1/* bnx2x_main.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/module.h>
23#include <linux/moduleparam.h>
24#include <linux/kernel.h>
25#include <linux/device.h>  /* for dev_info() */
26#include <linux/timer.h>
27#include <linux/errno.h>
28#include <linux/ioport.h>
29#include <linux/slab.h>
30#include <linux/interrupt.h>
31#include <linux/pci.h>
32#include <linux/aer.h>
33#include <linux/init.h>
34#include <linux/netdevice.h>
35#include <linux/etherdevice.h>
36#include <linux/skbuff.h>
37#include <linux/dma-mapping.h>
38#include <linux/bitops.h>
39#include <linux/irq.h>
40#include <linux/delay.h>
41#include <asm/byteorder.h>
42#include <linux/time.h>
43#include <linux/ethtool.h>
44#include <linux/mii.h>
45#include <linux/if_vlan.h>
46#include <linux/crash_dump.h>
47#include <net/ip.h>
48#include <net/ipv6.h>
49#include <net/tcp.h>
50#include <net/vxlan.h>
51#include <net/checksum.h>
52#include <net/ip6_checksum.h>
53#include <linux/workqueue.h>
54#include <linux/crc32.h>
55#include <linux/crc32c.h>
56#include <linux/prefetch.h>
57#include <linux/zlib.h>
58#include <linux/io.h>
59#include <linux/semaphore.h>
60#include <linux/stringify.h>
61#include <linux/vmalloc.h>
62#include "bnx2x.h"
63#include "bnx2x_init.h"
64#include "bnx2x_init_ops.h"
65#include "bnx2x_cmn.h"
66#include "bnx2x_vfpf.h"
67#include "bnx2x_dcb.h"
68#include "bnx2x_sp.h"
69#include <linux/firmware.h>
70#include "bnx2x_fw_file_hdr.h"
71/* FW files */
72#define FW_FILE_VERSION					\
73	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77
78#define FW_FILE_VERSION_V15				\
79	__stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
80	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
81	__stringify(BCM_5710_FW_REVISION_VERSION_V15) "."	\
82	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
83
84#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
85#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
86#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
87#define FW_FILE_NAME_E1_V15	"bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
88#define FW_FILE_NAME_E1H_V15	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
89#define FW_FILE_NAME_E2_V15	"bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
90
91/* Time in jiffies before concluding the transmitter is hung */
92#define TX_TIMEOUT		(5*HZ)
93
94MODULE_AUTHOR("Eliezer Tamir");
95MODULE_DESCRIPTION("QLogic "
96		   "BCM57710/57711/57711E/"
97		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
98		   "57840/57840_MF Driver");
99MODULE_LICENSE("GPL");
100MODULE_FIRMWARE(FW_FILE_NAME_E1);
101MODULE_FIRMWARE(FW_FILE_NAME_E1H);
102MODULE_FIRMWARE(FW_FILE_NAME_E2);
103MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
104MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
105MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
106
107int bnx2x_num_queues;
108module_param_named(num_queues, bnx2x_num_queues, int, 0444);
109MODULE_PARM_DESC(num_queues,
110		 " Set number of queues (default is as a number of CPUs)");
111
112static int disable_tpa;
113module_param(disable_tpa, int, 0444);
114MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
115
116static int int_mode;
117module_param(int_mode, int, 0444);
118MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
119				"(1 INT#x; 2 MSI)");
120
121static int dropless_fc;
122module_param(dropless_fc, int, 0444);
123MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
124
125static int mrrs = -1;
126module_param(mrrs, int, 0444);
127MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
128
129static int debug;
130module_param(debug, int, 0444);
131MODULE_PARM_DESC(debug, " Default debug msglevel");
132
133static struct workqueue_struct *bnx2x_wq;
134struct workqueue_struct *bnx2x_iov_wq;
135
136struct bnx2x_mac_vals {
137	u32 xmac_addr;
138	u32 xmac_val;
139	u32 emac_addr;
140	u32 emac_val;
141	u32 umac_addr[2];
142	u32 umac_val[2];
143	u32 bmac_addr;
144	u32 bmac_val[2];
145};
146
147enum bnx2x_board_type {
148	BCM57710 = 0,
149	BCM57711,
150	BCM57711E,
151	BCM57712,
152	BCM57712_MF,
153	BCM57712_VF,
154	BCM57800,
155	BCM57800_MF,
156	BCM57800_VF,
157	BCM57810,
158	BCM57810_MF,
159	BCM57810_VF,
160	BCM57840_4_10,
161	BCM57840_2_20,
162	BCM57840_MF,
163	BCM57840_VF,
164	BCM57811,
165	BCM57811_MF,
166	BCM57840_O,
167	BCM57840_MFO,
168	BCM57811_VF
169};
170
171/* indexed by board_type, above */
172static struct {
173	char *name;
174} board_info[] = {
175	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
176	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
177	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
178	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
179	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
180	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
181	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
182	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
183	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
184	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
185	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
186	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
187	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
188	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
189	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
190	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
191	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
192	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
193	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
194	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
195	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
196};
197
198#ifndef PCI_DEVICE_ID_NX2_57710
199#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
200#endif
201#ifndef PCI_DEVICE_ID_NX2_57711
202#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
203#endif
204#ifndef PCI_DEVICE_ID_NX2_57711E
205#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
206#endif
207#ifndef PCI_DEVICE_ID_NX2_57712
208#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
209#endif
210#ifndef PCI_DEVICE_ID_NX2_57712_MF
211#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
212#endif
213#ifndef PCI_DEVICE_ID_NX2_57712_VF
214#define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
215#endif
216#ifndef PCI_DEVICE_ID_NX2_57800
217#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
218#endif
219#ifndef PCI_DEVICE_ID_NX2_57800_MF
220#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
221#endif
222#ifndef PCI_DEVICE_ID_NX2_57800_VF
223#define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
224#endif
225#ifndef PCI_DEVICE_ID_NX2_57810
226#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
227#endif
228#ifndef PCI_DEVICE_ID_NX2_57810_MF
229#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
230#endif
231#ifndef PCI_DEVICE_ID_NX2_57840_O
232#define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
233#endif
234#ifndef PCI_DEVICE_ID_NX2_57810_VF
235#define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
236#endif
237#ifndef PCI_DEVICE_ID_NX2_57840_4_10
238#define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
239#endif
240#ifndef PCI_DEVICE_ID_NX2_57840_2_20
241#define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
242#endif
243#ifndef PCI_DEVICE_ID_NX2_57840_MFO
244#define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
245#endif
246#ifndef PCI_DEVICE_ID_NX2_57840_MF
247#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
248#endif
249#ifndef PCI_DEVICE_ID_NX2_57840_VF
250#define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
251#endif
252#ifndef PCI_DEVICE_ID_NX2_57811
253#define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
254#endif
255#ifndef PCI_DEVICE_ID_NX2_57811_MF
256#define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
257#endif
258#ifndef PCI_DEVICE_ID_NX2_57811_VF
259#define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
260#endif
261
262static const struct pci_device_id bnx2x_pci_tbl[] = {
263	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
264	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
265	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
266	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
267	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
268	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
269	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
270	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
271	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
272	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
273	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
274	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
275	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
277	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
278	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
279	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
280	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
282	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
284	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
285	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
286	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
287	{ 0 }
288};
289
290MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
291
292const u32 dmae_reg_go_c[] = {
293	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
294	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
295	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
296	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
297};
298
299/* Global resources for unloading a previously loaded device */
300#define BNX2X_PREV_WAIT_NEEDED 1
301static DEFINE_SEMAPHORE(bnx2x_prev_sem);
302static LIST_HEAD(bnx2x_prev_list);
303
304/* Forward declaration */
305static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
306static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
307static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
308
309/****************************************************************************
310* General service functions
311****************************************************************************/
312
313static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
314
315static void __storm_memset_dma_mapping(struct bnx2x *bp,
316				       u32 addr, dma_addr_t mapping)
317{
318	REG_WR(bp,  addr, U64_LO(mapping));
319	REG_WR(bp,  addr + 4, U64_HI(mapping));
320}
321
322static void storm_memset_spq_addr(struct bnx2x *bp,
323				  dma_addr_t mapping, u16 abs_fid)
324{
325	u32 addr = XSEM_REG_FAST_MEMORY +
326			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
327
328	__storm_memset_dma_mapping(bp, addr, mapping);
329}
330
331static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
332				  u16 pf_id)
333{
334	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
335		pf_id);
336	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
337		pf_id);
338	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
339		pf_id);
340	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
341		pf_id);
342}
343
344static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
345				 u8 enable)
346{
347	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
348		enable);
349	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
350		enable);
351	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
352		enable);
353	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
354		enable);
355}
356
357static void storm_memset_eq_data(struct bnx2x *bp,
358				 struct event_ring_data *eq_data,
359				u16 pfid)
360{
361	size_t size = sizeof(struct event_ring_data);
362
363	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
364
365	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
366}
367
368static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
369				 u16 pfid)
370{
371	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
372	REG_WR16(bp, addr, eq_prod);
373}
374
375/* used only at init
376 * locking is done by mcp
377 */
378static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
379{
380	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
381	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
382	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
383			       PCICFG_VENDOR_ID_OFFSET);
384}
385
386static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
387{
388	u32 val;
389
390	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
391	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
392	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
393			       PCICFG_VENDOR_ID_OFFSET);
394
395	return val;
396}
397
398#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
399#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
400#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
401#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
402#define DMAE_DP_DST_NONE	"dst_addr [none]"
403
404static void bnx2x_dp_dmae(struct bnx2x *bp,
405			  struct dmae_command *dmae, int msglvl)
406{
407	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
408	int i;
409
410	switch (dmae->opcode & DMAE_COMMAND_DST) {
411	case DMAE_CMD_DST_PCI:
412		if (src_type == DMAE_CMD_SRC_PCI)
413			DP(msglvl, "DMAE: opcode 0x%08x\n"
414			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
415			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
416			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
417			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
418			   dmae->comp_addr_hi, dmae->comp_addr_lo,
419			   dmae->comp_val);
420		else
421			DP(msglvl, "DMAE: opcode 0x%08x\n"
422			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
423			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
424			   dmae->opcode, dmae->src_addr_lo >> 2,
425			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
426			   dmae->comp_addr_hi, dmae->comp_addr_lo,
427			   dmae->comp_val);
428		break;
429	case DMAE_CMD_DST_GRC:
430		if (src_type == DMAE_CMD_SRC_PCI)
431			DP(msglvl, "DMAE: opcode 0x%08x\n"
432			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
433			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
434			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
435			   dmae->len, dmae->dst_addr_lo >> 2,
436			   dmae->comp_addr_hi, dmae->comp_addr_lo,
437			   dmae->comp_val);
438		else
439			DP(msglvl, "DMAE: opcode 0x%08x\n"
440			   "src [%08x], len [%d*4], dst [%08x]\n"
441			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
442			   dmae->opcode, dmae->src_addr_lo >> 2,
443			   dmae->len, dmae->dst_addr_lo >> 2,
444			   dmae->comp_addr_hi, dmae->comp_addr_lo,
445			   dmae->comp_val);
446		break;
447	default:
448		if (src_type == DMAE_CMD_SRC_PCI)
449			DP(msglvl, "DMAE: opcode 0x%08x\n"
450			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
451			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
452			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
453			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
454			   dmae->comp_val);
455		else
456			DP(msglvl, "DMAE: opcode 0x%08x\n"
457			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
458			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
459			   dmae->opcode, dmae->src_addr_lo >> 2,
460			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
461			   dmae->comp_val);
462		break;
463	}
464
465	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
466		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
467		   i, *(((u32 *)dmae) + i));
468}
469
470/* copy command into DMAE command memory and set DMAE command go */
471void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
472{
473	u32 cmd_offset;
474	int i;
475
476	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
477	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
478		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
479	}
480	REG_WR(bp, dmae_reg_go_c[idx], 1);
481}
482
483u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
484{
485	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
486			   DMAE_CMD_C_ENABLE);
487}
488
489u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
490{
491	return opcode & ~DMAE_CMD_SRC_RESET;
492}
493
494u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
495			     bool with_comp, u8 comp_type)
496{
497	u32 opcode = 0;
498
499	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
500		   (dst_type << DMAE_COMMAND_DST_SHIFT));
501
502	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
503
504	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
505	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
506		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
507	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
508
509#ifdef __BIG_ENDIAN
510	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
511#else
512	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
513#endif
514	if (with_comp)
515		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
516	return opcode;
517}
518
519void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
520				      struct dmae_command *dmae,
521				      u8 src_type, u8 dst_type)
522{
523	memset(dmae, 0, sizeof(struct dmae_command));
524
525	/* set the opcode */
526	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
527					 true, DMAE_COMP_PCI);
528
529	/* fill in the completion parameters */
530	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
531	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
532	dmae->comp_val = DMAE_COMP_VAL;
533}
534
535/* issue a dmae command over the init-channel and wait for completion */
536int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
537			       u32 *comp)
538{
539	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
540	int rc = 0;
541
542	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
543
544	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
545	 * as long as this code is called both from syscall context and
546	 * from ndo_set_rx_mode() flow that may be called from BH.
547	 */
548
549	spin_lock_bh(&bp->dmae_lock);
550
551	/* reset completion */
552	*comp = 0;
553
554	/* post the command on the channel used for initializations */
555	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
556
557	/* wait for completion */
558	udelay(5);
559	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
560
561		if (!cnt ||
562		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
563		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
564			BNX2X_ERR("DMAE timeout!\n");
565			rc = DMAE_TIMEOUT;
566			goto unlock;
567		}
568		cnt--;
569		udelay(50);
570	}
571	if (*comp & DMAE_PCI_ERR_FLAG) {
572		BNX2X_ERR("DMAE PCI error!\n");
573		rc = DMAE_PCI_ERROR;
574	}
575
576unlock:
577
578	spin_unlock_bh(&bp->dmae_lock);
579
580	return rc;
581}
582
583void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
584		      u32 len32)
585{
586	int rc;
587	struct dmae_command dmae;
588
589	if (!bp->dmae_ready) {
590		u32 *data = bnx2x_sp(bp, wb_data[0]);
591
592		if (CHIP_IS_E1(bp))
593			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
594		else
595			bnx2x_init_str_wr(bp, dst_addr, data, len32);
596		return;
597	}
598
599	/* set opcode and fixed command fields */
600	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
601
602	/* fill in addresses and len */
603	dmae.src_addr_lo = U64_LO(dma_addr);
604	dmae.src_addr_hi = U64_HI(dma_addr);
605	dmae.dst_addr_lo = dst_addr >> 2;
606	dmae.dst_addr_hi = 0;
607	dmae.len = len32;
608
609	/* issue the command and wait for completion */
610	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
611	if (rc) {
612		BNX2X_ERR("DMAE returned failure %d\n", rc);
613#ifdef BNX2X_STOP_ON_ERROR
614		bnx2x_panic();
615#endif
616	}
617}
618
619void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
620{
621	int rc;
622	struct dmae_command dmae;
623
624	if (!bp->dmae_ready) {
625		u32 *data = bnx2x_sp(bp, wb_data[0]);
626		int i;
627
628		if (CHIP_IS_E1(bp))
629			for (i = 0; i < len32; i++)
630				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
631		else
632			for (i = 0; i < len32; i++)
633				data[i] = REG_RD(bp, src_addr + i*4);
634
635		return;
636	}
637
638	/* set opcode and fixed command fields */
639	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
640
641	/* fill in addresses and len */
642	dmae.src_addr_lo = src_addr >> 2;
643	dmae.src_addr_hi = 0;
644	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
645	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
646	dmae.len = len32;
647
648	/* issue the command and wait for completion */
649	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
650	if (rc) {
651		BNX2X_ERR("DMAE returned failure %d\n", rc);
652#ifdef BNX2X_STOP_ON_ERROR
653		bnx2x_panic();
654#endif
655	}
656}
657
658static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
659				      u32 addr, u32 len)
660{
661	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
662	int offset = 0;
663
664	while (len > dmae_wr_max) {
665		bnx2x_write_dmae(bp, phys_addr + offset,
666				 addr + offset, dmae_wr_max);
667		offset += dmae_wr_max * 4;
668		len -= dmae_wr_max;
669	}
670
671	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
672}
673
674enum storms {
675	   XSTORM,
676	   TSTORM,
677	   CSTORM,
678	   USTORM,
679	   MAX_STORMS
680};
681
682#define STORMS_NUM 4
683#define REGS_IN_ENTRY 4
684
685static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
686					      enum storms storm,
687					      int entry)
688{
689	switch (storm) {
690	case XSTORM:
691		return XSTORM_ASSERT_LIST_OFFSET(entry);
692	case TSTORM:
693		return TSTORM_ASSERT_LIST_OFFSET(entry);
694	case CSTORM:
695		return CSTORM_ASSERT_LIST_OFFSET(entry);
696	case USTORM:
697		return USTORM_ASSERT_LIST_OFFSET(entry);
698	case MAX_STORMS:
699	default:
700		BNX2X_ERR("unknown storm\n");
701	}
702	return -EINVAL;
703}
704
705static int bnx2x_mc_assert(struct bnx2x *bp)
706{
707	char last_idx;
708	int i, j, rc = 0;
709	enum storms storm;
710	u32 regs[REGS_IN_ENTRY];
711	u32 bar_storm_intmem[STORMS_NUM] = {
712		BAR_XSTRORM_INTMEM,
713		BAR_TSTRORM_INTMEM,
714		BAR_CSTRORM_INTMEM,
715		BAR_USTRORM_INTMEM
716	};
717	u32 storm_assert_list_index[STORMS_NUM] = {
718		XSTORM_ASSERT_LIST_INDEX_OFFSET,
719		TSTORM_ASSERT_LIST_INDEX_OFFSET,
720		CSTORM_ASSERT_LIST_INDEX_OFFSET,
721		USTORM_ASSERT_LIST_INDEX_OFFSET
722	};
723	char *storms_string[STORMS_NUM] = {
724		"XSTORM",
725		"TSTORM",
726		"CSTORM",
727		"USTORM"
728	};
729
730	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
731		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
732				   storm_assert_list_index[storm]);
733		if (last_idx)
734			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
735				  storms_string[storm], last_idx);
736
737		/* print the asserts */
738		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
739			/* read a single assert entry */
740			for (j = 0; j < REGS_IN_ENTRY; j++)
741				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
742					  bnx2x_get_assert_list_entry(bp,
743								      storm,
744								      i) +
745					  sizeof(u32) * j);
746
747			/* log entry if it contains a valid assert */
748			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
749				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
750					  storms_string[storm], i, regs[3],
751					  regs[2], regs[1], regs[0]);
752				rc++;
753			} else {
754				break;
755			}
756		}
757	}
758
759	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
760		  CHIP_IS_E1(bp) ? "everest1" :
761		  CHIP_IS_E1H(bp) ? "everest1h" :
762		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
763		  bp->fw_major, bp->fw_minor, bp->fw_rev);
764
765	return rc;
766}
767
768#define MCPR_TRACE_BUFFER_SIZE	(0x800)
769#define SCRATCH_BUFFER_SIZE(bp)	\
770	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
771
772void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
773{
774	u32 addr, val;
775	u32 mark, offset;
776	__be32 data[9];
777	int word;
778	u32 trace_shmem_base;
779	if (BP_NOMCP(bp)) {
780		BNX2X_ERR("NO MCP - can not dump\n");
781		return;
782	}
783	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
784		(bp->common.bc_ver & 0xff0000) >> 16,
785		(bp->common.bc_ver & 0xff00) >> 8,
786		(bp->common.bc_ver & 0xff));
787
788	if (pci_channel_offline(bp->pdev)) {
789		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
790		return;
791	}
792
793	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
794	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
795		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
796
797	if (BP_PATH(bp) == 0)
798		trace_shmem_base = bp->common.shmem_base;
799	else
800		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
801
802	/* sanity */
803	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
804	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
805				SCRATCH_BUFFER_SIZE(bp)) {
806		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
807			  trace_shmem_base);
808		return;
809	}
810
811	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
812
813	/* validate TRCB signature */
814	mark = REG_RD(bp, addr);
815	if (mark != MFW_TRACE_SIGNATURE) {
816		BNX2X_ERR("Trace buffer signature is missing.");
817		return ;
818	}
819
820	/* read cyclic buffer pointer */
821	addr += 4;
822	mark = REG_RD(bp, addr);
823	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
824	if (mark >= trace_shmem_base || mark < addr + 4) {
825		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
826		return;
827	}
828	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
829
830	printk("%s", lvl);
831
832	/* dump buffer after the mark */
833	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
834		for (word = 0; word < 8; word++)
835			data[word] = htonl(REG_RD(bp, offset + 4*word));
836		data[8] = 0x0;
837		pr_cont("%s", (char *)data);
838	}
839
840	/* dump buffer before the mark */
841	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
842		for (word = 0; word < 8; word++)
843			data[word] = htonl(REG_RD(bp, offset + 4*word));
844		data[8] = 0x0;
845		pr_cont("%s", (char *)data);
846	}
847	printk("%s" "end of fw dump\n", lvl);
848}
849
850static void bnx2x_fw_dump(struct bnx2x *bp)
851{
852	bnx2x_fw_dump_lvl(bp, KERN_ERR);
853}
854
855static void bnx2x_hc_int_disable(struct bnx2x *bp)
856{
857	int port = BP_PORT(bp);
858	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
859	u32 val = REG_RD(bp, addr);
860
861	/* in E1 we must use only PCI configuration space to disable
862	 * MSI/MSIX capability
863	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
864	 */
865	if (CHIP_IS_E1(bp)) {
866		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
867		 * Use mask register to prevent from HC sending interrupts
868		 * after we exit the function
869		 */
870		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
871
872		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
873			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
874			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
875	} else
876		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
877			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
878			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
879			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
880
881	DP(NETIF_MSG_IFDOWN,
882	   "write %x to HC %d (addr 0x%x)\n",
883	   val, port, addr);
884
885	REG_WR(bp, addr, val);
886	if (REG_RD(bp, addr) != val)
887		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
888}
889
890static void bnx2x_igu_int_disable(struct bnx2x *bp)
891{
892	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
893
894	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
895		 IGU_PF_CONF_INT_LINE_EN |
896		 IGU_PF_CONF_ATTN_BIT_EN);
897
898	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
899
900	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
901	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
902		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
903}
904
905static void bnx2x_int_disable(struct bnx2x *bp)
906{
907	if (bp->common.int_block == INT_BLOCK_HC)
908		bnx2x_hc_int_disable(bp);
909	else
910		bnx2x_igu_int_disable(bp);
911}
912
913void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
914{
915	int i;
916	u16 j;
917	struct hc_sp_status_block_data sp_sb_data;
918	int func = BP_FUNC(bp);
919#ifdef BNX2X_STOP_ON_ERROR
920	u16 start = 0, end = 0;
921	u8 cos;
922#endif
923	if (IS_PF(bp) && disable_int)
924		bnx2x_int_disable(bp);
925
926	bp->stats_state = STATS_STATE_DISABLED;
927	bp->eth_stats.unrecoverable_error++;
928	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
929
930	BNX2X_ERR("begin crash dump -----------------\n");
931
932	/* Indices */
933	/* Common */
934	if (IS_PF(bp)) {
935		struct host_sp_status_block *def_sb = bp->def_status_blk;
936		int data_size, cstorm_offset;
937
938		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
939			  bp->def_idx, bp->def_att_idx, bp->attn_state,
940			  bp->spq_prod_idx, bp->stats_counter);
941		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
942			  def_sb->atten_status_block.attn_bits,
943			  def_sb->atten_status_block.attn_bits_ack,
944			  def_sb->atten_status_block.status_block_id,
945			  def_sb->atten_status_block.attn_bits_index);
946		BNX2X_ERR("     def (");
947		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
948			pr_cont("0x%x%s",
949				def_sb->sp_sb.index_values[i],
950				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
951
952		data_size = sizeof(struct hc_sp_status_block_data) /
953			    sizeof(u32);
954		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
955		for (i = 0; i < data_size; i++)
956			*((u32 *)&sp_sb_data + i) =
957				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
958					   i * sizeof(u32));
959
960		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
961			sp_sb_data.igu_sb_id,
962			sp_sb_data.igu_seg_id,
963			sp_sb_data.p_func.pf_id,
964			sp_sb_data.p_func.vnic_id,
965			sp_sb_data.p_func.vf_id,
966			sp_sb_data.p_func.vf_valid,
967			sp_sb_data.state);
968	}
969
970	for_each_eth_queue(bp, i) {
971		struct bnx2x_fastpath *fp = &bp->fp[i];
972		int loop;
973		struct hc_status_block_data_e2 sb_data_e2;
974		struct hc_status_block_data_e1x sb_data_e1x;
975		struct hc_status_block_sm  *hc_sm_p =
976			CHIP_IS_E1x(bp) ?
977			sb_data_e1x.common.state_machine :
978			sb_data_e2.common.state_machine;
979		struct hc_index_data *hc_index_p =
980			CHIP_IS_E1x(bp) ?
981			sb_data_e1x.index_data :
982			sb_data_e2.index_data;
983		u8 data_size, cos;
984		u32 *sb_data_p;
985		struct bnx2x_fp_txdata txdata;
986
987		if (!bp->fp)
988			break;
989
990		if (!fp->rx_cons_sb)
991			continue;
992
993		/* Rx */
994		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
995			  i, fp->rx_bd_prod, fp->rx_bd_cons,
996			  fp->rx_comp_prod,
997			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
998		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
999			  fp->rx_sge_prod, fp->last_max_sge,
1000			  le16_to_cpu(fp->fp_hc_idx));
1001
1002		/* Tx */
1003		for_each_cos_in_tx_queue(fp, cos)
1004		{
1005			if (!fp->txdata_ptr[cos])
1006				break;
1007
1008			txdata = *fp->txdata_ptr[cos];
1009
1010			if (!txdata.tx_cons_sb)
1011				continue;
1012
1013			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1014				  i, txdata.tx_pkt_prod,
1015				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1016				  txdata.tx_bd_cons,
1017				  le16_to_cpu(*txdata.tx_cons_sb));
1018		}
1019
1020		loop = CHIP_IS_E1x(bp) ?
1021			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1022
1023		/* host sb data */
1024
1025		if (IS_FCOE_FP(fp))
1026			continue;
1027
1028		BNX2X_ERR("     run indexes (");
1029		for (j = 0; j < HC_SB_MAX_SM; j++)
1030			pr_cont("0x%x%s",
1031			       fp->sb_running_index[j],
1032			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1033
1034		BNX2X_ERR("     indexes (");
1035		for (j = 0; j < loop; j++)
1036			pr_cont("0x%x%s",
1037			       fp->sb_index_values[j],
1038			       (j == loop - 1) ? ")" : " ");
1039
1040		/* VF cannot access FW refelection for status block */
1041		if (IS_VF(bp))
1042			continue;
1043
1044		/* fw sb data */
1045		data_size = CHIP_IS_E1x(bp) ?
1046			sizeof(struct hc_status_block_data_e1x) :
1047			sizeof(struct hc_status_block_data_e2);
1048		data_size /= sizeof(u32);
1049		sb_data_p = CHIP_IS_E1x(bp) ?
1050			(u32 *)&sb_data_e1x :
1051			(u32 *)&sb_data_e2;
1052		/* copy sb data in here */
1053		for (j = 0; j < data_size; j++)
1054			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1055				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1056				j * sizeof(u32));
1057
1058		if (!CHIP_IS_E1x(bp)) {
1059			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1060				sb_data_e2.common.p_func.pf_id,
1061				sb_data_e2.common.p_func.vf_id,
1062				sb_data_e2.common.p_func.vf_valid,
1063				sb_data_e2.common.p_func.vnic_id,
1064				sb_data_e2.common.same_igu_sb_1b,
1065				sb_data_e2.common.state);
1066		} else {
1067			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1068				sb_data_e1x.common.p_func.pf_id,
1069				sb_data_e1x.common.p_func.vf_id,
1070				sb_data_e1x.common.p_func.vf_valid,
1071				sb_data_e1x.common.p_func.vnic_id,
1072				sb_data_e1x.common.same_igu_sb_1b,
1073				sb_data_e1x.common.state);
1074		}
1075
1076		/* SB_SMs data */
1077		for (j = 0; j < HC_SB_MAX_SM; j++) {
1078			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1079				j, hc_sm_p[j].__flags,
1080				hc_sm_p[j].igu_sb_id,
1081				hc_sm_p[j].igu_seg_id,
1082				hc_sm_p[j].time_to_expire,
1083				hc_sm_p[j].timer_value);
1084		}
1085
1086		/* Indices data */
1087		for (j = 0; j < loop; j++) {
1088			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1089			       hc_index_p[j].flags,
1090			       hc_index_p[j].timeout);
1091		}
1092	}
1093
1094#ifdef BNX2X_STOP_ON_ERROR
1095	if (IS_PF(bp)) {
1096		/* event queue */
1097		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1098		for (i = 0; i < NUM_EQ_DESC; i++) {
1099			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1100
1101			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1102				  i, bp->eq_ring[i].message.opcode,
1103				  bp->eq_ring[i].message.error);
1104			BNX2X_ERR("data: %x %x %x\n",
1105				  data[0], data[1], data[2]);
1106		}
1107	}
1108
1109	/* Rings */
1110	/* Rx */
1111	for_each_valid_rx_queue(bp, i) {
1112		struct bnx2x_fastpath *fp = &bp->fp[i];
1113
1114		if (!bp->fp)
1115			break;
1116
1117		if (!fp->rx_cons_sb)
1118			continue;
1119
1120		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1121		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1122		for (j = start; j != end; j = RX_BD(j + 1)) {
1123			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1124			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1125
1126			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1127				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1128		}
1129
1130		start = RX_SGE(fp->rx_sge_prod);
1131		end = RX_SGE(fp->last_max_sge);
1132		for (j = start; j != end; j = RX_SGE(j + 1)) {
1133			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1134			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1135
1136			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1137				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1138		}
1139
1140		start = RCQ_BD(fp->rx_comp_cons - 10);
1141		end = RCQ_BD(fp->rx_comp_cons + 503);
1142		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1143			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1144
1145			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1146				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1147		}
1148	}
1149
1150	/* Tx */
1151	for_each_valid_tx_queue(bp, i) {
1152		struct bnx2x_fastpath *fp = &bp->fp[i];
1153
1154		if (!bp->fp)
1155			break;
1156
1157		for_each_cos_in_tx_queue(fp, cos) {
1158			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1159
1160			if (!fp->txdata_ptr[cos])
1161				break;
1162
1163			if (!txdata->tx_cons_sb)
1164				continue;
1165
1166			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1167			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1168			for (j = start; j != end; j = TX_BD(j + 1)) {
1169				struct sw_tx_bd *sw_bd =
1170					&txdata->tx_buf_ring[j];
1171
1172				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1173					  i, cos, j, sw_bd->skb,
1174					  sw_bd->first_bd);
1175			}
1176
1177			start = TX_BD(txdata->tx_bd_cons - 10);
1178			end = TX_BD(txdata->tx_bd_cons + 254);
1179			for (j = start; j != end; j = TX_BD(j + 1)) {
1180				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1181
1182				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1183					  i, cos, j, tx_bd[0], tx_bd[1],
1184					  tx_bd[2], tx_bd[3]);
1185			}
1186		}
1187	}
1188#endif
1189	if (IS_PF(bp)) {
1190		int tmp_msg_en = bp->msg_enable;
1191
1192		bnx2x_fw_dump(bp);
1193		bp->msg_enable |= NETIF_MSG_HW;
1194		BNX2X_ERR("Idle check (1st round) ----------\n");
1195		bnx2x_idle_chk(bp);
1196		BNX2X_ERR("Idle check (2nd round) ----------\n");
1197		bnx2x_idle_chk(bp);
1198		bp->msg_enable = tmp_msg_en;
1199		bnx2x_mc_assert(bp);
1200	}
1201
1202	BNX2X_ERR("end crash dump -----------------\n");
1203}
1204
1205/*
1206 * FLR Support for E2
1207 *
1208 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1209 * initialization.
1210 */
1211#define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1212#define FLR_WAIT_INTERVAL	50	/* usec */
1213#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1214
1215struct pbf_pN_buf_regs {
1216	int pN;
1217	u32 init_crd;
1218	u32 crd;
1219	u32 crd_freed;
1220};
1221
1222struct pbf_pN_cmd_regs {
1223	int pN;
1224	u32 lines_occup;
1225	u32 lines_freed;
1226};
1227
1228static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1229				     struct pbf_pN_buf_regs *regs,
1230				     u32 poll_count)
1231{
1232	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1233	u32 cur_cnt = poll_count;
1234
1235	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1236	crd = crd_start = REG_RD(bp, regs->crd);
1237	init_crd = REG_RD(bp, regs->init_crd);
1238
1239	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1240	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1241	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1242
1243	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1244	       (init_crd - crd_start))) {
1245		if (cur_cnt--) {
1246			udelay(FLR_WAIT_INTERVAL);
1247			crd = REG_RD(bp, regs->crd);
1248			crd_freed = REG_RD(bp, regs->crd_freed);
1249		} else {
1250			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1251			   regs->pN);
1252			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1253			   regs->pN, crd);
1254			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1255			   regs->pN, crd_freed);
1256			break;
1257		}
1258	}
1259	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1260	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1261}
1262
1263static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1264				     struct pbf_pN_cmd_regs *regs,
1265				     u32 poll_count)
1266{
1267	u32 occup, to_free, freed, freed_start;
1268	u32 cur_cnt = poll_count;
1269
1270	occup = to_free = REG_RD(bp, regs->lines_occup);
1271	freed = freed_start = REG_RD(bp, regs->lines_freed);
1272
1273	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1274	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1275
1276	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1277		if (cur_cnt--) {
1278			udelay(FLR_WAIT_INTERVAL);
1279			occup = REG_RD(bp, regs->lines_occup);
1280			freed = REG_RD(bp, regs->lines_freed);
1281		} else {
1282			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1283			   regs->pN);
1284			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1285			   regs->pN, occup);
1286			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1287			   regs->pN, freed);
1288			break;
1289		}
1290	}
1291	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1292	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1293}
1294
1295static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1296				    u32 expected, u32 poll_count)
1297{
1298	u32 cur_cnt = poll_count;
1299	u32 val;
1300
1301	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1302		udelay(FLR_WAIT_INTERVAL);
1303
1304	return val;
1305}
1306
1307int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1308				    char *msg, u32 poll_cnt)
1309{
1310	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1311	if (val != 0) {
1312		BNX2X_ERR("%s usage count=%d\n", msg, val);
1313		return 1;
1314	}
1315	return 0;
1316}
1317
1318/* Common routines with VF FLR cleanup */
1319u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1320{
1321	/* adjust polling timeout */
1322	if (CHIP_REV_IS_EMUL(bp))
1323		return FLR_POLL_CNT * 2000;
1324
1325	if (CHIP_REV_IS_FPGA(bp))
1326		return FLR_POLL_CNT * 120;
1327
1328	return FLR_POLL_CNT;
1329}
1330
1331void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1332{
1333	struct pbf_pN_cmd_regs cmd_regs[] = {
1334		{0, (CHIP_IS_E3B0(bp)) ?
1335			PBF_REG_TQ_OCCUPANCY_Q0 :
1336			PBF_REG_P0_TQ_OCCUPANCY,
1337		    (CHIP_IS_E3B0(bp)) ?
1338			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1339			PBF_REG_P0_TQ_LINES_FREED_CNT},
1340		{1, (CHIP_IS_E3B0(bp)) ?
1341			PBF_REG_TQ_OCCUPANCY_Q1 :
1342			PBF_REG_P1_TQ_OCCUPANCY,
1343		    (CHIP_IS_E3B0(bp)) ?
1344			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1345			PBF_REG_P1_TQ_LINES_FREED_CNT},
1346		{4, (CHIP_IS_E3B0(bp)) ?
1347			PBF_REG_TQ_OCCUPANCY_LB_Q :
1348			PBF_REG_P4_TQ_OCCUPANCY,
1349		    (CHIP_IS_E3B0(bp)) ?
1350			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1351			PBF_REG_P4_TQ_LINES_FREED_CNT}
1352	};
1353
1354	struct pbf_pN_buf_regs buf_regs[] = {
1355		{0, (CHIP_IS_E3B0(bp)) ?
1356			PBF_REG_INIT_CRD_Q0 :
1357			PBF_REG_P0_INIT_CRD ,
1358		    (CHIP_IS_E3B0(bp)) ?
1359			PBF_REG_CREDIT_Q0 :
1360			PBF_REG_P0_CREDIT,
1361		    (CHIP_IS_E3B0(bp)) ?
1362			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1363			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1364		{1, (CHIP_IS_E3B0(bp)) ?
1365			PBF_REG_INIT_CRD_Q1 :
1366			PBF_REG_P1_INIT_CRD,
1367		    (CHIP_IS_E3B0(bp)) ?
1368			PBF_REG_CREDIT_Q1 :
1369			PBF_REG_P1_CREDIT,
1370		    (CHIP_IS_E3B0(bp)) ?
1371			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1372			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1373		{4, (CHIP_IS_E3B0(bp)) ?
1374			PBF_REG_INIT_CRD_LB_Q :
1375			PBF_REG_P4_INIT_CRD,
1376		    (CHIP_IS_E3B0(bp)) ?
1377			PBF_REG_CREDIT_LB_Q :
1378			PBF_REG_P4_CREDIT,
1379		    (CHIP_IS_E3B0(bp)) ?
