670		bcmgenet_wol_power_up_cfg(priv, mode);
1671		return;
1672	default:
1673		break;
1674	}
1675}
1676
1677static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1678					 struct bcmgenet_tx_ring *ring)
1679{
1680	struct enet_cb *tx_cb_ptr;
1681
1682	tx_cb_ptr = ring->cbs;
1683	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1684
1685	/* Advancing local write pointer */
1686	if (ring->write_ptr == ring->end_ptr)
1687		ring->write_ptr = ring->cb_ptr;
1688	else
1689		ring->write_ptr++;
1690
1691	return tx_cb_ptr;
1692}
1693
1694static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1695					 struct bcmgenet_tx_ring *ring)
1696{
1697	struct enet_cb *tx_cb_ptr;
1698
1699	tx_cb_ptr = ring->cbs;
1700	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1701
1702	/* Rewinding local write pointer */
1703	if (ring->write_ptr == ring->cb_ptr)
1704		ring->write_ptr = ring->end_ptr;
1705	else
1706		ring->write_ptr--;
1707
1708	return tx_cb_ptr;
1709}
1710
1711static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1712{
1713	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1714				 INTRL2_CPU_MASK_SET);
1715}
1716
1717static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1718{
1719	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1720				 INTRL2_CPU_MASK_CLEAR);
1721}
1722
1723static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1724{
1725	bcmgenet_intrl2_1_writel(ring->priv,
1726				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1727				 INTRL2_CPU_MASK_SET);
1728}
1729
1730static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1731{
1732	bcmgenet_intrl2_1_writel(ring->priv,
1733				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1734				 INTRL2_CPU_MASK_CLEAR);
1735}
1736
1737static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1738{
1739	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1740				 INTRL2_CPU_MASK_SET);
1741}
1742
1743static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1744{
1745	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1746				 INTRL2_CPU_MASK_CLEAR);
1747}
1748
1749static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1750{
1751	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1752				 INTRL2_CPU_MASK_CLEAR);
1753}
1754
1755static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1756{
1757	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1758				 INTRL2_CPU_MASK_SET);
1759}
1760
1761/* Simple helper to free a transmit control block's resources
1762 * Returns an skb when the last transmit control block associated with the
1763 * skb is freed.  The skb should be freed by the caller if necessary.
1764 */
1765static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1766					   struct enet_cb *cb)
1767{
1768	struct sk_buff *skb;
1769
1770	skb = cb->skb;
1771
1772	if (skb) {
1773		cb->skb = NULL;
1774		if (cb == GENET_CB(skb)->first_cb)
1775			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1776					 dma_unmap_len(cb, dma_len),
1777					 DMA_TO_DEVICE);
1778		else
1779			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1780				       dma_unmap_len(cb, dma_len),
1781				       DMA_TO_DEVICE);
1782		dma_unmap_addr_set(cb, dma_addr, 0);
1783
1784		if (cb == GENET_CB(skb)->last_cb)
1785			return skb;
1786
1787	} else if (dma_unmap_addr(cb, dma_addr)) {
1788		dma_unmap_page(dev,
1789			       dma_unmap_addr(cb, dma_addr),
1790			       dma_unmap_len(cb, dma_len),
1791			       DMA_TO_DEVICE);
1792		dma_unmap_addr_set(cb, dma_addr, 0);
1793	}
1794
1795	return NULL;
1796}
1797
1798/* Simple helper to free a receive control block's resources */
1799static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1800					   struct enet_cb *cb)
1801{
1802	struct sk_buff *skb;
1803
1804	skb = cb->skb;
1805	cb->skb = NULL;
1806
1807	if (dma_unmap_addr(cb, dma_addr)) {
1808		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1809				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1810		dma_unmap_addr_set(cb, dma_addr, 0);
1811	}
1812
1813	return skb;
1814}
1815
1816/* Unlocked version of the reclaim routine */
1817static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1818					  struct bcmgenet_tx_ring *ring)
1819{
1820	struct bcmgenet_priv *priv = netdev_priv(dev);
1821	unsigned int txbds_processed = 0;
1822	unsigned int bytes_compl = 0;
1823	unsigned int pkts_compl = 0;
1824	unsigned int txbds_ready;
1825	unsigned int c_index;
1826	struct sk_buff *skb;
1827
1828	/* Clear status before servicing to reduce spurious interrupts */
1829	if (ring->index == DESC_INDEX)
1830		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1831					 INTRL2_CPU_CLEAR);
1832	else
1833		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1834					 INTRL2_CPU_CLEAR);
1835
1836	/* Compute how many buffers are transmitted since last xmit call */
1837	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1838		& DMA_C_INDEX_MASK;
1839	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1840
1841	netif_dbg(priv, tx_done, dev,
1842		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1843		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1844
1845	/* Reclaim transmitted buffers */
1846	while (txbds_processed < txbds_ready) {
1847		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1848					  &priv->tx_cbs[ring->clean_ptr]);
1849		if (skb) {
1850			pkts_compl++;
1851			bytes_compl += GENET_CB(skb)->bytes_sent;
1852			dev_consume_skb_any(skb);
1853		}
1854
1855		txbds_processed++;
1856		if (likely(ring->clean_ptr < ring->end_ptr))
1857			ring->clean_ptr++;
1858		else
1859			ring->clean_ptr = ring->cb_ptr;
1860	}
1861
1862	ring->free_bds += txbds_processed;
1863	ring->c_index = c_index;
1864
1865	ring->packets += pkts_compl;
1866	ring->bytes += bytes_compl;
1867
1868	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1869				  pkts_compl, bytes_compl);
1870
1871	return txbds_processed;
1872}
1873
1874static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1875				struct bcmgenet_tx_ring *ring)
1876{
1877	unsigned int released;
1878
1879	spin_lock_bh(&ring->lock);
1880	released = __bcmgenet_tx_reclaim(dev, ring);
1881	spin_unlock_bh(&ring->lock);
1882
1883	return released;
1884}
1885
1886static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1887{
1888	struct bcmgenet_tx_ring *ring =
1889		container_of(napi, struct bcmgenet_tx_ring, napi);
1890	unsigned int work_done = 0;
1891	struct netdev_queue *txq;
1892
1893	spin_lock(&ring->lock);
1894	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1895	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1896		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1897		netif_tx_wake_queue(txq);
1898	}
1899	spin_unlock(&ring->lock);
1900
1901	if (work_done == 0) {
1902		napi_complete(napi);
1903		ring->int_enable(ring);
1904
1905		return 0;
1906	}
1907
1908	return budget;
1909}
1910
1911static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1912{
1913	struct bcmgenet_priv *priv = netdev_priv(dev);
1914	int i;
1915
1916	if (netif_is_multiqueue(dev)) {
1917		for (i = 0; i < priv->hw_params->tx_queues; i++)
1918			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1919	}
1920
1921	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1922}
1923
1924/* Reallocate the SKB to put enough headroom in front of it and insert
1925 * the transmit checksum offsets in the descriptors
1926 */
1927static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1928					struct sk_buff *skb)
1929{
1930	struct bcmgenet_priv *priv = netdev_priv(dev);
1931	struct status_64 *status = NULL;
1932	struct sk_buff *new_skb;
1933	u16 offset;
1934	u8 ip_proto;
1935	__be16 ip_ver;
1936	u32 tx_csum_info;
1937
1938	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1939		/* If 64 byte status block enabled, must make sure skb has
1940		 * enough headroom for us to insert 64B status block.
1941		 */
1942		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1943		if (!new_skb) {
1944			dev_kfree_skb_any(skb);
1945			priv->mib.tx_realloc_tsb_failed++;
1946			dev->stats.tx_dropped++;
1947			return NULL;
1948		}
1949		dev_consume_skb_any(skb);
1950		skb = new_skb;
1951		priv->mib.tx_realloc_tsb++;
1952	}
1953
1954	skb_push(skb, sizeof(*status));
1955	status = (struct status_64 *)skb->data;
1956
1957	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1958		ip_ver = skb->protocol;
1959		switch (ip_ver) {
1960		case htons(ETH_P_IP):
1961			ip_proto = ip_hdr(skb)->protocol;
1962			break;
1963		case htons(ETH_P_IPV6):
1964			ip_proto = ipv6_hdr(skb)->nexthdr;
1965			break;
1966		default:
1967			/* don't use UDP flag */
1968			ip_proto = 0;
1969			break;
1970		}
1971
1972		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1973		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1974				(offset + skb->csum_offset) |
1975				STATUS_TX_CSUM_LV;
1976
1977		/* Set the special UDP flag for UDP */
1978		if (ip_proto == IPPROTO_UDP)
1979			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1980
1981		status->tx_csum_info = tx_csum_info;
1982	}
1983
1984	return skb;
1985}
1986
1987static void bcmgenet_hide_tsb(struct sk_buff *skb)
1988{
1989	__skb_pull(skb, sizeof(struct status_64));
1990}
1991
1992static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1993{
1994	struct bcmgenet_priv *priv = netdev_priv(dev);
1995	struct device *kdev = &priv->pdev->dev;
1996	struct bcmgenet_tx_ring *ring = NULL;
1997	struct enet_cb *tx_cb_ptr;
1998	struct netdev_queue *txq;
1999	int nr_frags, index;
2000	dma_addr_t mapping;
2001	unsigned int size;
2002	skb_frag_t *frag;
2003	u32 len_stat;
2004	int ret;
2005	int i;
2006
2007	index = skb_get_queue_mapping(skb);
2008	/* Mapping strategy:
2009	 * queue_mapping = 0, unclassified, packet xmited through ring16
2010	 * queue_mapping = 1, goes to ring 0. (highest priority queue
2011	 * queue_mapping = 2, goes to ring 1.
2012	 * queue_mapping = 3, goes to ring 2.
2013	 * queue_mapping = 4, goes to ring 3.