1380			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1381			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1382	};
1383
1384	int i;
1385
1386	/* Verify the command queues are flushed P0, P1, P4 */
1387	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1388		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1389
1390	/* Verify the transmission buffers are flushed P0, P1, P4 */
1391	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1392		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1393}
1394
1395#define OP_GEN_PARAM(param) \
1396	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1397
1398#define OP_GEN_TYPE(type) \
1399	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1400
1401#define OP_GEN_AGG_VECT(index) \
1402	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1403
1404int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1405{
1406	u32 op_gen_command = 0;
1407	u32 comp_addr = BAR_CSTRORM_INTMEM +
1408			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1409	int ret = 0;
1410
1411	if (REG_RD(bp, comp_addr)) {
1412		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1413		return 1;
1414	}
1415
1416	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1417	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1418	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1419	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1420
1421	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1422	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1423
1424	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1425		BNX2X_ERR("FW final cleanup did not succeed\n");
1426		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1427		   (REG_RD(bp, comp_addr)));
1428		bnx2x_panic();
1429		return 1;
1430	}
1431	/* Zero completion for next FLR */
1432	REG_WR(bp, comp_addr, 0);
1433
1434	return ret;
1435}
1436
1437u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1438{
1439	u16 status;
1440
1441	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1442	return status & PCI_EXP_DEVSTA_TRPND;
1443}
1444
1445/* PF FLR specific routines
1446*/
1447static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1448{
1449	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1450	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1451			CFC_REG_NUM_LCIDS_INSIDE_PF,
1452			"CFC PF usage counter timed out",
1453			poll_cnt))
1454		return 1;
1455
1456	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1457	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1458			DORQ_REG_PF_USAGE_CNT,
1459			"DQ PF usage counter timed out",
1460			poll_cnt))
1461		return 1;
1462
1463	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1464	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1465			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1466			"QM PF usage counter timed out",
1467			poll_cnt))
1468		return 1;
1469
1470	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1471	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1472			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1473			"Timers VNIC usage counter timed out",
1474			poll_cnt))
1475		return 1;
1476	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1477			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1478			"Timers NUM_SCANS usage counter timed out",
1479			poll_cnt))
1480		return 1;
1481
1482	/* Wait DMAE PF usage counter to zero */
1483	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1484			dmae_reg_go_c[INIT_DMAE_C(bp)],
1485			"DMAE command register timed out",
1486			poll_cnt))
1487		return 1;
1488
1489	return 0;
1490}
1491
1492static void bnx2x_hw_enable_status(struct bnx2x *bp)
1493{
1494	u32 val;
1495
1496	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1497	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1498
1499	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1500	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1501
1502	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1503	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1504
1505	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1506	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1507
1508	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1509	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1510
1511	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1512	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1513
1514	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1515	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1516
1517	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1518	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1519	   val);
1520}
1521
1522static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1523{
1524	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1525
1526	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1527
1528	/* Re-enable PF target read access */
1529	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1530
1531	/* Poll HW usage counters */
1532	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1533	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1534		return -EBUSY;
1535
1536	/* Zero the igu 'trailing edge' and 'leading edge' */
1537
1538	/* Send the FW cleanup command */
1539	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1540		return -EBUSY;
1541
1542	/* ATC cleanup */
1543
1544	/* Verify TX hw is flushed */
1545	bnx2x_tx_hw_flushed(bp, poll_cnt);
1546
1547	/* Wait 100ms (not adjusted according to platform) */
1548	msleep(100);
1549
1550	/* Verify no pending pci transactions */
1551	if (bnx2x_is_pcie_pending(bp->pdev))
1552		BNX2X_ERR("PCIE Transactions still pending\n");
1553
1554	/* Debug */
1555	bnx2x_hw_enable_status(bp);
1556
1557	/*
1558	 * Master enable - Due to WB DMAE writes performed before this
1559	 * register is re-initialized as part of the regular function init
1560	 */
1561	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1562
1563	return 0;
1564}
1565
1566static void bnx2x_hc_int_enable(struct bnx2x *bp)
1567{
1568	int port = BP_PORT(bp);
1569	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1570	u32 val = REG_RD(bp, addr);
1571	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1572	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1573	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1574
1575	if (msix) {
1576		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1577			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1578		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1579			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1580		if (single_msix)
1581			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1582	} else if (msi) {
1583		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1584		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1585			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1586			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1587	} else {
1588		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1589			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1590			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1591			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1592
1593		if (!CHIP_IS_E1(bp)) {
1594			DP(NETIF_MSG_IFUP,
1595			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1596
1597			REG_WR(bp, addr, val);
1598
1599			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1600		}
1601	}
1602
1603	if (CHIP_IS_E1(bp))
1604		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1605
1606	DP(NETIF_MSG_IFUP,
1607	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1608	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1609
1610	REG_WR(bp, addr, val);
1611	/*
1612	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1613	 */
1614	barrier();
1615
1616	if (!CHIP_IS_E1(bp)) {
1617		/* init leading/trailing edge */
1618		if (IS_MF(bp)) {
1619			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1620			if (bp->port.pmf)
1621				/* enable nig and gpio3 attention */
1622				val |= 0x1100;
1623		} else
1624			val = 0xffff;
1625
1626		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1627		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1628	}
1629}
1630
1631static void bnx2x_igu_int_enable(struct bnx2x *bp)
1632{
1633	u32 val;
1634	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1635	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1636	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1637
1638	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1639
1640	if (msix) {
1641		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1642			 IGU_PF_CONF_SINGLE_ISR_EN);
1643		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1644			IGU_PF_CONF_ATTN_BIT_EN);
1645
1646		if (single_msix)
1647			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1648	} else if (msi) {
1649		val &= ~IGU_PF_CONF_INT_LINE_EN;
1650		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1651			IGU_PF_CONF_ATTN_BIT_EN |
1652			IGU_PF_CONF_SINGLE_ISR_EN);
1653	} else {
1654		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1655		val |= (IGU_PF_CONF_INT_LINE_EN |
1656			IGU_PF_CONF_ATTN_BIT_EN |
1657			IGU_PF_CONF_SINGLE_ISR_EN);
1658	}
1659
1660	/* Clean previous status - need to configure igu prior to ack*/
1661	if ((!msix) || single_msix) {
1662		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1663		bnx2x_ack_int(bp);
1664	}
1665
1666	val |= IGU_PF_CONF_FUNC_EN;
1667
1668	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1669	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1670
1671	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1672
1673	if (val & IGU_PF_CONF_INT_LINE_EN)
1674		pci_intx(bp->pdev, true);
1675
1676	barrier();
1677
1678	/* init leading/trailing edge */
1679	if (IS_MF(bp)) {
1680		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1681		if (bp->port.pmf)
1682			/* enable nig and gpio3 attention */
1683			val |= 0x1100;
1684	} else
1685		val = 0xffff;
1686
1687	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1688	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1689}
1690
1691void bnx2x_int_enable(struct bnx2x *bp)
1692{
1693	if (bp->common.int_block == INT_BLOCK_HC)
1694		bnx2x_hc_int_enable(bp);
1695	else
1696		bnx2x_igu_int_enable(bp);
1697}
1698
1699void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1700{
1701	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1702	int i, offset;
1703
1704	if (disable_hw)
1705		/* prevent the HW from sending interrupts */
1706		bnx2x_int_disable(bp);
1707
1708	/* make sure all ISRs are done */
1709	if (msix) {
1710		synchronize_irq(bp->msix_table[0].vector);
1711		offset = 1;
1712		if (CNIC_SUPPORT(bp))
1713			offset++;
1714		for_each_eth_queue(bp, i)
1715			synchronize_irq(bp->msix_table[offset++].vector);
1716	} else
1717		synchronize_irq(bp->pdev->irq);
1718
1719	/* make sure sp_task is not running */
1720	cancel_delayed_work(&bp->sp_task);
1721	cancel_delayed_work(&bp->period_task);
1722	flush_workqueue(bnx2x_wq);
1723}
1724
1725/* fast path */
1726
1727/*
1728 * General service functions
1729 */
1730
1731/* Return true if succeeded to acquire the lock */
1732static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1733{
1734	u32 lock_status;
1735	u32 resource_bit = (1 << resource);
1736	int func = BP_FUNC(bp);
1737	u32 hw_lock_control_reg;
1738
1739	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1740	   "Trying to take a lock on resource %d\n", resource);
1741
1742	/* Validating that the resource is within range */
1743	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1744		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1745		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1746		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1747		return false;
1748	}
1749
1750	if (func <= 5)
1751		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1752	else
1753		hw_lock_control_reg =
1754				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1755
1756	/* Try to acquire the lock */
1757	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1758	lock_status = REG_RD(bp, hw_lock_control_reg);
1759	if (lock_status & resource_bit)
1760		return true;
1761
1762	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1763	   "Failed to get a lock on resource %d\n", resource);
1764	return false;
1765}
1766
1767/**
1768 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1769 *
1770 * @bp:	driver handle
1771 *
1772 * Returns the recovery leader resource id according to the engine this function
1773 * belongs to. Currently only only 2 engines is supported.
1774 */
1775static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1776{
1777	if (BP_PATH(bp))
1778		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1779	else
1780		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1781}
1782
1783/**
1784 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1785 *
1786 * @bp: driver handle
1787 *
1788 * Tries to acquire a leader lock for current engine.
1789 */
1790static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1791{
1792	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1793}
1794
1795static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1796
1797/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1798static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1799{
1800	/* Set the interrupt occurred bit for the sp-task to recognize it
1801	 * must ack the interrupt and transition according to the IGU
1802	 * state machine.
1803	 */
1804	atomic_set(&bp->interrupt_occurred, 1);
1805
1806	/* The sp_task must execute only after this bit
1807	 * is set, otherwise we will get out of sync and miss all
1808	 * further interrupts. Hence, the barrier.
1809	 */
1810	smp_wmb();
1811
1812	/* schedule sp_task to workqueue */
1813	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1814}
1815
1816void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1817{
1818	struct bnx2x *bp = fp->bp;
1819	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1820	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1821	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1822	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1823
1824	DP(BNX2X_MSG_SP,
1825	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1826	   fp->index, cid, command, bp->state,
1827	   rr_cqe->ramrod_cqe.ramrod_type);
1828
1829	/* If cid is within VF range, replace the slowpath object with the
1830	 * one corresponding to this VF
1831	 */
1832	if (cid >= BNX2X_FIRST_VF_CID  &&
1833	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1834		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1835
1836	switch (command) {
1837	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1838		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1839		drv_cmd = BNX2X_Q_CMD_UPDATE;
1840		break;
1841
1842	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1843		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1844		drv_cmd = BNX2X_Q_CMD_SETUP;
1845		break;
1846
1847	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1848		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1849		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1850		break;
1851
1852	case (RAMROD_CMD_ID_ETH_HALT):
1853		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1854		drv_cmd = BNX2X_Q_CMD_HALT;
1855		break;
1856
1857	case (RAMROD_CMD_ID_ETH_TERMINATE):
1858		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1859		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1860		break;
1861
1862	case (RAMROD_CMD_ID_ETH_EMPTY):
1863		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1864		drv_cmd = BNX2X_Q_CMD_EMPTY;
1865		break;
1866
1867	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1868		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1869		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1870		break;
1871
1872	default:
1873		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1874			  command, fp->index);
1875		return;
1876	}
1877
1878	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1879	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1880		/* q_obj->complete_cmd() failure means that this was
1881		 * an unexpected completion.
1882		 *
1883		 * In this case we don't want to increase the bp->spq_left
1884		 * because apparently we haven't sent this command the first
1885		 * place.
1886		 */
1887#ifdef BNX2X_STOP_ON_ERROR
1888		bnx2x_panic();
1889#else
1890		return;
1891#endif
1892
1893	smp_mb__before_atomic();
1894	atomic_inc(&bp->cq_spq_left);
1895	/* push the change in bp->spq_left and towards the memory */
1896	smp_mb__after_atomic();
1897
1898	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1899
1900	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1901	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1902		/* if Q update ramrod is completed for last Q in AFEX vif set
1903		 * flow, then ACK MCP at the end
1904		 *
1905		 * mark pending ACK to MCP bit.
1906		 * prevent case that both bits are cleared.
1907		 * At the end of load/unload driver checks that
1908		 * sp_state is cleared, and this order prevents
1909		 * races
1910		 */
1911		smp_mb__before_atomic();
1912		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1913		wmb();
1914		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1915		smp_mb__after_atomic();
1916
1917		/* schedule the sp task as mcp ack is required */
1918		bnx2x_schedule_sp_task(bp);
1919	}
1920
1921	return;
1922}
1923
1924irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1925{
1926	struct bnx2x *bp = netdev_priv(dev_instance);
1927	u16 status = bnx2x_ack_int(bp);
1928	u16 mask;
1929	int i;
1930	u8 cos;
1931
1932	/* Return here if interrupt is shared and it's not for us */
1933	if (unlikely(status == 0)) {
1934		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1935		return IRQ_NONE;
1936	}
1937	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1938
1939#ifdef BNX2X_STOP_ON_ERROR
1940	if (unlikely(bp->panic))
1941		return IRQ_HANDLED;
1942#endif
1943
1944	for_each_eth_queue(bp, i) {
1945		struct bnx2x_fastpath *fp = &bp->fp[i];
1946
1947		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1948		if (status & mask) {
1949			/* Handle Rx or Tx according to SB id */
1950			for_each_cos_in_tx_queue(fp, cos)
1951				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1952			prefetch(&fp->sb_running_index[SM_RX_ID]);
1953			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1954			status &= ~mask;
1955		}
1956	}
1957
1958	if (CNIC_SUPPORT(bp)) {
1959		mask = 0x2;
1960		if (status & (mask | 0x1)) {
1961			struct cnic_ops *c_ops = NULL;
1962
1963			rcu_read_lock();
1964			c_ops = rcu_dereference(bp->cnic_ops);
1965			if (c_ops && (bp->cnic_eth_dev.drv_state &
1966				      CNIC_DRV_STATE_HANDLES_IRQ))
1967				c_ops->cnic_handler(bp->cnic_data, NULL);
1968			rcu_read_unlock();
1969
1970			status &= ~mask;
1971		}
1972	}
1973
1974	if (unlikely(status & 0x1)) {
1975
1976		/* schedule sp task to perform default status block work, ack
1977		 * attentions and enable interrupts.
1978		 */
1979		bnx2x_schedule_sp_task(bp);
1980
1981		status &= ~0x1;
1982		if (!status)
1983			return IRQ_HANDLED;
1984	}
1985
1986	if (unlikely(status))
1987		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1988		   status);
1989
1990	return IRQ_HANDLED;
1991}
1992
1993/* Link */
1994
1995/*
1996 * General service functions
1997 */
1998
1999int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
2000{
2001	u32 lock_status;
2002	u32 resource_bit = (1 << resource);
2003	int func = BP_FUNC(bp);
2004	u32 hw_lock_control_reg;
2005	int cnt;
2006
2007	/* Validating that the resource is within range */
2008	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2009		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2010		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2011		return -EINVAL;
2012	}
2013
2014	if (func <= 5) {
2015		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2016	} else {
2017		hw_lock_control_reg =
2018				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2019	}
2020
2021	/* Validating that the resource is not already taken */
2022	lock_status = REG_RD(bp, hw_lock_control_reg);
2023	if (lock_status & resource_bit) {
2024		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2025		   lock_status, resource_bit);
2026		return -EEXIST;
2027	}
2028
2029	/* Try for 5 second every 5ms */
2030	for (cnt = 0; cnt < 1000; cnt++) {
2031		/* Try to acquire the lock */
2032		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2033		lock_status = REG_RD(bp, hw_lock_control_reg);
2034		if (lock_status & resource_bit)
2035			return 0;
2036
2037		usleep_range(5000, 10000);
2038	}
2039	BNX2X_ERR("Timeout\n");
2040	return -EAGAIN;
2041}
2042
2043int bnx2x_release_leader_lock(struct bnx2x *bp)
2044{
2045	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2046}
2047
2048int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2049{
2050	u32 lock_status;
2051	u32 resource_bit = (1 << resource);
2052	int func = BP_FUNC(bp);
2053	u32 hw_lock_control_reg;
2054
2055	/* Validating that the resource is within range */
2056	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2057		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2058		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2059		return -EINVAL;
2060	}
2061
2062	if (func <= 5) {
2063		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2064	} else {
2065		hw_lock_control_reg =
2066				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2067	}
2068
2069	/* Validating that the resource is currently taken */
2070	lock_status = REG_RD(bp, hw_lock_control_reg);
2071	if (!(lock_status & resource_bit)) {
2072		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2073			  lock_status, resource_bit);
2074		return -EFAULT;
2075	}
2076
2077	REG_WR(bp, hw_lock_control_reg, resource_bit);
2078	return 0;
2079}
2080
2081int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2082{
2083	/* The GPIO should be swapped if swap register is set and active */
2084	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2085			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2086	int gpio_shift = gpio_num +
2087			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2088	u32 gpio_mask = (1 << gpio_shift);
2089	u32 gpio_reg;
2090	int value;
2091
2092	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2093		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2094		return -EINVAL;
2095	}
2096
2097	/* read GPIO value */
2098	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2099
2100	/* get the requested pin value */
2101	if ((gpio_reg & gpio_mask) == gpio_mask)
2102		value = 1;
2103	else
2104		value = 0;
2105
2106	return value;
2107}
2108
2109int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2110{
2111	/* The GPIO should be swapped if swap register is set and active */
2112	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2113			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2114	int gpio_shift = gpio_num +
2115			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2116	u32 gpio_mask = (1 << gpio_shift);
2117	u32 gpio_reg;
2118
2119	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2120		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2121		return -EINVAL;
2122	}
2123
2124	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2125	/* read GPIO and mask except the float bits */
2126	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2127
2128	switch (mode) {
2129	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2130		DP(NETIF_MSG_LINK,
2131		   "Set GPIO %d (shift %d) -> output low\n",
2132		   gpio_num, gpio_shift);
2133		/* clear FLOAT and set CLR */
2134		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2136		break;
2137
2138	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2139		DP(NETIF_MSG_LINK,
2140		   "Set GPIO %d (shift %d) -> output high\n",
2141		   gpio_num, gpio_shift);
2142		/* clear FLOAT and set SET */
2143		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2144		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2145		break;
2146
2147	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2148		DP(NETIF_MSG_LINK,
2149		   "Set GPIO %d (shift %d) -> input\n",
2150		   gpio_num, gpio_shift);
2151		/* set FLOAT */
2152		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2153		break;
2154
2155	default:
2156		break;
2157	}
2158
2159	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2160	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2161
2162	return 0;
2163}
2164
2165int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2166{
2167	u32 gpio_reg = 0;
2168	int rc = 0;
2169
2170	/* Any port swapping should be handled by caller. */
2171
2172	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2173	/* read GPIO and mask except the float bits */
2174	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2175	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2176	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2177	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2178
2179	switch (mode) {
2180	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2181		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2182		/* set CLR */
2183		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2184		break;
2185
2186	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2187		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2188		/* set SET */
2189		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2190		break;
2191
2192	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2193		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2194		/* set FLOAT */
2195		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2196		break;
2197
2198	default:
2199		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2200		rc = -EINVAL;
2201		break;
2202	}
2203
2204	if (rc == 0)
2205		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2206
2207	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2208
2209	return rc;
2210}
2211
2212int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2213{
2214	/* The GPIO should be swapped if swap register is set and active */
2215	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2216			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2217	int gpio_shift = gpio_num +
2218			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2219	u32 gpio_mask = (1 << gpio_shift);
2220	u32 gpio_reg;
2221
2222	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2223		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2224		return -EINVAL;
2225	}
2226
2227	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2228	/* read GPIO int */
2229	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2230
2231	switch (mode) {
2232	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2233		DP(NETIF_MSG_LINK,
2234		   "Clear GPIO INT %d (shift %d) -> output low\n",
2235		   gpio_num, gpio_shift);
2236		/* clear SET and set CLR */
2237		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2238		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2239		break;
2240
2241	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2242		DP(NETIF_MSG_LINK,
2243		   "Set GPIO INT %d (shift %d) -> output high\n",
2244		   gpio_num, gpio_shift);
2245		/* clear CLR and set SET */
2246		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2247		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2248		break;
2249
2250	default:
2251		break;
2252	}
2253
2254	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2255	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2256
2257	return 0;
2258}
2259
2260static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2261{
2262	u32 spio_reg;
2263
2264	/* Only 2 SPIOs are configurable */
2265	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2266		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2267		return -EINVAL;
2268	}
2269
2270	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2271	/* read SPIO and mask except the float bits */
2272	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2273
2274	switch (mode) {
2275	case MISC_SPIO_OUTPUT_LOW:
2276		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2277		/* clear FLOAT and set CLR */
2278		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2279		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2280		break;
2281
2282	case MISC_SPIO_OUTPUT_HIGH:
2283		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2284		/* clear FLOAT and set SET */
2285		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2286		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2287		break;
2288
2289	case MISC_SPIO_INPUT_HI_Z:
2290		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2291		/* set FLOAT */
2292		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2293		break;
2294
2295	default:
2296		break;
2297	}
2298
2299	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2300	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2301
2302	return 0;
2303}
2304
2305void bnx2x_calc_fc_adv(struct bnx2x *bp)
2306{
2307	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2308
2309	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2310					   ADVERTISED_Pause);
2311	switch (bp->link_vars.ieee_fc &
2312		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2313	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2314		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2315						  ADVERTISED_Pause);
2316		break;
2317
2318	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2319		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2320		break;
2321
2322	default:
2323		break;
2324	}
2325}
2326
2327static void bnx2x_set_requested_fc(struct bnx2x *bp)
2328{
2329	/* Initialize link parameters structure variables
2330	 * It is recommended to turn off RX FC for jumbo frames
2331	 *  for better performance
2332	 */
2333	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2334		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2335	else
2336		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2337}
2338
2339static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2340{
2341	u32 pause_enabled = 0;
2342
2343	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2344		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2345			pause_enabled = 1;
2346
2347		REG_WR(bp, BAR_USTRORM_INTMEM +
2348			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2349		       pause_enabled);
2350	}
2351
2352	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2353	   pause_enabled ? "enabled" : "disabled");
2354}
2355
2356int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2357{
2358	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2359	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2360
2361	if (!BP_NOMCP(bp)) {
2362		bnx2x_set_requested_fc(bp);
2363		bnx2x_acquire_phy_lock(bp);
2364
2365		if (load_mode == LOAD_DIAG) {
2366			struct link_params *lp = &bp->link_params;
2367			lp->loopback_mode = LOOPBACK_XGXS;
2368			/* Prefer doing PHY loopback at highest speed */
2369			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2370				if (lp->speed_cap_mask[cfx_idx] &
2371				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2372					lp->req_line_speed[cfx_idx] =
2373					SPEED_20000;
2374				else if (lp->speed_cap_mask[cfx_idx] &
2375					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2376						lp->req_line_speed[cfx_idx] =
2377						SPEED_10000;
2378				else
2379					lp->req_line_speed[cfx_idx] =
2380					SPEED_1000;
2381			}
2382		}
2383
2384		if (load_mode == LOAD_LOOPBACK_EXT) {
2385			struct link_params *lp = &bp->link_params;
2386			lp->loopback_mode = LOOPBACK_EXT;
2387		}
2388
2389		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2390
2391		bnx2x_release_phy_lock(bp);
2392
2393		bnx2x_init_dropless_fc(bp);
2394
2395		bnx2x_calc_fc_adv(bp);
2396
2397		if (bp->link_vars.link_up) {
2398			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2399			bnx2x_link_report(bp);
2400		}
2401		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2402		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2403		return rc;
2404	}
2405	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2406	return -EINVAL;
2407}
2408
2409void bnx2x_link_set(struct bnx2x *bp)
2410{
2411	if (!BP_NOMCP(bp)) {
2412		bnx2x_acquire_phy_lock(bp);
2413		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2414		bnx2x_release_phy_lock(bp);
2415
2416		bnx2x_init_dropless_fc(bp);
2417
2418		bnx2x_calc_fc_adv(bp);
2419	} else
2420		BNX2X_ERR("Bootcode is missing - can not set link\n");
2421}
2422
2423static void bnx2x__link_reset(struct bnx2x *bp)
2424{
2425	if (!BP_NOMCP(bp)) {
2426		bnx2x_acquire_phy_lock(bp);
2427		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2428		bnx2x_release_phy_lock(bp);
2429	} else
2430		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2431}
2432
2433void bnx2x_force_link_reset(struct bnx2x *bp)
2434{
2435	bnx2x_acquire_phy_lock(bp);
2436	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2437	bnx2x_release_phy_lock(bp);
2438}
2439
2440u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2441{
2442	u8 rc = 0;
2443
2444	if (!BP_NOMCP(bp)) {
2445		bnx2x_acquire_phy_lock(bp);
2446		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2447				     is_serdes);
2448		bnx2x_release_phy_lock(bp);
2449	} else
2450		BNX2X_ERR("Bootcode is missing - can not test link\n");
2451
2452	return rc;
2453}
2454
2455/* Calculates the sum of vn_min_rates.
2456   It's needed for further normalizing of the min_rates.
2457   Returns:
2458     sum of vn_min_rates.
2459       or
2460     0 - if all the min_rates are 0.
2461     In the later case fairness algorithm should be deactivated.
2462     If not all min_rates are zero then those that are zeroes will be set to 1.
2463 */
2464static void bnx2x_calc_vn_min(struct bnx2x *bp,
2465				      struct cmng_init_input *input)
2466{
2467	int all_zero = 1;
2468	int vn;
2469
2470	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2471		u32 vn_cfg = bp->mf_config[vn];
2472		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2473				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2474
2475		/* Skip hidden vns */
2476		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2477			vn_min_rate = 0;
2478		/* If min rate is zero - set it to 1 */
2479		else if (!vn_min_rate)
2480			vn_min_rate = DEF_MIN_RATE;
2481		else
2482			all_zero = 0;
2483
2484		input->vnic_min_rate[vn] = vn_min_rate;
2485	}
2486
2487	/* if ETS or all min rates are zeros - disable fairness */
2488	if (BNX2X_IS_ETS_ENABLED(bp)) {
2489		input->flags.cmng_enables &=
2490					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2492	} else if (all_zero) {
2493		input->flags.cmng_enables &=
2494					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2495		DP(NETIF_MSG_IFUP,
2496		   "All MIN values are zeroes fairness will be disabled\n");
2497	} else
2498		input->flags.cmng_enables |=
2499					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2500}
2501
2502static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2503				    struct cmng_init_input *input)
2504{
2505	u16 vn_max_rate;
2506	u32 vn_cfg = bp->mf_config[vn];
2507
2508	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2509		vn_max_rate = 0;
2510	else {
2511		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2512
2513		if (IS_MF_PERCENT_BW(bp)) {
2514			/* maxCfg in percents of linkspeed */
2515			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2516		} else /* SD modes */
2517			/* maxCfg is absolute in 100Mb units */
2518			vn_max_rate = maxCfg * 100;
2519	}
2520
2521	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2522
2523	input->vnic_max_rate[vn] = vn_max_rate;
2524}
2525
2526static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2527{
2528	if (CHIP_REV_IS_SLOW(bp))
2529		return CMNG_FNS_NONE;
2530	if (IS_MF(bp))
2531		return CMNG_FNS_MINMAX;
2532
2533	return CMNG_FNS_NONE;
2534}
2535
2536void bnx2x_read_mf_cfg(struct bnx2x *bp)
2537{
2538	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2539
2540	if (BP_NOMCP(bp))
2541		return; /* what should be the default value in this case */
2542
2543	/* For 2 port configuration the absolute function number formula
2544	 * is:
2545	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2546	 *
2547	 *      and there are 4 functions per port
2548	 *
2549	 * For 4 port configuration it is
2550	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2551	 *
2552	 *      and there are 2 functions per port
2553	 */
2554	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2555		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2556
2557		if (func >= E1H_FUNC_MAX)
2558			break;
2559
2560		bp->mf_config[vn] =
2561			MF_CFG_RD(bp, func_mf_config[func].config);
2562	}
2563	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2564		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2565		bp->flags |= MF_FUNC_DIS;
2566	} else {
2567		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2568		bp->flags &= ~MF_FUNC_DIS;
2569	}
2570}
2571
2572static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2573{
2574	struct cmng_init_input input;
2575	memset(&input, 0, sizeof(struct cmng_init_input));
2576
2577	input.port_rate = bp->link_vars.line_speed;
2578
2579	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2580		int vn;
2581
2582		/* read mf conf from shmem */
2583		if (read_cfg)
2584			bnx2x_read_mf_cfg(bp);
2585
2586		/* vn_weight_sum and enable fairness if not 0 */
2587		bnx2x_calc_vn_min(bp, &input);
2588
2589		/* calculate and set min-max rate for each vn */
2590		if (bp->port.pmf)
2591			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2592				bnx2x_calc_vn_max(bp, vn, &input);
2593
2594		/* always enable rate shaping and fairness */
2595		input.flags.cmng_enables |=
2596					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2597
2598		bnx2x_init_cmng(&input, &bp->cmng);
2599		return;
2600	}
2601
2602	/* rate shaping and fairness are disabled */
2603	DP(NETIF_MSG_IFUP,
2604	   "rate shaping and fairness are disabled\n");
2605}
2606
2607static void storm_memset_cmng(struct bnx2x *bp,
2608			      struct cmng_init *cmng,
2609			      u8 port)
2610{
2611	int vn;
2612	size_t size = sizeof(struct cmng_struct_per_port);
2613
2614	u32 addr = BAR_XSTRORM_INTMEM +
2615			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2616
2617	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2618
2619	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2620		int func = func_by_vn(bp, vn);
2621
2622		addr = BAR_XSTRORM_INTMEM +
2623		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2624		size = sizeof(struct rate_shaping_vars_per_vn);
2625		__storm_memset_struct(bp, addr, size,
2626				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2627
2628		addr = BAR_XSTRORM_INTMEM +
2629		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2630		size = sizeof(struct fairness_vars_per_vn);
2631		__storm_memset_struct(bp, addr, size,
2632				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2633	}
2634}
2635
2636/* init cmng mode in HW according to local configuration */
2637void bnx2x_set_local_cmng(struct bnx2x *bp)
2638{
2639	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2640
2641	if (cmng_fns != CMNG_FNS_NONE) {
2642		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2643		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2644	} else {
2645		/* rate shaping and fairness are disabled */
2646		DP(NETIF_MSG_IFUP,
2647		   "single function mode without fairness\n");
2648	}
2649}
2650
2651/* This function is called upon link interrupt */
2652static void bnx2x_link_attn(struct bnx2x *bp)
2653{
2654	/* Make sure that we are synced with the current statistics */
2655	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2656
2657	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2658
2659	bnx2x_init_dropless_fc(bp);
2660
2661	if (bp->link_vars.link_up) {
2662
2663		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2664			struct host_port_stats *pstats;
2665
2666			pstats = bnx2x_sp(bp, port_stats);
2667			/* reset old mac stats */
2668			memset(&(pstats->mac_stx[0]), 0,
2669			       sizeof(struct mac_stx));
2670		}
2671		if (bp->state == BNX2X_STATE_OPEN)
2672			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2673	}
2674
2675	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2676		bnx2x_set_local_cmng(bp);
2677
2678	__bnx2x_link_report(bp);
2679
2680	if (IS_MF(bp))
2681		bnx2x_link_sync_notify(bp);
2682}
2683
2684void bnx2x__link_status_update(struct bnx2x *bp)
2685{
2686	if (bp->state != BNX2X_STATE_OPEN)
2687		return;
2688
2689	/* read updated dcb configuration */
2690	if (IS_PF(bp)) {
2691		bnx2x_dcbx_pmf_update(bp);
2692		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2693		if (bp->link_vars.link_up)
2694			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2695		else
2696			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2697			/* indicate link status */
2698		bnx2x_link_report(bp);
2699
2700	} else { /* VF */
2701		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2702					  SUPPORTED_10baseT_Full |
2703					  SUPPORTED_100baseT_Half |
2704					  SUPPORTED_100baseT_Full |
2705					  SUPPORTED_1000baseT_Full |
2706					  SUPPORTED_2500baseX_Full |
2707					  SUPPORTED_10000baseT_Full |
2708					  SUPPORTED_TP |
2709					  SUPPORTED_FIBRE |
2710					  SUPPORTED_Autoneg |
2711					  SUPPORTED_Pause |
2712					  SUPPORTED_Asym_Pause);
2713		bp->port.advertising[0] = bp->port.supported[0];
2714
2715		bp->link_params.bp = bp;
2716		bp->link_params.port = BP_PORT(bp);
2717		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2718		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2719		bp->link_params.req_line_speed[0] = SPEED_10000;
2720		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2721		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2722		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2723		bp->link_vars.line_speed = SPEED_10000;
2724		bp->link_vars.link_status =
2725			(LINK_STATUS_LINK_UP |
2726			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2727		bp->link_vars.link_up = 1;
2728		bp->link_vars.duplex = DUPLEX_FULL;
2729		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2730		__bnx2x_link_report(bp);
2731
2732		bnx2x_sample_bulletin(bp);
2733
2734		/* if bulletin board did not have an update for link status
2735		 * __bnx2x_link_report will report current status
2736		 * but it will NOT duplicate report in case of already reported
2737		 * during sampling bulletin board.
2738		 */
2739		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2740	}
2741}
2742
2743static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2744				  u16 vlan_val, u8 allowed_prio)
2745{
2746	struct bnx2x_func_state_params func_params = {NULL};
2747	struct bnx2x_func_afex_update_params *f_update_params =
2748		&func_params.params.afex_update;
2749
2750	func_params.f_obj = &bp->func_obj;
2751	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2752
2753	/* no need to wait for RAMROD completion, so don't
2754	 * set RAMROD_COMP_WAIT flag
2755	 */
2756
2757	f_update_params->vif_id = vifid;
2758	f_update_params->afex_default_vlan = vlan_val;
2759	f_update_params->allowed_priorities = allowed_prio;
2760
2761	/* if ramrod can not be sent, response to MCP immediately */
2762	if (bnx2x_func_state_change(bp, &func_params) < 0)
2763		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2764
2765	return 0;
2766}
2767
2768static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2769					  u16 vif_index, u8 func_bit_map)
2770{
2771	struct bnx2x_func_state_params func_params = {NULL};
2772	struct bnx2x_func_afex_viflists_params *update_params =
2773		&func_params.params.afex_viflists;
2774	int rc;
2775	u32 drv_msg_code;
2776
2777	/* validate only LIST_SET and LIST_GET are received from switch */
2778	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2779		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2780			  cmd_type);
2781
2782	func_params.f_obj = &bp->func_obj;
2783	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2784
2785	/* set parameters according to cmd_type */
2786	update_params->afex_vif_list_command = cmd_type;
2787	update_params->vif_list_index = vif_index;
2788	update_params->func_bit_map =
2789		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2790	update_params->func_to_clear = 0;
2791	drv_msg_code =
2792		(cmd_type == VIF_LIST_RULE_GET) ?
2793		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2794		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2795
2796	/* if ramrod can not be sent, respond to MCP immediately for
2797	 * SET and GET requests (other are not triggered from MCP)
2798	 */
2799	rc = bnx2x_func_state_change(bp, &func_params);
2800	if (rc < 0)
2801		bnx2x_fw_command(bp, drv_msg_code, 0);
2802
2803	return 0;
2804}
2805
2806static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2807{
2808	struct afex_stats afex_stats;
2809	u32 func = BP_ABS_FUNC(bp);
2810	u32 mf_config;
2811	u16 vlan_val;
2812	u32 vlan_prio;
2813	u16 vif_id;
2814	u8 allowed_prio;
2815	u8 vlan_mode;
2816	u32 addr_to_write, vifid, addrs, stats_type, i;
2817
2818	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2819		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2820		DP(BNX2X_MSG_MCP,
2821		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2822		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2823	}
2824
2825	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2826		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2827		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2828		DP(BNX2X_MSG_MCP,
2829		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2830		   vifid, addrs);
2831		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2832					       addrs);
2833	}
2834
2835	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2836		addr_to_write = SHMEM2_RD(bp,
2837			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2838		stats_type = SHMEM2_RD(bp,
2839			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2840
2841		DP(BNX2X_MSG_MCP,
2842		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2843		   addr_to_write);
2844
2845		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2846
2847		/* write response to scratchpad, for MCP */
2848		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2849			REG_WR(bp, addr_to_write + i*sizeof(u32),
2850			       *(((u32 *)(&afex_stats))+i));
2851
2852		/* send ack message to MCP */
2853		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2854	}
2855
2856	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2857		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2858		bp->mf_config[BP_VN(bp)] = mf_config;
2859		DP(BNX2X_MSG_MCP,
2860		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2861		   mf_config);
2862
2863		/* if VIF_SET is "enabled" */
2864		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2865			/* set rate limit directly to internal RAM */
2866			struct cmng_init_input cmng_input;
2867			struct rate_shaping_vars_per_vn m_rs_vn;
2868			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2869			u32 addr = BAR_XSTRORM_INTMEM +
2870			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2871
2872			bp->mf_config[BP_VN(bp)] = mf_config;
2873
2874			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2875			m_rs_vn.vn_counter.rate =
2876				cmng_input.vnic_max_rate[BP_VN(bp)];
2877			m_rs_vn.vn_counter.quota =
2878				(m_rs_vn.vn_counter.rate *
2879				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2880
2881			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2882
2883			/* read relevant values from mf_cfg struct in shmem */
2884			vif_id =
2885				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2886				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2887				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2888			vlan_val =
2889				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2890				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2891				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2892			vlan_prio = (mf_config &
2893				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2894				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2895			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2896			vlan_mode =
2897				(MF_CFG_RD(bp,
2898					   func_mf_config[func].afex_config) &
2899				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2900				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2901			allowed_prio =
2902				(MF_CFG_RD(bp,
2903					   func_mf_config[func].afex_config) &
2904				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2905				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2906
2907			/* send ramrod to FW, return in case of failure */
2908			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2909						   allowed_prio))
2910				return;
2911
2912			bp->afex_def_vlan_tag = vlan_val;
2913			bp->afex_vlan_mode = vlan_mode;
2914		} else {
2915			/* notify link down because BP->flags is disabled */
2916			bnx2x_link_report(bp);
2917
2918			/* send INVALID VIF ramrod to FW */
2919			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2920
2921			/* Reset the default afex VLAN */
2922			bp->afex_def_vlan_tag = -1;
2923		}
2924	}
2925}
2926
2927static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2928{
2929	struct bnx2x_func_switch_update_params *switch_update_params;
2930	struct bnx2x_func_state_params func_params;
2931
2932	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2933	switch_update_params = &func_params.params.switch_update;
2934	func_params.f_obj = &bp->func_obj;
2935	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2936
2937	/* Prepare parameters for function state transitions */
2938	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2939	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2940
2941	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2942		int func = BP_ABS_FUNC(bp);
2943		u32 val;
2944
2945		/* Re-learn the S-tag from shmem */
2946		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2947				FUNC_MF_CFG_E1HOV_TAG_MASK;
2948		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2949			bp->mf_ov = val;
2950		} else {
2951			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2952			goto fail;
2953		}
2954
2955		/* Configure new S-tag in LLH */
2956		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2957		       bp->mf_ov);
2958
2959		/* Send Ramrod to update FW of change */
2960		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2961			  &switch_update_params->changes);
2962		switch_update_params->vlan = bp->mf_ov;
2963
2964		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2965			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2966				  bp->mf_ov);
2967			goto fail;
2968		} else {
2969			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2970			   bp->mf_ov);
2971		}
2972	} else {
2973		goto fail;
2974	}
2975
2976	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2977	return;
2978fail:
2979	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2980}
2981
2982static void bnx2x_pmf_update(struct bnx2x *bp)
2983{
2984	int port = BP_PORT(bp);
2985	u32 val;
2986
2987	bp->port.pmf = 1;
2988	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2989
2990	/*
2991	 * We need the mb() to ensure the ordering between the writing to
2992	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2993	 */
2994	smp_mb();
2995
2996	/* queue a periodic task */
2997	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2998
2999	bnx2x_dcbx_pmf_update(bp);
3000
3001	/* enable nig attention */
3002	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3003	if (bp->common.int_block == INT_BLOCK_HC) {
3004		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3005		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3006	} else if (!CHIP_IS_E1x(bp)) {
3007		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3008		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3009	}
3010
3011	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3012}
3013
3014/* end of Link */
3015
3016/* slow path */
3017
3018/*
3019 * General service functions
3020 */
3021
3022/* send the MCP a request, block until there is a reply */
3023u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3024{
3025	int mb_idx = BP_FW_MB_IDX(bp);
3026	u32 seq;
3027	u32 rc = 0;
3028	u32 cnt = 1;
3029	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3030
3031	mutex_lock(&bp->fw_mb_mutex);
3032	seq = ++bp->fw_seq;
3033	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3034	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3035
3036	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3037			(command | seq), param);
3038
3039	do {
3040		/* let the FW do it's magic ... */
3041		msleep(delay);
3042
3043		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3044
3045		/* Give the FW up to 5 second (500*10ms) */
3046	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3047
3048	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3049	   cnt*delay, rc, seq);
3050
3051	/* is this a reply to our command? */
3052	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3053		rc &= FW_MSG_CODE_MASK;
3054	else {
3055		/* FW BUG! */
3056		BNX2X_ERR("FW failed to respond!\n");
3057		bnx2x_fw_dump(bp);
3058		rc = 0;
3059	}
3060	mutex_unlock(&bp->fw_mb_mutex);
3061
3062	return rc;
3063}
3064
3065static void storm_memset_func_cfg(struct bnx2x *bp,
3066				 struct tstorm_eth_function_common_config *tcfg,
3067				 u16 abs_fid)
3068{
3069	size_t size = sizeof(struct tstorm_eth_function_common_config);
3070
3071	u32 addr = BAR_TSTRORM_INTMEM +
3072			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3073
3074	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3075}
3076
3077void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3078{
3079	if (CHIP_IS_E1x(bp)) {
3080		struct tstorm_eth_function_common_config tcfg = {0};
3081
3082		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3083	}
3084
3085	/* Enable the function in the FW */
3086	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3087	storm_memset_func_en(bp, p->func_id, 1);
3088
3089	/* spq */
3090	if (p->spq_active) {
3091		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3092		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3093		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3094	}
3095}
3096
3097/**
3098 * bnx2x_get_common_flags - Return common flags
3099 *
3100 * @bp:		device handle
3101 * @fp:		queue handle
3102 * @zero_stats:	TRUE if statistics zeroing is needed
3103 *
3104 * Return the flags that are common for the Tx-only and not normal connections.
3105 */
3106static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3107					    struct bnx2x_fastpath *fp,
3108					    bool zero_stats)
3109{
3110	unsigned long flags = 0;
3111
3112	/* PF driver will always initialize the Queue to an ACTIVE state */
3113	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3114
3115	/* tx only connections collect statistics (on the same index as the
3116	 * parent connection). The statistics are zeroed when the parent
3117	 * connection is initialized.
3118	 */
3119
3120	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3121	if (zero_stats)
3122		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3123
3124	if (bp->flags & TX_SWITCHING)
3125		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3126
3127	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3128	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3129
3130#ifdef BNX2X_STOP_ON_ERROR
3131	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3132#endif
3133
3134	return flags;
3135}
3136
3137static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3138				       struct bnx2x_fastpath *fp,
3139				       bool leading)
3140{
3141	unsigned long flags = 0;
3142
3143	/* calculate other queue flags */
3144	if (IS_MF_SD(bp))
3145		__set_bit(BNX2X_Q_FLG_OV, &flags);
3146
3147	if (IS_FCOE_FP(fp)) {
3148		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3149		/* For FCoE - force usage of default priority (for afex) */
3150		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3151	}
3152
3153	if (fp->mode != TPA_MODE_DISABLED) {
3154		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3155		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3156		if (fp->mode == TPA_MODE_GRO)
3157			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3158	}
3159
3160	if (leading) {
3161		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3162		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3163	}
3164
3165	/* Always set HW VLAN stripping */
3166	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3167
3168	/* configure silent vlan removal */
3169	if (IS_MF_AFEX(bp))
3170		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3171
3172	return flags | bnx2x_get_common_flags(bp, fp, true);
3173}
3174
3175static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3176	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3177	u8 cos)
3178{
3179	gen_init->stat_id = bnx2x_stats_id(fp);
3180	gen_init->spcl_id = fp->cl_id;
3181
3182	/* Always use mini-jumbo MTU for FCoE L2 ring */
3183	if (IS_FCOE_FP(fp))
3184		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3185	else
3186		gen_init->mtu = bp->dev->mtu;
3187
3188	gen_init->cos = cos;
3189
3190	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3191}
3192
3193static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3194	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3195	struct bnx2x_rxq_setup_params *rxq_init)
3196{
3197	u8 max_sge = 0;
3198	u16 sge_sz = 0;
3199	u16 tpa_agg_size = 0;
3200
3201	if (fp->mode != TPA_MODE_DISABLED) {
3202		pause->sge_th_lo = SGE_TH_LO(bp);
3203		pause->sge_th_hi = SGE_TH_HI(bp);
3204
3205		/* validate SGE ring has enough to cross high threshold */
3206		WARN_ON(bp->dropless_fc &&
3207				pause->sge_th_hi + FW_PREFETCH_CNT >
3208				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3209
3210		tpa_agg_size = TPA_AGG_SIZE;
3211		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3212			SGE_PAGE_SHIFT;
3213		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3214			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3215		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3216	}
3217
3218	/* pause - not for e1 */
3219	if (!CHIP_IS_E1(bp)) {
3220		pause->bd_th_lo = BD_TH_LO(bp);
3221		pause->bd_th_hi = BD_TH_HI(bp);
3222
3223		pause->rcq_th_lo = RCQ_TH_LO(bp);
3224		pause->rcq_th_hi = RCQ_TH_HI(bp);
3225		/*
3226		 * validate that rings have enough entries to cross
3227		 * high thresholds
3228		 */
3229		WARN_ON(bp->dropless_fc &&
3230				pause->bd_th_hi + FW_PREFETCH_CNT >
3231				bp->rx_ring_size);
3232		WARN_ON(bp->dropless_fc &&
3233				pause->rcq_th_hi + FW_PREFETCH_CNT >
3234				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3235
3236		pause->pri_map = 1;
3237	}
3238
3239	/* rxq setup */
3240	rxq_init->dscr_map = fp->rx_desc_mapping;
3241	rxq_init->sge_map = fp->rx_sge_mapping;
3242	rxq_init->rcq_map = fp->rx_comp_mapping;
3243	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3244
3245	/* This should be a maximum number of data bytes that may be
3246	 * placed on the BD (not including paddings).
3247	 */
3248	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3249			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3250
3251	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3252	rxq_init->tpa_agg_sz = tpa_agg_size;
3253	rxq_init->sge_buf_sz = sge_sz;
3254	rxq_init->max_sges_pkt = max_sge;
3255	rxq_init->rss_engine_id = BP_FUNC(bp);
3256	rxq_init->mcast_engine_id = BP_FUNC(bp);
3257
3258	/* Maximum number or simultaneous TPA aggregation for this Queue.
3259	 *
3260	 * For PF Clients it should be the maximum available number.
3261	 * VF driver(s) may want to define it to a smaller value.
3262	 */
3263	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3264
3265	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3266	rxq_init->fw_sb_id = fp->fw_sb_id;
3267
3268	if (IS_FCOE_FP(fp))
3269		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3270	else
3271		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3272	/* configure silent vlan removal
3273	 * if multi function mode is afex, then mask default vlan
3274	 */
3275	if (IS_MF_AFEX(bp)) {
3276		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3277		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3278	}
3279}
3280
3281static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3282	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3283	u8 cos)
3284{
3285	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3286	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3287	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3288	txq_init->fw_sb_id = fp->fw_sb_id;
3289
3290	/*
3291	 * set the tss leading client id for TX classification ==
3292	 * leading RSS client id
3293	 */
3294	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3295
3296	if (IS_FCOE_FP(fp)) {
3297		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3298		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3299	}
3300}
3301
3302static void bnx2x_pf_init(struct bnx2x *bp)
3303{
3304	struct bnx2x_func_init_params func_init = {0};
3305	struct event_ring_data eq_data = { {0} };
3306
3307	if (!CHIP_IS_E1x(bp)) {
3308		/* reset IGU PF statistics: MSIX + ATTN */
3309		/* PF */
3310		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3311			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3312			   (CHIP_MODE_IS_4_PORT(bp) ?
3313				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3314		/* ATTN */
3315		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3316			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3317			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3318			   (CHIP_MODE_IS_4_PORT(bp) ?
3319				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3320	}
3321
3322	func_init.spq_active = true;
3323	func_init.pf_id = BP_FUNC(bp);
3324	func_init.func_id = BP_FUNC(bp);
3325	func_init.spq_map = bp->spq_mapping;
3326	func_init.spq_prod = bp->spq_prod_idx;
3327
3328	bnx2x_func_init(bp, &func_init);
3329
3330	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3331
3332	/*
3333	 * Congestion management values depend on the link rate
3334	 * There is no active link so initial link rate is set to 10 Gbps.
3335	 * When the link comes up The congestion management values are
3336	 * re-calculated according to the actual link rate.
3337	 */
3338	bp->link_vars.line_speed = SPEED_10000;
3339	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3340
3341	/* Only the PMF sets the HW */
3342	if (bp->port.pmf)
3343		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3344
3345	/* init Event Queue - PCI bus guarantees correct endianity*/
3346	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3347	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3348	eq_data.producer = bp->eq_prod;
3349	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3350	eq_data.sb_id = DEF_SB_ID;
3351	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3352}
3353
3354static void bnx2x_e1h_disable(struct bnx2x *bp)
3355{
3356	int port = BP_PORT(bp);
3357
3358	bnx2x_tx_disable(bp);
3359
3360	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3361}
3362
3363static void bnx2x_e1h_enable(struct bnx2x *bp)
3364{
3365	int port = BP_PORT(bp);
3366
3367	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3368		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3369
3370	/* Tx queue should be only re-enabled */
3371	netif_tx_wake_all_queues(bp->dev);
3372
3373	/*
3374	 * Should not call netif_carrier_on since it will be called if the link
3375	 * is up when checking for link state
3376	 */
3377}
3378
3379#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3380
3381static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3382{
3383	struct eth_stats_info *ether_stat =
3384		&bp->slowpath->drv_info_to_mcp.ether_stat;
3385	struct bnx2x_vlan_mac_obj *mac_obj =
3386		&bp->sp_objs->mac_obj;
3387	int i;
3388
3389	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3390		ETH_STAT_INFO_VERSION_LEN);
3391
3392	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3393	 * mac_local field in ether_stat struct. The base address is offset by 2
3394	 * bytes to account for the field being 8 bytes but a mac address is
3395	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3396	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3397	 * allocated by the ether_stat struct, so the macs will land in their
3398	 * proper positions.
3399	 */
3400	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3401		memset(ether_stat->mac_local + i, 0,
3402		       sizeof(ether_stat->mac_local[0]));
3403	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3404				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3405				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3406				ETH_ALEN);
3407	ether_stat->mtu_size = bp->dev->mtu;
3408	if (bp->dev->features & NETIF_F_RXCSUM)
3409		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3410	if (bp->dev->features & NETIF_F_TSO)
3411		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3412	ether_stat->feature_flags |= bp->common.boot_mode;
3413
3414	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3415
3416	ether_stat->txq_size = bp->tx_ring_size;
3417	ether_stat->rxq_size = bp->rx_ring_size;
3418
3419#ifdef CONFIG_BNX2X_SRIOV
3420	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3421#endif
3422}
3423
3424static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3425{
3426	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3427	struct fcoe_stats_info *fcoe_stat =
3428		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3429
3430	if (!CNIC_LOADED(bp))
3431		return;
3432
3433	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3434
3435	fcoe_stat->qos_priority =
3436		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3437
3438	/* insert FCoE stats from ramrod response */
3439	if (!NO_FCOE(bp)) {
3440		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3441			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3442			tstorm_queue_statistics;
3443
3444		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3445			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3446			xstorm_queue_statistics;
3447
3448		struct fcoe_statistics_params *fw_fcoe_stat =
3449			&bp->fw_stats_data->fcoe;
3450
3451		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3452			  fcoe_stat->rx_bytes_lo,
3453			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3454
3455		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3456			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3457			  fcoe_stat->rx_bytes_lo,
3458			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3459
3460		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3461			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3462			  fcoe_stat->rx_bytes_lo,
3463			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3464
3465		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3466			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3467			  fcoe_stat->rx_bytes_lo,
3468			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3469
3470		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3471			  fcoe_stat->rx_frames_lo,
3472			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3473
3474		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3475			  fcoe_stat->rx_frames_lo,
3476			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3477
3478		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3479			  fcoe_stat->rx_frames_lo,
3480			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3481
3482		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3483			  fcoe_stat->rx_frames_lo,
3484			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3485
3486		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3487			  fcoe_stat->tx_bytes_lo,
3488			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3489
3490		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3491			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3492			  fcoe_stat->tx_bytes_lo,
3493			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3494
3495		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3496			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3497			  fcoe_stat->tx_bytes_lo,
3498			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3499
3500		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3501			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3502			  fcoe_stat->tx_bytes_lo,
3503			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3504
3505		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3506			  fcoe_stat->tx_frames_lo,
3507			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3508
3509		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3510			  fcoe_stat->tx_frames_lo,
3511			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3512
3513		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3514			  fcoe_stat->tx_frames_lo,
3515			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3516
3517		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3518			  fcoe_stat->tx_frames_lo,
3519			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3520	}
3521
3522	/* ask L5 driver to add data to the struct */
3523	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3524}
3525
3526static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3527{
3528	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3529	struct iscsi_stats_info *iscsi_stat =
3530		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3531
3532	if (!CNIC_LOADED(bp))
3533		return;
3534
3535	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3536	       ETH_ALEN);
3537
3538	iscsi_stat->qos_priority =
3539		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3540
3541	/* ask L5 driver to add data to the struct */
3542	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3543}
3544
3545/* called due to MCP event (on pmf):
3546 *	reread new bandwidth configuration
3547 *	configure FW
3548 *	notify others function about the change
3549 */
3550static void bnx2x_config_mf_bw(struct bnx2x *bp)
3551{
3552	/* Workaround for MFW bug.
3553	 * MFW is not supposed to generate BW attention in
3554	 * single function mode.
3555	 */
3556	if (!IS_MF(bp)) {
3557		DP(BNX2X_MSG_MCP,
3558		   "Ignoring MF BW config in single function mode\n");
3559		return;
3560	}
3561
3562	if (bp->link_vars.link_up) {
3563		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3564		bnx2x_link_sync_notify(bp);
3565	}
3566	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3567}
3568
3569static void bnx2x_set_mf_bw(struct bnx2x *bp)
3570{
3571	bnx2x_config_mf_bw(bp);
3572	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3573}
3574
3575static void bnx2x_handle_eee_event(struct bnx2x *bp)
3576{
3577	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3578	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3579}
3580
3581#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3582#define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3583
3584static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3585{
3586	enum drv_info_opcode op_code;
3587	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3588	bool release = false;
3589	int wait;
3590
3591	/* if drv_info version supported by MFW doesn't match - send NACK */
3592	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3593		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3594		return;
3595	}
3596
3597	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3598		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3599
3600	/* Must prevent other flows from accessing drv_info_to_mcp */
3601	mutex_lock(&bp->drv_info_mutex);
3602
3603	memset(&bp->slowpath->drv_info_to_mcp, 0,
3604	       sizeof(union drv_info_to_mcp));
3605
3606	switch (op_code) {
3607	case ETH_STATS_OPCODE:
3608		bnx2x_drv_info_ether_stat(bp);
3609		break;
3610	case FCOE_STATS_OPCODE:
3611		bnx2x_drv_info_fcoe_stat(bp);
3612		break;
3613	case ISCSI_STATS_OPCODE:
3614		bnx2x_drv_info_iscsi_stat(bp);
3615		break;
3616	default:
3617		/* if op code isn't supported - send NACK */
3618		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3619		goto out;
3620	}
3621
3622	/* if we got drv_info attn from MFW then these fields are defined in
3623	 * shmem2 for sure
3624	 */
3625	SHMEM2_WR(bp, drv_info_host_addr_lo,
3626		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3627	SHMEM2_WR(bp, drv_info_host_addr_hi,
3628		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3629
3630	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3631
3632	/* Since possible management wants both this and get_driver_version
3633	 * need to wait until management notifies us it finished utilizing
3634	 * the buffer.
3635	 */
3636	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3637		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3638	} else if (!bp->drv_info_mng_owner) {
3639		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3640
3641		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3642			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3643
3644			/* Management is done; need to clear indication */
3645			if (indication & bit) {
3646				SHMEM2_WR(bp, mfw_drv_indication,
3647					  indication & ~bit);
3648				release = true;
3649				break;
3650			}
3651
3652			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3653		}
3654	}
3655	if (!release) {
3656		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3657		bp->drv_info_mng_owner = true;
3658	}
3659
3660out:
3661	mutex_unlock(&bp->drv_info_mutex);
3662}
3663
3664static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3665{
3666	u8 vals[4];
3667	int i = 0;
3668
3669	if (bnx2x_format) {
3670		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3671			   &vals[0], &vals[1], &vals[2], &vals[3]);
3672		if (i > 0)
3673			vals[0] -= '0';
3674	} else {
3675		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3676			   &vals[0], &vals[1], &vals[2], &vals[3]);
3677	}
3678
3679	while (i < 4)
3680		vals[i++] = 0;
3681
3682	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3683}
3684
3685void bnx2x_update_mng_version(struct bnx2x *bp)
3686{
3687	u32 iscsiver = DRV_VER_NOT_LOADED;
3688	u32 fcoever = DRV_VER_NOT_LOADED;
3689	u32 ethver = DRV_VER_NOT_LOADED;
3690	int idx = BP_FW_MB_IDX(bp);
3691	u8 *version;
3692
3693	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3694		return;
3695
3696	mutex_lock(&bp->drv_info_mutex);
3697	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3698	if (bp->drv_info_mng_owner)
3699		goto out;
3700
3701	if (bp->state != BNX2X_STATE_OPEN)
3702		goto out;
3703
3704	/* Parse ethernet driver version */
3705	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3706	if (!CNIC_LOADED(bp))
3707		goto out;
3708
3709	/* Try getting storage driver version via cnic */
3710	memset(&bp->slowpath->drv_info_to_mcp, 0,
3711	       sizeof(union drv_info_to_mcp));
3712	bnx2x_drv_info_iscsi_stat(bp);
3713	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3714	iscsiver = bnx2x_update_mng_version_utility(version, false);
3715
3716	memset(&bp->slowpath->drv_info_to_mcp, 0,
3717	       sizeof(union drv_info_to_mcp));
3718	bnx2x_drv_info_fcoe_stat(bp);
3719	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3720	fcoever = bnx2x_update_mng_version_utility(version, false);
3721
3722out:
3723	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3724	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3725	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3726
3727	mutex_unlock(&bp->drv_info_mutex);
3728
3729	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3730	   ethver, iscsiver, fcoever);
3731}
3732
3733void bnx2x_update_mfw_dump(struct bnx2x *bp)
3734{
3735	u32 drv_ver;
3736	u32 valid_dump;
3737
3738	if (!SHMEM2_HAS(bp, drv_info))
3739		return;
3740
3741	/* Update Driver load time, possibly broken in y2038 */
3742	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3743
3744	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3745	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3746
3747	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3748
3749	/* Check & notify On-Chip dump. */
3750	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3751
3752	if (valid_dump & FIRST_DUMP_VALID)
3753		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3754
3755	if (valid_dump & SECOND_DUMP_VALID)
3756		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3757}
3758
3759static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3760{
3761	u32 cmd_ok, cmd_fail;
3762
3763	/* sanity */
3764	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3765	    event & DRV_STATUS_OEM_EVENT_MASK) {
3766		BNX2X_ERR("Received simultaneous events %08x\n", event);
3767		return;
3768	}
3769
3770	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3771		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3772		cmd_ok = DRV_MSG_CODE_DCC_OK;
3773	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3774		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3775		cmd_ok = DRV_MSG_CODE_OEM_OK;
3776	}
3777
3778	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3779
3780	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3781		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3782		/* This is the only place besides the function initialization
3783		 * where the bp->flags can change so it is done without any
3784		 * locks
3785		 */
3786		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3787			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3788			bp->flags |= MF_FUNC_DIS;
3789
3790			bnx2x_e1h_disable(bp);
3791		} else {
3792			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3793			bp->flags &= ~MF_FUNC_DIS;
3794
3795			bnx2x_e1h_enable(bp);
3796		}
3797		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3798			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3799	}
3800
3801	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3802		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3803		bnx2x_config_mf_bw(bp);
3804		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3805			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3806	}
3807
3808	/* Report results to MCP */
3809	if (event)
3810		bnx2x_fw_command(bp, cmd_fail, 0);
3811	else
3812		bnx2x_fw_command(bp, cmd_ok, 0);
3813}
3814
3815/* must be called under the spq lock */
3816static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3817{
3818	struct eth_spe *next_spe = bp->spq_prod_bd;
3819
3820	if (bp->spq_prod_bd == bp->spq_last_bd) {
3821		bp->spq_prod_bd = bp->spq;
3822		bp->spq_prod_idx = 0;
3823		DP(BNX2X_MSG_SP, "end of spq\n");
3824	} else {
3825		bp->spq_prod_bd++;
3826		bp->spq_prod_idx++;
3827	}
3828	return next_spe;
3829}
3830
3831/* must be called under the spq lock */
3832static void bnx2x_sp_prod_update(struct bnx2x *bp)
3833{
3834	int func = BP_FUNC(bp);
3835
3836	/*
3837	 * Make sure that BD data is updated before writing the producer:
3838	 * BD data is written to the memory, the producer is read from the
3839	 * memory, thus we need a full memory barrier to ensure the ordering.
3840	 */
3841	mb();
3842
3843	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3844			 bp->spq_prod_idx);
3845}
3846
3847/**
3848 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3849 *
3850 * @cmd:	command to check
3851 * @cmd_type:	command type
3852 */
3853static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3854{
3855	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3856	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3857	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3858	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3859	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3860	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3861	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3862		return true;
3863	else
3864		return false;
3865}
3866
3867/**
3868 * bnx2x_sp_post - place a single command on an SP ring
3869 *
3870 * @bp:		driver handle
3871 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3872 * @cid:	SW CID the command is related to
3873 * @data_hi:	command private data address (high 32 bits)
3874 * @data_lo:	command private data address (low 32 bits)
3875 * @cmd_type:	command type (e.g. NONE, ETH)
3876 *
3877 * SP data is handled as if it's always an address pair, thus data fields are
3878 * not swapped to little endian in upper functions. Instead this function swaps
3879 * data as if it's two u32 fields.
3880 */
3881int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3882		  u32 data_hi, u32 data_lo, int cmd_type)
3883{
3884	struct eth_spe *spe;
3885	u16 type;
3886	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3887
3888#ifdef BNX2X_STOP_ON_ERROR
3889	if (unlikely(bp->panic)) {
3890		BNX2X_ERR("Can't post SP when there is panic\n");
3891		return -EIO;
3892	}
3893#endif
3894
3895	spin_lock_bh(&bp->spq_lock);
3896
3897	if (common) {
3898		if (!atomic_read(&bp->eq_spq_left)) {
3899			BNX2X_ERR("BUG! EQ ring full!\n");
3900			spin_unlock_bh(&bp->spq_lock);
3901			bnx2x_panic();
3902			return -EBUSY;
3903		}
3904	} else if (!atomic_read(&bp->cq_spq_left)) {
3905			BNX2X_ERR("BUG! SPQ ring full!\n");
3906			spin_unlock_bh(&bp->spq_lock);
3907			bnx2x_panic();
3908			return -EBUSY;
3909	}
3910
3911	spe = bnx2x_sp_get_next(bp);
3912
3913	/* CID needs port number to be encoded int it */
3914	spe->hdr.conn_and_cmd_data =
3915			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3916				    HW_CID(bp, cid));
3917
3918	/* In some cases, type may already contain the func-id
3919	 * mainly in SRIOV related use cases, so we add it here only
3920	 * if it's not already set.
3921	 */
3922	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3923		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3924			SPE_HDR_CONN_TYPE;
3925		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3926			 SPE_HDR_FUNCTION_ID);
3927	} else {
3928		type = cmd_type;
3929	}
3930
3931	spe->hdr.type = cpu_to_le16(type);
3932
3933	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3934	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3935
3936	/*
3937	 * It's ok if the actual decrement is issued towards the memory
3938	 * somewhere between the spin_lock and spin_unlock. Thus no
3939	 * more explicit memory barrier is needed.
3940	 */
3941	if (common)
3942		atomic_dec(&bp->eq_spq_left);
3943	else
3944		atomic_dec(&bp->cq_spq_left);
3945
3946	DP(BNX2X_MSG_SP,
3947	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3948	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3949	   (u32)(U64_LO(bp->spq_mapping) +
3950	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3951	   HW_CID(bp, cid), data_hi, data_lo, type,
3952	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3953
3954	bnx2x_sp_prod_update(bp);
3955	spin_unlock_bh(&bp->spq_lock);
3956	return 0;
3957}
3958
3959/* acquire split MCP access lock register */
3960static int bnx2x_acquire_alr(struct bnx2x *bp)
3961{
3962	u32 j, val;
3963	int rc = 0;
3964
3965	might_sleep();
3966	for (j = 0; j < 1000; j++) {
3967		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3968		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3969		if (val & MCPR_ACCESS_LOCK_LOCK)
3970			break;
3971
3972		usleep_range(5000, 10000);
3973	}
3974	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3975		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3976		rc = -EBUSY;
3977	}
3978
3979	return rc;
3980}
3981
3982/* release split MCP access lock register */
3983static void bnx2x_release_alr(struct bnx2x *bp)
3984{
3985	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3986}
3987
3988#define BNX2X_DEF_SB_ATT_IDX	0x0001
3989#define BNX2X_DEF_SB_IDX	0x0002
3990
3991static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3992{
3993	struct host_sp_status_block *def_sb = bp->def_status_blk;
3994	u16 rc = 0;
3995
3996	barrier(); /* status block is written to by the chip */
3997	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3998		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3999		rc |= BNX2X_DEF_SB_ATT_IDX;
4000	}
4001
4002	if (bp->def_idx != def_sb->sp_sb.running_index) {
4003		bp->def_idx = def_sb->sp_sb.running_index;
4004		rc |= BNX2X_DEF_SB_IDX;
4005	}
4006
4007	/* Do not reorder: indices reading should complete before handling */
4008	barrier();
4009	return rc;
4010}
4011
4012/*
4013 * slow path service functions
4014 */
4015
4016static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4017{
4018	int port = BP_PORT(bp);
4019	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4020			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4021	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4022				       NIG_REG_MASK_INTERRUPT_PORT0;
4023	u32 aeu_mask;
4024	u32 nig_mask = 0;
4025	u32 reg_addr;
4026
4027	if (bp->attn_state & asserted)
4028		BNX2X_ERR("IGU ERROR\n");
4029
4030	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4031	aeu_mask = REG_RD(bp, aeu_addr);
4032
4033	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4034	   aeu_mask, asserted);
4035	aeu_mask &= ~(asserted & 0x3ff);
4036	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4037
4038	REG_WR(bp, aeu_addr, aeu_mask);
4039	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4040
4041	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4042	bp->attn_state |= asserted;
4043	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4044
4045	if (asserted & ATTN_HARD_WIRED_MASK) {
4046		if (asserted & ATTN_NIG_FOR_FUNC) {
4047
4048			bnx2x_acquire_phy_lock(bp);
4049
4050			/* save nig interrupt mask */
4051			nig_mask = REG_RD(bp, nig_int_mask_addr);
4052
4053			/* If nig_mask is not set, no need to call the update
4054			 * function.
4055			 */
4056			if (nig_mask) {
4057				REG_WR(bp, nig_int_mask_addr, 0);
4058
4059				bnx2x_link_attn(bp);
4060			}
4061
4062			/* handle unicore attn? */
4063		}
4064		if (asserted & ATTN_SW_TIMER_4_FUNC)
4065			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4066
4067		if (asserted & GPIO_2_FUNC)
4068			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4069
4070		if (asserted & GPIO_3_FUNC)
4071			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4072
4073		if (asserted & GPIO_4_FUNC)
4074			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4075
4076		if (port == 0) {
4077			if (asserted & ATTN_GENERAL_ATTN_1) {
4078				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4079				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4080			}
4081			if (asserted & ATTN_GENERAL_ATTN_2) {
4082				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4083				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4084			}
4085			if (asserted & ATTN_GENERAL_ATTN_3) {
4086				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4087				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4088			}
4089		} else {
4090			if (asserted & ATTN_GENERAL_ATTN_4) {
4091				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4092				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4093			}
4094			if (asserted & ATTN_GENERAL_ATTN_5) {
4095				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4096				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4097			}
4098			if (asserted & ATTN_GENERAL_ATTN_6) {
4099				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4100				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4101			}
4102		}
4103
4104	} /* if hardwired */
4105
4106	if (bp->common.int_block == INT_BLOCK_HC)
4107		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4108			    COMMAND_REG_ATTN_BITS_SET);
4109	else
4110		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4111
4112	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4113	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4114	REG_WR(bp, reg_addr, asserted);
4115
4116	/* now set back the mask */
4117	if (asserted & ATTN_NIG_FOR_FUNC) {
4118		/* Verify that IGU ack through BAR was written before restoring
4119		 * NIG mask. This loop should exit after 2-3 iterations max.
4120		 */
4121		if (bp->common.int_block != INT_BLOCK_HC) {
4122			u32 cnt = 0, igu_acked;
4123			do {
4124				igu_acked = REG_RD(bp,
4125						   IGU_REG_ATTENTION_ACK_BITS);
4126			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4127				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4128			if (!igu_acked)
4129				DP(NETIF_MSG_HW,
4130				   "Failed to verify IGU ack on time\n");
4131			barrier();
4132		}
4133		REG_WR(bp, nig_int_mask_addr, nig_mask);
4134		bnx2x_release_phy_lock(bp);
4135	}
4136}
4137
4138static void bnx2x_fan_failure(struct bnx2x *bp)
4139{
4140	int port = BP_PORT(bp);
4141	u32 ext_phy_config;
4142	/* mark the failure */
4143	ext_phy_config =
4144		SHMEM_RD(bp,
4145			 dev_info.port_hw_config[port].external_phy_config);
4146
4147	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4148	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4149	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4150		 ext_phy_config);
4151
4152	/* log the failure */
4153	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4154			    "Please contact OEM Support for assistance\n");
4155
4156	/* Schedule device reset (unload)
4157	 * This is due to some boards consuming sufficient power when driver is
4158	 * up to overheat if fan fails.
4159	 */
4160	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4161}
4162
4163static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4164{
4165	int port = BP_PORT(bp);
4166	int reg_offset;
4167	u32 val;
4168
4169	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4170			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4171
4172	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4173
4174		val = REG_RD(bp, reg_offset);
4175		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4176		REG_WR(bp, reg_offset, val);
4177
4178		BNX2X_ERR("SPIO5 hw attention\n");
4179
4180		/* Fan failure attention */
4181		bnx2x_hw_reset_phy(&bp->link_params);
4182		bnx2x_fan_failure(bp);
4183	}
4184
4185	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4186		bnx2x_acquire_phy_lock(bp);
4187		bnx2x_handle_module_detect_int(&bp->link_params);
4188		bnx2x_release_phy_lock(bp);
4189	}
4190
4191	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4192
4193		val = REG_RD(bp, reg_offset);
4194		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4195		REG_WR(bp, reg_offset, val);
4196
4197		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4198			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4199		bnx2x_panic();
4200	}
4201}
4202
4203static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4204{
4205	u32 val;
4206
4207	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4208
4209		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4210		BNX2X_ERR("DB hw attention 0x%x\n", val);
4211		/* DORQ discard attention */
4212		if (val & 0x2)
4213			BNX2X_ERR("FATAL error from DORQ\n");
4214	}
4215
4216	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4217
4218		int port = BP_PORT(bp);
4219		int reg_offset;
4220
4221		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4222				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4223
4224		val = REG_RD(bp, reg_offset);
4225		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4226		REG_WR(bp, reg_offset, val);
4227
4228		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4229			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4230		bnx2x_panic();
4231	}
4232}
4233
4234static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4235{
4236	u32 val;
4237
4238	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4239
4240		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4241		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4242		/* CFC error attention */
4243		if (val & 0x2)
4244			BNX2X_ERR("FATAL error from CFC\n");
4245	}
4246
4247	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4248		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4249		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4250		/* RQ_USDMDP_FIFO_OVERFLOW */
4251		if (val & 0x18000)
4252			BNX2X_ERR("FATAL error from PXP\n");
4253
4254		if (!CHIP_IS_E1x(bp)) {
4255			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4256			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4257		}
4258	}
4259
4260	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4261
4262		int port = BP_PORT(bp);
4263		int reg_offset;
4264
4265		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4266				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4267
4268		val = REG_RD(bp, reg_offset);
4269		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4270		REG_WR(bp, reg_offset, val);
4271
4272		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4273			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4274		bnx2x_panic();
4275	}
4276}
4277
4278static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4279{
4280	u32 val;
4281
4282	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4283
4284		if (attn & BNX2X_PMF_LINK_ASSERT) {
4285			int func = BP_FUNC(bp);
4286
4287			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4288			bnx2x_read_mf_cfg(bp);
4289			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4290					func_mf_config[BP_ABS_FUNC(bp)].config);
4291			val = SHMEM_RD(bp,
4292				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4293
4294			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4295				   DRV_STATUS_OEM_EVENT_MASK))
4296				bnx2x_oem_event(bp,
4297					(val & (DRV_STATUS_DCC_EVENT_MASK |
4298						DRV_STATUS_OEM_EVENT_MASK)));
4299
4300			if (val & DRV_STATUS_SET_MF_BW)
4301				bnx2x_set_mf_bw(bp);
4302
4303			if (val & DRV_STATUS_DRV_INFO_REQ)
4304				bnx2x_handle_drv_info_req(bp);
4305
4306			if (val & DRV_STATUS_VF_DISABLED)
4307				bnx2x_schedule_iov_task(bp,
4308							BNX2X_IOV_HANDLE_FLR);
4309
4310			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4311				bnx2x_pmf_update(bp);
4312
4313			if (bp->port.pmf &&
4314			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4315				bp->dcbx_enabled > 0)
4316				/* start dcbx state machine */
4317				bnx2x_dcbx_set_params(bp,
4318					BNX2X_DCBX_STATE_NEG_RECEIVED);
4319			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4320				bnx2x_handle_afex_cmd(bp,
4321					val & DRV_STATUS_AFEX_EVENT_MASK);
4322			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4323				bnx2x_handle_eee_event(bp);
4324
4325			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4326				bnx2x_schedule_sp_rtnl(bp,
4327					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4328
4329			if (bp->link_vars.periodic_flags &
4330			    PERIODIC_FLAGS_LINK_EVENT) {
4331				/*  sync with link */
4332				bnx2x_acquire_phy_lock(bp);
4333				bp->link_vars.periodic_flags &=
4334					~PERIODIC_FLAGS_LINK_EVENT;
4335				bnx2x_release_phy_lock(bp);
4336				if (IS_MF(bp))
4337					bnx2x_link_sync_notify(bp);
4338				bnx2x_link_report(bp);
4339			}
4340			/* Always call it here: bnx2x_link_report() will
4341			 * prevent the link indication duplication.
4342			 */
4343			bnx2x__link_status_update(bp);
4344		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4345
4346			BNX2X_ERR("MC assert!\n");
4347			bnx2x_mc_assert(bp);
4348			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4349			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4350			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4351			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4352			bnx2x_panic();
4353
4354		} else if (attn & BNX2X_MCP_ASSERT) {
4355
4356			BNX2X_ERR("MCP assert!\n");
4357			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4358			bnx2x_fw_dump(bp);
4359
4360		} else
4361			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4362	}
4363
4364	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4365		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4366		if (attn & BNX2X_GRC_TIMEOUT) {
4367			val = CHIP_IS_E1(bp) ? 0 :
4368					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4369			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4370		}
4371		if (attn & BNX2X_GRC_RSV) {
4372			val = CHIP_IS_E1(bp) ? 0 :
4373					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4374			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4375		}
4376		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4377	}
4378}
4379
4380/*
4381 * Bits map:
4382 * 0-7   - Engine0 load counter.
4383 * 8-15  - Engine1 load counter.
4384 * 16    - Engine0 RESET_IN_PROGRESS bit.
4385 * 17    - Engine1 RESET_IN_PROGRESS bit.
4386 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4387 *         on the engine
4388 * 19    - Engine1 ONE_IS_LOADED.
4389 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4390 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4391 *         just the one belonging to its engine).
4392 *
4393 */
4394#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4395
4396#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4397#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4398#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4399#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4400#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4401#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4402#define BNX2X_GLOBAL_RESET_BIT		0x00040000
4403
4404/*
4405 * Set the GLOBAL_RESET bit.
4406 *
4407 * Should be run under rtnl lock
4408 */
4409void bnx2x_set_reset_global(struct bnx2x *bp)
4410{
4411	u32 val;
4412	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4413	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4414	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4415	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4416}
4417
4418/*
4419 * Clear the GLOBAL_RESET bit.
4420 *
4421 * Should be run under rtnl lock
4422 */
4423static void bnx2x_clear_reset_global(struct bnx2x *bp)
4424{
4425	u32 val;
4426	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4429	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4430}
4431
4432/*
4433 * Checks the GLOBAL_RESET bit.
4434 *
4435 * should be run under rtnl lock
4436 */
4437static bool bnx2x_reset_is_global(struct bnx2x *bp)
4438{
4439	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4440
4441	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4442	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4443}
4444
4445/*
4446 * Clear RESET_IN_PROGRESS bit for the current engine.
4447 *
4448 * Should be run under rtnl lock
4449 */
4450static void bnx2x_set_reset_done(struct bnx2x *bp)
4451{
4452	u32 val;
4453	u32 bit = BP_PATH(bp) ?
4454		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4455	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4456	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4457
4458	/* Clear the bit */
4459	val &= ~bit;
4460	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4461
4462	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4463}
4464
4465/*
4466 * Set RESET_IN_PROGRESS for the current engine.
4467 *
4468 * should be run under rtnl lock
4469 */
4470void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4471{
4472	u32 val;
4473	u32 bit = BP_PATH(bp) ?
4474		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4475	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4476	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4477
4478	/* Set the bit */
4479	val |= bit;
4480	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4481	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4482}
4483
4484/*
4485 * Checks the RESET_IN_PROGRESS bit for the given engine.
4486 * should be run under rtnl lock
4487 */
4488bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4489{
4490	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4491	u32 bit = engine ?
4492		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4493
4494	/* return false if bit is set */
4495	return (val & bit) ? false : true;
4496}
4497
4498/*
4499 * set pf load for the current pf.
4500 *
4501 * should be run under rtnl lock
4502 */
4503void bnx2x_set_pf_load(struct bnx2x *bp)
4504{
4505	u32 val1, val;
4506	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4507			     BNX2X_PATH0_LOAD_CNT_MASK;
4508	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4509			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4510
4511	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4512	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4513
4514	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4515
4516	/* get the current counter value */
4517	val1 = (val & mask) >> shift;
4518
4519	/* set bit of that PF */
4520	val1 |= (1 << bp->pf_num);
4521
4522	/* clear the old value */
4523	val &= ~mask;
4524
4525	/* set the new one */
4526	val |= ((val1 << shift) & mask);
4527
4528	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4529	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4530}
4531
4532/**
4533 * bnx2x_clear_pf_load - clear pf load mark
4534 *
4535 * @bp:		driver handle
4536 *
4537 * Should be run under rtnl lock.
4538 * Decrements the load counter for the current engine. Returns
4539 * whether other functions are still loaded
4540 */
4541bool bnx2x_clear_pf_load(struct bnx2x *bp)
4542{
4543	u32 val1, val;
4544	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4545			     BNX2X_PATH0_LOAD_CNT_MASK;
4546	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4547			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4548
4549	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4550	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4551	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4552
4553	/* get the current counter value */
4554	val1 = (val & mask) >> shift;
4555
4556	/* clear bit of that PF */
4557	val1 &= ~(1 << bp->pf_num);
4558
4559	/* clear the old value */
4560	val &= ~mask;
4561
4562	/* set the new one */
4563	val |= ((val1 << shift) & mask);
4564
4565	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4566	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4567	return val1 != 0;
4568}
4569
4570/*
4571 * Read the load status for the current engine.
4572 *
4573 * should be run under rtnl lock
4574 */
4575static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4576{
4577	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4578			     BNX2X_PATH0_LOAD_CNT_MASK);
4579	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4580			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4581	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4582
4583	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4584
4585	val = (val & mask) >> shift;
4586
4587	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4588	   engine, val);
4589
4590	return val != 0;
4591}
4592
4593static void _print_parity(struct bnx2x *bp, u32 reg)
4594{
4595	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4596}
4597
4598static void _print_next_block(int idx, const char *blk)
4599{
4600	pr_cont("%s%s", idx ? ", " : "", blk);
4601}
4602
4603static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4604					    int *par_num, bool print)
4605{
4606	u32 cur_bit;
4607	bool res;
4608	int i;
4609
4610	res = false;
4611
4612	for (i = 0; sig; i++) {
4613		cur_bit = (0x1UL << i);
4614		if (sig & cur_bit) {
4615			res |= true; /* Each bit is real error! */
4616
4617			if (print) {
4618				switch (cur_bit) {
4619				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4620					_print_next_block((*par_num)++, "BRB");
4621					_print_parity(bp,
4622						      BRB1_REG_BRB1_PRTY_STS);
4623					break;
4624				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4625					_print_next_block((*par_num)++,
4626							  "PARSER");
4627					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4628					break;
4629				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4630					_print_next_block((*par_num)++, "TSDM");
4631					_print_parity(bp,
4632						      TSDM_REG_TSDM_PRTY_STS);
4633					break;
4634				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4635					_print_next_block((*par_num)++,
4636							  "SEARCHER");
4637					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4638					break;
4639				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4640					_print_next_block((*par_num)++, "TCM");
4641					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4642					break;
4643				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4644					_print_next_block((*par_num)++,
4645							  "TSEMI");
4646					_print_parity(bp,
4647						      TSEM_REG_TSEM_PRTY_STS_0);
4648					_print_parity(bp,
4649						      TSEM_REG_TSEM_PRTY_STS_1);
4650					break;
4651				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4652					_print_next_block((*par_num)++, "XPB");
4653					_print_parity(bp, GRCBASE_XPB +
4654							  PB_REG_PB_PRTY_STS);
4655					break;
4656				}
4657			}
4658
4659			/* Clear the bit */
4660			sig &= ~cur_bit;
4661		}
4662	}
4663
4664	return res;
4665}
4666
4667static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4668					    int *par_num, bool *global,
4669					    bool print)
4670{
4671	u32 cur_bit;
4672	bool res;
4673	int i;
4674
4675	res = false;
4676
4677	for (i = 0; sig; i++) {
4678		cur_bit = (0x1UL << i);
4679		if (sig & cur_bit) {
4680			res |= true; /* Each bit is real error! */
4681			switch (cur_bit) {
4682			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4683				if (print) {
4684					_print_next_block((*par_num)++, "PBF");
4685					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4686				}
4687				break;
4688			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4689				if (print) {
4690					_print_next_block((*par_num)++, "QM");
4691					_print_parity(bp, QM_REG_QM_PRTY_STS);
4692				}
4693				break;
4694			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4695				if (print) {
4696					_print_next_block((*par_num)++, "TM");
4697					_print_parity(bp, TM_REG_TM_PRTY_STS);
4698				}
4699				break;
4700			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4701				if (print) {
4702					_print_next_block((*par_num)++, "XSDM");
4703					_print_parity(bp,
4704						      XSDM_REG_XSDM_PRTY_STS);
4705				}
4706				break;
4707			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4708				if (print) {
4709					_print_next_block((*par_num)++, "XCM");
4710					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4711				}
4712				break;
4713			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4714				if (print) {
4715					_print_next_block((*par_num)++,
4716							  "XSEMI");
4717					_print_parity(bp,
4718						      XSEM_REG_XSEM_PRTY_STS_0);
4719					_print_parity(bp,
4720						      XSEM_REG_XSEM_PRTY_STS_1);
4721				}
4722				break;
4723			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4724				if (print) {
4725					_print_next_block((*par_num)++,
4726							  "DOORBELLQ");
4727					_print_parity(bp,
4728						      DORQ_REG_DORQ_PRTY_STS);
4729				}
4730				break;
4731			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4732				if (print) {
4733					_print_next_block((*par_num)++, "NIG");
4734					if (CHIP_IS_E1x(bp)) {
4735						_print_parity(bp,
4736							NIG_REG_NIG_PRTY_STS);
4737					} else {
4738						_print_parity(bp,
4739							NIG_REG_NIG_PRTY_STS_0);
4740						_print_parity(bp,
4741							NIG_REG_NIG_PRTY_STS_1);
4742					}
4743				}
4744				break;
4745			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4746				if (print)
4747					_print_next_block((*par_num)++,
4748							  "VAUX PCI CORE");
4749				*global = true;
4750				break;
4751			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4752				if (print) {
4753					_print_next_block((*par_num)++,
4754							  "DEBUG");
4755					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4756				}
4757				break;
4758			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4759				if (print) {
4760					_print_next_block((*par_num)++, "USDM");
4761					_print_parity(bp,
4762						      USDM_REG_USDM_PRTY_STS);
4763				}
4764				break;
4765			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4766				if (print) {
4767					_print_next_block((*par_num)++, "UCM");
4768					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4769				}
4770				break;
4771			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4772				if (print) {
4773					_print_next_block((*par_num)++,
4774							  "USEMI");
4775					_print_parity(bp,
4776						      USEM_REG_USEM_PRTY_STS_0);
4777					_print_parity(bp,
4778						      USEM_REG_USEM_PRTY_STS_1);
4779				}
4780				break;
4781			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4782				if (print) {
4783					_print_next_block((*par_num)++, "UPB");
4784					_print_parity(bp, GRCBASE_UPB +
4785							  PB_REG_PB_PRTY_STS);
4786				}
4787				break;
4788			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4789				if (print) {
4790					_print_next_block((*par_num)++, "CSDM");
4791					_print_parity(bp,
4792						      CSDM_REG_CSDM_PRTY_STS);
4793				}
4794				break;
4795			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4796				if (print) {
4797					_print_next_block((*par_num)++, "CCM");
4798					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4799				}
4800				break;
4801			}
4802
4803			/* Clear the bit */
4804			sig &= ~cur_bit;
4805		}
4806	}
4807
4808	return res;
4809}
4810
4811static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4812					    int *par_num, bool print)
4813{
4814	u32 cur_bit;
4815	bool res;
4816	int i;
4817
4818	res = false;
4819
4820	for (i = 0; sig; i++) {
4821		cur_bit = (0x1UL << i);
4822		if (sig & cur_bit) {
4823			res = true; /* Each bit is real error! */
4824			if (print) {
4825				switch (cur_bit) {
4826				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4827					_print_next_block((*par_num)++,
4828							  "CSEMI");
4829					_print_parity(bp,
4830						      CSEM_REG_CSEM_PRTY_STS_0);
4831					_print_parity(bp,
4832						      CSEM_REG_CSEM_PRTY_STS_1);
4833					break;
4834				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4835					_print_next_block((*par_num)++, "PXP");
4836					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4837					_print_parity(bp,
4838						      PXP2_REG_PXP2_PRTY_STS_0);
4839					_print_parity(bp,
4840						      PXP2_REG_PXP2_PRTY_STS_1);
4841					break;
4842				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4843					_print_next_block((*par_num)++,
4844							  "PXPPCICLOCKCLIENT");
4845					break;
4846				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4847					_print_next_block((*par_num)++, "CFC");
4848					_print_parity(bp,
4849						      CFC_REG_CFC_PRTY_STS);
4850					break;
4851				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4852					_print_next_block((*par_num)++, "CDU");
4853					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4854					break;
4855				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4856					_print_next_block((*par_num)++, "DMAE");
4857					_print_parity(bp,
4858						      DMAE_REG_DMAE_PRTY_STS);
4859					break;
4860				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4861					_print_next_block((*par_num)++, "IGU");
4862					if (CHIP_IS_E1x(bp))
4863						_print_parity(bp,
4864							HC_REG_HC_PRTY_STS);
4865					else
4866						_print_parity(bp,
4867							IGU_REG_IGU_PRTY_STS);
4868					break;
4869				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4870					_print_next_block((*par_num)++, "MISC");
4871					_print_parity(bp,
4872						      MISC_REG_MISC_PRTY_STS);
4873					break;
4874				}
4875			}
4876
4877			/* Clear the bit */
4878			sig &= ~cur_bit;
4879		}
4880	}
4881
4882	return res;
4883}
4884
4885static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4886					    int *par_num, bool *global,
4887					    bool print)
4888{
4889	bool res = false;
4890	u32 cur_bit;
4891	int i;
4892
4893	for (i = 0; sig; i++) {
4894		cur_bit = (0x1UL << i);
4895		if (sig & cur_bit) {
4896			switch (cur_bit) {
4897			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4898				if (print)
4899					_print_next_block((*par_num)++,
4900							  "MCP ROM");
4901				*global = true;
4902				res = true;
4903				break;
4904			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4905				if (print)
4906					_print_next_block((*par_num)++,
4907							  "MCP UMP RX");
4908				*global = true;
4909				res = true;
4910				break;
4911			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4912				if (print)
4913					_print_next_block((*par_num)++,
4914							  "MCP UMP TX");
4915				*global = true;
4916				res = true;
4917				break;
4918			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4919				(*par_num)++;
4920				/* clear latched SCPAD PATIRY from MCP */
4921				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4922				       1UL << 10);
4923				break;
4924			}
4925
4926			/* Clear the bit */
4927			sig &= ~cur_bit;
4928		}
4929	}
4930
4931	return res;
4932}
4933
4934static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4935					    int *par_num, bool print)
4936{
4937	u32 cur_bit;
4938	bool res;
4939	int i;
4940
4941	res = false;
4942
4943	for (i = 0; sig; i++) {
4944		cur_bit = (0x1UL << i);
4945		if (sig & cur_bit) {
4946			res = true; /* Each bit is real error! */
4947			if (print) {
4948				switch (cur_bit) {
4949				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4950					_print_next_block((*par_num)++,
4951							  "PGLUE_B");
4952					_print_parity(bp,
4953						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4954					break;
4955				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4956					_print_next_block((*par_num)++, "ATC");
4957					_print_parity(bp,
4958						      ATC_REG_ATC_PRTY_STS);
4959					break;
4960				}
4961			}
4962			/* Clear the bit */
4963			sig &= ~cur_bit;
4964		}
4965	}
4966
4967	return res;
4968}
4969
4970static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4971			      u32 *sig)
4972{
4973	bool res = false;
4974
4975	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4976	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4977	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4978	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4979	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4980		int par_num = 0;
4981
4982		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4983				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4984			  sig[0] & HW_PRTY_ASSERT_SET_0,
4985			  sig[1] & HW_PRTY_ASSERT_SET_1,
4986			  sig[2] & HW_PRTY_ASSERT_SET_2,
4987			  sig[3] & HW_PRTY_ASSERT_SET_3,
4988			  sig[4] & HW_PRTY_ASSERT_SET_4);
4989		if (print) {
4990			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4991			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4992			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4993			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4994			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4995				netdev_err(bp->dev,
4996					   "Parity errors detected in blocks: ");
4997			} else {
4998				print = false;
4999			}
5000		}
5001		res |= bnx2x_check_blocks_with_parity0(bp,
5002			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5003		res |= bnx2x_check_blocks_with_parity1(bp,
5004			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5005		res |= bnx2x_check_blocks_with_parity2(bp,
5006			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5007		res |= bnx2x_check_blocks_with_parity3(bp,
5008			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5009		res |= bnx2x_check_blocks_with_parity4(bp,
5010			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5011
5012		if (print)
5013			pr_cont("\n");
5014	}
5015
5016	return res;
5017}
5018
5019/**
5020 * bnx2x_chk_parity_attn - checks for parity attentions.