2014	 */
2015	if (index == 0)
2016		index = DESC_INDEX;
2017	else
2018		index -= 1;
2019
2020	ring = &priv->tx_rings[index];
2021	txq = netdev_get_tx_queue(dev, ring->queue);
2022
2023	nr_frags = skb_shinfo(skb)->nr_frags;
2024
2025	spin_lock(&ring->lock);
2026	if (ring->free_bds <= (nr_frags + 1)) {
2027		if (!netif_tx_queue_stopped(txq)) {
2028			netif_tx_stop_queue(txq);
2029			netdev_err(dev,
2030				   "%s: tx ring %d full when queue %d awake\n",
2031				   __func__, index, ring->queue);
2032		}
2033		ret = NETDEV_TX_BUSY;
2034		goto out;
2035	}
2036
2037	/* Retain how many bytes will be sent on the wire, without TSB inserted
2038	 * by transmit checksum offload
2039	 */
2040	GENET_CB(skb)->bytes_sent = skb->len;
2041
2042	/* add the Transmit Status Block */
2043	skb = bcmgenet_add_tsb(dev, skb);
2044	if (!skb) {
2045		ret = NETDEV_TX_OK;
2046		goto out;
2047	}
2048
2049	for (i = 0; i <= nr_frags; i++) {
2050		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2051
2052		BUG_ON(!tx_cb_ptr);
2053
2054		if (!i) {
2055			/* Transmit single SKB or head of fragment list */
2056			GENET_CB(skb)->first_cb = tx_cb_ptr;
2057			size = skb_headlen(skb);
2058			mapping = dma_map_single(kdev, skb->data, size,
2059						 DMA_TO_DEVICE);
2060		} else {
2061			/* xmit fragment */
2062			frag = &skb_shinfo(skb)->frags[i - 1];
2063			size = skb_frag_size(frag);
2064			mapping = skb_frag_dma_map(kdev, frag, 0, size,
2065						   DMA_TO_DEVICE);
2066		}
2067
2068		ret = dma_mapping_error(kdev, mapping);
2069		if (ret) {
2070			priv->mib.tx_dma_failed++;
2071			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2072			ret = NETDEV_TX_OK;
2073			goto out_unmap_frags;
2074		}
2075		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2076		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2077
2078		tx_cb_ptr->skb = skb;
2079
2080		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2081			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2082
2083		/* Note: if we ever change from DMA_TX_APPEND_CRC below we
2084		 * will need to restore software padding of "runt" packets
2085		 */
2086		len_stat |= DMA_TX_APPEND_CRC;
2087
2088		if (!i) {
2089			len_stat |= DMA_SOP;
2090			if (skb->ip_summed == CHECKSUM_PARTIAL)
2091				len_stat |= DMA_TX_DO_CSUM;
2092		}
2093		if (i == nr_frags)
2094			len_stat |= DMA_EOP;
2095
2096		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2097	}
2098
2099	GENET_CB(skb)->last_cb = tx_cb_ptr;
2100
2101	bcmgenet_hide_tsb(skb);
2102	skb_tx_timestamp(skb);
2103
2104	/* Decrement total BD count and advance our write pointer */
2105	ring->free_bds -= nr_frags + 1;
2106	ring->prod_index += nr_frags + 1;
2107	ring->prod_index &= DMA_P_INDEX_MASK;
2108
2109	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2110
2111	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2112		netif_tx_stop_queue(txq);
2113
2114	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2115		/* Packets are ready, update producer index */
2116		bcmgenet_tdma_ring_writel(priv, ring->index,
2117					  ring->prod_index, TDMA_PROD_INDEX);
2118out:
2119	spin_unlock(&ring->lock);
2120
2121	return ret;
2122
2123out_unmap_frags:
2124	/* Back up for failed control block mapping */
2125	bcmgenet_put_txcb(priv, ring);
2126
2127	/* Unmap successfully mapped control blocks */
2128	while (i-- > 0) {
2129		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2130		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2131	}
2132
2133	dev_kfree_skb(skb);
2134	goto out;
2135}
2136
2137static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2138					  struct enet_cb *cb)
2139{
2140	struct device *kdev = &priv->pdev->dev;
2141	struct sk_buff *skb;
2142	struct sk_buff *rx_skb;
2143	dma_addr_t mapping;
2144
2145	/* Allocate a new Rx skb */
2146	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2147				 GFP_ATOMIC | __GFP_NOWARN);
2148	if (!skb) {
2149		priv->mib.alloc_rx_buff_failed++;
2150		netif_err(priv, rx_err, priv->dev,
2151			  "%s: Rx skb allocation failed\n", __func__);
2152		return NULL;
2153	}
2154
2155	/* DMA-map the new Rx skb */
2156	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2157				 DMA_FROM_DEVICE);
2158	if (dma_mapping_error(kdev, mapping)) {
2159		priv->mib.rx_dma_failed++;
2160		dev_kfree_skb_any(skb);
2161		netif_err(priv, rx_err, priv->dev,
2162			  "%s: Rx skb DMA mapping failed\n", __func__);
2163		return NULL;
2164	}
2165
2166	/* Grab the current Rx skb from the ring and DMA-unmap it */
2167	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2168
2169	/* Put the new Rx skb on the ring */
2170	cb->skb = skb;
2171	dma_unmap_addr_set(cb, dma_addr, mapping);
2172	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2173	dmadesc_set_addr(priv, cb->bd_addr, mapping);
2174
2175	/* Return the current Rx skb to caller */
2176	return rx_skb;
2177}
2178
2179/* bcmgenet_desc_rx - descriptor based rx process.
2180 * this could be called from bottom half, or from NAPI polling method.
2181 */
2182static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2183				     unsigned int budget)
2184{
2185	struct bcmgenet_priv *priv = ring->priv;
2186	struct net_device *dev = priv->dev;
2187	struct enet_cb *cb;
2188	struct sk_buff *skb;
2189	u32 dma_length_status;
2190	unsigned long dma_flag;
2191	int len;
2192	unsigned int rxpktprocessed = 0, rxpkttoprocess;
2193	unsigned int bytes_processed = 0;
2194	unsigned int p_index, mask;
2195	unsigned int discards;
2196
2197	/* Clear status before servicing to reduce spurious interrupts */
2198	if (ring->index == DESC_INDEX) {
2199		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2200					 INTRL2_CPU_CLEAR);
2201	} else {
2202		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2203		bcmgenet_intrl2_1_writel(priv,
2204					 mask,
2205					 INTRL2_CPU_CLEAR);
2206	}
2207
2208	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2209
2210	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2211		   DMA_P_INDEX_DISCARD_CNT_MASK;
2212	if (discards > ring->old_discards) {
2213		discards = discards - ring->old_discards;
2214		ring->errors += discards;
2215		ring->old_discards += discards;
2216
2217		/* Clear HW register when we reach 75% of maximum 0xFFFF */
2218		if (ring->old_discards >= 0xC000) {
2219			ring->old_discards = 0;
2220			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2221						  RDMA_PROD_INDEX);
2222		}
2223	}
2224
2225	p_index &= DMA_P_INDEX_MASK;
2226	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2227
2228	netif_dbg(priv, rx_status, dev,
2229		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2230
2231	while ((rxpktprocessed < rxpkttoprocess) &&
2232	       (rxpktprocessed < budget)) {
2233		struct status_64 *status;
2234		__be16 rx_csum;
2235
2236		cb = &priv->rx_cbs[ring->read_ptr];
2237		skb = bcmgenet_rx_refill(priv, cb);
2238
2239		if (unlikely(!skb)) {
2240			ring->dropped++;
2241			goto next;
2242		}
2243
2244		status = (struct status_64 *)skb->data;
2245		dma_length_status = status->length_status;
2246		if (dev->features & NETIF_F_RXCSUM) {
2247			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2248			if (rx_csum) {
2249				skb->csum = (__force __wsum)ntohs(rx_csum);
2250				skb->ip_summed = CHECKSUM_COMPLETE;
2251			}
2252		}
2253
2254		/* DMA flags and length are still valid no matter how
2255		 * we got the Receive Status Vector (64B RSB or register)
2256		 */
2257		dma_flag = dma_length_status & 0xffff;
2258		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2259
2260		netif_dbg(priv, rx_status, dev,
2261			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2262			  __func__, p_index, ring->c_index,
2263			  ring->read_ptr, dma_length_status);
2264
2265		if (unlikely(len > RX_BUF_LENGTH)) {
2266			netif_err(priv, rx_status, dev, "oversized packet\n");
2267			dev->stats.rx_length_errors++;
2268			dev->stats.rx_errors++;
2269			dev_kfree_skb_any(skb);
2270			goto next;
2271		}
2272
2273		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2274			netif_err(priv, rx_status, dev,
2275				  "dropping fragmented packet!\n");
2276			ring->errors++;
2277			dev_kfree_skb_any(skb);
2278			goto next;
2279		}
2280
2281		/* report errors */
2282		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2283						DMA_RX_OV |
2284						DMA_RX_NO |
2285						DMA_RX_LG |
2286						DMA_RX_RXER))) {
2287			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2288				  (unsigned int)dma_flag);
2289			if (dma_flag & DMA_RX_CRC_ERROR)
2290				dev->stats.rx_crc_errors++;
2291			if (dma_flag & DMA_RX_OV)
2292				dev->stats.rx_over_errors++;
2293			if (dma_flag & DMA_RX_NO)
2294				dev->stats.rx_frame_errors++;
2295			if (dma_flag & DMA_RX_LG)
2296				dev->stats.rx_length_errors++;
2297			dev->stats.rx_errors++;
2298			dev_kfree_skb_any(skb);
2299			goto next;
2300		} /* error packet */
2301
2302		skb_put(skb, len);
2303
2304		/* remove RSB and hardware 2bytes added for IP alignment */
2305		skb_pull(skb, 66);
2306		len -= 66;
2307
2308		if (priv->crc_fwd_en) {
2309			skb_trim(skb, len - ETH_FCS_LEN);
2310			len -= ETH_FCS_LEN;
2311		}
2312
2313		bytes_processed += len;
2314
2315		/*Finish setting up the received SKB and send it to the kernel*/
2316		skb->protocol = eth_type_trans(skb, priv->dev);
2317		ring->packets++;
2318		ring->bytes += len;
2319		if (dma_flag & DMA_RX_MULT)
2320			dev->stats.multicast++;
2321
2322		/* Notify kernel */
2323		napi_gro_receive(&ring->napi, skb);
2324		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2325
2326next:
2327		rxpktprocessed++;
2328		if (likely(ring->read_ptr < ring->end_ptr))
2329			ring->read_ptr++;
2330		else
2331			ring->read_ptr = ring->cb_ptr;
2332
2333		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2334		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2335	}
2336
2337	ring->dim.bytes = bytes_processed;
2338	ring->dim.packets = rxpktprocessed;
2339
2340	return rxpktprocessed;
2341}
2342
2343/* Rx NAPI polling method */
2344static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2345{
2346	struct bcmgenet_rx_ring *ring = container_of(napi,
2347			struct bcmgenet_rx_ring, napi);
2348	struct dim_sample dim_sample = {};
2349	unsigned int work_done;
2350
2351	work_done = bcmgenet_desc_rx(ring, budget);
2352
2353	if (work_done < budget) {
2354		napi_complete_done(napi, work_done);
2355		ring->int_enable(ring);
2356	}
2357
2358	if (ring->dim.use_dim) {
2359		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2360				  ring->dim.bytes, &dim_sample);
2361		net_dim(&ring->dim.dim, dim_sample);
2362	}
2363
2364	return work_done;
2365}
2366
2367static void bcmgenet_dim_work(struct work_struct *work)
2368{
2369	struct dim *dim = container_of(work, struct dim, work);
2370	struct bcmgenet_net_dim *ndim =
2371			container_of(dim, struct bcmgenet_net_dim, dim);
2372	struct bcmgenet_rx_ring *ring =
2373			container_of(ndim, struct bcmgenet_rx_ring, dim);
2374	struct dim_cq_moder cur_profile =
2375			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2376
2377	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2378	dim->state = DIM_START_MEASURE;
2379}
2380
2381/* Assign skb to RX DMA descriptor. */
2382static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2383				     struct bcmgenet_rx_ring *ring)
2384{
2385	struct enet_cb *cb;
2386	struct sk_buff *skb;
2387	int i;
2388
2389	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2390
2391	/* loop here for each buffer needing assign */
2392	for (i = 0; i < ring->size; i++) {
2393		cb = ring->cbs + i;
2394		skb = bcmgenet_rx_refill(priv, cb);
2395		if (skb)
2396			dev_consume_skb_any(skb);
2397		if (!cb->skb)
2398			return -ENOMEM;
2399	}
2400
2401	return 0;
2402}
2403
2404static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2405{
2406	struct sk_buff *skb;
2407	struct enet_cb *cb;
2408	int i;
2409
2410	for (i = 0; i < priv->num_rx_bds; i++) {
2411		cb = &priv->rx_cbs[i];
2412
2413		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2414		if (skb)
2415			dev_consume_skb_any(skb);
2416	}
2417}
2418
2419static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2420{
2421	u32 reg;
2422
2423	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2424	if (reg & CMD_SW_RESET)
2425		return;
2426	if (enable)
2427		reg |= mask;
2428	else
2429		reg &= ~mask;
2430	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2431
2432	/* UniMAC stops on a packet boundary, wait for a full-size packet
2433	 * to be processed
2434	 */
2435	if (enable == 0)
2436		usleep_range(1000, 2000);
2437}
2438
2439static void reset_umac(struct bcmgenet_priv *priv)
2440{
2441	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2442	bcmgenet_rbuf_ctrl_set(priv, 0);
2443	udelay(10);
2444
2445	/* issue soft reset and disable MAC while updating its registers */
2446	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2447	udelay(2);
2448}
2449
2450static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2451{
2452	/* Mask all interrupts.*/
2453	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2454	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2455	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2456	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2457}
2458
2459static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2460{
2461	u32 int0_enable = 0;
2462
2463	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2464	 * and MoCA PHY
2465	 */
2466	if (priv->internal_phy) {
2467		int0_enable |= UMAC_IRQ_LINK_EVENT;
2468		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2469			int0_enable |= UMAC_IRQ_PHY_DET_R;
2470	} else if (priv->ext_phy) {
2471		int0_enable |= UMAC_IRQ_LINK_EVENT;
2472	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2473		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2474			int0_enable |= UMAC_IRQ_LINK_EVENT;
2475	}
2476	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2477}
2478
2479static void init_umac(struct bcmgenet_priv *priv)
2480{
2481	struct device *kdev = &priv->pdev->dev;
2482	u32 reg;
2483	u32 int0_enable = 0;
2484
2485	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2486
2487	reset_umac(priv);
2488
2489	/* clear tx/rx counter */
2490	bcmgenet_umac_writel(priv,
2491			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2492			     UMAC_MIB_CTRL);
2493	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2494
2495	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2496
2497	/* init tx registers, enable TSB */
2498	reg = bcmgenet_tbuf_ctrl_get(priv);
2499	reg |= TBUF_64B_EN;
2500	bcmgenet_tbuf_ctrl_set(priv, reg);
2501
2502	/* init rx registers, enable ip header optimization and RSB */
2503	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2504	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2505	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2506
2507	/* enable rx checksumming */
2508	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2509	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2510	/* If UniMAC forwards CRC, we need to skip over it to get
2511	 * a valid CHK bit to be set in the per-packet status word
2512	 */
2513	if (priv->crc_fwd_en)
2514		reg |= RBUF_SKIP_FCS;
2515	else
2516		reg &= ~RBUF_SKIP_FCS;
2517	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2518
2519	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2520		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2521
2522	bcmgenet_intr_disable(priv);
2523
2524	/* Configure backpressure vectors for MoCA */
2525	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2526		reg = bcmgenet_bp_mc_get(priv);
2527		reg |= BIT(priv->hw_params->bp_in_en_shift);
2528
2529		/* bp_mask: back pressure mask */
2530		if (netif_is_multiqueue(priv->dev))
2531			reg |= priv->hw_params->bp_in_mask;
2532		else
2533			reg &= ~priv->hw_params->bp_in_mask;
2534		bcmgenet_bp_mc_set(priv, reg);
2535	}
2536
2537	/* Enable MDIO interrupts on GENET v3+ */
2538	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2539		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2540
2541	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2542
2543	dev_dbg(kdev, "done init umac\n");
2544}
2545
2546static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2547			      void (*cb)(struct work_struct *work))
2548{
2549	struct bcmgenet_net_dim *dim = &ring->dim;
2550
2551	INIT_WORK(&dim->dim.work, cb);
2552	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2553	dim->event_ctr = 0;
2554	dim->packets = 0;
2555	dim->bytes = 0;
2556}
2557
2558static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2559{
2560	struct bcmgenet_net_dim *dim = &ring->dim;
2561	struct dim_cq_moder moder;
2562	u32 usecs, pkts;
2563
2564	usecs = ring->rx_coalesce_usecs;
2565	pkts = ring->rx_max_coalesced_frames;
2566
2567	/* If DIM was enabled, re-apply default parameters */
2568	if (dim->use_dim) {
2569		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2570		usecs = moder.usec;
2571		pkts = moder.pkts;
2572	}
2573
2574	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2575}
2576
2577/* Initialize a Tx ring along with corresponding hardware registers */
2578static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2579				  unsigned int index, unsigned int size,
2580				  unsigned int start_ptr, unsigned int end_ptr)
2581{
2582	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2583	u32 words_per_bd = WORDS_PER_BD(priv);
2584	u32 flow_period_val = 0;
2585
2586	spin_lock_init(&ring->lock);
2587	ring->priv = priv;
2588	ring->index = index;
2589	if (index == DESC_INDEX) {
2590		ring->queue = 0;
2591		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2592		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2593	} else {
2594		ring->queue = index + 1;
2595		ring->int_enable = bcmgenet_tx_ring_int_enable;
2596		ring->int_disable = bcmgenet_tx_ring_int_disable;
2597	}
2598	ring->cbs = priv->tx_cbs + start_ptr;
2599	ring->size = size;
2600	ring->clean_ptr = start_ptr;
2601	ring->c_index = 0;
2602	ring->free_bds = size;
2603	ring->write_ptr = start_ptr;
2604	ring->cb_ptr = start_ptr;
2605	ring->end_ptr = end_ptr - 1;
2606	ring->prod_index = 0;
2607
2608	/* Set flow period for ring != 16 */
2609	if (index != DESC_INDEX)
2610		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2611
2612	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2613	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2614	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2615	/* Disable rate control for now */
2616	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2617				  TDMA_FLOW_PERIOD);
2618	bcmgenet_tdma_ring_writel(priv, index,
2619				  ((size << DMA_RING_SIZE_SHIFT) |
2620				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2621
2622	/* Set start and end address, read and write pointers */
2623	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2624				  DMA_START_ADDR);
2625	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2626				  TDMA_READ_PTR);
2627	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2628				  TDMA_WRITE_PTR);
2629	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2630				  DMA_END_ADDR);
2631
2632	/* Initialize Tx NAPI */
2633	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2634			  NAPI_POLL_WEIGHT);
2635}
2636
2637/* Initialize a RDMA ring */
2638static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2639				 unsigned int index, unsigned int size,
2640				 unsigned int start_ptr, unsigned int end_ptr)
2641{
2642	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2643	u32 words_per_bd = WORDS_PER_BD(priv);
2644	int ret;
2645
2646	ring->priv = priv;
2647	ring->index = index;
2648	if (index == DESC_INDEX) {
2649		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2650		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2651	} else {
2652		ring->int_enable = bcmgenet_rx_ring_int_enable;
2653		ring->int_disable = bcmgenet_rx_ring_int_disable;
2654	}
2655	ring->cbs = priv->rx_cbs + start_ptr;
2656	ring->size = size;
2657	ring->c_index = 0;
2658	ring->read_ptr = start_ptr;
2659	ring->cb_ptr = start_ptr;
2660	ring->end_ptr = end_ptr - 1;
2661
2662	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2663	if (ret)
2664		return ret;
2665
2666	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2667	bcmgenet_init_rx_coalesce(ring);
2668
2669	/* Initialize Rx NAPI */
2670	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2671		       NAPI_POLL_WEIGHT);
2672
2673	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2674	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2675	bcmgenet_rdma_ring_writel(priv, index,
2676				  ((size << DMA_RING_SIZE_SHIFT) |
2677				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2678	bcmgenet_rdma_ring_writel(priv, index,
2679				  (DMA_FC_THRESH_LO <<
2680				   DMA_XOFF_THRESHOLD_SHIFT) |
2681				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2682
2683	/* Set start and end address, read and write pointers */
2684	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2685				  DMA_START_ADDR);
2686	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2687				  RDMA_READ_PTR);
2688	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2689				  RDMA_WRITE_PTR);
2690	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2691				  DMA_END_ADDR);
2692
2693	return ret;
2694}
2695
2696static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2697{
2698	unsigned int i;
2699	struct bcmgenet_tx_ring *ring;
2700
2701	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2702		ring = &priv->tx_rings[i];
2703		napi_enable(&ring->napi);
2704		ring->int_enable(ring);
2705	}
2706
2707	ring = &priv->tx_rings[DESC_INDEX];
2708	napi_enable(&ring->napi);
2709	ring->int_enable(ring);
2710}
2711
2712static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2713{
2714	unsigned int i;
2715	struct bcmgenet_tx_ring *ring;
2716
2717	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2718		ring = &priv->tx_rings[i];
2719		napi_disable(&ring->napi);
2720	}
2721
2722	ring = &priv->tx_rings[DESC_INDEX];
2723	napi_disable(&ring->napi);
2724}
2725
2726static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2727{
2728	unsigned int i;
2729	struct bcmgenet_tx_ring *ring;
2730
2731	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2732		ring = &priv->tx_rings[i];
2733		netif_napi_del(&ring->napi);
2734	}
2735
2736	ring = &priv->tx_rings[DESC_INDEX];
2737	netif_napi_del(&ring->napi);
2738}
2739
2740/* Initialize Tx queues
2741 *
2742 * Queues 0-3 are priority-based, each one has 32 descriptors,
2743 * with queue 0 being the highest priority queue.