5021 *
5022 * @bp:		driver handle
5023 * @global:	true if there was a global attention
5024 * @print:	show parity attention in syslog
5025 */
5026bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5027{
5028	struct attn_route attn = { {0} };
5029	int port = BP_PORT(bp);
5030
5031	attn.sig[0] = REG_RD(bp,
5032		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5033			     port*4);
5034	attn.sig[1] = REG_RD(bp,
5035		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5036			     port*4);
5037	attn.sig[2] = REG_RD(bp,
5038		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5039			     port*4);
5040	attn.sig[3] = REG_RD(bp,
5041		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5042			     port*4);
5043	/* Since MCP attentions can't be disabled inside the block, we need to
5044	 * read AEU registers to see whether they're currently disabled
5045	 */
5046	attn.sig[3] &= ((REG_RD(bp,
5047				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5048				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5049			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5050			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5051
5052	if (!CHIP_IS_E1x(bp))
5053		attn.sig[4] = REG_RD(bp,
5054			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5055				     port*4);
5056
5057	return bnx2x_parity_attn(bp, global, print, attn.sig);
5058}
5059
5060static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5061{
5062	u32 val;
5063	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5064
5065		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5066		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5067		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5068			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5069		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5070			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5071		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5072			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5073		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5074			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5075		if (val &
5076		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5077			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5078		if (val &
5079		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5080			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5081		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5082			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5083		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5084			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5085		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5086			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5087	}
5088	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5089		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5090		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5091		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5092			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5093		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5094			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5095		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5096			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5097		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5098			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5099		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5100			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5101		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5102			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5103	}
5104
5105	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5106		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5107		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5108		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5109		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5110	}
5111}
5112
5113static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5114{
5115	struct attn_route attn, *group_mask;
5116	int port = BP_PORT(bp);
5117	int index;
5118	u32 reg_addr;
5119	u32 val;
5120	u32 aeu_mask;
5121	bool global = false;
5122
5123	/* need to take HW lock because MCP or other port might also
5124	   try to handle this event */
5125	bnx2x_acquire_alr(bp);
5126
5127	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5128#ifndef BNX2X_STOP_ON_ERROR
5129		bp->recovery_state = BNX2X_RECOVERY_INIT;
5130		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5131		/* Disable HW interrupts */
5132		bnx2x_int_disable(bp);
5133		/* In case of parity errors don't handle attentions so that
5134		 * other function would "see" parity errors.
5135		 */
5136#else
5137		bnx2x_panic();
5138#endif
5139		bnx2x_release_alr(bp);
5140		return;
5141	}
5142
5143	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5144	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5145	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5146	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5147	if (!CHIP_IS_E1x(bp))
5148		attn.sig[4] =
5149		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5150	else
5151		attn.sig[4] = 0;
5152
5153	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5154	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5155
5156	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5157		if (deasserted & (1 << index)) {
5158			group_mask = &bp->attn_group[index];
5159
5160			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5161			   index,
5162			   group_mask->sig[0], group_mask->sig[1],
5163			   group_mask->sig[2], group_mask->sig[3],
5164			   group_mask->sig[4]);
5165
5166			bnx2x_attn_int_deasserted4(bp,
5167					attn.sig[4] & group_mask->sig[4]);
5168			bnx2x_attn_int_deasserted3(bp,
5169					attn.sig[3] & group_mask->sig[3]);
5170			bnx2x_attn_int_deasserted1(bp,
5171					attn.sig[1] & group_mask->sig[1]);
5172			bnx2x_attn_int_deasserted2(bp,
5173					attn.sig[2] & group_mask->sig[2]);
5174			bnx2x_attn_int_deasserted0(bp,
5175					attn.sig[0] & group_mask->sig[0]);
5176		}
5177	}
5178
5179	bnx2x_release_alr(bp);
5180
5181	if (bp->common.int_block == INT_BLOCK_HC)
5182		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5183			    COMMAND_REG_ATTN_BITS_CLR);
5184	else
5185		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5186
5187	val = ~deasserted;
5188	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5189	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5190	REG_WR(bp, reg_addr, val);
5191
5192	if (~bp->attn_state & deasserted)
5193		BNX2X_ERR("IGU ERROR\n");
5194
5195	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5196			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5197
5198	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5199	aeu_mask = REG_RD(bp, reg_addr);
5200
5201	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5202	   aeu_mask, deasserted);
5203	aeu_mask |= (deasserted & 0x3ff);
5204	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5205
5206	REG_WR(bp, reg_addr, aeu_mask);
5207	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5208
5209	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5210	bp->attn_state &= ~deasserted;
5211	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5212}
5213
5214static void bnx2x_attn_int(struct bnx2x *bp)
5215{
5216	/* read local copy of bits */
5217	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5218								attn_bits);
5219	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5220								attn_bits_ack);
5221	u32 attn_state = bp->attn_state;
5222
5223	/* look for changed bits */
5224	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5225	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5226
5227	DP(NETIF_MSG_HW,
5228	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5229	   attn_bits, attn_ack, asserted, deasserted);
5230
5231	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5232		BNX2X_ERR("BAD attention state\n");
5233
5234	/* handle bits that were raised */
5235	if (asserted)
5236		bnx2x_attn_int_asserted(bp, asserted);
5237
5238	if (deasserted)
5239		bnx2x_attn_int_deasserted(bp, deasserted);
5240}
5241
5242void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5243		      u16 index, u8 op, u8 update)
5244{
5245	u32 igu_addr = bp->igu_base_addr;
5246	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5247	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5248			     igu_addr);
5249}
5250
5251static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5252{
5253	/* No memory barriers */
5254	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5255}
5256
5257static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5258				      union event_ring_elem *elem)
5259{
5260	u8 err = elem->message.error;
5261
5262	if (!bp->cnic_eth_dev.starting_cid  ||
5263	    (cid < bp->cnic_eth_dev.starting_cid &&
5264	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5265		return 1;
5266
5267	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5268
5269	if (unlikely(err)) {
5270
5271		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5272			  cid);
5273		bnx2x_panic_dump(bp, false);
5274	}
5275	bnx2x_cnic_cfc_comp(bp, cid, err);
5276	return 0;
5277}
5278
5279static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5280{
5281	struct bnx2x_mcast_ramrod_params rparam;
5282	int rc;
5283
5284	memset(&rparam, 0, sizeof(rparam));
5285
5286	rparam.mcast_obj = &bp->mcast_obj;
5287
5288	netif_addr_lock_bh(bp->dev);
5289
5290	/* Clear pending state for the last command */
5291	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5292
5293	/* If there are pending mcast commands - send them */
5294	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5295		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5296		if (rc < 0)
5297			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5298				  rc);
5299	}
5300
5301	netif_addr_unlock_bh(bp->dev);
5302}
5303
5304static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5305					    union event_ring_elem *elem)
5306{
5307	unsigned long ramrod_flags = 0;
5308	int rc = 0;
5309	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5310	u32 cid = echo & BNX2X_SWCID_MASK;
5311	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5312
5313	/* Always push next commands out, don't wait here */
5314	__set_bit(RAMROD_CONT, &ramrod_flags);
5315
5316	switch (echo >> BNX2X_SWCID_SHIFT) {
5317	case BNX2X_FILTER_MAC_PENDING:
5318		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5319		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5320			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5321		else
5322			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5323
5324		break;
5325	case BNX2X_FILTER_VLAN_PENDING:
5326		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5327		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5328		break;
5329	case BNX2X_FILTER_MCAST_PENDING:
5330		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5331		/* This is only relevant for 57710 where multicast MACs are
5332		 * configured as unicast MACs using the same ramrod.
5333		 */
5334		bnx2x_handle_mcast_eqe(bp);
5335		return;
5336	default:
5337		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5338		return;
5339	}
5340
5341	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5342
5343	if (rc < 0)
5344		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5345	else if (rc > 0)
5346		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5347}
5348
5349static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5350
5351static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5352{
5353	netif_addr_lock_bh(bp->dev);
5354
5355	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5356
5357	/* Send rx_mode command again if was requested */
5358	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5359		bnx2x_set_storm_rx_mode(bp);
5360	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5361				    &bp->sp_state))
5362		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5363	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5364				    &bp->sp_state))
5365		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5366
5367	netif_addr_unlock_bh(bp->dev);
5368}
5369
5370static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5371					      union event_ring_elem *elem)
5372{
5373	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5374		DP(BNX2X_MSG_SP,
5375		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5376		   elem->message.data.vif_list_event.func_bit_map);
5377		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5378			elem->message.data.vif_list_event.func_bit_map);
5379	} else if (elem->message.data.vif_list_event.echo ==
5380		   VIF_LIST_RULE_SET) {
5381		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5382		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5383	}
5384}
5385
5386/* called with rtnl_lock */
5387static void bnx2x_after_function_update(struct bnx2x *bp)
5388{
5389	int q, rc;
5390	struct bnx2x_fastpath *fp;
5391	struct bnx2x_queue_state_params queue_params = {NULL};
5392	struct bnx2x_queue_update_params *q_update_params =
5393		&queue_params.params.update;
5394
5395	/* Send Q update command with afex vlan removal values for all Qs */
5396	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5397
5398	/* set silent vlan removal values according to vlan mode */
5399	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5400		  &q_update_params->update_flags);
5401	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5402		  &q_update_params->update_flags);
5403	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5404
5405	/* in access mode mark mask and value are 0 to strip all vlans */
5406	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5407		q_update_params->silent_removal_value = 0;
5408		q_update_params->silent_removal_mask = 0;
5409	} else {
5410		q_update_params->silent_removal_value =
5411			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5412		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5413	}
5414
5415	for_each_eth_queue(bp, q) {
5416		/* Set the appropriate Queue object */
5417		fp = &bp->fp[q];
5418		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5419
5420		/* send the ramrod */
5421		rc = bnx2x_queue_state_change(bp, &queue_params);
5422		if (rc < 0)
5423			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5424				  q);
5425	}
5426
5427	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5428		fp = &bp->fp[FCOE_IDX(bp)];
5429		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5430
5431		/* clear pending completion bit */
5432		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5433
5434		/* mark latest Q bit */
5435		smp_mb__before_atomic();
5436		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5437		smp_mb__after_atomic();
5438
5439		/* send Q update ramrod for FCoE Q */
5440		rc = bnx2x_queue_state_change(bp, &queue_params);
5441		if (rc < 0)
5442			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5443				  q);
5444	} else {
5445		/* If no FCoE ring - ACK MCP now */
5446		bnx2x_link_report(bp);
5447		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5448	}
5449}
5450
5451static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5452	struct bnx2x *bp, u32 cid)
5453{
5454	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5455
5456	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5457		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5458	else
5459		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5460}
5461
5462static void bnx2x_eq_int(struct bnx2x *bp)
5463{
5464	u16 hw_cons, sw_cons, sw_prod;
5465	union event_ring_elem *elem;
5466	u8 echo;
5467	u32 cid;
5468	u8 opcode;
5469	int rc, spqe_cnt = 0;
5470	struct bnx2x_queue_sp_obj *q_obj;
5471	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5472	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5473
5474	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5475
5476	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5477	 * when we get the next-page we need to adjust so the loop
5478	 * condition below will be met. The next element is the size of a
5479	 * regular element and hence incrementing by 1
5480	 */
5481	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5482		hw_cons++;
5483
5484	/* This function may never run in parallel with itself for a
5485	 * specific bp, thus there is no need in "paired" read memory
5486	 * barrier here.
5487	 */
5488	sw_cons = bp->eq_cons;
5489	sw_prod = bp->eq_prod;
5490
5491	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5492			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5493
5494	for (; sw_cons != hw_cons;
5495	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5496
5497		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5498
5499		rc = bnx2x_iov_eq_sp_event(bp, elem);
5500		if (!rc) {
5501			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5502			   rc);
5503			goto next_spqe;
5504		}
5505
5506		opcode = elem->message.opcode;
5507
5508		/* handle eq element */
5509		switch (opcode) {
5510		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5511			bnx2x_vf_mbx_schedule(bp,
5512					      &elem->message.data.vf_pf_event);
5513			continue;
5514
5515		case EVENT_RING_OPCODE_STAT_QUERY:
5516			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5517			       "got statistics comp event %d\n",
5518			       bp->stats_comp++);
5519			/* nothing to do with stats comp */
5520			goto next_spqe;
5521
5522		case EVENT_RING_OPCODE_CFC_DEL:
5523			/* handle according to cid range */
5524			/*
5525			 * we may want to verify here that the bp state is
5526			 * HALTING
5527			 */
5528
5529			/* elem CID originates from FW; actually LE */
5530			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5531
5532			DP(BNX2X_MSG_SP,
5533			   "got delete ramrod for MULTI[%d]\n", cid);
5534
5535			if (CNIC_LOADED(bp) &&
5536			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5537				goto next_spqe;
5538
5539			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5540
5541			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5542				break;
5543
5544			goto next_spqe;
5545
5546		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5547			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5548			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5549			if (f_obj->complete_cmd(bp, f_obj,
5550						BNX2X_F_CMD_TX_STOP))
5551				break;
5552			goto next_spqe;
5553
5554		case EVENT_RING_OPCODE_START_TRAFFIC:
5555			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5556			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5557			if (f_obj->complete_cmd(bp, f_obj,
5558						BNX2X_F_CMD_TX_START))
5559				break;
5560			goto next_spqe;
5561
5562		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5563			echo = elem->message.data.function_update_event.echo;
5564			if (echo == SWITCH_UPDATE) {
5565				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5566				   "got FUNC_SWITCH_UPDATE ramrod\n");
5567				if (f_obj->complete_cmd(
5568					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5569					break;
5570
5571			} else {
5572				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5573
5574				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5575				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5576				f_obj->complete_cmd(bp, f_obj,
5577						    BNX2X_F_CMD_AFEX_UPDATE);
5578
5579				/* We will perform the Queues update from
5580				 * sp_rtnl task as all Queue SP operations
5581				 * should run under rtnl_lock.
5582				 */
5583				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5584			}
5585
5586			goto next_spqe;
5587
5588		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5589			f_obj->complete_cmd(bp, f_obj,
5590					    BNX2X_F_CMD_AFEX_VIFLISTS);
5591			bnx2x_after_afex_vif_lists(bp, elem);
5592			goto next_spqe;
5593		case EVENT_RING_OPCODE_FUNCTION_START:
5594			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5595			   "got FUNC_START ramrod\n");
5596			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5597				break;
5598
5599			goto next_spqe;
5600
5601		case EVENT_RING_OPCODE_FUNCTION_STOP:
5602			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5603			   "got FUNC_STOP ramrod\n");
5604			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5605				break;
5606
5607			goto next_spqe;
5608
5609		case EVENT_RING_OPCODE_SET_TIMESYNC:
5610			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5611			   "got set_timesync ramrod completion\n");
5612			if (f_obj->complete_cmd(bp, f_obj,
5613						BNX2X_F_CMD_SET_TIMESYNC))
5614				break;
5615			goto next_spqe;
5616		}
5617
5618		switch (opcode | bp->state) {
5619		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5620		      BNX2X_STATE_OPEN):
5621		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5622		      BNX2X_STATE_OPENING_WAIT4_PORT):
5623		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5624		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5625			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5626			   SW_CID(elem->message.data.eth_event.echo));
5627			rss_raw->clear_pending(rss_raw);
5628			break;
5629
5630		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5631		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5632		case (EVENT_RING_OPCODE_SET_MAC |
5633		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5634		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5635		      BNX2X_STATE_OPEN):
5636		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5637		      BNX2X_STATE_DIAG):
5638		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5639		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5640			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5641			bnx2x_handle_classification_eqe(bp, elem);
5642			break;
5643
5644		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5645		      BNX2X_STATE_OPEN):
5646		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5647		      BNX2X_STATE_DIAG):
5648		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5649		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5650			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5651			bnx2x_handle_mcast_eqe(bp);
5652			break;
5653
5654		case (EVENT_RING_OPCODE_FILTERS_RULES |
5655		      BNX2X_STATE_OPEN):
5656		case (EVENT_RING_OPCODE_FILTERS_RULES |
5657		      BNX2X_STATE_DIAG):
5658		case (EVENT_RING_OPCODE_FILTERS_RULES |
5659		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5660			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5661			bnx2x_handle_rx_mode_eqe(bp);
5662			break;
5663		default:
5664			/* unknown event log error and continue */
5665			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5666				  elem->message.opcode, bp->state);
5667		}
5668next_spqe:
5669		spqe_cnt++;
5670	} /* for */
5671
5672	smp_mb__before_atomic();
5673	atomic_add(spqe_cnt, &bp->eq_spq_left);
5674
5675	bp->eq_cons = sw_cons;
5676	bp->eq_prod = sw_prod;
5677	/* Make sure that above mem writes were issued towards the memory */
5678	smp_wmb();
5679
5680	/* update producer */
5681	bnx2x_update_eq_prod(bp, bp->eq_prod);
5682}
5683
5684static void bnx2x_sp_task(struct work_struct *work)
5685{
5686	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5687
5688	DP(BNX2X_MSG_SP, "sp task invoked\n");
5689
5690	/* make sure the atomic interrupt_occurred has been written */
5691	smp_rmb();
5692	if (atomic_read(&bp->interrupt_occurred)) {
5693
5694		/* what work needs to be performed? */
5695		u16 status = bnx2x_update_dsb_idx(bp);
5696
5697		DP(BNX2X_MSG_SP, "status %x\n", status);
5698		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5699		atomic_set(&bp->interrupt_occurred, 0);
5700
5701		/* HW attentions */
5702		if (status & BNX2X_DEF_SB_ATT_IDX) {
5703			bnx2x_attn_int(bp);
5704			status &= ~BNX2X_DEF_SB_ATT_IDX;
5705		}
5706
5707		/* SP events: STAT_QUERY and others */
5708		if (status & BNX2X_DEF_SB_IDX) {
5709			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5710
5711			if (FCOE_INIT(bp) &&
5712			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5713				/* Prevent local bottom-halves from running as
5714				 * we are going to change the local NAPI list.
5715				 */
5716				local_bh_disable();
5717				napi_schedule(&bnx2x_fcoe(bp, napi));
5718				local_bh_enable();
5719			}
5720
5721			/* Handle EQ completions */
5722			bnx2x_eq_int(bp);
5723			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5724				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5725
5726			status &= ~BNX2X_DEF_SB_IDX;
5727		}
5728
5729		/* if status is non zero then perhaps something went wrong */
5730		if (unlikely(status))
5731			DP(BNX2X_MSG_SP,
5732			   "got an unknown interrupt! (status 0x%x)\n", status);
5733
5734		/* ack status block only if something was actually handled */
5735		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5736			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5737	}
5738
5739	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5740	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5741			       &bp->sp_state)) {
5742		bnx2x_link_report(bp);
5743		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5744	}
5745}
5746
5747irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5748{
5749	struct net_device *dev = dev_instance;
5750	struct bnx2x *bp = netdev_priv(dev);
5751
5752	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5753		     IGU_INT_DISABLE, 0);
5754
5755#ifdef BNX2X_STOP_ON_ERROR
5756	if (unlikely(bp->panic))
5757		return IRQ_HANDLED;
5758#endif
5759
5760	if (CNIC_LOADED(bp)) {
5761		struct cnic_ops *c_ops;
5762
5763		rcu_read_lock();
5764		c_ops = rcu_dereference(bp->cnic_ops);
5765		if (c_ops)
5766			c_ops->cnic_handler(bp->cnic_data, NULL);
5767		rcu_read_unlock();
5768	}
5769
5770	/* schedule sp task to perform default status block work, ack
5771	 * attentions and enable interrupts.
5772	 */
5773	bnx2x_schedule_sp_task(bp);
5774
5775	return IRQ_HANDLED;
5776}
5777
5778/* end of slow path */
5779
5780void bnx2x_drv_pulse(struct bnx2x *bp)
5781{
5782	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5783		 bp->fw_drv_pulse_wr_seq);
5784}
5785
5786static void bnx2x_timer(struct timer_list *t)
5787{
5788	struct bnx2x *bp = from_timer(bp, t, timer);
5789
5790	if (!netif_running(bp->dev))
5791		return;
5792
5793	if (IS_PF(bp) &&
5794	    !BP_NOMCP(bp)) {
5795		int mb_idx = BP_FW_MB_IDX(bp);
5796		u16 drv_pulse;
5797		u16 mcp_pulse;
5798
5799		++bp->fw_drv_pulse_wr_seq;
5800		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5801		drv_pulse = bp->fw_drv_pulse_wr_seq;
5802		bnx2x_drv_pulse(bp);
5803
5804		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5805			     MCP_PULSE_SEQ_MASK);
5806		/* The delta between driver pulse and mcp response
5807		 * should not get too big. If the MFW is more than 5 pulses
5808		 * behind, we should worry about it enough to generate an error
5809		 * log.
5810		 */
5811		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5812			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5813				  drv_pulse, mcp_pulse);
5814	}
5815
5816	if (bp->state == BNX2X_STATE_OPEN)
5817		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5818
5819	/* sample pf vf bulletin board for new posts from pf */
5820	if (IS_VF(bp))
5821		bnx2x_timer_sriov(bp);
5822
5823	mod_timer(&bp->timer, jiffies + bp->current_interval);
5824}
5825
5826/* end of Statistics */
5827
5828/* nic init */
5829
5830/*
5831 * nic init service functions
5832 */
5833
5834static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5835{
5836	u32 i;
5837	if (!(len%4) && !(addr%4))
5838		for (i = 0; i < len; i += 4)
5839			REG_WR(bp, addr + i, fill);
5840	else
5841		for (i = 0; i < len; i++)
5842			REG_WR8(bp, addr + i, fill);
5843}
5844
5845/* helper: writes FP SP data to FW - data_size in dwords */
5846static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5847				int fw_sb_id,
5848				u32 *sb_data_p,
5849				u32 data_size)
5850{
5851	int index;
5852	for (index = 0; index < data_size; index++)
5853		REG_WR(bp, BAR_CSTRORM_INTMEM +
5854			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5855			sizeof(u32)*index,
5856			*(sb_data_p + index));
5857}
5858
5859static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5860{
5861	u32 *sb_data_p;
5862	u32 data_size = 0;
5863	struct hc_status_block_data_e2 sb_data_e2;
5864	struct hc_status_block_data_e1x sb_data_e1x;
5865
5866	/* disable the function first */
5867	if (!CHIP_IS_E1x(bp)) {
5868		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5869		sb_data_e2.common.state = SB_DISABLED;
5870		sb_data_e2.common.p_func.vf_valid = false;
5871		sb_data_p = (u32 *)&sb_data_e2;
5872		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5873	} else {
5874		memset(&sb_data_e1x, 0,
5875		       sizeof(struct hc_status_block_data_e1x));
5876		sb_data_e1x.common.state = SB_DISABLED;
5877		sb_data_e1x.common.p_func.vf_valid = false;
5878		sb_data_p = (u32 *)&sb_data_e1x;
5879		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5880	}
5881	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5882
5883	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5884			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5885			CSTORM_STATUS_BLOCK_SIZE);
5886	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5887			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5888			CSTORM_SYNC_BLOCK_SIZE);
5889}
5890
5891/* helper:  writes SP SB data to FW */
5892static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5893		struct hc_sp_status_block_data *sp_sb_data)
5894{
5895	int func = BP_FUNC(bp);
5896	int i;
5897	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5898		REG_WR(bp, BAR_CSTRORM_INTMEM +
5899			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5900			i*sizeof(u32),
5901			*((u32 *)sp_sb_data + i));
5902}
5903
5904static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5905{
5906	int func = BP_FUNC(bp);
5907	struct hc_sp_status_block_data sp_sb_data;
5908	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5909
5910	sp_sb_data.state = SB_DISABLED;
5911	sp_sb_data.p_func.vf_valid = false;
5912
5913	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5914
5915	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5916			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5917			CSTORM_SP_STATUS_BLOCK_SIZE);
5918	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5919			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5920			CSTORM_SP_SYNC_BLOCK_SIZE);
5921}
5922
5923static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5924					   int igu_sb_id, int igu_seg_id)
5925{
5926	hc_sm->igu_sb_id = igu_sb_id;
5927	hc_sm->igu_seg_id = igu_seg_id;
5928	hc_sm->timer_value = 0xFF;
5929	hc_sm->time_to_expire = 0xFFFFFFFF;
5930}
5931
5932/* allocates state machine ids. */
5933static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5934{
5935	/* zero out state machine indices */
5936	/* rx indices */
5937	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5938
5939	/* tx indices */
5940	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5941	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5942	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5943	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5944
5945	/* map indices */
5946	/* rx indices */
5947	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5948		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5949
5950	/* tx indices */
5951	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5952		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5953	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5954		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5955	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5956		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5957	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5958		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5959}
5960
5961void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5962			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5963{
5964	int igu_seg_id;
5965
5966	struct hc_status_block_data_e2 sb_data_e2;
5967	struct hc_status_block_data_e1x sb_data_e1x;
5968	struct hc_status_block_sm  *hc_sm_p;
5969	int data_size;
5970	u32 *sb_data_p;
5971
5972	if (CHIP_INT_MODE_IS_BC(bp))
5973		igu_seg_id = HC_SEG_ACCESS_NORM;
5974	else
5975		igu_seg_id = IGU_SEG_ACCESS_NORM;
5976
5977	bnx2x_zero_fp_sb(bp, fw_sb_id);
5978
5979	if (!CHIP_IS_E1x(bp)) {
5980		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5981		sb_data_e2.common.state = SB_ENABLED;
5982		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5983		sb_data_e2.common.p_func.vf_id = vfid;
5984		sb_data_e2.common.p_func.vf_valid = vf_valid;
5985		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5986		sb_data_e2.common.same_igu_sb_1b = true;
5987		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5988		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5989		hc_sm_p = sb_data_e2.common.state_machine;
5990		sb_data_p = (u32 *)&sb_data_e2;
5991		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5992		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5993	} else {
5994		memset(&sb_data_e1x, 0,
5995		       sizeof(struct hc_status_block_data_e1x));
5996		sb_data_e1x.common.state = SB_ENABLED;
5997		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5998		sb_data_e1x.common.p_func.vf_id = 0xff;
5999		sb_data_e1x.common.p_func.vf_valid = false;
6000		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
6001		sb_data_e1x.common.same_igu_sb_1b = true;
6002		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6003		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6004		hc_sm_p = sb_data_e1x.common.state_machine;
6005		sb_data_p = (u32 *)&sb_data_e1x;
6006		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6007		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6008	}
6009
6010	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6011				       igu_sb_id, igu_seg_id);
6012	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6013				       igu_sb_id, igu_seg_id);
6014
6015	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6016
6017	/* write indices to HW - PCI guarantees endianity of regpairs */
6018	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6019}
6020
6021static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6022				     u16 tx_usec, u16 rx_usec)
6023{
6024	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6025				    false, rx_usec);
6026	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6027				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6028				       tx_usec);
6029	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6030				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6031				       tx_usec);
6032	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6033				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6034				       tx_usec);
6035}
6036
6037static void bnx2x_init_def_sb(struct bnx2x *bp)
6038{
6039	struct host_sp_status_block *def_sb = bp->def_status_blk;
6040	dma_addr_t mapping = bp->def_status_blk_mapping;
6041	int igu_sp_sb_index;
6042	int igu_seg_id;
6043	int port = BP_PORT(bp);
6044	int func = BP_FUNC(bp);
6045	int reg_offset, reg_offset_en5;
6046	u64 section;
6047	int index;
6048	struct hc_sp_status_block_data sp_sb_data;
6049	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6050
6051	if (CHIP_INT_MODE_IS_BC(bp)) {
6052		igu_sp_sb_index = DEF_SB_IGU_ID;
6053		igu_seg_id = HC_SEG_ACCESS_DEF;
6054	} else {
6055		igu_sp_sb_index = bp->igu_dsb_id;
6056		igu_seg_id = IGU_SEG_ACCESS_DEF;
6057	}
6058
6059	/* ATTN */
6060	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6061					    atten_status_block);
6062	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6063
6064	bp->attn_state = 0;
6065
6066	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6067			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6068	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6069				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6070	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6071		int sindex;
6072		/* take care of sig[0]..sig[4] */
6073		for (sindex = 0; sindex < 4; sindex++)
6074			bp->attn_group[index].sig[sindex] =
6075			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6076
6077		if (!CHIP_IS_E1x(bp))
6078			/*
6079			 * enable5 is separate from the rest of the registers,
6080			 * and therefore the address skip is 4
6081			 * and not 16 between the different groups
6082			 */
6083			bp->attn_group[index].sig[4] = REG_RD(bp,
6084					reg_offset_en5 + 0x4*index);
6085		else
6086			bp->attn_group[index].sig[4] = 0;
6087	}
6088
6089	if (bp->common.int_block == INT_BLOCK_HC) {
6090		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6091				     HC_REG_ATTN_MSG0_ADDR_L);
6092
6093		REG_WR(bp, reg_offset, U64_LO(section));
6094		REG_WR(bp, reg_offset + 4, U64_HI(section));
6095	} else if (!CHIP_IS_E1x(bp)) {
6096		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6097		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6098	}
6099
6100	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6101					    sp_sb);
6102
6103	bnx2x_zero_sp_sb(bp);
6104
6105	/* PCI guarantees endianity of regpairs */
6106	sp_sb_data.state		= SB_ENABLED;
6107	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6108	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6109	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6110	sp_sb_data.igu_seg_id		= igu_seg_id;
6111	sp_sb_data.p_func.pf_id		= func;
6112	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6113	sp_sb_data.p_func.vf_id		= 0xff;
6114
6115	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6116
6117	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6118}
6119
6120void bnx2x_update_coalesce(struct bnx2x *bp)
6121{
6122	int i;
6123
6124	for_each_eth_queue(bp, i)
6125		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6126					 bp->tx_ticks, bp->rx_ticks);
6127}
6128
6129static void bnx2x_init_sp_ring(struct bnx2x *bp)
6130{
6131	spin_lock_init(&bp->spq_lock);
6132	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6133
6134	bp->spq_prod_idx = 0;
6135	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6136	bp->spq_prod_bd = bp->spq;
6137	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6138}
6139
6140static void bnx2x_init_eq_ring(struct bnx2x *bp)
6141{
6142	int i;
6143	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6144		union event_ring_elem *elem =
6145			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6146
6147		elem->next_page.addr.hi =
6148			cpu_to_le32(U64_HI(bp->eq_mapping +
6149				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6150		elem->next_page.addr.lo =
6151			cpu_to_le32(U64_LO(bp->eq_mapping +
6152				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6153	}
6154	bp->eq_cons = 0;
6155	bp->eq_prod = NUM_EQ_DESC;
6156	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6157	/* we want a warning message before it gets wrought... */
6158	atomic_set(&bp->eq_spq_left,
6159		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6160}
6161
6162/* called with netif_addr_lock_bh() */
6163static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6164			       unsigned long rx_mode_flags,
6165			       unsigned long rx_accept_flags,
6166			       unsigned long tx_accept_flags,
6167			       unsigned long ramrod_flags)
6168{
6169	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6170	int rc;
6171
6172	memset(&ramrod_param, 0, sizeof(ramrod_param));
6173
6174	/* Prepare ramrod parameters */
6175	ramrod_param.cid = 0;
6176	ramrod_param.cl_id = cl_id;
6177	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6178	ramrod_param.func_id = BP_FUNC(bp);
6179
6180	ramrod_param.pstate = &bp->sp_state;
6181	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6182
6183	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6184	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6185
6186	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6187
6188	ramrod_param.ramrod_flags = ramrod_flags;
6189	ramrod_param.rx_mode_flags = rx_mode_flags;
6190
6191	ramrod_param.rx_accept_flags = rx_accept_flags;
6192	ramrod_param.tx_accept_flags = tx_accept_flags;
6193
6194	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6195	if (rc < 0) {
6196		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6197		return rc;
6198	}
6199
6200	return 0;
6201}
6202
6203static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6204				   unsigned long *rx_accept_flags,
6205				   unsigned long *tx_accept_flags)
6206{
6207	/* Clear the flags first */
6208	*rx_accept_flags = 0;
6209	*tx_accept_flags = 0;
6210
6211	switch (rx_mode) {
6212	case BNX2X_RX_MODE_NONE:
6213		/*
6214		 * 'drop all' supersedes any accept flags that may have been
6215		 * passed to the function.
6216		 */
6217		break;
6218	case BNX2X_RX_MODE_NORMAL:
6219		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6220		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6221		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6222
6223		/* internal switching mode */
6224		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6225		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6226		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6227
6228		if (bp->accept_any_vlan) {
6229			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6230			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6231		}
6232
6233		break;
6234	case BNX2X_RX_MODE_ALLMULTI:
6235		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6236		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6237		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6238
6239		/* internal switching mode */
6240		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6241		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6242		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6243
6244		if (bp->accept_any_vlan) {
6245			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6246			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6247		}
6248
6249		break;
6250	case BNX2X_RX_MODE_PROMISC:
6251		/* According to definition of SI mode, iface in promisc mode
6252		 * should receive matched and unmatched (in resolution of port)
6253		 * unicast packets.
6254		 */
6255		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6256		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6257		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6258		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6259
6260		/* internal switching mode */
6261		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6262		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6263
6264		if (IS_MF_SI(bp))
6265			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6266		else
6267			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6268
6269		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6270		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6271
6272		break;
6273	default:
6274		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6275		return -EINVAL;
6276	}
6277
6278	return 0;
6279}
6280
6281/* called with netif_addr_lock_bh() */
6282static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6283{
6284	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6285	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6286	int rc;
6287
6288	if (!NO_FCOE(bp))
6289		/* Configure rx_mode of FCoE Queue */
6290		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6291
6292	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6293				     &tx_accept_flags);
6294	if (rc)
6295		return rc;
6296
6297	__set_bit(RAMROD_RX, &ramrod_flags);
6298	__set_bit(RAMROD_TX, &ramrod_flags);
6299
6300	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6301				   rx_accept_flags, tx_accept_flags,
6302				   ramrod_flags);
6303}
6304
6305static void bnx2x_init_internal_common(struct bnx2x *bp)
6306{
6307	int i;
6308
6309	/* Zero this manually as its initialization is
6310	   currently missing in the initTool */
6311	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6312		REG_WR(bp, BAR_USTRORM_INTMEM +
6313		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6314	if (!CHIP_IS_E1x(bp)) {
6315		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6316			CHIP_INT_MODE_IS_BC(bp) ?