2744 *
2745 * Queue 16 is the default Tx queue with
2746 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2747 *
2748 * The transmit control block pool is then partitioned as follows:
2749 * - Tx queue 0 uses tx_cbs[0..31]
2750 * - Tx queue 1 uses tx_cbs[32..63]
2751 * - Tx queue 2 uses tx_cbs[64..95]
2752 * - Tx queue 3 uses tx_cbs[96..127]
2753 * - Tx queue 16 uses tx_cbs[128..255]
2754 */
2755static void bcmgenet_init_tx_queues(struct net_device *dev)
2756{
2757	struct bcmgenet_priv *priv = netdev_priv(dev);
2758	u32 i, dma_enable;
2759	u32 dma_ctrl, ring_cfg;
2760	u32 dma_priority[3] = {0, 0, 0};
2761
2762	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2763	dma_enable = dma_ctrl & DMA_EN;
2764	dma_ctrl &= ~DMA_EN;
2765	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2766
2767	dma_ctrl = 0;
2768	ring_cfg = 0;
2769
2770	/* Enable strict priority arbiter mode */
2771	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2772
2773	/* Initialize Tx priority queues */
2774	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2775		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2776				      i * priv->hw_params->tx_bds_per_q,
2777				      (i + 1) * priv->hw_params->tx_bds_per_q);
2778		ring_cfg |= (1 << i);
2779		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2780		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2781			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2782	}
2783
2784	/* Initialize Tx default queue 16 */
2785	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2786			      priv->hw_params->tx_queues *
2787			      priv->hw_params->tx_bds_per_q,
2788			      TOTAL_DESC);
2789	ring_cfg |= (1 << DESC_INDEX);
2790	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2791	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2792		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2793		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2794
2795	/* Set Tx queue priorities */
2796	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2797	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2798	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2799
2800	/* Enable Tx queues */
2801	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2802
2803	/* Enable Tx DMA */
2804	if (dma_enable)
2805		dma_ctrl |= DMA_EN;
2806	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2807}
2808
2809static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2810{
2811	unsigned int i;
2812	struct bcmgenet_rx_ring *ring;
2813
2814	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2815		ring = &priv->rx_rings[i];
2816		napi_enable(&ring->napi);
2817		ring->int_enable(ring);
2818	}
2819
2820	ring = &priv->rx_rings[DESC_INDEX];
2821	napi_enable(&ring->napi);
2822	ring->int_enable(ring);
2823}
2824
2825static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2826{
2827	unsigned int i;
2828	struct bcmgenet_rx_ring *ring;
2829
2830	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2831		ring = &priv->rx_rings[i];
2832		napi_disable(&ring->napi);
2833		cancel_work_sync(&ring->dim.dim.work);
2834	}
2835
2836	ring = &priv->rx_rings[DESC_INDEX];
2837	napi_disable(&ring->napi);
2838	cancel_work_sync(&ring->dim.dim.work);
2839}
2840
2841static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2842{
2843	unsigned int i;
2844	struct bcmgenet_rx_ring *ring;
2845
2846	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2847		ring = &priv->rx_rings[i];
2848		netif_napi_del(&ring->napi);
2849	}
2850
2851	ring = &priv->rx_rings[DESC_INDEX];
2852	netif_napi_del(&ring->napi);
2853}
2854
2855/* Initialize Rx queues
2856 *
2857 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2858 * used to direct traffic to these queues.
2859 *
2860 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2861 */
2862static int bcmgenet_init_rx_queues(struct net_device *dev)
2863{
2864	struct bcmgenet_priv *priv = netdev_priv(dev);
2865	u32 i;
2866	u32 dma_enable;
2867	u32 dma_ctrl;
2868	u32 ring_cfg;
2869	int ret;
2870
2871	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2872	dma_enable = dma_ctrl & DMA_EN;
2873	dma_ctrl &= ~DMA_EN;
2874	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2875
2876	dma_ctrl = 0;
2877	ring_cfg = 0;
2878
2879	/* Initialize Rx priority queues */
2880	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2881		ret = bcmgenet_init_rx_ring(priv, i,
2882					    priv->hw_params->rx_bds_per_q,
2883					    i * priv->hw_params->rx_bds_per_q,
2884					    (i + 1) *
2885					    priv->hw_params->rx_bds_per_q);
2886		if (ret)
2887			return ret;
2888
2889		ring_cfg |= (1 << i);
2890		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2891	}
2892
2893	/* Initialize Rx default queue 16 */
2894	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2895				    priv->hw_params->rx_queues *
2896				    priv->hw_params->rx_bds_per_q,
2897				    TOTAL_DESC);
2898	if (ret)
2899		return ret;
2900
2901	ring_cfg |= (1 << DESC_INDEX);
2902	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2903
2904	/* Enable rings */
2905	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2906
2907	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2908	if (dma_enable)
2909		dma_ctrl |= DMA_EN;
2910	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2911
2912	return 0;
2913}
2914
2915static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2916{
2917	int ret = 0;
2918	int timeout = 0;
2919	u32 reg;
2920	u32 dma_ctrl;
2921	int i;
2922
2923	/* Disable TDMA to stop add more frames in TX DMA */
2924	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2925	reg &= ~DMA_EN;
2926	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2927
2928	/* Check TDMA status register to confirm TDMA is disabled */
2929	while (timeout++ < DMA_TIMEOUT_VAL) {
2930		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2931		if (reg & DMA_DISABLED)
2932			break;
2933
2934		udelay(1);
2935	}
2936
2937	if (timeout == DMA_TIMEOUT_VAL) {
2938		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2939		ret = -ETIMEDOUT;
2940	}
2941
2942	/* Wait 10ms for packet drain in both tx and rx dma */
2943	usleep_range(10000, 20000);
2944
2945	/* Disable RDMA */
2946	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2947	reg &= ~DMA_EN;
2948	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2949
2950	timeout = 0;
2951	/* Check RDMA status register to confirm RDMA is disabled */
2952	while (timeout++ < DMA_TIMEOUT_VAL) {
2953		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2954		if (reg & DMA_DISABLED)
2955			break;
2956
2957		udelay(1);
2958	}
2959
2960	if (timeout == DMA_TIMEOUT_VAL) {
2961		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2962		ret = -ETIMEDOUT;
2963	}
2964
2965	dma_ctrl = 0;
2966	for (i = 0; i < priv->hw_params->rx_queues; i++)
2967		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2968	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2969	reg &= ~dma_ctrl;
2970	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2971
2972	dma_ctrl = 0;
2973	for (i = 0; i < priv->hw_params->tx_queues; i++)
2974		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2975	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2976	reg &= ~dma_ctrl;
2977	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2978
2979	return ret;
2980}
2981
2982static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2983{
2984	struct netdev_queue *txq;
2985	int i;
2986
2987	bcmgenet_fini_rx_napi(priv);
2988	bcmgenet_fini_tx_napi(priv);
2989
2990	for (i = 0; i < priv->num_tx_bds; i++)
2991		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2992						  priv->tx_cbs + i));
2993
2994	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2995		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2996		netdev_tx_reset_queue(txq);
2997	}
2998
2999	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3000	netdev_tx_reset_queue(txq);
3001
3002	bcmgenet_free_rx_buffers(priv);
3003	kfree(priv->rx_cbs);
3004	kfree(priv->tx_cbs);
3005}
3006
3007/* init_edma: Initialize DMA control register */
3008static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3009{
3010	int ret;
3011	unsigned int i;
3012	struct enet_cb *cb;
3013
3014	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3015
3016	/* Initialize common Rx ring structures */
3017	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3018	priv->num_rx_bds = TOTAL_DESC;
3019	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3020			       GFP_KERNEL);
3021	if (!priv->rx_cbs)
3022		return -ENOMEM;
3023
3024	for (i = 0; i < priv->num_rx_bds; i++) {
3025		cb = priv->rx_cbs + i;
3026		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3027	}
3028
3029	/* Initialize common TX ring structures */
3030	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3031	priv->num_tx_bds = TOTAL_DESC;
3032	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3033			       GFP_KERNEL);
3034	if (!priv->tx_cbs) {
3035		kfree(priv->rx_cbs);
3036		return -ENOMEM;
3037	}
3038
3039	for (i = 0; i < priv->num_tx_bds; i++) {
3040		cb = priv->tx_cbs + i;
3041		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3042	}
3043
3044	/* Init rDma */
3045	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3046			     DMA_SCB_BURST_SIZE);
3047
3048	/* Initialize Rx queues */
3049	ret = bcmgenet_init_rx_queues(priv->dev);
3050	if (ret) {
3051		netdev_err(priv->dev, "failed to initialize Rx queues\n");
3052		bcmgenet_free_rx_buffers(priv);
3053		kfree(priv->rx_cbs);
3054		kfree(priv->tx_cbs);
3055		return ret;
3056	}
3057
3058	/* Init tDma */
3059	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3060			     DMA_SCB_BURST_SIZE);
3061
3062	/* Initialize Tx queues */
3063	bcmgenet_init_tx_queues(priv->dev);
3064
3065	return 0;
3066}
3067
3068/* Interrupt bottom half */
3069static void bcmgenet_irq_task(struct work_struct *work)
3070{
3071	unsigned int status;
3072	struct bcmgenet_priv *priv = container_of(
3073			work, struct bcmgenet_priv, bcmgenet_irq_work);
3074
3075	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3076
3077	spin_lock_irq(&priv->lock);
3078	status = priv->irq0_stat;
3079	priv->irq0_stat = 0;
3080	spin_unlock_irq(&priv->lock);
3081
3082	if (status & UMAC_IRQ_PHY_DET_R &&
3083	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3084		phy_init_hw(priv->dev->phydev);
3085		genphy_config_aneg(priv->dev->phydev);
3086	}
3087
3088	/* Link UP/DOWN event */
3089	if (status & UMAC_IRQ_LINK_EVENT)
3090		phy_mac_interrupt(priv->dev->phydev);
3091
3092}
3093
3094/* bcmgenet_isr1: handle Rx and Tx priority queues */
3095static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3096{
3097	struct bcmgenet_priv *priv = dev_id;
3098	struct bcmgenet_rx_ring *rx_ring;
3099	struct bcmgenet_tx_ring *tx_ring;
3100	unsigned int index, status;
3101
3102	/* Read irq status */
3103	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3104		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3105
3106	/* clear interrupts */
3107	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3108
3109	netif_dbg(priv, intr, priv->dev,
3110		  "%s: IRQ=0x%x\n", __func__, status);
3111
3112	/* Check Rx priority queue interrupts */
3113	for (index = 0; index < priv->hw_params->rx_queues; index++) {
3114		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3115			continue;
3116
3117		rx_ring = &priv->rx_rings[index];
3118		rx_ring->dim.event_ctr++;
3119
3120		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3121			rx_ring->int_disable(rx_ring);
3122			__napi_schedule_irqoff(&rx_ring->napi);
3123		}
3124	}
3125
3126	/* Check Tx priority queue interrupts */
3127	for (index = 0; index < priv->hw_params->tx_queues; index++) {
3128		if (!(status & BIT(index)))
3129			continue;
3130
3131		tx_ring = &priv->tx_rings[index];
3132
3133		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3134			tx_ring->int_disable(tx_ring);
3135			__napi_schedule_irqoff(&tx_ring->napi);
3136		}
3137	}
3138
3139	return IRQ_HANDLED;
3140}
3141
3142/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3143static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3144{
3145	struct bcmgenet_priv *priv = dev_id;
3146	struct bcmgenet_rx_ring *rx_ring;
3147	struct bcmgenet_tx_ring *tx_ring;
3148	unsigned int status;
3149	unsigned long flags;
3150
3151	/* Read irq status */
3152	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3153		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3154
3155	/* clear interrupts */
3156	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3157
3158	netif_dbg(priv, intr, priv->dev,
3159		  "IRQ=0x%x\n", status);
3160
3161	if (status & UMAC_IRQ_RXDMA_DONE) {
3162		rx_ring = &priv->rx_rings[DESC_INDEX];
3163		rx_ring->dim.event_ctr++;
3164
3165		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3166			rx_ring->int_disable(rx_ring);
3167			__napi_schedule_irqoff(&rx_ring->napi);
3168		}
3169	}
3170
3171	if (status & UMAC_IRQ_TXDMA_DONE) {
3172		tx_ring = &priv->tx_rings[DESC_INDEX];
3173
3174		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3175			tx_ring->int_disable(tx_ring);
3176			__napi_schedule_irqoff(&tx_ring->napi);
3177		}
3178	}
3179
3180	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3181		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3182		wake_up(&priv->wq);
3183	}
3184
3185	/* all other interested interrupts handled in bottom half */
3186	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3187	if (status) {
3188		/* Save irq status for bottom-half processing. */
3189		spin_lock_irqsave(&priv->lock, flags);
3190		priv->irq0_stat |= status;
3191		spin_unlock_irqrestore(&priv->lock, flags);
3192
3193		schedule_work(&priv->bcmgenet_irq_work);
3194	}
3195
3196	return IRQ_HANDLED;
3197}
3198
3199static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3200{
3201	/* Acknowledge the interrupt */
3202	return IRQ_HANDLED;
3203}
3204
3205#ifdef CONFIG_NET_POLL_CONTROLLER
3206static void bcmgenet_poll_controller(struct net_device *dev)
3207{
3208	struct bcmgenet_priv *priv = netdev_priv(dev);
3209
3210	/* Invoke the main RX/TX interrupt handler */
3211	disable_irq(priv->irq0);
3212	bcmgenet_isr0(priv->irq0, priv);
3213	enable_irq(priv->irq0);
3214
3215	/* And the interrupt handler for RX/TX priority queues */
3216	disable_irq(priv->irq1);
3217	bcmgenet_isr1(priv->irq1, priv);
3218	enable_irq(priv->irq1);
3219}
3220#endif
3221
3222static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3223{
3224	u32 reg;
3225
3226	reg = bcmgenet_rbuf_ctrl_get(priv);
3227	reg |= BIT(1);
3228	bcmgenet_rbuf_ctrl_set(priv, reg);
3229	udelay(10);
3230
3231	reg &= ~BIT(1);
3232	bcmgenet_rbuf_ctrl_set(priv, reg);
3233	udelay(10);
3234}
3235
3236static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3237				 unsigned char *addr)
3238{
3239	bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3240	bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3241}
3242
3243static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3244				 unsigned char *addr)
3245{
3246	u32 addr_tmp;
3247
3248	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3249	put_unaligned_be32(addr_tmp, &addr[0]);
3250	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3251	put_unaligned_be16(addr_tmp, &addr[4]);
3252}
3253
3254/* Returns a reusable dma control register value */
3255static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3256{
3257	unsigned int i;
3258	u32 reg;
3259	u32 dma_ctrl;
3260
3261	/* disable DMA */
3262	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3263	for (i = 0; i < priv->hw_params->tx_queues; i++)
3264		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3265	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3266	reg &= ~dma_ctrl;
3267	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3268
3269	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3270	for (i = 0; i < priv->hw_params->rx_queues; i++)
3271		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3272	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3273	reg &= ~dma_ctrl;
3274	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3275
3276	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3277	udelay(10);
3278	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3279
3280	return dma_ctrl;
3281}
3282
3283static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3284{
3285	u32 reg;
3286
3287	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3288	reg |= dma_ctrl;
3289	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3290
3291	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3292	reg |= dma_ctrl;
3293	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3294}
3295
3296static void bcmgenet_netif_start(struct net_device *dev)
3297{
3298	struct bcmgenet_priv *priv = netdev_priv(dev);
3299
3300	/* Start the network engine */
3301	bcmgenet_set_rx_mode(dev);
3302	bcmgenet_enable_rx_napi(priv);
3303
3304	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3305
3306	bcmgenet_enable_tx_napi(priv);
3307
3308	/* Monitor link interrupts now */
3309	bcmgenet_link_intr_enable(priv);
3310
3311	phy_start(dev->phydev);
3312}
3313
3314static int bcmgenet_open(struct net_device *dev)
3315{
3316	struct bcmgenet_priv *priv = netdev_priv(dev);
3317	unsigned long dma_ctrl;
3318	int ret;
3319
3320	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3321
3322	/* Turn on the clock */
3323	clk_prepare_enable(priv->clk);
3324
3325	/* If this is an internal GPHY, power it back on now, before UniMAC is
3326	 * brought out of reset as absolutely no UniMAC activity is allowed
3327	 */
3328	if (priv->internal_phy)
3329		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3330
3331	/* take MAC out of reset */
3332	bcmgenet_umac_reset(priv);
3333
3334	init_umac(priv);
3335
3336	/* Apply features again in case we changed them while interface was
3337	 * down
3338	 */
3339	bcmgenet_set_features(dev, dev->features);
3340
3341	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3342
3343	/* Disable RX/TX DMA and flush TX queues */
3344	dma_ctrl = bcmgenet_dma_disable(priv);
3345
3346	/* Reinitialize TDMA and RDMA and SW housekeeping */
3347	ret = bcmgenet_init_dma(priv);
3348	if (ret) {
3349		netdev_err(dev, "failed to initialize DMA\n");
3350		goto err_clk_disable;
3351	}
3352
3353	/* Always enable ring 16 - descriptor ring */
3354	bcmgenet_enable_dma(priv, dma_ctrl);
3355
3356	/* HFB init */
3357	bcmgenet_hfb_init(priv);
3358
3359	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3360			  dev->name, priv);
3361	if (ret < 0) {
3362		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3363		goto err_fini_dma;
3364	}
3365
3366	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3367			  dev->name, priv);
3368	if (ret < 0) {
3369		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3370		goto err_irq0;
3371	}
3372
3373	ret = bcmgenet_mii_probe(dev);
3374	if (ret) {
3375		netdev_err(dev, "failed to connect to PHY\n");
3376		goto err_irq1;
3377	}
3378
3379	bcmgenet_netif_start(dev);
3380
3381	netif_tx_start_all_queues(dev);
3382
3383	return 0;
3384
3385err_irq1:
3386	free_irq(priv->irq1, priv);
3387err_irq0:
3388	free_irq(priv->irq0, priv);
3389err_fini_dma:
3390	bcmgenet_dma_teardown(priv);
3391	bcmgenet_fini_dma(priv);
3392err_clk_disable:
3393	if (priv->internal_phy)
3394		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3395	clk_disable_unprepare(priv->clk);
3396	return ret;
3397}
3398
3399static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3400{
3401	struct bcmgenet_priv *priv = netdev_priv(dev);
3402
3403	bcmgenet_disable_tx_napi(priv);
3404	netif_tx_disable(dev);
3405
3406	/* Disable MAC receive */
3407	umac_enable_set(priv, CMD_RX_EN, false);
3408
3409	bcmgenet_dma_teardown(priv);
3410
3411	/* Disable MAC transmit. TX DMA disabled must be done before this */
3412	umac_enable_set(priv, CMD_TX_EN, false);
3413
3414	if (stop_phy)
3415		phy_stop(dev->phydev);
3416	bcmgenet_disable_rx_napi(priv);
3417	bcmgenet_intr_disable(priv);
3418
3419	/* Wait for pending work items to complete. Since interrupts are
3420	 * disabled no new work will be scheduled.