6317			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6318	}
6319}
6320
6321static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6322{
6323	switch (load_code) {
6324	case FW_MSG_CODE_DRV_LOAD_COMMON:
6325	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6326		bnx2x_init_internal_common(bp);
6327		fallthrough;
6328
6329	case FW_MSG_CODE_DRV_LOAD_PORT:
6330		/* nothing to do */
6331		fallthrough;
6332
6333	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6334		/* internal memory per function is
6335		   initialized inside bnx2x_pf_init */
6336		break;
6337
6338	default:
6339		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6340		break;
6341	}
6342}
6343
6344static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6345{
6346	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6347}
6348
6349static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6350{
6351	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6352}
6353
6354static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6355{
6356	if (CHIP_IS_E1x(fp->bp))
6357		return BP_L_ID(fp->bp) + fp->index;
6358	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6359		return bnx2x_fp_igu_sb_id(fp);
6360}
6361
6362static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6363{
6364	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6365	u8 cos;
6366	unsigned long q_type = 0;
6367	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6368	fp->rx_queue = fp_idx;
6369	fp->cid = fp_idx;
6370	fp->cl_id = bnx2x_fp_cl_id(fp);
6371	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6372	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6373	/* qZone id equals to FW (per path) client id */
6374	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6375
6376	/* init shortcut */
6377	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6378
6379	/* Setup SB indices */
6380	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6381
6382	/* Configure Queue State object */
6383	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6384	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6385
6386	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6387
6388	/* init tx data */
6389	for_each_cos_in_tx_queue(fp, cos) {
6390		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6391				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6392				  FP_COS_TO_TXQ(fp, cos, bp),
6393				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6394		cids[cos] = fp->txdata_ptr[cos]->cid;
6395	}
6396
6397	/* nothing more for vf to do here */
6398	if (IS_VF(bp))
6399		return;
6400
6401	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6402		      fp->fw_sb_id, fp->igu_sb_id);
6403	bnx2x_update_fpsb_idx(fp);
6404	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6405			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6406			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6407
6408	/**
6409	 * Configure classification DBs: Always enable Tx switching
6410	 */
6411	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6412
6413	DP(NETIF_MSG_IFUP,
6414	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6415	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6416	   fp->igu_sb_id);
6417}
6418
6419static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6420{
6421	int i;
6422
6423	for (i = 1; i <= NUM_TX_RINGS; i++) {
6424		struct eth_tx_next_bd *tx_next_bd =
6425			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6426
6427		tx_next_bd->addr_hi =
6428			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6429				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6430		tx_next_bd->addr_lo =
6431			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6432				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6433	}
6434
6435	*txdata->tx_cons_sb = cpu_to_le16(0);
6436
6437	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6438	txdata->tx_db.data.zero_fill1 = 0;
6439	txdata->tx_db.data.prod = 0;
6440
6441	txdata->tx_pkt_prod = 0;
6442	txdata->tx_pkt_cons = 0;
6443	txdata->tx_bd_prod = 0;
6444	txdata->tx_bd_cons = 0;
6445	txdata->tx_pkt = 0;
6446}
6447
6448static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6449{
6450	int i;
6451
6452	for_each_tx_queue_cnic(bp, i)
6453		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6454}
6455
6456static void bnx2x_init_tx_rings(struct bnx2x *bp)
6457{
6458	int i;
6459	u8 cos;
6460
6461	for_each_eth_queue(bp, i)
6462		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6463			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6464}
6465
6466static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6467{
6468	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6469	unsigned long q_type = 0;
6470
6471	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6472	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6473						     BNX2X_FCOE_ETH_CL_ID_IDX);
6474	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6475	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6476	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6477	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6478	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6479			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6480			  fp);
6481
6482	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6483
6484	/* qZone id equals to FW (per path) client id */
6485	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6486	/* init shortcut */
6487	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6488		bnx2x_rx_ustorm_prods_offset(fp);
6489
6490	/* Configure Queue State object */
6491	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6492	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6493
6494	/* No multi-CoS for FCoE L2 client */
6495	BUG_ON(fp->max_cos != 1);
6496
6497	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6498			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6499			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6500
6501	DP(NETIF_MSG_IFUP,
6502	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6503	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6504	   fp->igu_sb_id);
6505}
6506
6507void bnx2x_nic_init_cnic(struct bnx2x *bp)
6508{
6509	if (!NO_FCOE(bp))
6510		bnx2x_init_fcoe_fp(bp);
6511
6512	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6513		      BNX2X_VF_ID_INVALID, false,
6514		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6515
6516	/* ensure status block indices were read */
6517	rmb();
6518	bnx2x_init_rx_rings_cnic(bp);
6519	bnx2x_init_tx_rings_cnic(bp);
6520
6521	/* flush all */
6522	mb();
6523}
6524
6525void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6526{
6527	int i;
6528
6529	/* Setup NIC internals and enable interrupts */
6530	for_each_eth_queue(bp, i)
6531		bnx2x_init_eth_fp(bp, i);
6532
6533	/* ensure status block indices were read */
6534	rmb();
6535	bnx2x_init_rx_rings(bp);
6536	bnx2x_init_tx_rings(bp);
6537
6538	if (IS_PF(bp)) {
6539		/* Initialize MOD_ABS interrupts */
6540		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6541				       bp->common.shmem_base,
6542				       bp->common.shmem2_base, BP_PORT(bp));
6543
6544		/* initialize the default status block and sp ring */
6545		bnx2x_init_def_sb(bp);
6546		bnx2x_update_dsb_idx(bp);
6547		bnx2x_init_sp_ring(bp);
6548	} else {
6549		bnx2x_memset_stats(bp);
6550	}
6551}
6552
6553void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6554{
6555	bnx2x_init_eq_ring(bp);
6556	bnx2x_init_internal(bp, load_code);
6557	bnx2x_pf_init(bp);
6558	bnx2x_stats_init(bp);
6559
6560	/* flush all before enabling interrupts */
6561	mb();
6562
6563	bnx2x_int_enable(bp);
6564
6565	/* Check for SPIO5 */
6566	bnx2x_attn_int_deasserted0(bp,
6567		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6568				   AEU_INPUTS_ATTN_BITS_SPIO5);
6569}
6570
6571/* gzip service functions */
6572static int bnx2x_gunzip_init(struct bnx2x *bp)
6573{
6574	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6575					    &bp->gunzip_mapping, GFP_KERNEL);
6576	if (bp->gunzip_buf  == NULL)
6577		goto gunzip_nomem1;
6578
6579	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6580	if (bp->strm  == NULL)
6581		goto gunzip_nomem2;
6582
6583	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6584	if (bp->strm->workspace == NULL)
6585		goto gunzip_nomem3;
6586
6587	return 0;
6588
6589gunzip_nomem3:
6590	kfree(bp->strm);
6591	bp->strm = NULL;
6592
6593gunzip_nomem2:
6594	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6595			  bp->gunzip_mapping);
6596	bp->gunzip_buf = NULL;
6597
6598gunzip_nomem1:
6599	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6600	return -ENOMEM;
6601}
6602
6603static void bnx2x_gunzip_end(struct bnx2x *bp)
6604{
6605	if (bp->strm) {
6606		vfree(bp->strm->workspace);
6607		kfree(bp->strm);
6608		bp->strm = NULL;
6609	}
6610
6611	if (bp->gunzip_buf) {
6612		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6613				  bp->gunzip_mapping);
6614		bp->gunzip_buf = NULL;
6615	}
6616}
6617
6618static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6619{
6620	int n, rc;
6621
6622	/* check gzip header */
6623	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6624		BNX2X_ERR("Bad gzip header\n");
6625		return -EINVAL;
6626	}
6627
6628	n = 10;
6629
6630#define FNAME				0x8
6631
6632	if (zbuf[3] & FNAME)
6633		while ((zbuf[n++] != 0) && (n < len));
6634
6635	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6636	bp->strm->avail_in = len - n;
6637	bp->strm->next_out = bp->gunzip_buf;
6638	bp->strm->avail_out = FW_BUF_SIZE;
6639
6640	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6641	if (rc != Z_OK)
6642		return rc;
6643
6644	rc = zlib_inflate(bp->strm, Z_FINISH);
6645	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6646		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6647			   bp->strm->msg);
6648
6649	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6650	if (bp->gunzip_outlen & 0x3)
6651		netdev_err(bp->dev,
6652			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6653				bp->gunzip_outlen);
6654	bp->gunzip_outlen >>= 2;
6655
6656	zlib_inflateEnd(bp->strm);
6657
6658	if (rc == Z_STREAM_END)
6659		return 0;
6660
6661	return rc;
6662}
6663
6664/* nic load/unload */
6665
6666/*
6667 * General service functions
6668 */
6669
6670/* send a NIG loopback debug packet */
6671static void bnx2x_lb_pckt(struct bnx2x *bp)
6672{
6673	u32 wb_write[3];
6674
6675	/* Ethernet source and destination addresses */
6676	wb_write[0] = 0x55555555;
6677	wb_write[1] = 0x55555555;
6678	wb_write[2] = 0x20;		/* SOP */
6679	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6680
6681	/* NON-IP protocol */
6682	wb_write[0] = 0x09000000;
6683	wb_write[1] = 0x55555555;
6684	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6685	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6686}
6687
6688/* some of the internal memories
6689 * are not directly readable from the driver
6690 * to test them we send debug packets
6691 */
6692static int bnx2x_int_mem_test(struct bnx2x *bp)
6693{
6694	int factor;
6695	int count, i;
6696	u32 val = 0;
6697
6698	if (CHIP_REV_IS_FPGA(bp))
6699		factor = 120;
6700	else if (CHIP_REV_IS_EMUL(bp))
6701		factor = 200;
6702	else
6703		factor = 1;
6704
6705	/* Disable inputs of parser neighbor blocks */
6706	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6707	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6708	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6709	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6710
6711	/*  Write 0 to parser credits for CFC search request */
6712	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6713
6714	/* send Ethernet packet */
6715	bnx2x_lb_pckt(bp);
6716
6717	/* TODO do i reset NIG statistic? */
6718	/* Wait until NIG register shows 1 packet of size 0x10 */
6719	count = 1000 * factor;
6720	while (count) {
6721
6722		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6723		val = *bnx2x_sp(bp, wb_data[0]);
6724		if (val == 0x10)
6725			break;
6726
6727		usleep_range(10000, 20000);
6728		count--;
6729	}
6730	if (val != 0x10) {
6731		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6732		return -1;
6733	}
6734
6735	/* Wait until PRS register shows 1 packet */
6736	count = 1000 * factor;
6737	while (count) {
6738		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6739		if (val == 1)
6740			break;
6741
6742		usleep_range(10000, 20000);
6743		count--;
6744	}
6745	if (val != 0x1) {
6746		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6747		return -2;
6748	}
6749
6750	/* Reset and init BRB, PRS */
6751	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6752	msleep(50);
6753	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6754	msleep(50);
6755	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6756	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6757
6758	DP(NETIF_MSG_HW, "part2\n");
6759
6760	/* Disable inputs of parser neighbor blocks */
6761	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6762	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6763	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6764	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6765
6766	/* Write 0 to parser credits for CFC search request */
6767	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6768
6769	/* send 10 Ethernet packets */
6770	for (i = 0; i < 10; i++)
6771		bnx2x_lb_pckt(bp);
6772
6773	/* Wait until NIG register shows 10 + 1
6774	   packets of size 11*0x10 = 0xb0 */
6775	count = 1000 * factor;
6776	while (count) {
6777
6778		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6779		val = *bnx2x_sp(bp, wb_data[0]);
6780		if (val == 0xb0)
6781			break;
6782
6783		usleep_range(10000, 20000);
6784		count--;
6785	}
6786	if (val != 0xb0) {
6787		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6788		return -3;
6789	}
6790
6791	/* Wait until PRS register shows 2 packets */
6792	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6793	if (val != 2)
6794		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6795
6796	/* Write 1 to parser credits for CFC search request */
6797	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6798
6799	/* Wait until PRS register shows 3 packets */
6800	msleep(10 * factor);
6801	/* Wait until NIG register shows 1 packet of size 0x10 */
6802	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6803	if (val != 3)
6804		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6805
6806	/* clear NIG EOP FIFO */
6807	for (i = 0; i < 11; i++)
6808		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6809	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6810	if (val != 1) {
6811		BNX2X_ERR("clear of NIG failed\n");
6812		return -4;
6813	}
6814
6815	/* Reset and init BRB, PRS, NIG */
6816	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6817	msleep(50);
6818	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6819	msleep(50);
6820	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6821	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6822	if (!CNIC_SUPPORT(bp))
6823		/* set NIC mode */
6824		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6825
6826	/* Enable inputs of parser neighbor blocks */
6827	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6828	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6829	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6830	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6831
6832	DP(NETIF_MSG_HW, "done\n");
6833
6834	return 0; /* OK */
6835}
6836
6837static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6838{
6839	u32 val;
6840
6841	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6842	if (!CHIP_IS_E1x(bp))
6843		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6844	else
6845		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6846	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6847	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6848	/*
6849	 * mask read length error interrupts in brb for parser
6850	 * (parsing unit and 'checksum and crc' unit)
6851	 * these errors are legal (PU reads fixed length and CAC can cause
6852	 * read length error on truncated packets)
6853	 */
6854	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6855	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6856	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6857	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6858	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6859	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6860/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6861/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6862	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6863	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6864	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6865/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6866/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6867	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6868	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6869	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6870	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6871/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6872/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6873
6874	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6875		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6876		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6877	if (!CHIP_IS_E1x(bp))
6878		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6879			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6880	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6881
6882	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6883	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6884	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6885/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6886
6887	if (!CHIP_IS_E1x(bp))
6888		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6889		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6890
6891	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6892	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6893/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6894	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6895}
6896
6897static void bnx2x_reset_common(struct bnx2x *bp)
6898{
6899	u32 val = 0x1400;
6900
6901	/* reset_common */
6902	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6903	       0xd3ffff7f);
6904
6905	if (CHIP_IS_E3(bp)) {
6906		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6907		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6908	}
6909
6910	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6911}
6912
6913static void bnx2x_setup_dmae(struct bnx2x *bp)
6914{
6915	bp->dmae_ready = 0;
6916	spin_lock_init(&bp->dmae_lock);
6917}
6918
6919static void bnx2x_init_pxp(struct bnx2x *bp)
6920{
6921	u16 devctl;
6922	int r_order, w_order;
6923
6924	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6925	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6926	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6927	if (bp->mrrs == -1)
6928		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6929	else {
6930		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6931		r_order = bp->mrrs;
6932	}
6933
6934	bnx2x_init_pxp_arb(bp, r_order, w_order);
6935}
6936
6937static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6938{
6939	int is_required;
6940	u32 val;
6941	int port;
6942
6943	if (BP_NOMCP(bp))
6944		return;
6945
6946	is_required = 0;
6947	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6948	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6949
6950	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6951		is_required = 1;
6952
6953	/*
6954	 * The fan failure mechanism is usually related to the PHY type since
6955	 * the power consumption of the board is affected by the PHY. Currently,
6956	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6957	 */
6958	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6959		for (port = PORT_0; port < PORT_MAX; port++) {
6960			is_required |=
6961				bnx2x_fan_failure_det_req(
6962					bp,
6963					bp->common.shmem_base,
6964					bp->common.shmem2_base,
6965					port);
6966		}
6967
6968	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6969
6970	if (is_required == 0)
6971		return;
6972
6973	/* Fan failure is indicated by SPIO 5 */
6974	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6975
6976	/* set to active low mode */
6977	val = REG_RD(bp, MISC_REG_SPIO_INT);
6978	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6979	REG_WR(bp, MISC_REG_SPIO_INT, val);
6980
6981	/* enable interrupt to signal the IGU */
6982	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6983	val |= MISC_SPIO_SPIO5;
6984	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6985}
6986
6987void bnx2x_pf_disable(struct bnx2x *bp)
6988{
6989	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6990	val &= ~IGU_PF_CONF_FUNC_EN;
6991
6992	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6993	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6994	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6995}
6996
6997static void bnx2x__common_init_phy(struct bnx2x *bp)
6998{
6999	u32 shmem_base[2], shmem2_base[2];
7000	/* Avoid common init in case MFW supports LFA */
7001	if (SHMEM2_RD(bp, size) >
7002	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7003		return;
7004	shmem_base[0] =  bp->common.shmem_base;
7005	shmem2_base[0] = bp->common.shmem2_base;
7006	if (!CHIP_IS_E1x(bp)) {
7007		shmem_base[1] =
7008			SHMEM2_RD(bp, other_shmem_base_addr);
7009		shmem2_base[1] =
7010			SHMEM2_RD(bp, other_shmem2_base_addr);
7011	}
7012	bnx2x_acquire_phy_lock(bp);
7013	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7014			      bp->common.chip_id);
7015	bnx2x_release_phy_lock(bp);
7016}
7017
7018static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7019{
7020	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7021	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7022	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7023	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7024	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7025
7026	/* make sure this value is 0 */
7027	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7028
7029	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7030	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7031	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7032	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7033}
7034
7035static void bnx2x_set_endianity(struct bnx2x *bp)
7036{
7037#ifdef __BIG_ENDIAN
7038	bnx2x_config_endianity(bp, 1);
7039#else
7040	bnx2x_config_endianity(bp, 0);
7041#endif
7042}
7043
7044static void bnx2x_reset_endianity(struct bnx2x *bp)
7045{
7046	bnx2x_config_endianity(bp, 0);
7047}
7048
7049/**
7050 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7051 *
7052 * @bp:		driver handle
7053 */
7054static int bnx2x_init_hw_common(struct bnx2x *bp)
7055{
7056	u32 val;
7057
7058	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7059
7060	/*
7061	 * take the RESET lock to protect undi_unload flow from accessing
7062	 * registers while we're resetting the chip
7063	 */
7064	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7065
7066	bnx2x_reset_common(bp);
7067	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7068
7069	val = 0xfffc;
7070	if (CHIP_IS_E3(bp)) {
7071		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7072		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7073	}
7074	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7075
7076	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7077
7078	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7079
7080	if (!CHIP_IS_E1x(bp)) {
7081		u8 abs_func_id;
7082
7083		/**
7084		 * 4-port mode or 2-port mode we need to turn of master-enable
7085		 * for everyone, after that, turn it back on for self.
7086		 * so, we disregard multi-function or not, and always disable
7087		 * for all functions on the given path, this means 0,2,4,6 for
7088		 * path 0 and 1,3,5,7 for path 1
7089		 */
7090		for (abs_func_id = BP_PATH(bp);
7091		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7092			if (abs_func_id == BP_ABS_FUNC(bp)) {
7093				REG_WR(bp,
7094				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7095				    1);
7096				continue;
7097			}
7098
7099			bnx2x_pretend_func(bp, abs_func_id);
7100			/* clear pf enable */
7101			bnx2x_pf_disable(bp);
7102			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7103		}
7104	}
7105
7106	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7107	if (CHIP_IS_E1(bp)) {
7108		/* enable HW interrupt from PXP on USDM overflow
7109		   bit 16 on INT_MASK_0 */
7110		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7111	}
7112
7113	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7114	bnx2x_init_pxp(bp);
7115	bnx2x_set_endianity(bp);
7116	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7117
7118	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7119		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7120
7121	/* let the HW do it's magic ... */
7122	msleep(100);
7123	/* finish PXP init */
7124	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7125	if (val != 1) {
7126		BNX2X_ERR("PXP2 CFG failed\n");
7127		return -EBUSY;
7128	}
7129	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7130	if (val != 1) {
7131		BNX2X_ERR("PXP2 RD_INIT failed\n");
7132		return -EBUSY;
7133	}
7134
7135	/* Timers bug workaround E2 only. We need to set the entire ILT to
7136	 * have entries with value "0" and valid bit on.
7137	 * This needs to be done by the first PF that is loaded in a path
7138	 * (i.e. common phase)
7139	 */
7140	if (!CHIP_IS_E1x(bp)) {
7141/* In E2 there is a bug in the timers block that can cause function 6 / 7
7142 * (i.e. vnic3) to start even if it is marked as "scan-off".
7143 * This occurs when a different function (func2,3) is being marked
7144 * as "scan-off". Real-life scenario for example: if a driver is being
7145 * load-unloaded while func6,7 are down. This will cause the timer to access
7146 * the ilt, translate to a logical address and send a request to read/write.
7147 * Since the ilt for the function that is down is not valid, this will cause
7148 * a translation error which is unrecoverable.
7149 * The Workaround is intended to make sure that when this happens nothing fatal
7150 * will occur. The workaround:
7151 *	1.  First PF driver which loads on a path will:
7152 *		a.  After taking the chip out of reset, by using pretend,
7153 *		    it will write "0" to the following registers of
7154 *		    the other vnics.
7155 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7156 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7157 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7158 *		    And for itself it will write '1' to
7159 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7160 *		    dmae-operations (writing to pram for example.)
7161 *		    note: can be done for only function 6,7 but cleaner this
7162 *			  way.
7163 *		b.  Write zero+valid to the entire ILT.
7164 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7165 *		    VNIC3 (of that port). The range allocated will be the
7166 *		    entire ILT. This is needed to prevent  ILT range error.
7167 *	2.  Any PF driver load flow:
7168 *		a.  ILT update with the physical addresses of the allocated
7169 *		    logical pages.
7170 *		b.  Wait 20msec. - note that this timeout is needed to make
7171 *		    sure there are no requests in one of the PXP internal
7172 *		    queues with "old" ILT addresses.
7173 *		c.  PF enable in the PGLC.
7174 *		d.  Clear the was_error of the PF in the PGLC. (could have
7175 *		    occurred while driver was down)
7176 *		e.  PF enable in the CFC (WEAK + STRONG)
7177 *		f.  Timers scan enable
7178 *	3.  PF driver unload flow:
7179 *		a.  Clear the Timers scan_en.
7180 *		b.  Polling for scan_on=0 for that PF.
7181 *		c.  Clear the PF enable bit in the PXP.
7182 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7183 *		e.  Write zero+valid to all ILT entries (The valid bit must
7184 *		    stay set)
7185 *		f.  If this is VNIC 3 of a port then also init
7186 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7187 *		    to the last entry in the ILT.
7188 *
7189 *	Notes:
7190 *	Currently the PF error in the PGLC is non recoverable.
7191 *	In the future the there will be a recovery routine for this error.
7192 *	Currently attention is masked.
7193 *	Having an MCP lock on the load/unload process does not guarantee that
7194 *	there is no Timer disable during Func6/7 enable. This is because the
7195 *	Timers scan is currently being cleared by the MCP on FLR.
7196 *	Step 2.d can be done only for PF6/7 and the driver can also check if
7197 *	there is error before clearing it. But the flow above is simpler and
7198 *	more general.
7199 *	All ILT entries are written by zero+valid and not just PF6/7
7200 *	ILT entries since in the future the ILT entries allocation for
7201 *	PF-s might be dynamic.
7202 */
7203		struct ilt_client_info ilt_cli;
7204		struct bnx2x_ilt ilt;
7205		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7206		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7207
7208		/* initialize dummy TM client */
7209		ilt_cli.start = 0;
7210		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7211		ilt_cli.client_num = ILT_CLIENT_TM;
7212
7213		/* Step 1: set zeroes to all ilt page entries with valid bit on
7214		 * Step 2: set the timers first/last ilt entry to point
7215		 * to the entire range to prevent ILT range error for 3rd/4th
7216		 * vnic	(this code assumes existence of the vnic)
7217		 *
7218		 * both steps performed by call to bnx2x_ilt_client_init_op()
7219		 * with dummy TM client
7220		 *
7221		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7222		 * and his brother are split registers
7223		 */
7224		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7225		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7226		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7227
7228		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7229		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7230		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7231	}
7232
7233	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7234	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7235
7236	if (!CHIP_IS_E1x(bp)) {
7237		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7238				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7239		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7240
7241		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7242
7243		/* let the HW do it's magic ... */
7244		do {
7245			msleep(200);
7246			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7247		} while (factor-- && (val != 1));
7248
7249		if (val != 1) {
7250			BNX2X_ERR("ATC_INIT failed\n");
7251			return -EBUSY;
7252		}
7253	}
7254
7255	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7256
7257	bnx2x_iov_init_dmae(bp);
7258
7259	/* clean the DMAE memory */
7260	bp->dmae_ready = 1;
7261	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7262
7263	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7264
7265	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7266
7267	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7268
7269	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7270
7271	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7272	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7273	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7274	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7275
7276	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7277
7278	/* QM queues pointers table */
7279	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7280
7281	/* soft reset pulse */
7282	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7283	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7284
7285	if (CNIC_SUPPORT(bp))
7286		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7287
7288	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7289
7290	if (!CHIP_REV_IS_SLOW(bp))
7291		/* enable hw interrupt from doorbell Q */
7292		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7293
7294	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7295
7296	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7297	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7298
7299	if (!CHIP_IS_E1(bp))
7300		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7301
7302	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7303		if (IS_MF_AFEX(bp)) {
7304			/* configure that VNTag and VLAN headers must be
7305			 * received in afex mode
7306			 */
7307			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7308			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7309			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7310			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7311			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7312		} else {
7313			/* Bit-map indicating which L2 hdrs may appear
7314			 * after the basic Ethernet header
7315			 */
7316			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7317			       bp->path_has_ovlan ? 7 : 6);
7318		}
7319	}
7320
7321	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7322	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7323	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7324	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7325
7326	if (!CHIP_IS_E1x(bp)) {
7327		/* reset VFC memories */
7328		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7329			   VFC_MEMORIES_RST_REG_CAM_RST |
7330			   VFC_MEMORIES_RST_REG_RAM_RST);
7331		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7332			   VFC_MEMORIES_RST_REG_CAM_RST |
7333			   VFC_MEMORIES_RST_REG_RAM_RST);
7334
7335		msleep(20);
7336	}
7337
7338	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7339	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7340	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7341	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7342
7343	/* sync semi rtc */
7344	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7345	       0x80000000);
7346	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7347	       0x80000000);
7348
7349	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7350	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7351	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7352
7353	if (!CHIP_IS_E1x(bp)) {
7354		if (IS_MF_AFEX(bp)) {
7355			/* configure that VNTag and VLAN headers must be
7356			 * sent in afex mode
7357			 */
7358			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7359			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7360			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7361			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7362			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7363		} else {
7364			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7365			       bp->path_has_ovlan ? 7 : 6);
7366		}
7367	}
7368
7369	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7370
7371	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7372
7373	if (CNIC_SUPPORT(bp)) {
7374		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7375		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7376		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7377		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7378		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7379		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7380		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7381		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7382		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7383		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7384	}
7385	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7386
7387	if (sizeof(union cdu_context) != 1024)
7388		/* we currently assume that a context is 1024 bytes */
7389		dev_alert(&bp->pdev->dev,
7390			  "please adjust the size of cdu_context(%ld)\n",
7391			  (long)sizeof(union cdu_context));
7392
7393	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7394	val = (4 << 24) + (0 << 12) + 1024;
7395	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7396
7397	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7398	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7399	/* enable context validation interrupt from CFC */
7400	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7401
7402	/* set the thresholds to prevent CFC/CDU race */
7403	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7404
7405	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7406
7407	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7408		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7409
7410	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7411	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7412
7413	/* Reset PCIE errors for debug */
7414	REG_WR(bp, 0x2814, 0xffffffff);
7415	REG_WR(bp, 0x3820, 0xffffffff);
7416
7417	if (!CHIP_IS_E1x(bp)) {
7418		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7419			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7420				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7421		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7422			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7423				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7424				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7425		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7426			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7427				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7428				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7429	}
7430
7431	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7432	if (!CHIP_IS_E1(bp)) {
7433		/* in E3 this done in per-port section */
7434		if (!CHIP_IS_E3(bp))
7435			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7436	}
7437	if (CHIP_IS_E1H(bp))
7438		/* not applicable for E2 (and above ...) */
7439		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7440
7441	if (CHIP_REV_IS_SLOW(bp))
7442		msleep(200);
7443
7444	/* finish CFC init */
7445	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7446	if (val != 1) {
7447		BNX2X_ERR("CFC LL_INIT failed\n");
7448		return -EBUSY;
7449	}
7450	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7451	if (val != 1) {
7452		BNX2X_ERR("CFC AC_INIT failed\n");
7453		return -EBUSY;
7454	}
7455	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7456	if (val != 1) {
7457		BNX2X_ERR("CFC CAM_INIT failed\n");
7458		return -EBUSY;
7459	}
7460	REG_WR(bp, CFC_REG_DEBUG0, 0);
7461
7462	if (CHIP_IS_E1(bp)) {
7463		/* read NIG statistic
7464		   to see if this is our first up since powerup */
7465		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7466		val = *bnx2x_sp(bp, wb_data[0]);
7467
7468		/* do internal memory self test */
7469		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7470			BNX2X_ERR("internal mem self test failed\n");
7471			return -EBUSY;
7472		}
7473	}
7474
7475	bnx2x_setup_fan_failure_detection(bp);
7476
7477	/* clear PXP2 attentions */
7478	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7479
7480	bnx2x_enable_blocks_attention(bp);
7481	bnx2x_enable_blocks_parity(bp);
7482
7483	if (!BP_NOMCP(bp)) {
7484		if (CHIP_IS_E1x(bp))
7485			bnx2x__common_init_phy(bp);
7486	} else
7487		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7488
7489	if (SHMEM2_HAS(bp, netproc_fw_ver))
7490		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7491
7492	return 0;
7493}
7494
7495/**
7496 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7497 *
7498 * @bp:		driver handle
7499 */
7500static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7501{
7502	int rc = bnx2x_init_hw_common(bp);
7503
7504	if (rc)
7505		return rc;
7506
7507	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7508	if (!BP_NOMCP(bp))
7509		bnx2x__common_init_phy(bp);
7510
7511	return 0;
7512}
7513
7514static int bnx2x_init_hw_port(struct bnx2x *bp)
7515{
7516	int port = BP_PORT(bp);
7517	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7518	u32 low, high;
7519	u32 val, reg;
7520
7521	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7522
7523	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7524
7525	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7526	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7527	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7528
7529	/* Timers bug workaround: disables the pf_master bit in pglue at
7530	 * common phase, we need to enable it here before any dmae access are
7531	 * attempted. Therefore we manually added the enable-master to the
7532	 * port phase (it also happens in the function phase)
7533	 */
7534	if (!CHIP_IS_E1x(bp))
7535		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7536
7537	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7538	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7539	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7540	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7541
7542	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7543	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7544	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7545	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7546
7547	/* QM cid (connection) count */
7548	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7549
7550	if (CNIC_SUPPORT(bp)) {
7551		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7552		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7553		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7554	}
7555
7556	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7557
7558	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7559
7560	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7561
7562		if (IS_MF(bp))
7563			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7564		else if (bp->dev->mtu > 4096) {
7565			if (bp->flags & ONE_PORT_FLAG)
7566				low = 160;
7567			else {
7568				val = bp->dev->mtu;
7569				/* (24*1024 + val*4)/256 */
7570				low = 96 + (val/64) +
7571						((val % 64) ? 1 : 0);
7572			}
7573		} else
7574			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7575		high = low + 56;	/* 14*1024/256 */
7576		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7577		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7578	}
7579
7580	if (CHIP_MODE_IS_4_PORT(bp))
7581		REG_WR(bp, (BP_PORT(bp) ?
7582			    BRB1_REG_MAC_GUARANTIED_1 :
7583			    BRB1_REG_MAC_GUARANTIED_0), 40);
7584
7585	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7586	if (CHIP_IS_E3B0(bp)) {
7587		if (IS_MF_AFEX(bp)) {
7588			/* configure headers for AFEX mode */
7589			REG_WR(bp, BP_PORT(bp) ?
7590			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7591			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7592			REG_WR(bp, BP_PORT(bp) ?
7593			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7594			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7595			REG_WR(bp, BP_PORT(bp) ?
7596			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7597			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7598		} else {
7599			/* Ovlan exists only if we are in multi-function +
7600			 * switch-dependent mode, in switch-independent there
7601			 * is no ovlan headers
7602			 */
7603			REG_WR(bp, BP_PORT(bp) ?
7604			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7605			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7606			       (bp->path_has_ovlan ? 7 : 6));
7607		}
7608	}
7609
7610	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7611	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7612	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7613	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7614
7615	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7616	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7617	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7618	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7619
7620	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7621	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7622
7623	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7624
7625	if (CHIP_IS_E1x(bp)) {
7626		/* configure PBF to work without PAUSE mtu 9000 */
7627		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7628
7629		/* update threshold */
7630		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7631		/* update init credit */
7632		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7633
7634		/* probe changes */
7635		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7636		udelay(50);
7637		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7638	}
7639
7640	if (CNIC_SUPPORT(bp))
7641		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7642
7643	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7644	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7645
7646	if (CHIP_IS_E1(bp)) {
7647		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7648		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7649	}
7650	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7651
7652	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7653
7654	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7655	/* init aeu_mask_attn_func_0/1:
7656	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7657	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7658	 *             bits 4-7 are used for "per vn group attention" */
7659	val = IS_MF(bp) ? 0xF7 : 0x7;
7660	/* Enable DCBX attention for all but E1 */
7661	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7662	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7663
7664	/* SCPAD_PARITY should NOT trigger close the gates */
7665	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7666	REG_WR(bp, reg,
7667	       REG_RD(bp, reg) &
7668	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7669
7670	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7671	REG_WR(bp, reg,
7672	       REG_RD(bp, reg) &
7673	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7674
7675	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7676
7677	if (!CHIP_IS_E1x(bp)) {
7678		/* Bit-map indicating which L2 hdrs may appear after the
7679		 * basic Ethernet header
7680		 */
7681		if (IS_MF_AFEX(bp))
7682			REG_WR(bp, BP_PORT(bp) ?
7683			       NIG_REG_P1_HDRS_AFTER_BASIC :
7684			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7685		else
7686			REG_WR(bp, BP_PORT(bp) ?
7687			       NIG_REG_P1_HDRS_AFTER_BASIC :
7688			       NIG_REG_P0_HDRS_AFTER_BASIC,
7689			       IS_MF_SD(bp) ? 7 : 6);
7690
7691		if (CHIP_IS_E3(bp))
7692			REG_WR(bp, BP_PORT(bp) ?
7693				   NIG_REG_LLH1_MF_MODE :
7694				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7695	}
7696	if (!CHIP_IS_E3(bp))
7697		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7698
7699	if (!CHIP_IS_E1(bp)) {
7700		/* 0x2 disable mf_ov, 0x1 enable */
7701		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7702		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7703
7704		if (!CHIP_IS_E1x(bp)) {
7705			val = 0;
7706			switch (bp->mf_mode) {
7707			case MULTI_FUNCTION_SD:
7708				val = 1;
7709				break;
7710			case MULTI_FUNCTION_SI:
7711			case MULTI_FUNCTION_AFEX:
7712				val = 2;
7713				break;
7714			}
7715
7716			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7717						  NIG_REG_LLH0_CLS_TYPE), val);
7718		}
7719		{
7720			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7721			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7722			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7723		}
7724	}
7725
7726	/* If SPIO5 is set to generate interrupts, enable it for this port */
7727	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7728	if (val & MISC_SPIO_SPIO5) {
7729		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7730				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7731		val = REG_RD(bp, reg_addr);
7732		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7733		REG_WR(bp, reg_addr, val);
7734	}
7735
7736	if (CHIP_IS_E3B0(bp))
7737		bp->flags |= PTP_SUPPORTED;
7738
7739	return 0;
7740}
7741
7742static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7743{
7744	int reg;
7745	u32 wb_write[2];
7746
7747	if (CHIP_IS_E1(bp))
7748		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7749	else
7750		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7751
7752	wb_write[0] = ONCHIP_ADDR1(addr);
7753	wb_write[1] = ONCHIP_ADDR2(addr);
7754	REG_WR_DMAE(bp, reg, wb_write, 2);
7755}
7756
7757void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7758{
7759	u32 data, ctl, cnt = 100;
7760	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7761	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7762	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7763	u32 sb_bit =  1 << (idu_sb_id%32);
7764	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7765	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7766
7767	/* Not supported in BC mode */
7768	if (CHIP_INT_MODE_IS_BC(bp))
7769		return;
7770
7771	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7772			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7773		IGU_REGULAR_CLEANUP_SET				|
7774		IGU_REGULAR_BCLEANUP;
7775
7776	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7777	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7778	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7779
7780	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7781			 data, igu_addr_data);
7782	REG_WR(bp, igu_addr_data, data);
7783	barrier();
7784	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7785			  ctl, igu_addr_ctl);
7786	REG_WR(bp, igu_addr_ctl, ctl);
7787	barrier();
7788
7789	/* wait for clean up to finish */
7790	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7791		msleep(20);
7792
7793	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7794		DP(NETIF_MSG_HW,
7795		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7796			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7797	}
7798}
7799
7800static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7801{
7802	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7803}
7804
7805static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7806{
7807	u32 i, base = FUNC_ILT_BASE(func);
7808	for (i = base; i < base + ILT_PER_FUNC; i++)
7809		bnx2x_ilt_wr(bp, i, 0);
7810}
7811
7812static void bnx2x_init_searcher(struct bnx2x *bp)
7813{
7814	int port = BP_PORT(bp);
7815	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7816	/* T1 hash bits value determines the T1 number of entries */
7817	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7818}
7819
7820static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7821{
7822	int rc;
7823	struct bnx2x_func_state_params func_params = {NULL};
7824	struct bnx2x_func_switch_update_params *switch_update_params =
7825		&func_params.params.switch_update;
7826
7827	/* Prepare parameters for function state transitions */
7828	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7829	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7830
7831	func_params.f_obj = &bp->func_obj;
7832	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7833
7834	/* Function parameters */
7835	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7836		  &switch_update_params->changes);
7837	if (suspend)
7838		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7839			  &switch_update_params->changes);
7840
7841	rc = bnx2x_func_state_change(bp, &func_params);
7842
7843	return rc;
7844}
7845
7846static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7847{
7848	int rc, i, port = BP_PORT(bp);
7849	int vlan_en = 0, mac_en[NUM_MACS];
7850
7851	/* Close input from network */
7852	if (bp->mf_mode == SINGLE_FUNCTION) {
7853		bnx2x_set_rx_filter(&bp->link_params, 0);
7854	} else {
7855		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7856				   NIG_REG_LLH0_FUNC_EN);
7857		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7858			  NIG_REG_LLH0_FUNC_EN, 0);
7859		for (i = 0; i < NUM_MACS; i++) {
7860			mac_en[i] = REG_RD(bp, port ?
7861					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7862					      4 * i) :
7863					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7864					      4 * i));
7865			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7866					      4 * i) :
7867				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7868		}
7869	}
7870
7871	/* Close BMC to host */
7872	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7873	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7874
7875	/* Suspend Tx switching to the PF. Completion of this ramrod
7876	 * further guarantees that all the packets of that PF / child
7877	 * VFs in BRB were processed by the Parser, so it is safe to
7878	 * change the NIC_MODE register.
7879	 */
7880	rc = bnx2x_func_switch_update(bp, 1);
7881	if (rc) {
7882		BNX2X_ERR("Can't suspend tx-switching!\n");
7883		return rc;
7884	}
7885
7886	/* Change NIC_MODE register */
7887	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7888
7889	/* Open input from network */
7890	if (bp->mf_mode == SINGLE_FUNCTION) {
7891		bnx2x_set_rx_filter(&bp->link_params, 1);
7892	} else {
7893		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7894			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7895		for (i = 0; i < NUM_MACS; i++) {
7896			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7897					      4 * i) :
7898				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7899				  mac_en[i]);
7900		}
7901	}
7902
7903	/* Enable BMC to host */
7904	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7905	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7906
7907	/* Resume Tx switching to the PF */
7908	rc = bnx2x_func_switch_update(bp, 0);
7909	if (rc) {
7910		BNX2X_ERR("Can't resume tx-switching!\n");
7911		return rc;
7912	}
7913
7914	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7915	return 0;
7916}
7917
7918int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7919{
7920	int rc;
7921
7922	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7923
7924	if (CONFIGURE_NIC_MODE(bp)) {
7925		/* Configure searcher as part of function hw init */
7926		bnx2x_init_searcher(bp);
7927
7928		/* Reset NIC mode */
7929		rc = bnx2x_reset_nic_mode(bp);
7930		if (rc)
7931			BNX2X_ERR("Can't change NIC mode!\n");
7932		return rc;
7933	}
7934
7935	return 0;
7936}
7937
7938/* previous driver DMAE transaction may have occurred when pre-boot stage ended
7939 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7940 * the addresses of the transaction, resulting in was-error bit set in the pci
7941 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7942 * to clear the interrupt which detected this from the pglueb and the was done
7943 * bit
7944 */
7945static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7946{
7947	if (!CHIP_IS_E1x(bp))
7948		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7949		       1 << BP_ABS_FUNC(bp));
7950}
7951
7952static int bnx2x_init_hw_func(struct bnx2x *bp)
7953{
7954	int port = BP_PORT(bp);
7955	int func = BP_FUNC(bp);
7956	int init_phase = PHASE_PF0 + func;
7957	struct bnx2x_ilt *ilt = BP_ILT(bp);
7958	u16 cdu_ilt_start;
7959	u32 addr, val;
7960	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7961	int i, main_mem_width, rc;
7962
7963	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7964
7965	/* FLR cleanup - hmmm */
7966	if (!CHIP_IS_E1x(bp)) {
7967		rc = bnx2x_pf_flr_clnup(bp);
7968		if (rc) {
7969			bnx2x_fw_dump(bp);
7970			return rc;
7971		}
7972	}
7973
7974	/* set MSI reconfigure capability */
7975	if (bp->common.int_block == INT_BLOCK_HC) {
7976		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7977		val = REG_RD(bp, addr);
7978		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7979		REG_WR(bp, addr, val);
7980	}
7981
7982	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7983	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7984
7985	ilt = BP_ILT(bp);
7986	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7987
7988	if (IS_SRIOV(bp))
7989		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7990	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7991
7992	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7993	 * those of the VFs, so start line should be reset
7994	 */
7995	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7996	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7997		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7998		ilt->lines[cdu_ilt_start + i].page_mapping =
7999			bp->context[i].cxt_mapping;
8000		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
8001	}
8002
8003	bnx2x_ilt_init_op(bp, INITOP_SET);
8004
8005	if (!CONFIGURE_NIC_MODE(bp)) {
8006		bnx2x_init_searcher(bp);
8007		REG_WR(bp, PRS_REG_NIC_MODE, 0);
8008		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8009	} else {
8010		/* Set NIC mode */
8011		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8012		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8013	}
8014
8015	if (!CHIP_IS_E1x(bp)) {
8016		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8017
8018		/* Turn on a single ISR mode in IGU if driver is going to use
8019		 * INT#x or MSI
8020		 */
8021		if (!(bp->flags & USING_MSIX_FLAG))
8022			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8023		/*
8024		 * Timers workaround bug: function init part.