3421	 */
3422	cancel_work_sync(&priv->bcmgenet_irq_work);
3423
3424	priv->old_link = -1;
3425	priv->old_speed = -1;
3426	priv->old_duplex = -1;
3427	priv->old_pause = -1;
3428
3429	/* tx reclaim */
3430	bcmgenet_tx_reclaim_all(dev);
3431	bcmgenet_fini_dma(priv);
3432}
3433
3434static int bcmgenet_close(struct net_device *dev)
3435{
3436	struct bcmgenet_priv *priv = netdev_priv(dev);
3437	int ret = 0;
3438
3439	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3440
3441	bcmgenet_netif_stop(dev, false);
3442
3443	/* Really kill the PHY state machine and disconnect from it */
3444	phy_disconnect(dev->phydev);
3445
3446	free_irq(priv->irq0, priv);
3447	free_irq(priv->irq1, priv);
3448
3449	if (priv->internal_phy)
3450		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3451
3452	clk_disable_unprepare(priv->clk);
3453
3454	return ret;
3455}
3456
3457static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3458{
3459	struct bcmgenet_priv *priv = ring->priv;
3460	u32 p_index, c_index, intsts, intmsk;
3461	struct netdev_queue *txq;
3462	unsigned int free_bds;
3463	bool txq_stopped;
3464
3465	if (!netif_msg_tx_err(priv))
3466		return;
3467
3468	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3469
3470	spin_lock(&ring->lock);
3471	if (ring->index == DESC_INDEX) {
3472		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3473		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3474	} else {
3475		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3476		intmsk = 1 << ring->index;
3477	}
3478	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3479	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3480	txq_stopped = netif_tx_queue_stopped(txq);
3481	free_bds = ring->free_bds;
3482	spin_unlock(&ring->lock);
3483
3484	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3485		  "TX queue status: %s, interrupts: %s\n"
3486		  "(sw)free_bds: %d (sw)size: %d\n"
3487		  "(sw)p_index: %d (hw)p_index: %d\n"
3488		  "(sw)c_index: %d (hw)c_index: %d\n"
3489		  "(sw)clean_p: %d (sw)write_p: %d\n"
3490		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3491		  ring->index, ring->queue,
3492		  txq_stopped ? "stopped" : "active",
3493		  intsts & intmsk ? "enabled" : "disabled",
3494		  free_bds, ring->size,
3495		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3496		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3497		  ring->clean_ptr, ring->write_ptr,
3498		  ring->cb_ptr, ring->end_ptr);
3499}
3500
3501static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3502{
3503	struct bcmgenet_priv *priv = netdev_priv(dev);
3504	u32 int0_enable = 0;
3505	u32 int1_enable = 0;
3506	unsigned int q;
3507
3508	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3509
3510	for (q = 0; q < priv->hw_params->tx_queues; q++)
3511		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3512	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3513
3514	bcmgenet_tx_reclaim_all(dev);
3515
3516	for (q = 0; q < priv->hw_params->tx_queues; q++)
3517		int1_enable |= (1 << q);
3518
3519	int0_enable = UMAC_IRQ_TXDMA_DONE;
3520
3521	/* Re-enable TX interrupts if disabled */
3522	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3523	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3524
3525	netif_trans_update(dev);
3526
3527	dev->stats.tx_errors++;
3528
3529	netif_tx_wake_all_queues(dev);
3530}
3531
3532#define MAX_MDF_FILTER	17
3533
3534static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3535					 unsigned char *addr,
3536					 int *i)
3537{
3538	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3539			     UMAC_MDF_ADDR + (*i * 4));
3540	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3541			     addr[4] << 8 | addr[5],
3542			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3543	*i += 2;
3544}
3545
3546static void bcmgenet_set_rx_mode(struct net_device *dev)
3547{
3548	struct bcmgenet_priv *priv = netdev_priv(dev);
3549	struct netdev_hw_addr *ha;
3550	int i, nfilter;
3551	u32 reg;
3552
3553	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3554
3555	/* Number of filters needed */
3556	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3557
3558	/*
3559	 * Turn on promicuous mode for three scenarios
3560	 * 1. IFF_PROMISC flag is set
3561	 * 2. IFF_ALLMULTI flag is set
3562	 * 3. The number of filters needed exceeds the number filters
3563	 *    supported by the hardware.
3564	*/
3565	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3566	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3567	    (nfilter > MAX_MDF_FILTER)) {
3568		reg |= CMD_PROMISC;
3569		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3570		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3571		return;
3572	} else {
3573		reg &= ~CMD_PROMISC;
3574		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3575	}
3576
3577	/* update MDF filter */
3578	i = 0;
3579	/* Broadcast */
3580	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3581	/* my own address.*/
3582	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3583
3584	/* Unicast */
3585	netdev_for_each_uc_addr(ha, dev)
3586		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3587
3588	/* Multicast */
3589	netdev_for_each_mc_addr(ha, dev)
3590		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3591
3592	/* Enable filters */
3593	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3594	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3595}
3596
3597/* Set the hardware MAC address. */
3598static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3599{
3600	struct sockaddr *addr = p;
3601
3602	/* Setting the MAC address at the hardware level is not possible
3603	 * without disabling the UniMAC RX/TX enable bits.
3604	 */
3605	if (netif_running(dev))
3606		return -EBUSY;
3607
3608	ether_addr_copy(dev->dev_addr, addr->sa_data);
3609
3610	return 0;
3611}
3612
3613static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3614{
3615	struct bcmgenet_priv *priv = netdev_priv(dev);
3616	unsigned long tx_bytes = 0, tx_packets = 0;
3617	unsigned long rx_bytes = 0, rx_packets = 0;
3618	unsigned long rx_errors = 0, rx_dropped = 0;
3619	struct bcmgenet_tx_ring *tx_ring;
3620	struct bcmgenet_rx_ring *rx_ring;
3621	unsigned int q;
3622
3623	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3624		tx_ring = &priv->tx_rings[q];
3625		tx_bytes += tx_ring->bytes;
3626		tx_packets += tx_ring->packets;
3627	}
3628	tx_ring = &priv->tx_rings[DESC_INDEX];
3629	tx_bytes += tx_ring->bytes;
3630	tx_packets += tx_ring->packets;
3631
3632	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3633		rx_ring = &priv->rx_rings[q];
3634
3635		rx_bytes += rx_ring->bytes;
3636		rx_packets += rx_ring->packets;
3637		rx_errors += rx_ring->errors;
3638		rx_dropped += rx_ring->dropped;
3639	}
3640	rx_ring = &priv->rx_rings[DESC_INDEX];
3641	rx_bytes += rx_ring->bytes;
3642	rx_packets += rx_ring->packets;
3643	rx_errors += rx_ring->errors;
3644	rx_dropped += rx_ring->dropped;
3645
3646	dev->stats.tx_bytes = tx_bytes;
3647	dev->stats.tx_packets = tx_packets;
3648	dev->stats.rx_bytes = rx_bytes;
3649	dev->stats.rx_packets = rx_packets;
3650	dev->stats.rx_errors = rx_errors;
3651	dev->stats.rx_missed_errors = rx_errors;
3652	dev->stats.rx_dropped = rx_dropped;
3653	return &dev->stats;
3654}
3655
3656static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3657{
3658	struct bcmgenet_priv *priv = netdev_priv(dev);
3659
3660	if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3661	    priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3662		return -EOPNOTSUPP;
3663
3664	if (new_carrier)
3665		netif_carrier_on(dev);
3666	else
3667		netif_carrier_off(dev);
3668
3669	return 0;
3670}
3671
3672static const struct net_device_ops bcmgenet_netdev_ops = {
3673	.ndo_open		= bcmgenet_open,
3674	.ndo_stop		= bcmgenet_close,
3675	.ndo_start_xmit		= bcmgenet_xmit,
3676	.ndo_tx_timeout		= bcmgenet_timeout,
3677	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3678	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3679	.ndo_do_ioctl		= phy_do_ioctl_running,
3680	.ndo_set_features	= bcmgenet_set_features,
3681#ifdef CONFIG_NET_POLL_CONTROLLER
3682	.ndo_poll_controller	= bcmgenet_poll_controller,
3683#endif
3684	.ndo_get_stats		= bcmgenet_get_stats,
3685	.ndo_change_carrier	= bcmgenet_change_carrier,
3686};
3687
3688/* Array of GENET hardware parameters/characteristics */
3689static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3690	[GENET_V1] = {
3691		.tx_queues = 0,
3692		.tx_bds_per_q = 0,
3693		.rx_queues = 0,
3694		.rx_bds_per_q = 0,
3695		.bp_in_en_shift = 16,
3696		.bp_in_mask = 0xffff,
3697		.hfb_filter_cnt = 16,
3698		.qtag_mask = 0x1F,
3699		.hfb_offset = 0x1000,
3700		.rdma_offset = 0x2000,
3701		.tdma_offset = 0x3000,
3702		.words_per_bd = 2,
3703	},
3704	[GENET_V2] = {
3705		.tx_queues = 4,
3706		.tx_bds_per_q = 32,
3707		.rx_queues = 0,
3708		.rx_bds_per_q = 0,
3709		.bp_in_en_shift = 16,
3710		.bp_in_mask = 0xffff,
3711		.hfb_filter_cnt = 16,
3712		.qtag_mask = 0x1F,
3713		.tbuf_offset = 0x0600,
3714		.hfb_offset = 0x1000,
3715		.hfb_reg_offset = 0x2000,
3716		.rdma_offset = 0x3000,
3717		.tdma_offset = 0x4000,
3718		.words_per_bd = 2,
3719		.flags = GENET_HAS_EXT,
3720	},
3721	[GENET_V3] = {