8025		 * Need to wait 20msec after initializing ILT,
8026		 * needed to make sure there are no requests in
8027		 * one of the PXP internal queues with "old" ILT addresses
8028		 */
8029		msleep(20);
8030		/*
8031		 * Master enable - Due to WB DMAE writes performed before this
8032		 * register is re-initialized as part of the regular function
8033		 * init
8034		 */
8035		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8036		/* Enable the function in IGU */
8037		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8038	}
8039
8040	bp->dmae_ready = 1;
8041
8042	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8043
8044	bnx2x_clean_pglue_errors(bp);
8045
8046	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8047	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8048	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8049	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8050	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8051	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8052	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8053	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8054	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8055	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8056	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8057	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8058	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8059
8060	if (!CHIP_IS_E1x(bp))
8061		REG_WR(bp, QM_REG_PF_EN, 1);
8062
8063	if (!CHIP_IS_E1x(bp)) {
8064		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8067		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8068	}
8069	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8070
8071	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8072	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8073	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8074
8075	bnx2x_iov_init_dq(bp);
8076
8077	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8078	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8079	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8080	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8081	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8082	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8083	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8084	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8085	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8086	if (!CHIP_IS_E1x(bp))
8087		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8088
8089	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8090
8091	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8092
8093	if (!CHIP_IS_E1x(bp))
8094		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8095
8096	if (IS_MF(bp)) {
8097		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8098			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8099			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8100			       bp->mf_ov);
8101		}
8102	}
8103
8104	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8105
8106	/* HC init per function */
8107	if (bp->common.int_block == INT_BLOCK_HC) {
8108		if (CHIP_IS_E1H(bp)) {
8109			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8110
8111			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8112			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8113		}
8114		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8115
8116	} else {
8117		int num_segs, sb_idx, prod_offset;
8118
8119		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8120
8121		if (!CHIP_IS_E1x(bp)) {
8122			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8123			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8124		}
8125
8126		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8127
8128		if (!CHIP_IS_E1x(bp)) {
8129			int dsb_idx = 0;
8130			/**
8131			 * Producer memory:
8132			 * E2 mode: address 0-135 match to the mapping memory;
8133			 * 136 - PF0 default prod; 137 - PF1 default prod;
8134			 * 138 - PF2 default prod; 139 - PF3 default prod;
8135			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8136			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8137			 * 144-147 reserved.
8138			 *
8139			 * E1.5 mode - In backward compatible mode;
8140			 * for non default SB; each even line in the memory
8141			 * holds the U producer and each odd line hold
8142			 * the C producer. The first 128 producers are for
8143			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8144			 * producers are for the DSB for each PF.
8145			 * Each PF has five segments: (the order inside each
8146			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8147			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8148			 * 144-147 attn prods;
8149			 */
8150			/* non-default-status-blocks */
8151			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8152				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8153			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8154				prod_offset = (bp->igu_base_sb + sb_idx) *
8155					num_segs;
8156
8157				for (i = 0; i < num_segs; i++) {
8158					addr = IGU_REG_PROD_CONS_MEMORY +
8159							(prod_offset + i) * 4;
8160					REG_WR(bp, addr, 0);
8161				}
8162				/* send consumer update with value 0 */
8163				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8164					     USTORM_ID, 0, IGU_INT_NOP, 1);
8165				bnx2x_igu_clear_sb(bp,
8166						   bp->igu_base_sb + sb_idx);
8167			}
8168
8169			/* default-status-blocks */
8170			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8171				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8172
8173			if (CHIP_MODE_IS_4_PORT(bp))
8174				dsb_idx = BP_FUNC(bp);
8175			else
8176				dsb_idx = BP_VN(bp);
8177
8178			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8179				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8180				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8181
8182			/*
8183			 * igu prods come in chunks of E1HVN_MAX (4) -
8184			 * does not matters what is the current chip mode
8185			 */
8186			for (i = 0; i < (num_segs * E1HVN_MAX);
8187			     i += E1HVN_MAX) {
8188				addr = IGU_REG_PROD_CONS_MEMORY +
8189							(prod_offset + i)*4;
8190				REG_WR(bp, addr, 0);
8191			}
8192			/* send consumer update with 0 */
8193			if (CHIP_INT_MODE_IS_BC(bp)) {
8194				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195					     USTORM_ID, 0, IGU_INT_NOP, 1);
8196				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8198				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8199					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8200				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8201					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8202				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8203					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8204			} else {
8205				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8206					     USTORM_ID, 0, IGU_INT_NOP, 1);
8207				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8208					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8209			}
8210			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8211
8212			/* !!! These should become driver const once
8213			   rf-tool supports split-68 const */
8214			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8215			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8216			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8217			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8218			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8219			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8220		}
8221	}
8222
8223	/* Reset PCIE errors for debug */
8224	REG_WR(bp, 0x2114, 0xffffffff);
8225	REG_WR(bp, 0x2120, 0xffffffff);
8226
8227	if (CHIP_IS_E1x(bp)) {
8228		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8229		main_mem_base = HC_REG_MAIN_MEMORY +
8230				BP_PORT(bp) * (main_mem_size * 4);
8231		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8232		main_mem_width = 8;
8233
8234		val = REG_RD(bp, main_mem_prty_clr);
8235		if (val)
8236			DP(NETIF_MSG_HW,
8237			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8238			   val);
8239
8240		/* Clear "false" parity errors in MSI-X table */
8241		for (i = main_mem_base;
8242		     i < main_mem_base + main_mem_size * 4;
8243		     i += main_mem_width) {
8244			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8245			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8246					 i, main_mem_width / 4);
8247		}
8248		/* Clear HC parity attention */
8249		REG_RD(bp, main_mem_prty_clr);
8250	}
8251
8252#ifdef BNX2X_STOP_ON_ERROR
8253	/* Enable STORMs SP logging */
8254	REG_WR8(bp, BAR_USTRORM_INTMEM +
8255	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8256	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8257	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8258	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8259	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8260	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8261	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8262#endif
8263
8264	bnx2x_phy_probe(&bp->link_params);
8265
8266	return 0;
8267}
8268
8269void bnx2x_free_mem_cnic(struct bnx2x *bp)
8270{
8271	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8272
8273	if (!CHIP_IS_E1x(bp))
8274		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8275			       sizeof(struct host_hc_status_block_e2));
8276	else
8277		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8278			       sizeof(struct host_hc_status_block_e1x));
8279
8280	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8281}
8282
8283void bnx2x_free_mem(struct bnx2x *bp)
8284{
8285	int i;
8286
8287	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8288		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8289
8290	if (IS_VF(bp))
8291		return;
8292
8293	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8294		       sizeof(struct host_sp_status_block));
8295
8296	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8297		       sizeof(struct bnx2x_slowpath));
8298
8299	for (i = 0; i < L2_ILT_LINES(bp); i++)
8300		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8301			       bp->context[i].size);
8302	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8303
8304	BNX2X_FREE(bp->ilt->lines);
8305
8306	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8307
8308	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8309		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8310
8311	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8312
8313	bnx2x_iov_free_mem(bp);
8314}
8315
8316int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8317{
8318	if (!CHIP_IS_E1x(bp)) {
8319		/* size = the status block + ramrod buffers */
8320		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8321						    sizeof(struct host_hc_status_block_e2));
8322		if (!bp->cnic_sb.e2_sb)
8323			goto alloc_mem_err;
8324	} else {
8325		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8326						     sizeof(struct host_hc_status_block_e1x));
8327		if (!bp->cnic_sb.e1x_sb)
8328			goto alloc_mem_err;
8329	}
8330
8331	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8332		/* allocate searcher T2 table, as it wasn't allocated before */
8333		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8334		if (!bp->t2)
8335			goto alloc_mem_err;
8336	}
8337
8338	/* write address to which L5 should insert its values */
8339	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8340		&bp->slowpath->drv_info_to_mcp;
8341
8342	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8343		goto alloc_mem_err;
8344
8345	return 0;
8346
8347alloc_mem_err:
8348	bnx2x_free_mem_cnic(bp);
8349	BNX2X_ERR("Can't allocate memory\n");
8350	return -ENOMEM;
8351}
8352
8353int bnx2x_alloc_mem(struct bnx2x *bp)
8354{
8355	int i, allocated, context_size;
8356
8357	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8358		/* allocate searcher T2 table */
8359		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8360		if (!bp->t2)
8361			goto alloc_mem_err;
8362	}
8363
8364	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8365					     sizeof(struct host_sp_status_block));
8366	if (!bp->def_status_blk)
8367		goto alloc_mem_err;
8368
8369	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8370				       sizeof(struct bnx2x_slowpath));
8371	if (!bp->slowpath)
8372		goto alloc_mem_err;
8373
8374	/* Allocate memory for CDU context:
8375	 * This memory is allocated separately and not in the generic ILT
8376	 * functions because CDU differs in few aspects:
8377	 * 1. There are multiple entities allocating memory for context -
8378	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8379	 * its own ILT lines.
8380	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8381	 * for the other ILT clients), to be efficient we want to support
8382	 * allocation of sub-page-size in the last entry.
8383	 * 3. Context pointers are used by the driver to pass to FW / update
8384	 * the context (for the other ILT clients the pointers are used just to
8385	 * free the memory during unload).
8386	 */
8387	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8388
8389	for (i = 0, allocated = 0; allocated < context_size; i++) {
8390		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8391					  (context_size - allocated));
8392		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8393						      bp->context[i].size);
8394		if (!bp->context[i].vcxt)
8395			goto alloc_mem_err;
8396		allocated += bp->context[i].size;
8397	}
8398	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8399				 GFP_KERNEL);
8400	if (!bp->ilt->lines)
8401		goto alloc_mem_err;
8402
8403	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8404		goto alloc_mem_err;
8405
8406	if (bnx2x_iov_alloc_mem(bp))
8407		goto alloc_mem_err;
8408
8409	/* Slow path ring */
8410	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8411	if (!bp->spq)
8412		goto alloc_mem_err;
8413
8414	/* EQ */
8415	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8416				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8417	if (!bp->eq_ring)
8418		goto alloc_mem_err;
8419
8420	return 0;
8421
8422alloc_mem_err:
8423	bnx2x_free_mem(bp);
8424	BNX2X_ERR("Can't allocate memory\n");
8425	return -ENOMEM;
8426}
8427
8428/*
8429 * Init service functions
8430 */
8431
8432int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8433		      struct bnx2x_vlan_mac_obj *obj, bool set,
8434		      int mac_type, unsigned long *ramrod_flags)
8435{
8436	int rc;
8437	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8438
8439	memset(&ramrod_param, 0, sizeof(ramrod_param));
8440
8441	/* Fill general parameters */
8442	ramrod_param.vlan_mac_obj = obj;
8443	ramrod_param.ramrod_flags = *ramrod_flags;
8444
8445	/* Fill a user request section if needed */
8446	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8447		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8448
8449		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8450
8451		/* Set the command: ADD or DEL */
8452		if (set)
8453			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8454		else
8455			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8456	}
8457
8458	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8459
8460	if (rc == -EEXIST) {
8461		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8462		/* do not treat adding same MAC as error */
8463		rc = 0;
8464	} else if (rc < 0)
8465		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8466
8467	return rc;
8468}
8469
8470int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8471		       struct bnx2x_vlan_mac_obj *obj, bool set,
8472		       unsigned long *ramrod_flags)
8473{
8474	int rc;
8475	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8476
8477	memset(&ramrod_param, 0, sizeof(ramrod_param));
8478
8479	/* Fill general parameters */
8480	ramrod_param.vlan_mac_obj = obj;
8481	ramrod_param.ramrod_flags = *ramrod_flags;
8482
8483	/* Fill a user request section if needed */
8484	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8485		ramrod_param.user_req.u.vlan.vlan = vlan;
8486		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8487		/* Set the command: ADD or DEL */
8488		if (set)
8489			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8490		else
8491			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8492	}
8493
8494	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8495
8496	if (rc == -EEXIST) {
8497		/* Do not treat adding same vlan as error. */
8498		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8499		rc = 0;
8500	} else if (rc < 0) {
8501		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8502	}
8503
8504	return rc;
8505}
8506
8507void bnx2x_clear_vlan_info(struct bnx2x *bp)
8508{
8509	struct bnx2x_vlan_entry *vlan;
8510
8511	/* Mark that hw forgot all entries */
8512	list_for_each_entry(vlan, &bp->vlan_reg, link)
8513		vlan->hw = false;
8514
8515	bp->vlan_cnt = 0;
8516}
8517
8518static int bnx2x_del_all_vlans(struct bnx2x *bp)
8519{
8520	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8521	unsigned long ramrod_flags = 0, vlan_flags = 0;
8522	int rc;
8523
8524	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8525	__set_bit(BNX2X_VLAN, &vlan_flags);
8526	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8527	if (rc)
8528		return rc;
8529
8530	bnx2x_clear_vlan_info(bp);
8531
8532	return 0;
8533}
8534
8535int bnx2x_del_all_macs(struct bnx2x *bp,
8536		       struct bnx2x_vlan_mac_obj *mac_obj,
8537		       int mac_type, bool wait_for_comp)
8538{
8539	int rc;
8540	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8541
8542	/* Wait for completion of requested */
8543	if (wait_for_comp)
8544		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8545
8546	/* Set the mac type of addresses we want to clear */
8547	__set_bit(mac_type, &vlan_mac_flags);
8548
8549	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8550	if (rc < 0)
8551		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8552
8553	return rc;
8554}
8555
8556int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8557{
8558	if (IS_PF(bp)) {
8559		unsigned long ramrod_flags = 0;
8560
8561		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8562		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8563		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8564					 &bp->sp_objs->mac_obj, set,
8565					 BNX2X_ETH_MAC, &ramrod_flags);
8566	} else { /* vf */
8567		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8568					     bp->fp->index, set);
8569	}
8570}
8571
8572int bnx2x_setup_leading(struct bnx2x *bp)
8573{
8574	if (IS_PF(bp))
8575		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8576	else /* VF */
8577		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8578}
8579
8580/**
8581 * bnx2x_set_int_mode - configure interrupt mode
8582 *
8583 * @bp:		driver handle
8584 *
8585 * In case of MSI-X it will also try to enable MSI-X.
8586 */
8587int bnx2x_set_int_mode(struct bnx2x *bp)
8588{
8589	int rc = 0;
8590
8591	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8592		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8593		return -EINVAL;
8594	}
8595
8596	switch (int_mode) {
8597	case BNX2X_INT_MODE_MSIX:
8598		/* attempt to enable msix */
8599		rc = bnx2x_enable_msix(bp);
8600
8601		/* msix attained */
8602		if (!rc)
8603			return 0;
8604
8605		/* vfs use only msix */
8606		if (rc && IS_VF(bp))
8607			return rc;
8608
8609		/* failed to enable multiple MSI-X */
8610		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8611			       bp->num_queues,
8612			       1 + bp->num_cnic_queues);
8613
8614		fallthrough;
8615	case BNX2X_INT_MODE_MSI:
8616		bnx2x_enable_msi(bp);
8617
8618		fallthrough;
8619	case BNX2X_INT_MODE_INTX:
8620		bp->num_ethernet_queues = 1;
8621		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8622		BNX2X_DEV_INFO("set number of queues to 1\n");
8623		break;
8624	default:
8625		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8626		return -EINVAL;
8627	}
8628	return 0;
8629}
8630
8631/* must be called prior to any HW initializations */
8632static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8633{
8634	if (IS_SRIOV(bp))
8635		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8636	return L2_ILT_LINES(bp);
8637}
8638
8639void bnx2x_ilt_set_info(struct bnx2x *bp)
8640{
8641	struct ilt_client_info *ilt_client;
8642	struct bnx2x_ilt *ilt = BP_ILT(bp);
8643	u16 line = 0;
8644
8645	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8646	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8647
8648	/* CDU */
8649	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8650	ilt_client->client_num = ILT_CLIENT_CDU;
8651	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8652	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8653	ilt_client->start = line;
8654	line += bnx2x_cid_ilt_lines(bp);
8655
8656	if (CNIC_SUPPORT(bp))
8657		line += CNIC_ILT_LINES;
8658	ilt_client->end = line - 1;
8659
8660	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8661	   ilt_client->start,
8662	   ilt_client->end,
8663	   ilt_client->page_size,
8664	   ilt_client->flags,
8665	   ilog2(ilt_client->page_size >> 12));
8666
8667	/* QM */
8668	if (QM_INIT(bp->qm_cid_count)) {
8669		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8670		ilt_client->client_num = ILT_CLIENT_QM;
8671		ilt_client->page_size = QM_ILT_PAGE_SZ;
8672		ilt_client->flags = 0;
8673		ilt_client->start = line;
8674
8675		/* 4 bytes for each cid */
8676		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8677							 QM_ILT_PAGE_SZ);
8678
8679		ilt_client->end = line - 1;
8680
8681		DP(NETIF_MSG_IFUP,
8682		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8683		   ilt_client->start,
8684		   ilt_client->end,
8685		   ilt_client->page_size,
8686		   ilt_client->flags,
8687		   ilog2(ilt_client->page_size >> 12));
8688	}
8689
8690	if (CNIC_SUPPORT(bp)) {
8691		/* SRC */
8692		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8693		ilt_client->client_num = ILT_CLIENT_SRC;
8694		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8695		ilt_client->flags = 0;
8696		ilt_client->start = line;
8697		line += SRC_ILT_LINES;
8698		ilt_client->end = line - 1;
8699
8700		DP(NETIF_MSG_IFUP,
8701		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8702		   ilt_client->start,
8703		   ilt_client->end,
8704		   ilt_client->page_size,
8705		   ilt_client->flags,
8706		   ilog2(ilt_client->page_size >> 12));
8707
8708		/* TM */
8709		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8710		ilt_client->client_num = ILT_CLIENT_TM;
8711		ilt_client->page_size = TM_ILT_PAGE_SZ;
8712		ilt_client->flags = 0;
8713		ilt_client->start = line;
8714		line += TM_ILT_LINES;
8715		ilt_client->end = line - 1;
8716
8717		DP(NETIF_MSG_IFUP,
8718		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8719		   ilt_client->start,
8720		   ilt_client->end,
8721		   ilt_client->page_size,
8722		   ilt_client->flags,
8723		   ilog2(ilt_client->page_size >> 12));
8724	}
8725
8726	BUG_ON(line > ILT_MAX_LINES);
8727}
8728
8729/**
8730 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8731 *
8732 * @bp:			driver handle
8733 * @fp:			pointer to fastpath
8734 * @init_params:	pointer to parameters structure
8735 *
8736 * parameters configured:
8737 *      - HC configuration
8738 *      - Queue's CDU context
8739 */
8740static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8741	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8742{
8743	u8 cos;
8744	int cxt_index, cxt_offset;
8745
8746	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8747	if (!IS_FCOE_FP(fp)) {
8748		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8749		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8750
8751		/* If HC is supported, enable host coalescing in the transition
8752		 * to INIT state.
8753		 */
8754		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8755		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8756
8757		/* HC rate */
8758		init_params->rx.hc_rate = bp->rx_ticks ?
8759			(1000000 / bp->rx_ticks) : 0;
8760		init_params->tx.hc_rate = bp->tx_ticks ?
8761			(1000000 / bp->tx_ticks) : 0;
8762
8763		/* FW SB ID */
8764		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8765			fp->fw_sb_id;
8766
8767		/*
8768		 * CQ index among the SB indices: FCoE clients uses the default
8769		 * SB, therefore it's different.
8770		 */
8771		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8772		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8773	}
8774
8775	/* set maximum number of COSs supported by this queue */
8776	init_params->max_cos = fp->max_cos;
8777
8778	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8779	    fp->index, init_params->max_cos);
8780
8781	/* set the context pointers queue object */
8782	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8783		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8784		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8785				ILT_PAGE_CIDS);
8786		init_params->cxts[cos] =
8787			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8788	}
8789}
8790
8791static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8792			struct bnx2x_queue_state_params *q_params,
8793			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8794			int tx_index, bool leading)
8795{
8796	memset(tx_only_params, 0, sizeof(*tx_only_params));
8797
8798	/* Set the command */
8799	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8800
8801	/* Set tx-only QUEUE flags: don't zero statistics */
8802	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8803
8804	/* choose the index of the cid to send the slow path on */
8805	tx_only_params->cid_index = tx_index;
8806
8807	/* Set general TX_ONLY_SETUP parameters */
8808	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8809
8810	/* Set Tx TX_ONLY_SETUP parameters */
8811	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8812
8813	DP(NETIF_MSG_IFUP,
8814	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8815	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8816	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8817	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8818
8819	/* send the ramrod */
8820	return bnx2x_queue_state_change(bp, q_params);
8821}
8822
8823/**
8824 * bnx2x_setup_queue - setup queue
8825 *
8826 * @bp:		driver handle
8827 * @fp:		pointer to fastpath
8828 * @leading:	is leading
8829 *
8830 * This function performs 2 steps in a Queue state machine
8831 *      actually: 1) RESET->INIT 2) INIT->SETUP
8832 */
8833
8834int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8835		       bool leading)
8836{
8837	struct bnx2x_queue_state_params q_params = {NULL};
8838	struct bnx2x_queue_setup_params *setup_params =
8839						&q_params.params.setup;
8840	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8841						&q_params.params.tx_only;
8842	int rc;
8843	u8 tx_index;
8844
8845	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8846
8847	/* reset IGU state skip FCoE L2 queue */
8848	if (!IS_FCOE_FP(fp))
8849		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8850			     IGU_INT_ENABLE, 0);
8851
8852	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8853	/* We want to wait for completion in this context */
8854	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8855
8856	/* Prepare the INIT parameters */
8857	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8858
8859	/* Set the command */
8860	q_params.cmd = BNX2X_Q_CMD_INIT;
8861
8862	/* Change the state to INIT */
8863	rc = bnx2x_queue_state_change(bp, &q_params);
8864	if (rc) {
8865		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8866		return rc;
8867	}
8868
8869	DP(NETIF_MSG_IFUP, "init complete\n");
8870
8871	/* Now move the Queue to the SETUP state... */
8872	memset(setup_params, 0, sizeof(*setup_params));
8873
8874	/* Set QUEUE flags */
8875	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8876
8877	/* Set general SETUP parameters */
8878	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8879				FIRST_TX_COS_INDEX);
8880
8881	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8882			    &setup_params->rxq_params);
8883
8884	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8885			   FIRST_TX_COS_INDEX);
8886
8887	/* Set the command */
8888	q_params.cmd = BNX2X_Q_CMD_SETUP;
8889
8890	if (IS_FCOE_FP(fp))
8891		bp->fcoe_init = true;
8892
8893	/* Change the state to SETUP */
8894	rc = bnx2x_queue_state_change(bp, &q_params);
8895	if (rc) {
8896		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8897		return rc;
8898	}
8899
8900	/* loop through the relevant tx-only indices */
8901	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8902	      tx_index < fp->max_cos;
8903	      tx_index++) {
8904
8905		/* prepare and send tx-only ramrod*/
8906		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8907					  tx_only_params, tx_index, leading);
8908		if (rc) {
8909			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8910				  fp->index, tx_index);
8911			return rc;
8912		}
8913	}
8914
8915	return rc;
8916}
8917
8918static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8919{
8920	struct bnx2x_fastpath *fp = &bp->fp[index];
8921	struct bnx2x_fp_txdata *txdata;
8922	struct bnx2x_queue_state_params q_params = {NULL};
8923	int rc, tx_index;
8924
8925	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8926
8927	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8928	/* We want to wait for completion in this context */
8929	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8930
8931	/* close tx-only connections */
8932	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8933	     tx_index < fp->max_cos;
8934	     tx_index++){
8935
8936		/* ascertain this is a normal queue*/
8937		txdata = fp->txdata_ptr[tx_index];
8938
8939		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8940							txdata->txq_index);
8941
8942		/* send halt terminate on tx-only connection */
8943		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8944		memset(&q_params.params.terminate, 0,
8945		       sizeof(q_params.params.terminate));
8946		q_params.params.terminate.cid_index = tx_index;
8947
8948		rc = bnx2x_queue_state_change(bp, &q_params);
8949		if (rc)
8950			return rc;
8951
8952		/* send halt terminate on tx-only connection */
8953		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8954		memset(&q_params.params.cfc_del, 0,
8955		       sizeof(q_params.params.cfc_del));
8956		q_params.params.cfc_del.cid_index = tx_index;
8957		rc = bnx2x_queue_state_change(bp, &q_params);
8958		if (rc)
8959			return rc;
8960	}
8961	/* Stop the primary connection: */
8962	/* ...halt the connection */
8963	q_params.cmd = BNX2X_Q_CMD_HALT;
8964	rc = bnx2x_queue_state_change(bp, &q_params);
8965	if (rc)
8966		return rc;
8967
8968	/* ...terminate the connection */
8969	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8970	memset(&q_params.params.terminate, 0,
8971	       sizeof(q_params.params.terminate));
8972	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8973	rc = bnx2x_queue_state_change(bp, &q_params);
8974	if (rc)
8975		return rc;
8976	/* ...delete cfc entry */
8977	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8978	memset(&q_params.params.cfc_del, 0,
8979	       sizeof(q_params.params.cfc_del));
8980	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8981	return bnx2x_queue_state_change(bp, &q_params);
8982}
8983
8984static void bnx2x_reset_func(struct bnx2x *bp)
8985{
8986	int port = BP_PORT(bp);
8987	int func = BP_FUNC(bp);
8988	int i;
8989
8990	/* Disable the function in the FW */
8991	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8992	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8993	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8994	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8995
8996	/* FP SBs */
8997	for_each_eth_queue(bp, i) {
8998		struct bnx2x_fastpath *fp = &bp->fp[i];
8999		REG_WR8(bp, BAR_CSTRORM_INTMEM +
9000			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
9001			   SB_DISABLED);
9002	}
9003
9004	if (CNIC_LOADED(bp))
9005		/* CNIC SB */
9006		REG_WR8(bp, BAR_CSTRORM_INTMEM +
9007			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9008			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9009
9010	/* SP SB */
9011	REG_WR8(bp, BAR_CSTRORM_INTMEM +
9012		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9013		SB_DISABLED);
9014
9015	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9016		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9017		       0);
9018
9019	/* Configure IGU */
9020	if (bp->common.int_block == INT_BLOCK_HC) {
9021		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9022		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9023	} else {
9024		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9025		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9026	}
9027
9028	if (CNIC_LOADED(bp)) {
9029		/* Disable Timer scan */
9030		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9031		/*
9032		 * Wait for at least 10ms and up to 2 second for the timers
9033		 * scan to complete
9034		 */
9035		for (i = 0; i < 200; i++) {
9036			usleep_range(10000, 20000);
9037			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9038				break;
9039		}
9040	}
9041	/* Clear ILT */
9042	bnx2x_clear_func_ilt(bp, func);
9043
9044	/* Timers workaround bug for E2: if this is vnic-3,
9045	 * we need to set the entire ilt range for this timers.
9046	 */
9047	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9048		struct ilt_client_info ilt_cli;
9049		/* use dummy TM client */
9050		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9051		ilt_cli.start = 0;
9052		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9053		ilt_cli.client_num = ILT_CLIENT_TM;
9054
9055		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9056	}
9057
9058	/* this assumes that reset_port() called before reset_func()*/
9059	if (!CHIP_IS_E1x(bp))
9060		bnx2x_pf_disable(bp);
9061
9062	bp->dmae_ready = 0;
9063}
9064
9065static void bnx2x_reset_port(struct bnx2x *bp)
9066{
9067	int port = BP_PORT(bp);
9068	u32 val;
9069
9070	/* Reset physical Link */
9071	bnx2x__link_reset(bp);
9072
9073	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9074
9075	/* Do not rcv packets to BRB */
9076	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9077	/* Do not direct rcv packets that are not for MCP to the BRB */
9078	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9079			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9080
9081	/* Configure AEU */
9082	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9083
9084	msleep(100);
9085	/* Check for BRB port occupancy */
9086	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9087	if (val)
9088		DP(NETIF_MSG_IFDOWN,
9089		   "BRB1 is not empty  %d blocks are occupied\n", val);
9090
9091	/* TODO: Close Doorbell port? */
9092}
9093
9094static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9095{
9096	struct bnx2x_func_state_params func_params = {NULL};
9097
9098	/* Prepare parameters for function state transitions */
9099	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9100
9101	func_params.f_obj = &bp->func_obj;
9102	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9103
9104	func_params.params.hw_init.load_phase = load_code;
9105
9106	return bnx2x_func_state_change(bp, &func_params);
9107}
9108
9109static int bnx2x_func_stop(struct bnx2x *bp)
9110{
9111	struct bnx2x_func_state_params func_params = {NULL};
9112	int rc;
9113
9114	/* Prepare parameters for function state transitions */
9115	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9116	func_params.f_obj = &bp->func_obj;
9117	func_params.cmd = BNX2X_F_CMD_STOP;
9118
9119	/*
9120	 * Try to stop the function the 'good way'. If fails (in case
9121	 * of a parity error during bnx2x_chip_cleanup()) and we are
9122	 * not in a debug mode, perform a state transaction in order to
9123	 * enable further HW_RESET transaction.
9124	 */
9125	rc = bnx2x_func_state_change(bp, &func_params);
9126	if (rc) {
9127#ifdef BNX2X_STOP_ON_ERROR
9128		return rc;
9129#else
9130		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9131		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9132		return bnx2x_func_state_change(bp, &func_params);
9133#endif
9134	}
9135
9136	return 0;
9137}
9138
9139/**
9140 * bnx2x_send_unload_req - request unload mode from the MCP.
9141 *
9142 * @bp:			driver handle
9143 * @unload_mode:	requested function's unload mode
9144 *
9145 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9146 */
9147u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9148{
9149	u32 reset_code = 0;
9150	int port = BP_PORT(bp);
9151
9152	/* Select the UNLOAD request mode */
9153	if (unload_mode == UNLOAD_NORMAL)
9154		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9155
9156	else if (bp->flags & NO_WOL_FLAG)
9157		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9158
9159	else if (bp->wol) {
9160		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9161		u8 *mac_addr = bp->dev->dev_addr;
9162		struct pci_dev *pdev = bp->pdev;
9163		u32 val;
9164		u16 pmc;
9165
9166		/* The mac address is written to entries 1-4 to
9167		 * preserve entry 0 which is used by the PMF
9168		 */
9169		u8 entry = (BP_VN(bp) + 1)*8;
9170
9171		val = (mac_addr[0] << 8) | mac_addr[1];
9172		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9173
9174		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9175		      (mac_addr[4] << 8) | mac_addr[5];
9176		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9177
9178		/* Enable the PME and clear the status */
9179		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9180		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9181		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9182
9183		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9184
9185	} else
9186		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9187
9188	/* Send the request to the MCP */
9189	if (!BP_NOMCP(bp))
9190		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9191	else {
9192		int path = BP_PATH(bp);
9193
9194		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9195		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9196		   bnx2x_load_count[path][2]);
9197		bnx2x_load_count[path][0]--;
9198		bnx2x_load_count[path][1 + port]--;
9199		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9200		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9201		   bnx2x_load_count[path][2]);
9202		if (bnx2x_load_count[path][0] == 0)
9203			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9204		else if (bnx2x_load_count[path][1 + port] == 0)
9205			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9206		else
9207			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9208	}
9209
9210	return reset_code;
9211}
9212
9213/**
9214 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9215 *
9216 * @bp:		driver handle
9217 * @keep_link:		true iff link should be kept up
9218 */
9219void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9220{
9221	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9222
9223	/* Report UNLOAD_DONE to MCP */
9224	if (!BP_NOMCP(bp))
9225		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9226}
9227
9228static int bnx2x_func_wait_started(struct bnx2x *bp)
9229{
9230	int tout = 50;
9231	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9232
9233	if (!bp->port.pmf)
9234		return 0;
9235
9236	/*
9237	 * (assumption: No Attention from MCP at this stage)
9238	 * PMF probably in the middle of TX disable/enable transaction
9239	 * 1. Sync IRS for default SB
9240	 * 2. Sync SP queue - this guarantees us that attention handling started
9241	 * 3. Wait, that TX disable/enable transaction completes
9242	 *
9243	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9244	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9245	 * received completion for the transaction the state is TX_STOPPED.
9246	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9247	 * transaction.
9248	 */
9249
9250	/* make sure default SB ISR is done */
9251	if (msix)
9252		synchronize_irq(bp->msix_table[0].vector);
9253	else
9254		synchronize_irq(bp->pdev->irq);
9255
9256	flush_workqueue(bnx2x_wq);
9257	flush_workqueue(bnx2x_iov_wq);
9258
9259	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9260				BNX2X_F_STATE_STARTED && tout--)
9261		msleep(20);
9262
9263	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9264						BNX2X_F_STATE_STARTED) {
9265#ifdef BNX2X_STOP_ON_ERROR
9266		BNX2X_ERR("Wrong function state\n");
9267		return -EBUSY;
9268#else
9269		/*
9270		 * Failed to complete the transaction in a "good way"
9271		 * Force both transactions with CLR bit
9272		 */
9273		struct bnx2x_func_state_params func_params = {NULL};
9274
9275		DP(NETIF_MSG_IFDOWN,
9276		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9277
9278		func_params.f_obj = &bp->func_obj;
9279		__set_bit(RAMROD_DRV_CLR_ONLY,
9280					&func_params.ramrod_flags);
9281
9282		/* STARTED-->TX_ST0PPED */
9283		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9284		bnx2x_func_state_change(bp, &func_params);
9285
9286		/* TX_ST0PPED-->STARTED */
9287		func_params.cmd = BNX2X_F_CMD_TX_START;
9288		return bnx2x_func_state_change(bp, &func_params);
9289#endif
9290	}
9291
9292	return 0;
9293}
9294
9295static void bnx2x_disable_ptp(struct bnx2x *bp)
9296{
9297	int port = BP_PORT(bp);
9298
9299	/* Disable sending PTP packets to host */
9300	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9301	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9302
9303	/* Reset PTP event detection rules */
9304	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9305	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9306	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9307	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9308	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9309	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9310	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9311	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9312
9313	/* Disable the PTP feature */
9314	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9315	       NIG_REG_P0_PTP_EN, 0x0);
9316}
9317
9318/* Called during unload, to stop PTP-related stuff */
9319static void bnx2x_stop_ptp(struct bnx2x *bp)
9320{
9321	/* Cancel PTP work queue. Should be done after the Tx queues are
9322	 * drained to prevent additional scheduling.
9323	 */
9324	cancel_work_sync(&bp->ptp_task);
9325
9326	if (bp->ptp_tx_skb) {
9327		dev_kfree_skb_any(bp->ptp_tx_skb);
9328		bp->ptp_tx_skb = NULL;
9329	}
9330
9331	/* Disable PTP in HW */
9332	bnx2x_disable_ptp(bp);
9333
9334	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9335}
9336
9337void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9338{
9339	int port = BP_PORT(bp);
9340	int i, rc = 0;
9341	u8 cos;
9342	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9343	u32 reset_code;
9344
9345	/* Wait until tx fastpath tasks complete */
9346	for_each_tx_queue(bp, i) {
9347		struct bnx2x_fastpath *fp = &bp->fp[i];
9348
9349		for_each_cos_in_tx_queue(fp, cos)
9350			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9351#ifdef BNX2X_STOP_ON_ERROR
9352		if (rc)
9353			return;
9354#endif
9355	}
9356
9357	/* Give HW time to discard old tx messages */
9358	usleep_range(1000, 2000);
9359
9360	/* Clean all ETH MACs */
9361	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9362				false);
9363	if (rc < 0)
9364		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9365
9366	/* Clean up UC list  */
9367	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9368				true);
9369	if (rc < 0)
9370		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9371			  rc);
9372
9373	/* The whole *vlan_obj structure may be not initialized if VLAN
9374	 * filtering offload is not supported by hardware. Currently this is
9375	 * true for all hardware covered by CHIP_IS_E1x().
9376	 */
9377	if (!CHIP_IS_E1x(bp)) {
9378		/* Remove all currently configured VLANs */
9379		rc = bnx2x_del_all_vlans(bp);
9380		if (rc < 0)
9381			BNX2X_ERR("Failed to delete all VLANs\n");
9382	}
9383
9384	/* Disable LLH */
9385	if (!CHIP_IS_E1(bp))
9386		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9387
9388	/* Set "drop all" (stop Rx).
9389	 * We need to take a netif_addr_lock() here in order to prevent
9390	 * a race between the completion code and this code.
9391	 */
9392	netif_addr_lock_bh(bp->dev);
9393	/* Schedule the rx_mode command */
9394	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9395		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9396	else if (bp->slowpath)
9397		bnx2x_set_storm_rx_mode(bp);
9398
9399	/* Cleanup multicast configuration */
9400	rparam.mcast_obj = &bp->mcast_obj;
9401	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9402	if (rc < 0)
9403		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9404
9405	netif_addr_unlock_bh(bp->dev);
9406
9407	bnx2x_iov_chip_cleanup(bp);
9408
9409	/*
9410	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9411	 * this function should perform FUNC, PORT or COMMON HW
9412	 * reset.
9413	 */
9414	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9415
9416	/*
9417	 * (assumption: No Attention from MCP at this stage)
9418	 * PMF probably in the middle of TX disable/enable transaction
9419	 */
9420	rc = bnx2x_func_wait_started(bp);
9421	if (rc) {
9422		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9423#ifdef BNX2X_STOP_ON_ERROR
9424		return;
9425#endif
9426	}
9427
9428	/* Close multi and leading connections
9429	 * Completions for ramrods are collected in a synchronous way
9430	 */
9431	for_each_eth_queue(bp, i)
9432		if (bnx2x_stop_queue(bp, i))
9433#ifdef BNX2X_STOP_ON_ERROR
9434			return;
9435#else
9436			goto unload_error;
9437#endif
9438
9439	if (CNIC_LOADED(bp)) {
9440		for_each_cnic_queue(bp, i)
9441			if (bnx2x_stop_queue(bp, i))
9442#ifdef BNX2X_STOP_ON_ERROR
9443				return;
9444#else
9445				goto unload_error;
9446#endif
9447	}
9448
9449	/* If SP settings didn't get completed so far - something
9450	 * very wrong has happen.
9451	 */
9452	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9453		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9454
9455#ifndef BNX2X_STOP_ON_ERROR
9456unload_error:
9457#endif
9458	rc = bnx2x_func_stop(bp);
9459	if (rc) {
9460		BNX2X_ERR("Function stop failed!\n");
9461#ifdef BNX2X_STOP_ON_ERROR
9462		return;
9463#endif
9464	}
9465
9466	/* stop_ptp should be after the Tx queues are drained to prevent
9467	 * scheduling to the cancelled PTP work queue. It should also be after
9468	 * function stop ramrod is sent, since as part of this ramrod FW access
9469	 * PTP registers.
9470	 */
9471	if (bp->flags & PTP_SUPPORTED) {
9472		bnx2x_stop_ptp(bp);
9473		if (bp->ptp_clock) {
9474			ptp_clock_unregister(bp->ptp_clock);
9475			bp->ptp_clock = NULL;
9476		}
9477	}
9478
9479	/* Disable HW interrupts, NAPI */
9480	bnx2x_netif_stop(bp, 1);
9481	/* Delete all NAPI objects */
9482	bnx2x_del_all_napi(bp);
9483	if (CNIC_LOADED(bp))
9484		bnx2x_del_all_napi_cnic(bp);
9485
9486	/* Release IRQs */
9487	bnx2x_free_irq(bp);
9488
9489	/* Reset the chip, unless PCI function is offline. If we reach this
9490	 * point following a PCI error handling, it means device is really
9491	 * in a bad state and we're about to remove it, so reset the chip
9492	 * is not a good idea.
9493	 */
9494	if (!pci_channel_offline(bp->pdev)) {
9495		rc = bnx2x_reset_hw(bp, reset_code);
9496		if (rc)
9497			BNX2X_ERR("HW_RESET failed\n");
9498	}
9499
9500	/* Report UNLOAD_DONE to MCP */
9501	bnx2x_send_unload_done(bp, keep_link);
9502}
9503
9504void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9505{
9506	u32 val;
9507
9508	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9509
9510	if (CHIP_IS_E1(bp)) {
9511		int port = BP_PORT(bp);
9512		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9513			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9514
9515		val = REG_RD(bp, addr);
9516		val &= ~(0x300);
9517		REG_WR(bp, addr, val);
9518	} else {
9519		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9520		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9521			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9522		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9523	}
9524}
9525
9526/* Close gates #2, #3 and #4: */
9527static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9528{
9529	u32 val;
9530
9531	/* Gates #2 and #4a are closed/opened for "not E1" only */
9532	if (!CHIP_IS_E1(bp)) {
9533		/* #4 */
9534		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9535		/* #2 */
9536		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9537	}
9538
9539	/* #3 */
9540	if (CHIP_IS_E1x(bp)) {
9541		/* Prevent interrupts from HC on both ports */
9542		val = REG_RD(bp, HC_REG_CONFIG_1);
9543		REG_WR(bp, HC_REG_CONFIG_1,
9544		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9545		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9546
9547		val = REG_RD(bp, HC_REG_CONFIG_0);
9548		REG_WR(bp, HC_REG_CONFIG_0,
9549		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9550		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9551	} else {
9552		/* Prevent incoming interrupts in IGU */
9553		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9554
9555		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9556		       (!close) ?
9557		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9558		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9559	}
9560
9561	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9562		close ? "closing" : "opening");
9563}
9564
9565#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9566
9567static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9568{
9569	/* Do some magic... */
9570	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9571	*magic_val = val & SHARED_MF_CLP_MAGIC;
9572	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9573}
9574
9575/**
9576 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9577 *
9578 * @bp:		driver handle
9579 * @magic_val:	old value of the `magic' bit.
9580 */
9581static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9582{
9583	/* Restore the `magic' bit value... */
9584	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9585	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9586		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9587}
9588
9589/**
9590 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9591 *
9592 * @bp:		driver handle
9593 * @magic_val:	old value of 'magic' bit.
9594 *
9595 * Takes care of CLP configurations.
9596 */
9597static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9598{
9599	u32 shmem;
9600	u32 validity_offset;
9601
9602	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9603
9604	/* Set `magic' bit in order to save MF config */
9605	if (!CHIP_IS_E1(bp))
9606		bnx2x_clp_reset_prep(bp, magic_val);
9607
9608	/* Get shmem offset */
9609	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9610	validity_offset =
9611		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9612
9613	/* Clear validity map flags */
9614	if (shmem > 0)
9615		REG_WR(bp, shmem + validity_offset, 0);
9616}
9617
9618#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9619#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9620
9621/**
9622 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9623 *
9624 * @bp:	driver handle
9625 */
9626static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9627{
9628	/* special handling for emulation and FPGA,
9629	   wait 10 times longer */
9630	if (CHIP_REV_IS_SLOW(bp))
9631		msleep(MCP_ONE_TIMEOUT*10);
9632	else
9633		msleep(MCP_ONE_TIMEOUT);
9634}
9635
9636/*
9637 * initializes bp->common.shmem_base and waits for validity signature to appear
9638 */
9639static int bnx2x_init_shmem(struct bnx2x *bp)
9640{
9641	int cnt = 0;
9642	u32 val = 0;
9643
9644	do {
9645		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9646
9647		/* If we read all 0xFFs, means we are in PCI error state and
9648		 * should bail out to avoid crashes on adapter's FW reads.
9649		 */
9650		if (bp->common.shmem_base == 0xFFFFFFFF) {
9651			bp->flags |= NO_MCP_FLAG;
9652			return -ENODEV;
9653		}
9654
9655		if (bp->common.shmem_base) {
9656			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9657			if (val & SHR_MEM_VALIDITY_MB)
9658				return 0;
9659		}
9660
9661		bnx2x_mcp_wait_one(bp);
9662
9663	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9664
9665	BNX2X_ERR("BAD MCP validity signature\n");
9666
9667	return -ENODEV;
9668}
9669
9670static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9671{
9672	int rc = bnx2x_init_shmem(bp);
9673
9674	/* Restore the `magic' bit value */
9675	if (!CHIP_IS_E1(bp))
9676		bnx2x_clp_reset_done(bp, magic_val);
9677
9678	return rc;
9679}
9680
9681static void bnx2x_pxp_prep(struct bnx2x *bp)
9682{
9683	if (!CHIP_IS_E1(bp)) {
9684		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9685		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9686	}
9687}
9688
9689/*
9690 * Reset the whole chip except for:
9691 *      - PCIE core
9692 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9693 *              one reset bit)
9694 *      - IGU
9695 *      - MISC (including AEU)
9696 *      - GRC
9697 *      - RBCN, RBCP
9698 */
9699static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9700{
9701	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9702	u32 global_bits2, stay_reset2;
9703
9704	/*
9705	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9706	 * (per chip) blocks.
9707	 */
9708	global_bits2 =
9709		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9710		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9711
9712	/* Don't reset the following blocks.
9713	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9714	 *            reset, as in 4 port device they might still be owned
9715	 *            by the MCP (there is only one leader per path).
9716	 */
9717	not_reset_mask1 =
9718		MISC_REGISTERS_RESET_REG_1_RST_HC |
9719		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9720		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9721
9722	not_reset_mask2 =
9723		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9724		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9725		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9726		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9727		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9728		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9729		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9730		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9731		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9732		MISC_REGISTERS_RESET_REG_2_PGLC |
9733		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9734		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9735		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9736		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9737		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9738		MISC_REGISTERS_RESET_REG_2_UMAC1;
9739
9740	/*
9741	 * Keep the following blocks in reset:
9742	 *  - all xxMACs are handled by the bnx2x_link code.
9743	 */
9744	stay_reset2 =
9745		MISC_REGISTERS_RESET_REG_2_XMAC |
9746		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9747
9748	/* Full reset masks according to the chip */
9749	reset_mask1 = 0xffffffff;
9750
9751	if (CHIP_IS_E1(bp))
9752		reset_mask2 = 0xffff;
9753	else if (CHIP_IS_E1H(bp))
9754		reset_mask2 = 0x1ffff;
9755	else if (CHIP_IS_E2(bp))
9756		reset_mask2 = 0xfffff;
9757	else /* CHIP_IS_E3 */
9758		reset_mask2 = 0x3ffffff;
9759
9760	/* Don't reset global blocks unless we need to */
9761	if (!global)
9762		reset_mask2 &= ~global_bits2;
9763
9764	/*
9765	 * In case of attention in the QM, we need to reset PXP
9766	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9767	 * because otherwise QM reset would release 'close the gates' shortly
9768	 * before resetting the PXP, then the PSWRQ would send a write
9769	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9770	 * read the payload data from PSWWR, but PSWWR would not
9771	 * respond. The write queue in PGLUE would stuck, dmae commands
9772	 * would not return. Therefore it's important to reset the second
9773	 * reset register (containing the
9774	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9775	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9776	 * bit).
9777	 */
9778	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9779	       reset_mask2 & (~not_reset_mask2));
9780
9781	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9782	       reset_mask1 & (~not_reset_mask1));
9783
9784	barrier();
9785
9786	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9787	       reset_mask2 & (~stay_reset2));
9788
9789	barrier();
9790
9791	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9792}
9793
9794/**
9795 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9796 * It should get cleared in no more than 1s.
9797 *
9798 * @bp:	driver handle
9799 *
9800 * It should get cleared in no more than 1s. Returns 0 if
9801 * pending writes bit gets cleared.
9802 */
9803static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9804{
9805	u32 cnt = 1000;
9806	u32 pend_bits = 0;
9807
9808	do {
9809		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9810
9811		if (pend_bits == 0)
9812			break;
9813
9814		usleep_range(1000, 2000);
9815	} while (cnt-- > 0);
9816
9817	if (cnt <= 0) {
9818		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9819			  pend_bits);
9820		return -EBUSY;
9821	}
9822
9823	return 0;
9824}
9825
9826static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9827{
9828	int cnt = 1000;
9829	u32 val = 0;
9830	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9831	u32 tags_63_32 = 0;
9832
9833	/* Empty the Tetris buffer, wait for 1s */
9834	do {
9835		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9836		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9837		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9838		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9839		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9840		if (CHIP_IS_E3(bp))
9841			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9842
9843		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9844		    ((port_is_idle_0 & 0x1) == 0x1) &&
9845		    ((port_is_idle_1 & 0x1) == 0x1) &&
9846		    (pgl_exp_rom2 == 0xffffffff) &&
9847		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9848			break;
9849		usleep_range(1000, 2000);
9850	} while (cnt-- > 0);
9851
9852	if (cnt <= 0) {
9853		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9854		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9855			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9856			  pgl_exp_rom2);
9857		return -EAGAIN;
9858	}
9859
9860	barrier();
9861
9862	/* Close gates #2, #3 and #4 */
9863	bnx2x_set_234_gates(bp, true);
9864
9865	/* Poll for IGU VQs for 57712 and newer chips */
9866	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9867		return -EAGAIN;
9868
9869	/* TBD: Indicate that "process kill" is in progress to MCP */
9870
9871	/* Clear "unprepared" bit */
9872	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9873	barrier();
9874
9875	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9876	 * PSWHST, GRC and PSWRD Tetris buffer.
9877	 */
9878	usleep_range(1000, 2000);
9879
9880	/* Prepare to chip reset: */
9881	/* MCP */
9882	if (global)
9883		bnx2x_reset_mcp_prep(bp, &val);
9884
9885	/* PXP */
9886	bnx2x_pxp_prep(bp);
9887	barrier();
9888
9889	/* reset the chip */
9890	bnx2x_process_kill_chip_reset(bp, global);
9891	barrier();
9892
9893	/* clear errors in PGB */
9894	if (!CHIP_IS_E1x(bp))
9895		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9896
9897	/* Recover after reset: */
9898	/* MCP */
9899	if (global && bnx2x_reset_mcp_comp(bp, val))
9900		return -EAGAIN;
9901
9902	/* TBD: Add resetting the NO_MCP mode DB here */
9903
9904	/* Open the gates #2, #3 and #4 */
9905	bnx2x_set_234_gates(bp, false);
9906
9907	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9908	 * reset state, re-enable attentions. */
9909
9910	return 0;
9911}
9912
9913static int bnx2x_leader_reset(struct bnx2x *bp)
9914{
9915	int rc = 0;
9916	bool global = bnx2x_reset_is_global(bp);
9917	u32 load_code;
9918
9919	/* if not going to reset MCP - load "fake" driver to reset HW while
9920	 * driver is owner of the HW
9921	 */
9922	if (!global && !BP_NOMCP(bp)) {
9923		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9924					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9925		if (!load_code) {
9926			BNX2X_ERR("MCP response failure, aborting\n");
9927			rc = -EAGAIN;
9928			goto exit_leader_reset;
9929		}
9930		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9931		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9932			BNX2X_ERR("MCP unexpected resp, aborting\n");
9933			rc = -EAGAIN;
9934			goto exit_leader_reset2;
9935		}
9936		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9937		if (!load_code) {
9938			BNX2X_ERR("MCP response failure, aborting\n");
9939			rc = -EAGAIN;
9940			goto exit_leader_reset2;
9941		}
9942	}
9943
9944	/* Try to recover after the failure */
9945	if (bnx2x_process_kill(bp, global)) {
9946		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9947			  BP_PATH(bp));
9948		rc = -EAGAIN;
9949		goto exit_leader_reset2;
9950	}
9951
9952	/*
9953	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9954	 * state.
9955	 */
9956	bnx2x_set_reset_done(bp);
9957	if (global)
9958		bnx2x_clear_reset_global(bp);
9959
9960exit_leader_reset2:
9961	/* unload "fake driver" if it was loaded */
9962	if (!global && !BP_NOMCP(bp)) {
9963		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9964		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9965	}
9966exit_leader_reset:
9967	bp->is_leader = 0;
9968	bnx2x_release_leader_lock(bp);
9969	smp_mb();
9970	return rc;
9971}
9972
9973static void bnx2x_recovery_failed(struct bnx2x *bp)
9974{
9975	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9976
9977	/* Disconnect this device */
9978	netif_device_detach(bp->dev);
9979
9980	/*
9981	 * Block ifup for all function on this engine until "process kill"
9982	 * or power cycle.
9983	 */
9984	bnx2x_set_reset_in_progress(bp);
9985
9986	/* Shut down the power */
9987	bnx2x_set_power_state(bp, PCI_D3hot);
9988
9989	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9990
9991	smp_mb();
9992}
9993
9994/*
9995 * Assumption: runs under rtnl lock. This together with the fact
9996 * that it's called only from bnx2x_sp_rtnl() ensure that it
9997 * will never be called when netif_running(bp->dev) is false.
9998 */
9999static void bnx2x_parity_recover(struct bnx2x *bp)
10000{
10001	u32 error_recovered, error_unrecovered;
10002	bool is_parity, global = false;
10003#ifdef CONFIG_BNX2X_SRIOV
10004	int vf_idx;
10005
10006	for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10007		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10008
10009		if (vf)
10010			vf->state = VF_LOST;
10011	}
10012#endif
10013	DP(NETIF_MSG_HW, "Handling parity\n");
10014	while (1) {
10015		switch (bp->recovery_state) {
10016		case BNX2X_RECOVERY_INIT:
10017			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10018			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10019			WARN_ON(!is_parity);
10020
10021			/* Try to get a LEADER_LOCK HW lock */
10022			if (bnx2x_trylock_leader_lock(bp)) {
10023				bnx2x_set_reset_in_progress(bp);
10024				/*
10025				 * Check if there is a global attention and if
10026				 * there was a global attention, set the global
10027				 * reset bit.
10028				 */
10029
10030				if (global)
10031					bnx2x_set_reset_global(bp);
10032
10033				bp->is_leader = 1;
10034			}
10035
10036			/* Stop the driver */
10037			/* If interface has been removed - break */
10038			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10039				return;
10040
10041			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10042
10043			/* Ensure "is_leader", MCP command sequence and
10044			 * "recovery_state" update values are seen on other
10045			 * CPUs.
10046			 */
10047			smp_mb();
10048			break;
10049
10050		case BNX2X_RECOVERY_WAIT:
10051			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10052			if (bp->is_leader) {
10053				int other_engine = BP_PATH(bp) ? 0 : 1;
10054				bool other_load_status =
10055					bnx2x_get_load_status(bp, other_engine);
10056				bool load_status =
10057					bnx2x_get_load_status(bp, BP_PATH(bp));
10058				global = bnx2x_reset_is_global(bp);
10059
10060				/*
10061				 * In case of a parity in a global block, let
10062				 * the first leader that performs a
10063				 * leader_reset() reset the global blocks in
10064				 * order to clear global attentions. Otherwise
10065				 * the gates will remain closed for that
10066				 * engine.
10067				 */
10068				if (load_status ||
10069				    (global && other_load_status)) {
10070					/* Wait until all other functions get
10071					 * down.
10072					 */
10073					schedule_delayed_work(&bp->sp_rtnl_task,
10074								HZ/10);
10075					return;
10076				} else {
10077					/* If all other functions got down -
10078					 * try to bring the chip back to
10079					 * normal. In any case it's an exit
10080					 * point for a leader.
10081					 */
10082					if (bnx2x_leader_reset(bp)) {
10083						bnx2x_recovery_failed(bp);
10084						return;
10085					}
10086
10087					/* If we are here, means that the
10088					 * leader has succeeded and doesn't
10089					 * want to be a leader any more. Try
10090					 * to continue as a none-leader.
10091					 */
10092					break;
10093				}
10094			} else { /* non-leader */
10095				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10096					/* Try to get a LEADER_LOCK HW lock as
10097					 * long as a former leader may have
10098					 * been unloaded by the user or
10099					 * released a leadership by another
10100					 * reason.
10101					 */
10102					if (bnx2x_trylock_leader_lock(bp)) {
10103						/* I'm a leader now! Restart a
10104						 * switch case.
10105						 */
10106						bp->is_leader = 1;
10107						break;
10108					}
10109
10110					schedule_delayed_work(&bp->sp_rtnl_task,
10111								HZ/10);
10112					return;
10113
10114				} else {
10115					/*
10116					 * If there was a global attention, wait
10117					 * for it to be cleared.
10118					 */
10119					if (bnx2x_reset_is_global(bp)) {
10120						schedule_delayed_work(
10121							&bp->sp_rtnl_task,
10122							HZ/10);
10123						return;
10124					}
10125
10126					error_recovered =
10127					  bp->eth_stats.recoverable_error;
10128					error_unrecovered =
10129					  bp->eth_stats.unrecoverable_error;
10130					bp->recovery_state =
10131						BNX2X_RECOVERY_NIC_LOADING;
10132					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10133						error_unrecovered++;
10134						netdev_err(bp->dev,
10135							   "Recovery failed. Power cycle needed\n");
10136						/* Disconnect this device */
10137						netif_device_detach(bp->dev);
10138						/* Shut down the power */
10139						bnx2x_set_power_state(
10140							bp, PCI_D3hot);
10141						smp_mb();
10142					} else {
10143						bp->recovery_state =
10144							BNX2X_RECOVERY_DONE;
10145						error_recovered++;
10146						smp_mb();
10147					}
10148					bp->eth_stats.recoverable_error =
10149						error_recovered;
10150					bp->eth_stats.unrecoverable_error =
10151						error_unrecovered;
10152
10153					return;
10154				}
10155			}
10156		default:
10157			return;
10158		}
10159	}
10160}
10161
10162static int bnx2x_udp_port_update(struct bnx2x *bp)
10163{
10164	struct bnx2x_func_switch_update_params *switch_update_params;
10165	struct bnx2x_func_state_params func_params = {NULL};
10166	u16 vxlan_port = 0, geneve_port = 0;
10167	int rc;
10168
10169	switch_update_params = &func_params.params.switch_update;
10170
10171	/* Prepare parameters for function state transitions */
10172	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10173	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10174
10175	func_params.f_obj = &bp->func_obj;
10176	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10177
10178	/* Function parameters */
10179	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10180		  &switch_update_params->changes);
10181
10182	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10183		geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10184		switch_update_params->geneve_dst_port = geneve_port;
10185	}
10186
10187	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10188		vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10189		switch_update_params->vxlan_dst_port = vxlan_port;
10190	}
10191
10192	/* Re-enable inner-rss for the offloaded UDP tunnels */
10193	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10194		  &switch_update_params->changes);
10195
10196	rc = bnx2x_func_state_change(bp, &func_params);
10197	if (rc)
10198		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10199			  vxlan_port, geneve_port, rc);
10200	else
10201		DP(BNX2X_MSG_SP,
10202		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10203		   vxlan_port, geneve_port);
10204
10205	return rc;
10206}
10207
10208static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10209{
10210	struct bnx2x *bp = netdev_priv(netdev);
10211	struct udp_tunnel_info ti;
10212
10213	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10214	bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10215
10216	return bnx2x_udp_port_update(bp);
10217}
10218
10219static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10220	.sync_table	= bnx2x_udp_tunnel_sync,
10221	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10222			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10223	.tables		= {
10224		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10225		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10226	},
10227};
10228
10229static int bnx2x_close(struct net_device *dev);
10230
10231/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10232 * scheduled on a general queue in order to prevent a dead lock.
10233 */
10234static void bnx2x_sp_rtnl_task(struct work_struct *work)
10235{
10236	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10237
10238	rtnl_lock();
10239
10240	if (!netif_running(bp->dev)) {
10241		rtnl_unlock();
10242		return;
10243	}
10244
10245	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10246#ifdef BNX2X_STOP_ON_ERROR
10247		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10248			  "you will need to reboot when done\n");
10249		goto sp_rtnl_not_reset;
10250#endif
10251		/*
10252		 * Clear all pending SP commands as we are going to reset the
10253		 * function anyway.
10254		 */
10255		bp->sp_rtnl_state = 0;
10256		smp_mb();
10257
10258		bnx2x_parity_recover(bp);
10259
10260		rtnl_unlock();
10261		return;
10262	}
10263
10264	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10265#ifdef BNX2X_STOP_ON_ERROR
10266		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10267			  "you will need to reboot when done\n");
10268		goto sp_rtnl_not_reset;
10269#endif
10270
10271		/*
10272		 * Clear all pending SP commands as we are going to reset the
10273		 * function anyway.
10274		 */
10275		bp->sp_rtnl_state = 0;
10276		smp_mb();
10277
10278		/* Immediately indicate link as down */
10279		bp->link_vars.link_up = 0;
10280		bp->force_link_down = true;
10281		netif_carrier_off(bp->dev);
10282		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10283
10284		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10285		/* When ret value shows failure of allocation failure,
10286		 * the nic is rebooted again. If open still fails, a error
10287		 * message to notify the user.
10288		 */
10289		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10290			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10291			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10292				BNX2X_ERR("Open the NIC fails again!\n");
10293		}
10294		rtnl_unlock();
10295		return;
10296	}
10297#ifdef BNX2X_STOP_ON_ERROR
10298sp_rtnl_not_reset:
10299#endif
10300	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10301		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10302	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10303		bnx2x_after_function_update(bp);
10304	/*
10305	 * in case of fan failure we need to reset id if the "stop on error"
10306	 * debug flag is set, since we trying to prevent permanent overheating
10307	 * damage
10308	 */
10309	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10310		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10311		netif_device_detach(bp->dev);
10312		bnx2x_close(bp->dev);
10313		rtnl_unlock();
10314		return;
10315	}
10316
10317	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10318		DP(BNX2X_MSG_SP,
10319		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10320		bnx2x_vfpf_set_mcast(bp->dev);
10321	}
10322	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10323			       &bp->sp_rtnl_state)){
10324		if (netif_carrier_ok(bp->dev)) {
10325			bnx2x_tx_disable(bp);
10326			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10327		}
10328	}
10329
10330	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10331		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10332		bnx2x_set_rx_mode_inner(bp);
10333	}
10334
10335	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10336			       &bp->sp_rtnl_state))
10337		bnx2x_pf_set_vfs_vlan(bp);
10338
10339	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10340		bnx2x_dcbx_stop_hw_tx(bp);
10341		bnx2x_dcbx_resume_hw_tx(bp);
10342	}
10343
10344	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10345			       &bp->sp_rtnl_state))
10346		bnx2x_update_mng_version(bp);
10347
10348	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10349		bnx2x_handle_update_svid_cmd(bp);
10350
10351	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10352	 * can be called from other contexts as well)
10353	 */
10354	rtnl_unlock();
10355
10356	/* enable SR-IOV if applicable */
10357	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10358					       &bp->sp_rtnl_state)) {
10359		bnx2x_disable_sriov(bp);
10360		bnx2x_enable_sriov(bp);
10361	}
10362}
10363
10364static void bnx2x_period_task(struct work_struct *work)
10365{
10366	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10367
10368	if (!netif_running(bp->dev))
10369		goto period_task_exit;
10370
10371	if (CHIP_REV_IS_SLOW(bp)) {
10372		BNX2X_ERR("period task called on emulation, ignoring\n");
10373		goto period_task_exit;
10374	}
10375
10376	bnx2x_acquire_phy_lock(bp);
10377	/*
10378	 * The barrier is needed to ensure the ordering between the writing to
10379	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10380	 * the reading here.
10381	 */
10382	smp_mb();
10383	if (bp->port.pmf) {
10384		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10385
10386		/* Re-queue task in 1 sec */
10387		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10388	}
10389
10390	bnx2x_release_phy_lock(bp);
10391period_task_exit:
10392	return;
10393}
10394
10395/*
10396 * Init service functions
10397 */
10398
10399static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10400{
10401	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10402	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10403	return base + (BP_ABS_FUNC(bp)) * stride;
10404}
10405
10406static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10407					 u8 port, u32 reset_reg,
10408					 struct bnx2x_mac_vals *vals)
10409{
10410	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10411	u32 base_addr;
10412
10413	if (!(mask & reset_reg))
10414		return false;
10415
10416	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10417	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10418	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10419	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10420	REG_WR(bp, vals->umac_addr[port], 0);
10421
10422	return true;
10423}
10424
10425static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10426					struct bnx2x_mac_vals *vals)
10427{
10428	u32 val, base_addr, offset, mask, reset_reg;
10429	bool mac_stopped = false;
10430	u8 port = BP_PORT(bp);
10431
10432	/* reset addresses as they also mark which values were changed */
10433	memset(vals, 0, sizeof(*vals));
10434
10435	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10436
10437	if (!CHIP_IS_E3(bp)) {
10438		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10439		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10440		if ((mask & reset_reg) && val) {
10441			u32 wb_data[2];
10442			BNX2X_DEV_INFO("Disable bmac Rx\n");
10443			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10444						: NIG_REG_INGRESS_BMAC0_MEM;
10445			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10446						: BIGMAC_REGISTER_BMAC_CONTROL;
10447
10448			/*
10449			 * use rd/wr since we cannot use dmae. This is safe
10450			 * since MCP won't access the bus due to the request
10451			 * to unload, and no function on the path can be
10452			 * loaded at this time.
10453			 */
10454			wb_data[0] = REG_RD(bp, base_addr + offset);
10455			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10456			vals->bmac_addr = base_addr + offset;
10457			vals->bmac_val[0] = wb_data[0];
10458			vals->bmac_val[1] = wb_data[1];
10459			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10460			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10461			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10462		}
10463		BNX2X_DEV_INFO("Disable emac Rx\n");
10464		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10465		vals->emac_val = REG_RD(bp, vals->emac_addr);
10466		REG_WR(bp, vals->emac_addr, 0);
10467		mac_stopped = true;
10468	} else {
10469		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10470			BNX2X_DEV_INFO("Disable xmac Rx\n");
10471			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10472			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10473			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10474			       val & ~(1 << 1));
10475			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10476			       val | (1 << 1));
10477			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10478			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10479			REG_WR(bp, vals->xmac_addr, 0);
10480			mac_stopped = true;
10481		}
10482
10483		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10484							    reset_reg, vals);
10485		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10486							    reset_reg, vals);
10487	}
10488
10489	if (mac_stopped)
10490		msleep(20);
10491}
10492
10493#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10494#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10495					0x1848 + ((f) << 4))
10496#define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10497#define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10498#define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10499
10500#define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10501#define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10502#define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10503
10504static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10505{
10506	/* UNDI marks its presence in DORQ -
10507	 * it initializes CID offset for normal bell to 0x7
10508	 */
10509	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10510	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10511		return false;
10512
10513	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10514		BNX2X_DEV_INFO("UNDI previously loaded\n");
10515		return true;
10516	}
10517
10518	return false;
10519}
10520
10521static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10522{
10523	u16 rcq, bd;
10524	u32 addr, tmp_reg;
10525
10526	if (BP_FUNC(bp) < 2)
10527		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10528	else
10529		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10530
10531	tmp_reg = REG_RD(bp, addr);
10532	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10533	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10534
10535	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10536	REG_WR(bp, addr, tmp_reg);
10537
10538	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10539		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10540}
10541
10542static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10543{
10544	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10545				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10546	if (!rc) {
10547		BNX2X_ERR("MCP response failure, aborting\n");
10548		return -EBUSY;
10549	}
10550
10551	return 0;
10552}
10553
10554static struct bnx2x_prev_path_list *
10555		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10556{
10557	struct bnx2x_prev_path_list *tmp_list;
10558
10559	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10560		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10561		    bp->pdev->bus->number == tmp_list->bus &&
10562		    BP_PATH(bp) == tmp_list->path)
10563			return tmp_list;
10564
10565	return NULL;
10566}
10567
10568static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10569{
10570	struct bnx2x_prev_path_list *tmp_list;
10571	int rc;
10572
10573	rc = down_interruptible(&bnx2x_prev_sem);
10574	if (rc) {
10575		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10576		return rc;
10577	}
10578
10579	tmp_list = bnx2x_prev_path_get_entry(bp);
10580	if (tmp_list) {
10581		tmp_list->aer = 1;
10582		rc = 0;
10583	} else {
10584		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10585			  BP_PATH(bp));
10586	}
10587
10588	up(&bnx2x_prev_sem);
10589
10590	return rc;
10591}
10592
10593static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10594{
10595	struct bnx2x_prev_path_list *tmp_list;
10596	bool rc = false;
10597
10598	if (down_trylock(&bnx2x_prev_sem))
10599		return false;
10600
10601	tmp_list = bnx2x_prev_path_get_entry(bp);
10602	if (tmp_list) {
10603		if (tmp_list->aer) {
10604			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10605			   BP_PATH(bp));
10606		} else {
10607			rc = true;
10608			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10609				       BP_PATH(bp));
10610		}
10611	}
10612
10613	up(&bnx2x_prev_sem);
10614
10615	return rc;
10616}
10617
10618bool bnx2x_port_after_undi(struct bnx2x *bp)
10619{
10620	struct bnx2x_prev_path_list *entry;
10621	bool val;
10622
10623	down(&bnx2x_prev_sem);
10624
10625	entry = bnx2x_prev_path_get_entry(bp);
10626	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10627
10628	up(&bnx2x_prev_sem);
10629
10630	return val;
10631}
10632
10633static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10634{
10635	struct bnx2x_prev_path_list *tmp_list;
10636	int rc;
10637
10638	rc = down_interruptible(&bnx2x_prev_sem);
10639	if (rc) {
10640		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10641		return rc;
10642	}
10643
10644	/* Check whether the entry for this path already exists */
10645	tmp_list = bnx2x_prev_path_get_entry(bp);
10646	if (tmp_list) {
10647		if (!tmp_list->aer) {
10648			BNX2X_ERR("Re-Marking the path.\n");
10649		} else {
10650			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10651			   BP_PATH(bp));
10652			tmp_list->aer = 0;
10653		}
10654		up(&bnx2x_prev_sem);
10655		return 0;
10656	}
10657	up(&bnx2x_prev_sem);
10658
10659	/* Create an entry for this path and add it */
10660	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10661	if (!tmp_list) {
10662		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10663		return -ENOMEM;
10664	}
10665
10666	tmp_list->bus = bp->pdev->bus->number;
10667	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10668	tmp_list->path = BP_PATH(bp);
10669	tmp_list->aer = 0;
10670	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10671
10672	rc = down_interruptible(&bnx2x_prev_sem);
10673	if (rc) {
10674		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10675		kfree(tmp_list);
10676	} else {
10677		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10678		   BP_PATH(bp));
10679		list_add(&tmp_list->list, &bnx2x_prev_list);
10680		up(&bnx2x_prev_sem);
10681	}
10682
10683	return rc;
10684}
10685
10686static int bnx2x_do_flr(struct bnx2x *bp)
10687{
10688	struct pci_dev *dev = bp->pdev;
10689
10690	if (CHIP_IS_E1x(bp)) {
10691		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10692		return -EINVAL;
10693	}
10694
10695	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10696	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10697		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10698			  bp->common.bc_ver);
10699		return -EINVAL;
10700	}
10701
10702	if (!pci_wait_for_pending_transaction(dev))
10703		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10704
10705	BNX2X_DEV_INFO("Initiating FLR\n");
10706	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10707
10708	return 0;
10709}
10710
10711static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10712{
10713	int rc;
10714
10715	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10716
10717	/* Test if previous unload process was already finished for this path */
10718	if (bnx2x_prev_is_path_marked(bp))
10719		return bnx2x_prev_mcp_done(bp);
10720
10721	BNX2X_DEV_INFO("Path is unmarked\n");
10722
10723	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10724	if (bnx2x_prev_is_after_undi(bp))
10725		goto out;
10726
10727	/* If function has FLR capabilities, and existing FW version matches
10728	 * the one required, then FLR will be sufficient to clean any residue
10729	 * left by previous driver
10730	 */
10731	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10732
10733	if (!rc) {
10734		/* fw version is good */
10735		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10736		rc = bnx2x_do_flr(bp);
10737	}
10738
10739	if (!rc) {
10740		/* FLR was performed */
10741		BNX2X_DEV_INFO("FLR successful\n");
10742		return 0;
10743	}
10744
10745	BNX2X_DEV_INFO("Could not FLR\n");
10746
10747out:
10748	/* Close the MCP request, return failure*/
10749	rc = bnx2x_prev_mcp_done(bp);
10750	if (!rc)
10751		rc = BNX2X_PREV_WAIT_NEEDED;
10752
10753	return rc;
10754}
10755
10756static int bnx2x_prev_unload_common(struct bnx2x *bp)
10757{
10758	u32 reset_reg, tmp_reg = 0, rc;
10759	bool prev_undi = false;
10760	struct bnx2x_mac_vals mac_vals;
10761
10762	/* It is possible a previous function received 'common' answer,
10763	 * but hasn't loaded yet, therefore creating a scenario of
10764	 * multiple functions receiving 'common' on the same path.
10765	 */
10766	BNX2X_DEV_INFO("Common unload Flow\n");
10767
10768	memset(&mac_vals, 0, sizeof(mac_vals));
10769
10770	if (bnx2x_prev_is_path_marked(bp))
10771		return bnx2x_prev_mcp_done(bp);
10772
10773	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10774
10775	/* Reset should be performed after BRB is emptied */
10776	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10777		u32 timer_count = 1000;
10778
10779		/* Close the MAC Rx to prevent BRB from filling up */
10780		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10781
10782		/* close LLH filters for both ports towards the BRB */
10783		bnx2x_set_rx_filter(&bp->link_params, 0);
10784		bp->link_params.port ^= 1;
10785		bnx2x_set_rx_filter(&bp->link_params, 0);
10786		bp->link_params.port ^= 1;
10787
10788		/* Check if the UNDI driver was previously loaded */
10789		if (bnx2x_prev_is_after_undi(bp)) {
10790			prev_undi = true;
10791			/* clear the UNDI indication */
10792			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10793			/* clear possible idle check errors */
10794			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10795		}
10796		if (!CHIP_IS_E1x(bp))
10797			/* block FW from writing to host */
10798			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10799
10800		/* wait until BRB is empty */
10801		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10802		while (timer_count) {
10803			u32 prev_brb = tmp_reg;
10804
10805			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10806			if (!tmp_reg)
10807				break;
10808
10809			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10810
10811			/* reset timer as long as BRB actually gets emptied */
10812			if (prev_brb > tmp_reg)
10813				timer_count = 1000;
10814			else
10815				timer_count--;
10816
10817			/* If UNDI resides in memory, manually increment it */
10818			if (prev_undi)
10819				bnx2x_prev_unload_undi_inc(bp, 1);
10820
10821			udelay(10);
10822		}
10823
10824		if (!timer_count)
10825			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10826	}
10827
10828	/* No packets are in the pipeline, path is ready for reset */
10829	bnx2x_reset_common(bp);
10830
10831	if (mac_vals.xmac_addr)
10832		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10833	if (mac_vals.umac_addr[0])
10834		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10835	if (mac_vals.umac_addr[1])
10836		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10837	if (mac_vals.emac_addr)
10838		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10839	if (mac_vals.bmac_addr) {
10840		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10841		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10842	}
10843
10844	rc = bnx2x_prev_mark_path(bp, prev_undi);
10845	if (rc) {
10846		bnx2x_prev_mcp_done(bp);
10847		return rc;
10848	}
10849
10850	return bnx2x_prev_mcp_done(bp);
10851}
10852
10853static int bnx2x_prev_unload(struct bnx2x *bp)
10854{
10855	int time_counter = 10;
10856	u32 rc, fw, hw_lock_reg, hw_lock_val;
10857	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10858
10859	/* clear hw from errors which may have resulted from an interrupted
10860	 * dmae transaction.
10861	 */
10862	bnx2x_clean_pglue_errors(bp);
10863
10864	/* Release previously held locks */
10865	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10866		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10867		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10868
10869	hw_lock_val = REG_RD(bp, hw_lock_reg);
10870	if (hw_lock_val) {
10871		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10872			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10873			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10874			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10875		}
10876
10877		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10878		REG_WR(bp, hw_lock_reg, 0xffffffff);
10879	} else
10880		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10881
10882	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10883		BNX2X_DEV_INFO("Release previously held alr\n");
10884		bnx2x_release_alr(bp);
10885	}
10886
10887	do {
10888		int aer = 0;
10889		/* Lock MCP using an unload request */
10890		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10891		if (!fw) {
10892			BNX2X_ERR("MCP response failure, aborting\n");
10893			rc = -EBUSY;
10894			break;
10895		}
10896
10897		rc = down_interruptible(&bnx2x_prev_sem);
10898		if (rc) {
10899			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10900				  rc);
10901		} else {
10902			/* If Path is marked by EEH, ignore unload status */
10903			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10904				 bnx2x_prev_path_get_entry(bp)->aer);
10905			up(&bnx2x_prev_sem);
10906		}
10907
10908		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10909			rc = bnx2x_prev_unload_common(bp);
10910			break;
10911		}
10912
10913		/* non-common reply from MCP might require looping */
10914		rc = bnx2x_prev_unload_uncommon(bp);
10915		if (rc != BNX2X_PREV_WAIT_NEEDED)
10916			break;
10917
10918		msleep(20);
10919	} while (--time_counter);
10920
10921	if (!time_counter || rc) {
10922		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10923		rc = -EPROBE_DEFER;
10924	}
10925
10926	/* Mark function if its port was used to boot from SAN */
10927	if (bnx2x_port_after_undi(bp))
10928		bp->link_params.feature_config_flags |=
10929			FEATURE_CONFIG_BOOT_FROM_SAN;
10930
10931	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10932
10933	return rc;
10934}
10935
10936static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10937{
10938	u32 val, val2, val3, val4, id, boot_mode;
10939	u16 pmc;
10940
10941	/* Get the chip revision id and number. */
10942	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10943	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10944	id = ((val & 0xffff) << 16);
10945	val = REG_RD(bp, MISC_REG_CHIP_REV);
10946	id |= ((val & 0xf) << 12);
10947
10948	/* Metal is read from PCI regs, but we can't access >=0x400 from
10949	 * the configuration space (so we need to reg_rd)
10950	 */
10951	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10952	id |= (((val >> 24) & 0xf) << 4);
10953	val = REG_RD(bp, MISC_REG_BOND_ID);
10954	id |= (val & 0xf);
10955	bp->common.chip_id = id;
10956
10957	/* force 57811 according to MISC register */
10958	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10959		if (CHIP_IS_57810(bp))
10960			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10961				(bp->common.chip_id & 0x0000FFFF);
10962		else if (CHIP_IS_57810_MF(bp))
10963			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10964				(bp->common.chip_id & 0x0000FFFF);
10965		bp->common.chip_id |= 0x1;
10966	}
10967
10968	/* Set doorbell size */
10969	bp->db_size = (1 << BNX2X_DB_SHIFT);
10970
10971	if (!CHIP_IS_E1x(bp)) {
10972		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10973		if ((val & 1) == 0)
10974			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10975		else
10976			val = (val >> 1) & 1;
10977		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10978						       "2_PORT_MODE");
10979		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10980						 CHIP_2_PORT_MODE;
10981
10982		if (CHIP_MODE_IS_4_PORT(bp))
10983			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10984		else
10985			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10986	} else {
10987		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10988		bp->pfid = bp->pf_num;			/* 0..7 */
10989	}
10990
10991	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10992
10993	bp->link_params.chip_id = bp->common.chip_id;
10994	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10995
10996	val = (REG_RD(bp, 0x2874) & 0x55);
10997	if ((bp->common.chip_id & 0x1) ||
10998	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10999		bp->flags |= ONE_PORT_FLAG;
11000		BNX2X_DEV_INFO("single port device\n");
11001	}
11002
11003	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11004	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11005				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11006	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11007		       bp->common.flash_size, bp->common.flash_size);
11008
11009	bnx2x_init_shmem(bp);
11010
11011	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11012					MISC_REG_GENERIC_CR_1 :
11013					MISC_REG_GENERIC_CR_0));
11014
11015	bp->link_params.shmem_base = bp->common.shmem_base;
11016	bp->link_params.shmem2_base = bp->common.shmem2_base;
11017	if (SHMEM2_RD(bp, size) >
11018	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11019		bp->link_params.lfa_base =
11020		REG_RD(bp, bp->common.shmem2_base +
11021		       (u32)offsetof(struct shmem2_region,
11022				     lfa_host_addr[BP_PORT(bp)]));
11023	else
11024		bp->link_params.lfa_base = 0;
11025	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11026		       bp->common.shmem_base, bp->common.shmem2_base);
11027
11028	if (!bp->common.shmem_base) {
11029		BNX2X_DEV_INFO("MCP not active\n");
11030		bp->flags |= NO_MCP_FLAG;
11031		return;
11032	}
11033
11034	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11035	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11036
11037	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11038					SHARED_HW_CFG_LED_MODE_MASK) >>
11039				       SHARED_HW_CFG_LED_MODE_SHIFT);
11040
11041	bp->link_params.feature_config_flags = 0;
11042	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11043	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11044		bp->link_params.feature_config_flags |=
11045				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11046	else
11047		bp->link_params.feature_config_flags &=
11048				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11049
11050	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11051	bp->common.bc_ver = val;
11052	BNX2X_DEV_INFO("bc_ver %X\n", val);
11053	if (val < BNX2X_BC_VER) {
11054		/* for now only warn
11055		 * later we might need to enforce this */
11056		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11057			  BNX2X_BC_VER, val);
11058	}
11059	bp->link_params.feature_config_flags |=
11060				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11061				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11062
11063	bp->link_params.feature_config_flags |=
11064		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11065		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11066	bp->link_params.feature_config_flags |=
11067		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11068		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11069	bp->link_params.feature_config_flags |=
11070		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11071		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11072
11073	bp->link_params.feature_config_flags |=
11074		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11075		FEATURE_CONFIG_MT_SUPPORT : 0;
11076
11077	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11078			BC_SUPPORTS_PFC_STATS : 0;
11079
11080	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11081			BC_SUPPORTS_FCOE_FEATURES : 0;
11082
11083	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11084			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11085
11086	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11087			BC_SUPPORTS_RMMOD_CMD : 0;
11088
11089	boot_mode = SHMEM_RD(bp,
11090			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11091			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11092	switch (boot_mode) {
11093	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11094		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11095		break;
11096	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11097		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11098		break;
11099	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11100		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11101		break;
11102	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11103		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11104		break;
11105	}
11106
11107	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11108	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11109
11110	BNX2X_DEV_INFO("%sWoL capable\n",
11111		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11112
11113	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11114	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11115	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11116	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11117
11118	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11119		 val, val2, val3, val4);
11120}
11121
11122#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11123#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11124
11125static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11126{
11127	int pfid = BP_FUNC(bp);
11128	int igu_sb_id;
11129	u32 val;
11130	u8 fid, igu_sb_cnt = 0;
11131
11132	bp->igu_base_sb = 0xff;
11133	if (CHIP_INT_MODE_IS_BC(bp)) {
11134		int vn = BP_VN(bp);
11135		igu_sb_cnt = bp->igu_sb_cnt;
11136		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11137			FP_SB_MAX_E1x;
11138
11139		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11140			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11141
11142		return 0;
11143	}
11144
11145	/* IGU in normal mode - read CAM */
11146	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11147	     igu_sb_id++) {
11148		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11149		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11150			continue;
11151		fid = IGU_FID(val);
11152		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11153			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11154				continue;
11155			if (IGU_VEC(val) == 0)
11156				/* default status block */
11157				bp->igu_dsb_id = igu_sb_id;
11158			else {
11159				if (bp->igu_base_sb == 0xff)
11160					bp->igu_base_sb = igu_sb_id;
11161				igu_sb_cnt++;
11162			}
11163		}
11164	}
11165
11166#ifdef CONFIG_PCI_MSI
11167	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11168	 * optional that number of CAM entries will not be equal to the value
11169	 * advertised in PCI.