3722		.tx_queues = 4,
3723		.tx_bds_per_q = 32,
3724		.rx_queues = 0,
3725		.rx_bds_per_q = 0,
3726		.bp_in_en_shift = 17,
3727		.bp_in_mask = 0x1ffff,
3728		.hfb_filter_cnt = 48,
3729		.hfb_filter_size = 128,
3730		.qtag_mask = 0x3F,
3731		.tbuf_offset = 0x0600,
3732		.hfb_offset = 0x8000,
3733		.hfb_reg_offset = 0xfc00,
3734		.rdma_offset = 0x10000,
3735		.tdma_offset = 0x11000,
3736		.words_per_bd = 2,
3737		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3738			 GENET_HAS_MOCA_LINK_DET,
3739	},
3740	[GENET_V4] = {
3741		.tx_queues = 4,
3742		.tx_bds_per_q = 32,
3743		.rx_queues = 0,
3744		.rx_bds_per_q = 0,
3745		.bp_in_en_shift = 17,
3746		.bp_in_mask = 0x1ffff,
3747		.hfb_filter_cnt = 48,
3748		.hfb_filter_size = 128,
3749		.qtag_mask = 0x3F,
3750		.tbuf_offset = 0x0600,
3751		.hfb_offset = 0x8000,
3752		.hfb_reg_offset = 0xfc00,
3753		.rdma_offset = 0x2000,
3754		.tdma_offset = 0x4000,
3755		.words_per_bd = 3,
3756		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3757			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3758	},
3759	[GENET_V5] = {
3760		.tx_queues = 4,
3761		.tx_bds_per_q = 32,
3762		.rx_queues = 0,
3763		.rx_bds_per_q = 0,
3764		.bp_in_en_shift = 17,
3765		.bp_in_mask = 0x1ffff,
3766		.hfb_filter_cnt = 48,
3767		.hfb_filter_size = 128,
3768		.qtag_mask = 0x3F,
3769		.tbuf_offset = 0x0600,
3770		.hfb_offset = 0x8000,
3771		.hfb_reg_offset = 0xfc00,
3772		.rdma_offset = 0x2000,
3773		.tdma_offset = 0x4000,
3774		.words_per_bd = 3,
3775		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3776			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3777	},
3778};
3779
3780/* Infer hardware parameters from the detected GENET version */
3781static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3782{
3783	struct bcmgenet_hw_params *params;
3784	u32 reg;
3785	u8 major;
3786	u16 gphy_rev;
3787
3788	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3789		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3790		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3791	} else if (GENET_IS_V3(priv)) {
3792		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3793		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3794	} else if (GENET_IS_V2(priv)) {
3795		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3796		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3797	} else if (GENET_IS_V1(priv)) {
3798		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3799		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3800	}
3801
3802	/* enum genet_version starts at 1 */
3803	priv->hw_params = &bcmgenet_hw_params[priv->version];
3804	params = priv->hw_params;
3805
3806	/* Read GENET HW version */
3807	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3808	major = (reg >> 24 & 0x0f);
3809	if (major == 6)
3810		major = 5;
3811	else if (major == 5)
3812		major = 4;
3813	else if (major == 0)
3814		major = 1;
3815	if (major != priv->version) {
3816		dev_err(&priv->pdev->dev,
3817			"GENET version mismatch, got: %d, configured for: %d\n",
3818			major, priv->version);
3819	}
3820
3821	/* Print the GENET core version */
3822	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3823		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3824
3825	/* Store the integrated PHY revision for the MDIO probing function
3826	 * to pass this information to the PHY driver. The PHY driver expects
3827	 * to find the PHY major revision in bits 15:8 while the GENET register
3828	 * stores that information in bits 7:0, account for that.
3829	 *
3830	 * On newer chips, starting with PHY revision G0, a new scheme is
3831	 * deployed similar to the Starfighter 2 switch with GPHY major
3832	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3833	 * is reserved as well as special value 0x01ff, we have a small
3834	 * heuristic to check for the new GPHY revision and re-arrange things
3835	 * so the GPHY driver is happy.
3836	 */
3837	gphy_rev = reg & 0xffff;
3838
3839	if (GENET_IS_V5(priv)) {
3840		/* The EPHY revision should come from the MDIO registers of
3841		 * the PHY not from GENET.
3842		 */
3843		if (gphy_rev != 0) {
3844			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3845				gphy_rev);
3846		}
3847	/* This is reserved so should require special treatment */
3848	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3849		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3850		return;
3851	/* This is the good old scheme, just GPHY major, no minor nor patch */
3852	} else if ((gphy_rev & 0xf0) != 0) {
3853		priv->gphy_rev = gphy_rev << 8;
3854	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3855	} else if ((gphy_rev & 0xff00) != 0) {
3856		priv->gphy_rev = gphy_rev;
3857	}
3858
3859#ifdef CONFIG_PHYS_ADDR_T_64BIT
3860	if (!(params->flags & GENET_HAS_40BITS))
3861		pr_warn("GENET does not support 40-bits PA\n");
3862#endif
3863
3864	pr_debug("Configuration for version: %d\n"
3865		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3866		"BP << en: %2d, BP msk: 0x%05x\n"
3867		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3868		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3869		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3870		"Words/BD: %d\n",
3871		priv->version,
3872		params->tx_queues, params->tx_bds_per_q,
3873		params->rx_queues, params->rx_bds_per_q,
3874		params->bp_in_en_shift, params->bp_in_mask,
3875		params->hfb_filter_cnt, params->qtag_mask,
3876		params->tbuf_offset, params->hfb_offset,
3877		params->hfb_reg_offset,
3878		params->rdma_offset, params->tdma_offset,
3879		params->words_per_bd);
3880}
3881
3882struct bcmgenet_plat_data {
3883	enum bcmgenet_version version;
3884	u32 dma_max_burst_length;
3885};
3886
3887static const struct bcmgenet_plat_data v1_plat_data = {
3888	.version = GENET_V1,
3889	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3890};
3891
3892static const struct bcmgenet_plat_data v2_plat_data = {
3893	.version = GENET_V2,
3894	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3895};
3896
3897static const struct bcmgenet_plat_data v3_plat_data = {
3898	.version = GENET_V3,
3899	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3900};
3901
3902static const struct bcmgenet_plat_data v4_plat_data = {
3903	.version = GENET_V4,
3904	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3905};
3906
3907static const struct bcmgenet_plat_data v5_plat_data = {
3908	.version = GENET_V5,
3909	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3910};
3911
3912static const struct bcmgenet_plat_data bcm2711_plat_data = {
3913	.version = GENET_V5,
3914	.dma_max_burst_length = 0x08,
3915};
3916
3917static const struct of_device_id bcmgenet_match[] = {
3918	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3919	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3920	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3921	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3922	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3923	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3924	{ },
3925};
3926MODULE_DEVICE_TABLE(of, bcmgenet_match);
3927
3928static int bcmgenet_probe(struct platform_device *pdev)
3929{
3930	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3931	const struct bcmgenet_plat_data *pdata;
3932	struct bcmgenet_priv *priv;
3933	struct net_device *dev;
3934	unsigned int i;
3935	int err = -EIO;
3936
3937	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3938	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3939				 GENET_MAX_MQ_CNT + 1);
3940	if (!dev) {
3941		dev_err(&pdev->dev, "can't allocate net device\n");
3942		return -ENOMEM;
3943	}
3944
3945	priv = netdev_priv(dev);
3946	priv->irq0 = platform_get_irq(pdev, 0);
3947	if (priv->irq0 < 0) {
3948		err = priv->irq0;
3949		goto err;
3950	}
3951	priv->irq1 = platform_get_irq(pdev, 1);
3952	if (priv->irq1 < 0) {
3953		err = priv->irq1;
3954		goto err;
3955	}
3956	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3957	if (priv->wol_irq == -EPROBE_DEFER) {
3958		err = priv->wol_irq;
3959		goto err;
3960	}
3961
3962	priv->base = devm_platform_ioremap_resource(pdev, 0);
3963	if (IS_ERR(priv->base)) {
3964		err = PTR_ERR(priv->base);
3965		goto err;
3966	}
3967
3968	spin_lock_init(&priv->lock);
3969
3970	SET_NETDEV_DEV(dev, &pdev->dev);
3971	dev_set_drvdata(&pdev->dev, dev);
3972	dev->watchdog_timeo = 2 * HZ;
3973	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3974	dev->netdev_ops = &bcmgenet_netdev_ops;
3975
3976	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3977
3978	/* Set default features */
3979	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3980			 NETIF_F_RXCSUM;
3981	dev->hw_features |= dev->features;
3982	dev->vlan_features |= dev->features;
3983
3984	/* Request the WOL interrupt and advertise suspend if available */
3985	priv->wol_irq_disabled = true;
3986	if (priv->wol_irq > 0) {
3987		err = devm_request_irq(&pdev->dev, priv->wol_irq,
3988				       bcmgenet_wol_isr, 0, dev->name, priv);
3989		if (!err)
3990			device_set_wakeup_capable(&pdev->dev, 1);
3991	}
3992
3993	/* Set the needed headroom to account for any possible
3994	 * features enabling/disabling at runtime
3995	 */
3996	dev->needed_headroom += 64;
3997
3998	netdev_boot_setup_check(dev);
3999
4000	priv->dev = dev;
4001	priv->pdev = pdev;
4002
4003	pdata = device_get_match_data(&pdev->dev);
4004	if (pdata) {
4005		priv->version = pdata->version;
4006		priv->dma_max_burst_length = pdata->dma_max_burst_length;
4007	} else {
4008		priv->version = pd->genet_version;
4009		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4010	}
4011
4012	priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4013	if (IS_ERR(priv->clk)) {
4014		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4015		err = PTR_ERR(priv->clk);
4016		goto err;
4017	}
4018
4019	err = clk_prepare_enable(priv->clk);
4020	if (err)
4021		goto err;
4022
4023	bcmgenet_set_hw_params(priv);
4024
4025	err = -EIO;
4026	if (priv->hw_params->flags & GENET_HAS_40BITS)
4027		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4028	if (err)
4029		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4030	if (err)
4031		goto err_clk_disable;
4032
4033	/* Mii wait queue */
4034	init_waitqueue_head(&priv->wq);
4035	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4036	priv->rx_buf_len = RX_BUF_LENGTH;
4037	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4038
4039	priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4040	if (IS_ERR(priv->clk_wol)) {
4041		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4042		err = PTR_ERR(priv->clk_wol);
4043		goto err_clk_disable;
4044	}
4045
4046	priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4047	if (IS_ERR(priv->clk_eee)) {
4048		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4049		err = PTR_ERR(priv->clk_eee);
4050		goto err_clk_disable;
4051	}
4052
4053	/* If this is an internal GPHY, power it on now, before UniMAC is
4054	 * brought out of reset as absolutely no UniMAC activity is allowed
4055	 */
4056	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4057		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4058
4059	if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4060		ether_addr_copy(dev->dev_addr, pd->mac_address);
4061	else
4062		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4063			if (has_acpi_companion(&pdev->dev))
4064				bcmgenet_get_hw_addr(priv, dev->dev_addr);
4065
4066	if (!is_valid_ether_addr(dev->dev_addr)) {
4067		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4068		eth_hw_addr_random(dev);
4069	}
4070
4071	reset_umac(priv);
4072
4073	err = bcmgenet_mii_init(dev);
4074	if (err)
4075		goto err_clk_disable;
4076
4077	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4078	 * just the ring 16 descriptor based TX
4079	 */
4080	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4081	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4082
4083	/* Set default coalescing parameters */
4084	for (i = 0; i < priv->hw_params->rx_queues; i++)
4085		priv->rx_rings[i].rx_max_coalesced_frames = 1;
4086	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4087
4088	/* libphy will determine the link state */
4089	netif_carrier_off(dev);
4090
4091	/* Turn off the main clock, WOL clock is handled separately */
4092	clk_disable_unprepare(priv->clk);
4093
4094	err = register_netdev(dev);
4095	if (err) {
4096		bcmgenet_mii_exit(dev);
4097		goto err;
4098	}
4099
4100	return err;
4101
4102err_clk_disable:
4103	clk_disable_unprepare(priv->clk);
4104err:
4105	free_netdev(dev);
4106	return err;
4107}
4108
4109static int bcmgenet_remove(struct platform_device *pdev)
4110{
4111	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4112
4113	dev_set_drvdata(&pdev->dev, NULL);
4114	unregister_netdev(priv->dev);
4115	bcmgenet_mii_exit(priv->dev);
4116	free_netdev(priv->dev);
4117
4118	return 0;
4119}
4120
4121static void bcmgenet_shutdown(struct platform_device *pdev)
4122{
4123	bcmgenet_remove(pdev);
4124}
4125
4126#ifdef CONFIG_PM_SLEEP
4127static int bcmgenet_resume_noirq(struct device *d)
4128{
4129	struct net_device *dev = dev_get_drvdata(d);
4130	struct bcmgenet_priv *priv = netdev_priv(dev);
4131	int ret;
4132	u32 reg;
4133
4134	if (!netif_running(dev))
4135		return 0;
4136
4137	/* Turn on the clock */
4138	ret = clk_prepare_enable(priv->clk);
4139	if (ret)
4140		return ret;
4141
4142	if (device_may_wakeup(d) && priv->wolopts) {
4143		/* Account for Wake-on-LAN events and clear those events
4144		 * (Some devices need more time between enabling the clocks
4145		 *  and the interrupt register reflecting the wake event so
4146		 *  read the register twice)
4147		 */
4148		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4149		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4150		if (reg & UMAC_IRQ_WAKE_EVENT)
4151			pm_wakeup_event(&priv->pdev->dev, 0);
4152	}
4153
4154	bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4155
4156	return 0;
4157}
4158
4159static int bcmgenet_resume(struct device *d)
4160{
4161	struct net_device *dev = dev_get_drvdata(d);
4162	struct bcmgenet_priv *priv = netdev_priv(dev);
4163	struct bcmgenet_rxnfc_rule *rule;
4164	unsigned long dma_ctrl;
4165	int ret;
4166
4167	if (!netif_running(dev))
4168		return 0;
4169
4170	/* From WOL-enabled suspend, switch to regular clock */
4171	if (device_may_wakeup(d) && priv->wolopts)
4172		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4173
4174	/* If this is an internal GPHY, power it back on now, before UniMAC is
4175	 * brought out of reset as absolutely no UniMAC activity is allowed
4176	 */
4177	if (priv->internal_phy)
4178		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4179
4180	bcmgenet_umac_reset(priv);
4181
4182	init_umac(priv);
4183
4184	phy_init_hw(dev->phydev);
4185
4186	/* Speed settings must be restored */
4187	genphy_config_aneg(dev->phydev);
4188	bcmgenet_mii_config(priv->dev, false);
4189
4190	/* Restore enabled features */
4191	bcmgenet_set_features(dev, dev->features);
4192
4193	bcmgenet_set_hw_addr(priv, dev->dev_addr);
4194
4195	/* Restore hardware filters */
4196	bcmgenet_hfb_clear(priv);
4197	list_for_each_entry(rule, &priv->rxnfc_list, list)
4198		if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4199			bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4200
4201	/* Disable RX/TX DMA and flush TX queues */
4202	dma_ctrl = bcmgenet_dma_disable(priv);
4203
4204	/* Reinitialize TDMA and RDMA and SW housekeeping */
4205	ret = bcmgenet_init_dma(priv);
4206	if (ret) {
4207		netdev_err(dev, "failed to initialize DMA\n");
4208		goto out_clk_disable;
4209	}
4210
4211	/* Always enable ring 16 - descriptor ring */
4212	bcmgenet_enable_dma(priv, dma_ctrl);
4213
4214	if (!device_may_wakeup(d))
4215		phy_resume(dev->phydev);
4216
4217	bcmgenet_netif_start(dev);
4218
4219	netif_device_attach(dev);
4220
4221	return 0;
4222
4223out_clk_disable:
4224	if (priv->internal_phy)
4225		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4226	clk_disable_unprepare(priv->clk);
4227	return ret;
4228}
4229
4230static int bcmgenet_suspend(struct device *d)
4231{
4232	struct net_device *dev = dev_get_drvdata(d);
4233	struct bcmgenet_priv *priv = netdev_priv(dev);
4234
4235	if (!netif_running(dev))
4236		return 0;
4237
4238	netif_device_detach(dev);
4239
4240	bcmgenet_netif_stop(dev, true);
4241
4242	if (!device_may_wakeup(d))
4243		phy_suspend(dev->phydev);
4244
4245	/* Disable filtering */
4246	bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4247
4248	return 0;
4249}
4250
4251static int bcmgenet_suspend_noirq(struct device *d)
4252{
4253	struct net_device *dev = dev_get_drvdata(d);
4254	struct bcmgenet_priv *priv = netdev_priv(dev);
4255	int ret = 0;
4256
4257	if (!netif_running(dev))
4258		return 0;
4259
4260	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
4261	if (device_may_wakeup(d) && priv->wolopts)
4262		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4263	else if (priv->internal_phy)
4264		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4265
4266	/* Let the framework handle resumption and leave the clocks on */
4267	if (ret)
4268		return ret;
4269
4270	/* Turn off the clocks */
4271	clk_disable_unprepare(priv->clk);
4272
4273	return 0;
4274}
4275#else
4276#define bcmgenet_suspend	NULL
4277#define bcmgenet_suspend_noirq	NULL
4278#define bcmgenet_resume		NULL
4279#define bcmgenet_resume_noirq	NULL
4280#endif /* CONFIG_PM_SLEEP */
4281
4282static const struct dev_pm_ops bcmgenet_pm_ops = {
4283	.suspend	= bcmgenet_suspend,
4284	.suspend_noirq	= bcmgenet_suspend_noirq,
4285	.resume		= bcmgenet_resume,
4286	.resume_noirq	= bcmgenet_resume_noirq,
4287};
4288
4289static const struct acpi_device_id genet_acpi_match[] = {
4290	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4291	{ },
4292};
4293MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4294
4295static struct platform_driver bcmgenet_driver = {
4296	.probe	= bcmgenet_probe,
4297	.remove	= bcmgenet_remove,
4298	.shutdown = bcmgenet_shutdown,
4299	.driver	= {
4300		.name	= "bcmgenet",
4301		.of_match_table = bcmgenet_match,
4302		.pm	= &bcmgenet_pm_ops,
4303		.acpi_match_table = genet_acpi_match,
4304	},
4305};
4306module_platform_driver(bcmgenet_driver);
4307
4308MODULE_AUTHOR("Broadcom Corporation");
4309MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4310MODULE_ALIAS("platform:bcmgenet");
4311MODULE_LICENSE("GPL");
4312MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4313