11170	 * Driver should use the minimal value of both as the actual status
11171	 * block count
11172	 */
11173	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11174#endif
11175
11176	if (igu_sb_cnt == 0) {
11177		BNX2X_ERR("CAM configuration error\n");
11178		return -EINVAL;
11179	}
11180
11181	return 0;
11182}
11183
11184static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11185{
11186	int cfg_size = 0, idx, port = BP_PORT(bp);
11187
11188	/* Aggregation of supported attributes of all external phys */
11189	bp->port.supported[0] = 0;
11190	bp->port.supported[1] = 0;
11191	switch (bp->link_params.num_phys) {
11192	case 1:
11193		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11194		cfg_size = 1;
11195		break;
11196	case 2:
11197		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11198		cfg_size = 1;
11199		break;
11200	case 3:
11201		if (bp->link_params.multi_phy_config &
11202		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11203			bp->port.supported[1] =
11204				bp->link_params.phy[EXT_PHY1].supported;
11205			bp->port.supported[0] =
11206				bp->link_params.phy[EXT_PHY2].supported;
11207		} else {
11208			bp->port.supported[0] =
11209				bp->link_params.phy[EXT_PHY1].supported;
11210			bp->port.supported[1] =
11211				bp->link_params.phy[EXT_PHY2].supported;
11212		}
11213		cfg_size = 2;
11214		break;
11215	}
11216
11217	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11218		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11219			   SHMEM_RD(bp,
11220			   dev_info.port_hw_config[port].external_phy_config),
11221			   SHMEM_RD(bp,
11222			   dev_info.port_hw_config[port].external_phy_config2));
11223		return;
11224	}
11225
11226	if (CHIP_IS_E3(bp))
11227		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11228	else {
11229		switch (switch_cfg) {
11230		case SWITCH_CFG_1G:
11231			bp->port.phy_addr = REG_RD(
11232				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11233			break;
11234		case SWITCH_CFG_10G:
11235			bp->port.phy_addr = REG_RD(
11236				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11237			break;
11238		default:
11239			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11240				  bp->port.link_config[0]);
11241			return;
11242		}
11243	}
11244	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11245	/* mask what we support according to speed_cap_mask per configuration */
11246	for (idx = 0; idx < cfg_size; idx++) {
11247		if (!(bp->link_params.speed_cap_mask[idx] &
11248				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11249			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11250
11251		if (!(bp->link_params.speed_cap_mask[idx] &
11252				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11253			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11254
11255		if (!(bp->link_params.speed_cap_mask[idx] &
11256				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11257			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11258
11259		if (!(bp->link_params.speed_cap_mask[idx] &
11260				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11261			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11262
11263		if (!(bp->link_params.speed_cap_mask[idx] &
11264					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11265			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11266						     SUPPORTED_1000baseT_Full);
11267
11268		if (!(bp->link_params.speed_cap_mask[idx] &
11269					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11270			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11271
11272		if (!(bp->link_params.speed_cap_mask[idx] &
11273					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11274			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11275
11276		if (!(bp->link_params.speed_cap_mask[idx] &
11277					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11278			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11279	}
11280
11281	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11282		       bp->port.supported[1]);
11283}
11284
11285static void bnx2x_link_settings_requested(struct bnx2x *bp)
11286{
11287	u32 link_config, idx, cfg_size = 0;
11288	bp->port.advertising[0] = 0;
11289	bp->port.advertising[1] = 0;
11290	switch (bp->link_params.num_phys) {
11291	case 1:
11292	case 2:
11293		cfg_size = 1;
11294		break;
11295	case 3:
11296		cfg_size = 2;
11297		break;
11298	}
11299	for (idx = 0; idx < cfg_size; idx++) {
11300		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11301		link_config = bp->port.link_config[idx];
11302		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11303		case PORT_FEATURE_LINK_SPEED_AUTO:
11304			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11305				bp->link_params.req_line_speed[idx] =
11306					SPEED_AUTO_NEG;
11307				bp->port.advertising[idx] |=
11308					bp->port.supported[idx];
11309				if (bp->link_params.phy[EXT_PHY1].type ==
11310				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11311					bp->port.advertising[idx] |=
11312					(SUPPORTED_100baseT_Half |
11313					 SUPPORTED_100baseT_Full);
11314			} else {
11315				/* force 10G, no AN */
11316				bp->link_params.req_line_speed[idx] =
11317					SPEED_10000;
11318				bp->port.advertising[idx] |=
11319					(ADVERTISED_10000baseT_Full |
11320					 ADVERTISED_FIBRE);
11321				continue;
11322			}
11323			break;
11324
11325		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11326			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11327				bp->link_params.req_line_speed[idx] =
11328					SPEED_10;
11329				bp->port.advertising[idx] |=
11330					(ADVERTISED_10baseT_Full |
11331					 ADVERTISED_TP);
11332			} else {
11333				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11334					    link_config,
11335				    bp->link_params.speed_cap_mask[idx]);
11336				return;
11337			}
11338			break;
11339
11340		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11341			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11342				bp->link_params.req_line_speed[idx] =
11343					SPEED_10;
11344				bp->link_params.req_duplex[idx] =
11345					DUPLEX_HALF;
11346				bp->port.advertising[idx] |=
11347					(ADVERTISED_10baseT_Half |
11348					 ADVERTISED_TP);
11349			} else {
11350				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11351					    link_config,
11352					  bp->link_params.speed_cap_mask[idx]);
11353				return;
11354			}
11355			break;
11356
11357		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11358			if (bp->port.supported[idx] &
11359			    SUPPORTED_100baseT_Full) {
11360				bp->link_params.req_line_speed[idx] =
11361					SPEED_100;
11362				bp->port.advertising[idx] |=
11363					(ADVERTISED_100baseT_Full |
11364					 ADVERTISED_TP);
11365			} else {
11366				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11367					    link_config,
11368					  bp->link_params.speed_cap_mask[idx]);
11369				return;
11370			}
11371			break;
11372
11373		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11374			if (bp->port.supported[idx] &
11375			    SUPPORTED_100baseT_Half) {
11376				bp->link_params.req_line_speed[idx] =
11377								SPEED_100;
11378				bp->link_params.req_duplex[idx] =
11379								DUPLEX_HALF;
11380				bp->port.advertising[idx] |=
11381					(ADVERTISED_100baseT_Half |
11382					 ADVERTISED_TP);
11383			} else {
11384				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11385				    link_config,
11386				    bp->link_params.speed_cap_mask[idx]);
11387				return;
11388			}
11389			break;
11390
11391		case PORT_FEATURE_LINK_SPEED_1G:
11392			if (bp->port.supported[idx] &
11393			    SUPPORTED_1000baseT_Full) {
11394				bp->link_params.req_line_speed[idx] =
11395					SPEED_1000;
11396				bp->port.advertising[idx] |=
11397					(ADVERTISED_1000baseT_Full |
11398					 ADVERTISED_TP);
11399			} else if (bp->port.supported[idx] &
11400				   SUPPORTED_1000baseKX_Full) {
11401				bp->link_params.req_line_speed[idx] =
11402					SPEED_1000;
11403				bp->port.advertising[idx] |=
11404					ADVERTISED_1000baseKX_Full;
11405			} else {
11406				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11407				    link_config,
11408				    bp->link_params.speed_cap_mask[idx]);
11409				return;
11410			}
11411			break;
11412
11413		case PORT_FEATURE_LINK_SPEED_2_5G:
11414			if (bp->port.supported[idx] &
11415			    SUPPORTED_2500baseX_Full) {
11416				bp->link_params.req_line_speed[idx] =
11417					SPEED_2500;
11418				bp->port.advertising[idx] |=
11419					(ADVERTISED_2500baseX_Full |
11420						ADVERTISED_TP);
11421			} else {
11422				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11423				    link_config,
11424				    bp->link_params.speed_cap_mask[idx]);
11425				return;
11426			}
11427			break;
11428
11429		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11430			if (bp->port.supported[idx] &
11431			    SUPPORTED_10000baseT_Full) {
11432				bp->link_params.req_line_speed[idx] =
11433					SPEED_10000;
11434				bp->port.advertising[idx] |=
11435					(ADVERTISED_10000baseT_Full |
11436						ADVERTISED_FIBRE);
11437			} else if (bp->port.supported[idx] &
11438				   SUPPORTED_10000baseKR_Full) {
11439				bp->link_params.req_line_speed[idx] =
11440					SPEED_10000;
11441				bp->port.advertising[idx] |=
11442					(ADVERTISED_10000baseKR_Full |
11443						ADVERTISED_FIBRE);
11444			} else {
11445				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11446				    link_config,
11447				    bp->link_params.speed_cap_mask[idx]);
11448				return;
11449			}
11450			break;
11451		case PORT_FEATURE_LINK_SPEED_20G:
11452			bp->link_params.req_line_speed[idx] = SPEED_20000;
11453
11454			break;
11455		default:
11456			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11457				  link_config);
11458				bp->link_params.req_line_speed[idx] =
11459							SPEED_AUTO_NEG;
11460				bp->port.advertising[idx] =
11461						bp->port.supported[idx];
11462			break;
11463		}
11464
11465		bp->link_params.req_flow_ctrl[idx] = (link_config &
11466					 PORT_FEATURE_FLOW_CONTROL_MASK);
11467		if (bp->link_params.req_flow_ctrl[idx] ==
11468		    BNX2X_FLOW_CTRL_AUTO) {
11469			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11470				bp->link_params.req_flow_ctrl[idx] =
11471							BNX2X_FLOW_CTRL_NONE;
11472			else
11473				bnx2x_set_requested_fc(bp);
11474		}
11475
11476		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11477			       bp->link_params.req_line_speed[idx],
11478			       bp->link_params.req_duplex[idx],
11479			       bp->link_params.req_flow_ctrl[idx],
11480			       bp->port.advertising[idx]);
11481	}
11482}
11483
11484static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11485{
11486	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11487	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11488	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11489	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11490}
11491
11492static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11493{
11494	int port = BP_PORT(bp);
11495	u32 config;
11496	u32 ext_phy_type, ext_phy_config, eee_mode;
11497
11498	bp->link_params.bp = bp;
11499	bp->link_params.port = port;
11500
11501	bp->link_params.lane_config =
11502		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11503
11504	bp->link_params.speed_cap_mask[0] =
11505		SHMEM_RD(bp,
11506			 dev_info.port_hw_config[port].speed_capability_mask) &
11507		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11508	bp->link_params.speed_cap_mask[1] =
11509		SHMEM_RD(bp,
11510			 dev_info.port_hw_config[port].speed_capability_mask2) &
11511		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11512	bp->port.link_config[0] =
11513		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11514
11515	bp->port.link_config[1] =
11516		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11517
11518	bp->link_params.multi_phy_config =
11519		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11520	/* If the device is capable of WoL, set the default state according
11521	 * to the HW
11522	 */
11523	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11524	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11525		   (config & PORT_FEATURE_WOL_ENABLED));
11526
11527	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11528	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11529		bp->flags |= NO_ISCSI_FLAG;
11530	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11531	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11532		bp->flags |= NO_FCOE_FLAG;
11533
11534	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11535		       bp->link_params.lane_config,
11536		       bp->link_params.speed_cap_mask[0],
11537		       bp->port.link_config[0]);
11538
11539	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11540				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11541	bnx2x_phy_probe(&bp->link_params);
11542	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11543
11544	bnx2x_link_settings_requested(bp);
11545
11546	/*
11547	 * If connected directly, work with the internal PHY, otherwise, work
11548	 * with the external PHY
11549	 */
11550	ext_phy_config =
11551		SHMEM_RD(bp,
11552			 dev_info.port_hw_config[port].external_phy_config);
11553	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11554	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11555		bp->mdio.prtad = bp->port.phy_addr;
11556
11557	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11558		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11559		bp->mdio.prtad =
11560			XGXS_EXT_PHY_ADDR(ext_phy_config);
11561
11562	/* Configure link feature according to nvram value */
11563	eee_mode = (((SHMEM_RD(bp, dev_info.
11564		      port_feature_config[port].eee_power_mode)) &
11565		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11566		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11567	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11568		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11569					   EEE_MODE_ENABLE_LPI |
11570					   EEE_MODE_OUTPUT_TIME;
11571	} else {
11572		bp->link_params.eee_mode = 0;
11573	}
11574}
11575
11576void bnx2x_get_iscsi_info(struct bnx2x *bp)
11577{
11578	u32 no_flags = NO_ISCSI_FLAG;
11579	int port = BP_PORT(bp);
11580	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11581				drv_lic_key[port].max_iscsi_conn);
11582
11583	if (!CNIC_SUPPORT(bp)) {
11584		bp->flags |= no_flags;
11585		return;
11586	}
11587
11588	/* Get the number of maximum allowed iSCSI connections */
11589	bp->cnic_eth_dev.max_iscsi_conn =
11590		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11591		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11592
11593	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11594		       bp->cnic_eth_dev.max_iscsi_conn);
11595
11596	/*
11597	 * If maximum allowed number of connections is zero -
11598	 * disable the feature.
11599	 */
11600	if (!bp->cnic_eth_dev.max_iscsi_conn)
11601		bp->flags |= no_flags;
11602}
11603
11604static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11605{
11606	/* Port info */
11607	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11608		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11609	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11610		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11611
11612	/* Node info */
11613	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11614		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11615	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11616		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11617}
11618
11619static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11620{
11621	u8 count = 0;
11622
11623	if (IS_MF(bp)) {
11624		u8 fid;
11625
11626		/* iterate over absolute function ids for this path: */
11627		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11628			if (IS_MF_SD(bp)) {
11629				u32 cfg = MF_CFG_RD(bp,
11630						    func_mf_config[fid].config);
11631
11632				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11633				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11634					    FUNC_MF_CFG_PROTOCOL_FCOE))
11635					count++;
11636			} else {
11637				u32 cfg = MF_CFG_RD(bp,
11638						    func_ext_config[fid].
11639								      func_cfg);
11640
11641				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11642				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11643					count++;
11644			}
11645		}
11646	} else { /* SF */
11647		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11648
11649		for (port = 0; port < port_cnt; port++) {
11650			u32 lic = SHMEM_RD(bp,
11651					   drv_lic_key[port].max_fcoe_conn) ^
11652				  FW_ENCODE_32BIT_PATTERN;
11653			if (lic)
11654				count++;
11655		}
11656	}
11657
11658	return count;
11659}
11660
11661static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11662{
11663	int port = BP_PORT(bp);
11664	int func = BP_ABS_FUNC(bp);
11665	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11666				drv_lic_key[port].max_fcoe_conn);
11667	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11668
11669	if (!CNIC_SUPPORT(bp)) {
11670		bp->flags |= NO_FCOE_FLAG;
11671		return;
11672	}
11673
11674	/* Get the number of maximum allowed FCoE connections */
11675	bp->cnic_eth_dev.max_fcoe_conn =
11676		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11677		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11678
11679	/* Calculate the number of maximum allowed FCoE tasks */
11680	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11681
11682	/* check if FCoE resources must be shared between different functions */
11683	if (num_fcoe_func)
11684		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11685
11686	/* Read the WWN: */
11687	if (!IS_MF(bp)) {
11688		/* Port info */
11689		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11690			SHMEM_RD(bp,
11691				 dev_info.port_hw_config[port].
11692				 fcoe_wwn_port_name_upper);
11693		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11694			SHMEM_RD(bp,
11695				 dev_info.port_hw_config[port].
11696				 fcoe_wwn_port_name_lower);
11697
11698		/* Node info */
11699		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11700			SHMEM_RD(bp,
11701				 dev_info.port_hw_config[port].
11702				 fcoe_wwn_node_name_upper);
11703		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11704			SHMEM_RD(bp,
11705				 dev_info.port_hw_config[port].
11706				 fcoe_wwn_node_name_lower);
11707	} else if (!IS_MF_SD(bp)) {
11708		/* Read the WWN info only if the FCoE feature is enabled for
11709		 * this function.
11710		 */
11711		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11712			bnx2x_get_ext_wwn_info(bp, func);
11713	} else {
11714		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11715			bnx2x_get_ext_wwn_info(bp, func);
11716	}
11717
11718	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11719
11720	/*
11721	 * If maximum allowed number of connections is zero -
11722	 * disable the feature.
11723	 */
11724	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11725		bp->flags |= NO_FCOE_FLAG;
11726		eth_zero_addr(bp->fip_mac);
11727	}
11728}
11729
11730static void bnx2x_get_cnic_info(struct bnx2x *bp)
11731{
11732	/*
11733	 * iSCSI may be dynamically disabled but reading
11734	 * info here we will decrease memory usage by driver
11735	 * if the feature is disabled for good
11736	 */
11737	bnx2x_get_iscsi_info(bp);
11738	bnx2x_get_fcoe_info(bp);
11739}
11740
11741static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11742{
11743	u32 val, val2;
11744	int func = BP_ABS_FUNC(bp);
11745	int port = BP_PORT(bp);
11746	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11747	u8 *fip_mac = bp->fip_mac;
11748
11749	if (IS_MF(bp)) {
11750		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11751		 * FCoE MAC then the appropriate feature should be disabled.
11752		 * In non SD mode features configuration comes from struct
11753		 * func_ext_config.
11754		 */
11755		if (!IS_MF_SD(bp)) {
11756			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11757			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11758				val2 = MF_CFG_RD(bp, func_ext_config[func].
11759						 iscsi_mac_addr_upper);
11760				val = MF_CFG_RD(bp, func_ext_config[func].
11761						iscsi_mac_addr_lower);
11762				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11763				BNX2X_DEV_INFO
11764					("Read iSCSI MAC: %pM\n", iscsi_mac);
11765			} else {
11766				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11767			}
11768
11769			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11770				val2 = MF_CFG_RD(bp, func_ext_config[func].
11771						 fcoe_mac_addr_upper);
11772				val = MF_CFG_RD(bp, func_ext_config[func].
11773						fcoe_mac_addr_lower);
11774				bnx2x_set_mac_buf(fip_mac, val, val2);
11775				BNX2X_DEV_INFO
11776					("Read FCoE L2 MAC: %pM\n", fip_mac);
11777			} else {
11778				bp->flags |= NO_FCOE_FLAG;
11779			}
11780
11781			bp->mf_ext_config = cfg;
11782
11783		} else { /* SD MODE */
11784			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11785				/* use primary mac as iscsi mac */
11786				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11787
11788				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11789				BNX2X_DEV_INFO
11790					("Read iSCSI MAC: %pM\n", iscsi_mac);
11791			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11792				/* use primary mac as fip mac */
11793				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11794				BNX2X_DEV_INFO("SD FCoE MODE\n");
11795				BNX2X_DEV_INFO
11796					("Read FIP MAC: %pM\n", fip_mac);
11797			}
11798		}
11799
11800		/* If this is a storage-only interface, use SAN mac as
11801		 * primary MAC. Notice that for SD this is already the case,
11802		 * as the SAN mac was copied from the primary MAC.
11803		 */
11804		if (IS_MF_FCOE_AFEX(bp))
11805			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11806	} else {
11807		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11808				iscsi_mac_upper);
11809		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11810			       iscsi_mac_lower);
11811		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11812
11813		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11814				fcoe_fip_mac_upper);
11815		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11816			       fcoe_fip_mac_lower);
11817		bnx2x_set_mac_buf(fip_mac, val, val2);
11818	}
11819
11820	/* Disable iSCSI OOO if MAC configuration is invalid. */
11821	if (!is_valid_ether_addr(iscsi_mac)) {
11822		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11823		eth_zero_addr(iscsi_mac);
11824	}
11825
11826	/* Disable FCoE if MAC configuration is invalid. */
11827	if (!is_valid_ether_addr(fip_mac)) {
11828		bp->flags |= NO_FCOE_FLAG;
11829		eth_zero_addr(bp->fip_mac);
11830	}
11831}
11832
11833static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11834{
11835	u32 val, val2;
11836	int func = BP_ABS_FUNC(bp);
11837	int port = BP_PORT(bp);
11838
11839	/* Zero primary MAC configuration */
11840	eth_zero_addr(bp->dev->dev_addr);
11841
11842	if (BP_NOMCP(bp)) {
11843		BNX2X_ERROR("warning: random MAC workaround active\n");
11844		eth_hw_addr_random(bp->dev);
11845	} else if (IS_MF(bp)) {
11846		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11847		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11848		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11849		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11850			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11851
11852		if (CNIC_SUPPORT(bp))
11853			bnx2x_get_cnic_mac_hwinfo(bp);
11854	} else {
11855		/* in SF read MACs from port configuration */
11856		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11857		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11858		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11859
11860		if (CNIC_SUPPORT(bp))
11861			bnx2x_get_cnic_mac_hwinfo(bp);
11862	}
11863
11864	if (!BP_NOMCP(bp)) {
11865		/* Read physical port identifier from shmem */
11866		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11867		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11868		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11869		bp->flags |= HAS_PHYS_PORT_ID;
11870	}
11871
11872	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11873
11874	if (!is_valid_ether_addr(bp->dev->dev_addr))
11875		dev_err(&bp->pdev->dev,
11876			"bad Ethernet MAC address configuration: %pM\n"
11877			"change it manually before bringing up the appropriate network interface\n",
11878			bp->dev->dev_addr);
11879}
11880
11881static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11882{
11883	int tmp;
11884	u32 cfg;
11885
11886	if (IS_VF(bp))
11887		return false;
11888
11889	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11890		/* Take function: tmp = func */
11891		tmp = BP_ABS_FUNC(bp);
11892		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11893		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11894	} else {
11895		/* Take port: tmp = port */
11896		tmp = BP_PORT(bp);
11897		cfg = SHMEM_RD(bp,
11898			       dev_info.port_hw_config[tmp].generic_features);
11899		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11900	}
11901	return cfg;
11902}
11903
11904static void validate_set_si_mode(struct bnx2x *bp)
11905{
11906	u8 func = BP_ABS_FUNC(bp);
11907	u32 val;
11908
11909	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11910
11911	/* check for legal mac (upper bytes) */
11912	if (val != 0xffff) {
11913		bp->mf_mode = MULTI_FUNCTION_SI;
11914		bp->mf_config[BP_VN(bp)] =
11915			MF_CFG_RD(bp, func_mf_config[func].config);
11916	} else
11917		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11918}
11919
11920static int bnx2x_get_hwinfo(struct bnx2x *bp)
11921{
11922	int /*abs*/func = BP_ABS_FUNC(bp);
11923	int vn;
11924	u32 val = 0, val2 = 0;
11925	int rc = 0;
11926
11927	/* Validate that chip access is feasible */
11928	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11929		dev_err(&bp->pdev->dev,
11930			"Chip read returns all Fs. Preventing probe from continuing\n");
11931		return -EINVAL;
11932	}
11933
11934	bnx2x_get_common_hwinfo(bp);
11935
11936	/*
11937	 * initialize IGU parameters
11938	 */
11939	if (CHIP_IS_E1x(bp)) {
11940		bp->common.int_block = INT_BLOCK_HC;
11941
11942		bp->igu_dsb_id = DEF_SB_IGU_ID;
11943		bp->igu_base_sb = 0;
11944	} else {
11945		bp->common.int_block = INT_BLOCK_IGU;
11946
11947		/* do not allow device reset during IGU info processing */
11948		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11949
11950		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11951
11952		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11953			int tout = 5000;
11954
11955			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11956
11957			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11958			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11959			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11960
11961			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11962				tout--;
11963				usleep_range(1000, 2000);
11964			}
11965
11966			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11967				dev_err(&bp->pdev->dev,
11968					"FORCING Normal Mode failed!!!\n");
11969				bnx2x_release_hw_lock(bp,
11970						      HW_LOCK_RESOURCE_RESET);
11971				return -EPERM;
11972			}
11973		}
11974
11975		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11976			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11977			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11978		} else
11979			BNX2X_DEV_INFO("IGU Normal Mode\n");
11980
11981		rc = bnx2x_get_igu_cam_info(bp);
11982		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11983		if (rc)
11984			return rc;
11985	}
11986
11987	/*
11988	 * set base FW non-default (fast path) status block id, this value is
11989	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11990	 * determine the id used by the FW.
11991	 */
11992	if (CHIP_IS_E1x(bp))
11993		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11994	else /*
11995	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11996	      * the same queue are indicated on the same IGU SB). So we prefer
11997	      * FW and IGU SBs to be the same value.
11998	      */
11999		bp->base_fw_ndsb = bp->igu_base_sb;
12000
12001	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12002		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12003		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12004
12005	/*
12006	 * Initialize MF configuration
12007	 */
12008	bp->mf_ov = 0;
12009	bp->mf_mode = 0;
12010	bp->mf_sub_mode = 0;
12011	vn = BP_VN(bp);
12012
12013	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12014		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12015			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12016			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12017
12018		if (SHMEM2_HAS(bp, mf_cfg_addr))
12019			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12020		else
12021			bp->common.mf_cfg_base = bp->common.shmem_base +
12022				offsetof(struct shmem_region, func_mb) +
12023				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12024		/*
12025		 * get mf configuration:
12026		 * 1. Existence of MF configuration
12027		 * 2. MAC address must be legal (check only upper bytes)
12028		 *    for  Switch-Independent mode;
12029		 *    OVLAN must be legal for Switch-Dependent mode
12030		 * 3. SF_MODE configures specific MF mode
12031		 */
12032		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12033			/* get mf configuration */
12034			val = SHMEM_RD(bp,
12035				       dev_info.shared_feature_config.config);
12036			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12037
12038			switch (val) {
12039			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12040				validate_set_si_mode(bp);
12041				break;
12042			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12043				if ((!CHIP_IS_E1x(bp)) &&
12044				    (MF_CFG_RD(bp, func_mf_config[func].
12045					       mac_upper) != 0xffff) &&
12046				    (SHMEM2_HAS(bp,
12047						afex_driver_support))) {
12048					bp->mf_mode = MULTI_FUNCTION_AFEX;
12049					bp->mf_config[vn] = MF_CFG_RD(bp,
12050						func_mf_config[func].config);
12051				} else {
12052					BNX2X_DEV_INFO("can not configure afex mode\n");
12053				}
12054				break;
12055			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12056				/* get OV configuration */
12057				val = MF_CFG_RD(bp,
12058					func_mf_config[FUNC_0].e1hov_tag);
12059				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12060
12061				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12062					bp->mf_mode = MULTI_FUNCTION_SD;
12063					bp->mf_config[vn] = MF_CFG_RD(bp,
12064						func_mf_config[func].config);
12065				} else
12066					BNX2X_DEV_INFO("illegal OV for SD\n");
12067				break;
12068			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12069				bp->mf_mode = MULTI_FUNCTION_SD;
12070				bp->mf_sub_mode = SUB_MF_MODE_BD;
12071				bp->mf_config[vn] =
12072					MF_CFG_RD(bp,
12073						  func_mf_config[func].config);
12074
12075				if (SHMEM2_HAS(bp, mtu_size)) {
12076					int mtu_idx = BP_FW_MB_IDX(bp);
12077					u16 mtu_size;
12078					u32 mtu;
12079
12080					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12081					mtu_size = (u16)mtu;
12082					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12083					   mtu_size, mtu);
12084
12085					/* if valid: update device mtu */
12086					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12087					    (mtu_size <=
12088					     ETH_MAX_JUMBO_PACKET_SIZE))
12089						bp->dev->mtu = mtu_size;
12090				}
12091				break;
12092			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12093				bp->mf_mode = MULTI_FUNCTION_SD;
12094				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12095				bp->mf_config[vn] =
12096					MF_CFG_RD(bp,
12097						  func_mf_config[func].config);
12098				break;
12099			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12100				bp->mf_config[vn] = 0;
12101				break;
12102			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12103				val2 = SHMEM_RD(bp,
12104					dev_info.shared_hw_config.config_3);
12105				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12106				switch (val2) {
12107				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12108					validate_set_si_mode(bp);
12109					bp->mf_sub_mode =
12110							SUB_MF_MODE_NPAR1_DOT_5;
12111					break;
12112				default:
12113					/* Unknown configuration */
12114					bp->mf_config[vn] = 0;
12115					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12116						       val);
12117				}
12118				break;
12119			default:
12120				/* Unknown configuration: reset mf_config */
12121				bp->mf_config[vn] = 0;
12122				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12123			}
12124		}
12125
12126		BNX2X_DEV_INFO("%s function mode\n",
12127			       IS_MF(bp) ? "multi" : "single");
12128
12129		switch (bp->mf_mode) {
12130		case MULTI_FUNCTION_SD:
12131			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12132			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12133			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12134				bp->mf_ov = val;
12135				bp->path_has_ovlan = true;
12136
12137				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12138					       func, bp->mf_ov, bp->mf_ov);
12139			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12140				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12141				dev_err(&bp->pdev->dev,
12142					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12143					func);
12144				bp->path_has_ovlan = true;
12145			} else {
12146				dev_err(&bp->pdev->dev,
12147					"No valid MF OV for func %d, aborting\n",
12148					func);
12149				return -EPERM;
12150			}
12151			break;
12152		case MULTI_FUNCTION_AFEX:
12153			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12154			break;
12155		case MULTI_FUNCTION_SI:
12156			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12157				       func);
12158			break;
12159		default:
12160			if (vn) {
12161				dev_err(&bp->pdev->dev,
12162					"VN %d is in a single function mode, aborting\n",
12163					vn);
12164				return -EPERM;
12165			}
12166			break;
12167		}
12168
12169		/* check if other port on the path needs ovlan:
12170		 * Since MF configuration is shared between ports
12171		 * Possible mixed modes are only
12172		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12173		 */
12174		if (CHIP_MODE_IS_4_PORT(bp) &&
12175		    !bp->path_has_ovlan &&
12176		    !IS_MF(bp) &&
12177		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12178			u8 other_port = !BP_PORT(bp);
12179			u8 other_func = BP_PATH(bp) + 2*other_port;
12180			val = MF_CFG_RD(bp,
12181					func_mf_config[other_func].e1hov_tag);
12182			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12183				bp->path_has_ovlan = true;
12184		}
12185	}
12186
12187	/* adjust igu_sb_cnt to MF for E1H */
12188	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12189		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12190
12191	/* port info */
12192	bnx2x_get_port_hwinfo(bp);
12193
12194	/* Get MAC addresses */
12195	bnx2x_get_mac_hwinfo(bp);
12196
12197	bnx2x_get_cnic_info(bp);
12198
12199	return rc;
12200}
12201
12202static void bnx2x_read_fwinfo(struct bnx2x *bp)
12203{
12204	int cnt, i, block_end, rodi;
12205	char vpd_start[BNX2X_VPD_LEN+1];
12206	char str_id_reg[VENDOR_ID_LEN+1];
12207	char str_id_cap[VENDOR_ID_LEN+1];
12208	char *vpd_data;
12209	char *vpd_extended_data = NULL;
12210	u8 len;
12211
12212	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12213	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12214
12215	if (cnt < BNX2X_VPD_LEN)
12216		goto out_not_found;
12217
12218	/* VPD RO tag should be first tag after identifier string, hence
12219	 * we should be able to find it in first BNX2X_VPD_LEN chars
12220	 */
12221	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12222			     PCI_VPD_LRDT_RO_DATA);
12223	if (i < 0)
12224		goto out_not_found;
12225
12226	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12227		    pci_vpd_lrdt_size(&vpd_start[i]);
12228
12229	i += PCI_VPD_LRDT_TAG_SIZE;
12230
12231	if (block_end > BNX2X_VPD_LEN) {
12232		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12233		if (vpd_extended_data  == NULL)
12234			goto out_not_found;
12235
12236		/* read rest of vpd image into vpd_extended_data */
12237		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12238		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12239				   block_end - BNX2X_VPD_LEN,
12240				   vpd_extended_data + BNX2X_VPD_LEN);
12241		if (cnt < (block_end - BNX2X_VPD_LEN))
12242			goto out_not_found;
12243		vpd_data = vpd_extended_data;
12244	} else
12245		vpd_data = vpd_start;
12246
12247	/* now vpd_data holds full vpd content in both cases */
12248
12249	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12250				   PCI_VPD_RO_KEYWORD_MFR_ID);
12251	if (rodi < 0)
12252		goto out_not_found;
12253
12254	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12255
12256	if (len != VENDOR_ID_LEN)
12257		goto out_not_found;
12258
12259	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12260
12261	/* vendor specific info */
12262	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12263	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12264	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12265	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12266
12267		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12268						PCI_VPD_RO_KEYWORD_VENDOR0);
12269		if (rodi >= 0) {
12270			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12271
12272			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12273
12274			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12275				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12276				bp->fw_ver[len] = ' ';
12277			}
12278		}
12279		kfree(vpd_extended_data);
12280		return;
12281	}
12282out_not_found:
12283	kfree(vpd_extended_data);
12284	return;
12285}
12286
12287static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12288{
12289	u32 flags = 0;
12290
12291	if (CHIP_REV_IS_FPGA(bp))
12292		SET_FLAGS(flags, MODE_FPGA);
12293	else if (CHIP_REV_IS_EMUL(bp))
12294		SET_FLAGS(flags, MODE_EMUL);
12295	else
12296		SET_FLAGS(flags, MODE_ASIC);
12297
12298	if (CHIP_MODE_IS_4_PORT(bp))
12299		SET_FLAGS(flags, MODE_PORT4);
12300	else
12301		SET_FLAGS(flags, MODE_PORT2);
12302
12303	if (CHIP_IS_E2(bp))
12304		SET_FLAGS(flags, MODE_E2);
12305	else if (CHIP_IS_E3(bp)) {
12306		SET_FLAGS(flags, MODE_E3);
12307		if (CHIP_REV(bp) == CHIP_REV_Ax)
12308			SET_FLAGS(flags, MODE_E3_A0);
12309		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12310			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12311	}
12312
12313	if (IS_MF(bp)) {
12314		SET_FLAGS(flags, MODE_MF);
12315		switch (bp->mf_mode) {
12316		case MULTI_FUNCTION_SD:
12317			SET_FLAGS(flags, MODE_MF_SD);
12318			break;
12319		case MULTI_FUNCTION_SI:
12320			SET_FLAGS(flags, MODE_MF_SI);
12321			break;
12322		case MULTI_FUNCTION_AFEX:
12323			SET_FLAGS(flags, MODE_MF_AFEX);
12324			break;
12325		}
12326	} else
12327		SET_FLAGS(flags, MODE_SF);
12328
12329#if defined(__LITTLE_ENDIAN)
12330	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12331#else /*(__BIG_ENDIAN)*/
12332	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12333#endif
12334	INIT_MODE_FLAGS(bp) = flags;
12335}
12336
12337static int bnx2x_init_bp(struct bnx2x *bp)
12338{
12339	int func;
12340	int rc;
12341
12342	mutex_init(&bp->port.phy_mutex);
12343	mutex_init(&bp->fw_mb_mutex);
12344	mutex_init(&bp->drv_info_mutex);
12345	sema_init(&bp->stats_lock, 1);
12346	bp->drv_info_mng_owner = false;
12347	INIT_LIST_HEAD(&bp->vlan_reg);
12348
12349	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12350	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12351	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12352	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12353	if (IS_PF(bp)) {
12354		rc = bnx2x_get_hwinfo(bp);
12355		if (rc)
12356			return rc;
12357	} else {
12358		eth_zero_addr(bp->dev->dev_addr);
12359	}
12360
12361	bnx2x_set_modes_bitmap(bp);
12362
12363	rc = bnx2x_alloc_mem_bp(bp);
12364	if (rc)
12365		return rc;
12366
12367	bnx2x_read_fwinfo(bp);
12368
12369	func = BP_FUNC(bp);
12370
12371	/* need to reset chip if undi was active */
12372	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12373		/* init fw_seq */
12374		bp->fw_seq =
12375			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12376							DRV_MSG_SEQ_NUMBER_MASK;
12377		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12378
12379		rc = bnx2x_prev_unload(bp);
12380		if (rc) {
12381			bnx2x_free_mem_bp(bp);
12382			return rc;
12383		}
12384	}
12385
12386	if (CHIP_REV_IS_FPGA(bp))
12387		dev_err(&bp->pdev->dev, "FPGA detected\n");
12388
12389	if (BP_NOMCP(bp) && (func == 0))
12390		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12391
12392	bp->disable_tpa = disable_tpa;
12393	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12394	/* Reduce memory usage in kdump environment by disabling TPA */
12395	bp->disable_tpa |= is_kdump_kernel();
12396
12397	/* Set TPA flags */
12398	if (bp->disable_tpa) {
12399		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12400		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12401	}
12402
12403	if (CHIP_IS_E1(bp))
12404		bp->dropless_fc = false;
12405	else
12406		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12407
12408	bp->mrrs = mrrs;
12409
12410	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12411	if (IS_VF(bp))
12412		bp->rx_ring_size = MAX_RX_AVAIL;
12413
12414	/* make sure that the numbers are in the right granularity */
12415	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12416	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12417
12418	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12419
12420	timer_setup(&bp->timer, bnx2x_timer, 0);
12421	bp->timer.expires = jiffies + bp->current_interval;
12422
12423	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12424	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12425	    SHMEM2_HAS(bp, dcbx_en) &&
12426	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12427	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12428	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12429		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12430		bnx2x_dcbx_init_params(bp);
12431	} else {
12432		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12433	}
12434
12435	if (CHIP_IS_E1x(bp))
12436		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12437	else
12438		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12439
12440	/* multiple tx priority */
12441	if (IS_VF(bp))
12442		bp->max_cos = 1;
12443	else if (CHIP_IS_E1x(bp))
12444		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12445	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12446		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12447	else if (CHIP_IS_E3B0(bp))
12448		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12449	else
12450		BNX2X_ERR("unknown chip %x revision %x\n",
12451			  CHIP_NUM(bp), CHIP_REV(bp));
12452	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12453
12454	/* We need at least one default status block for slow-path events,
12455	 * second status block for the L2 queue, and a third status block for
12456	 * CNIC if supported.
12457	 */
12458	if (IS_VF(bp))
12459		bp->min_msix_vec_cnt = 1;
12460	else if (CNIC_SUPPORT(bp))
12461		bp->min_msix_vec_cnt = 3;
12462	else /* PF w/o cnic */
12463		bp->min_msix_vec_cnt = 2;
12464	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12465
12466	bp->dump_preset_idx = 1;
12467
12468	return rc;
12469}
12470
12471/****************************************************************************
12472* General service functions
12473****************************************************************************/
12474
12475/*
12476 * net_device service functions
12477 */
12478
12479/* called with rtnl_lock */
12480static int bnx2x_open(struct net_device *dev)
12481{
12482	struct bnx2x *bp = netdev_priv(dev);
12483	int rc;
12484
12485	bp->stats_init = true;
12486
12487	netif_carrier_off(dev);
12488
12489	bnx2x_set_power_state(bp, PCI_D0);
12490
12491	/* If parity had happen during the unload, then attentions
12492	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12493	 * want the first function loaded on the current engine to
12494	 * complete the recovery.
12495	 * Parity recovery is only relevant for PF driver.
12496	 */
12497	if (IS_PF(bp)) {
12498		int other_engine = BP_PATH(bp) ? 0 : 1;
12499		bool other_load_status, load_status;
12500		bool global = false;
12501
12502		other_load_status = bnx2x_get_load_status(bp, other_engine);
12503		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12504		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12505		    bnx2x_chk_parity_attn(bp, &global, true)) {
12506			do {
12507				/* If there are attentions and they are in a
12508				 * global blocks, set the GLOBAL_RESET bit
12509				 * regardless whether it will be this function
12510				 * that will complete the recovery or not.
12511				 */
12512				if (global)
12513					bnx2x_set_reset_global(bp);
12514
12515				/* Only the first function on the current
12516				 * engine should try to recover in open. In case
12517				 * of attentions in global blocks only the first
12518				 * in the chip should try to recover.
12519				 */
12520				if ((!load_status &&
12521				     (!global || !other_load_status)) &&
12522				      bnx2x_trylock_leader_lock(bp) &&
12523				      !bnx2x_leader_reset(bp)) {
12524					netdev_info(bp->dev,
12525						    "Recovered in open\n");
12526					break;
12527				}
12528
12529				/* recovery has failed... */
12530				bnx2x_set_power_state(bp, PCI_D3hot);
12531				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12532
12533				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12534					  "If you still see this message after a few retries then power cycle is required.\n");
12535
12536				return -EAGAIN;
12537			} while (0);
12538		}
12539	}
12540
12541	bp->recovery_state = BNX2X_RECOVERY_DONE;
12542	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12543	if (rc)
12544		return rc;
12545
12546	return 0;
12547}
12548
12549/* called with rtnl_lock */
12550static int bnx2x_close(struct net_device *dev)
12551{
12552	struct bnx2x *bp = netdev_priv(dev);
12553
12554	/* Unload the driver, release IRQs */
12555	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12556
12557	return 0;
12558}
12559
12560struct bnx2x_mcast_list_elem_group
12561{
12562	struct list_head mcast_group_link;
12563	struct bnx2x_mcast_list_elem mcast_elems[];
12564};
12565
12566#define MCAST_ELEMS_PER_PG \
12567	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12568	sizeof(struct bnx2x_mcast_list_elem))
12569
12570static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12571{
12572	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12573
12574	while (!list_empty(mcast_group_list)) {
12575		current_mcast_group = list_first_entry(mcast_group_list,
12576				      struct bnx2x_mcast_list_elem_group,
12577				      mcast_group_link);
12578		list_del(&current_mcast_group->mcast_group_link);
12579		free_page((unsigned long)current_mcast_group);
12580	}
12581}
12582
12583static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12584				      struct bnx2x_mcast_ramrod_params *p,
12585				      struct list_head *mcast_group_list)
12586{
12587	struct bnx2x_mcast_list_elem *mc_mac;
12588	struct netdev_hw_addr *ha;
12589	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12590	int mc_count = netdev_mc_count(bp->dev);
12591	int offset = 0;
12592
12593	INIT_LIST_HEAD(&p->mcast_list);
12594	netdev_for_each_mc_addr(ha, bp->dev) {
12595		if (!offset) {
12596			current_mcast_group =
12597				(struct bnx2x_mcast_list_elem_group *)
12598				__get_free_page(GFP_ATOMIC);
12599			if (!current_mcast_group) {
12600				bnx2x_free_mcast_macs_list(mcast_group_list);
12601				BNX2X_ERR("Failed to allocate mc MAC list\n");
12602				return -ENOMEM;
12603			}
12604			list_add(&current_mcast_group->mcast_group_link,
12605				 mcast_group_list);
12606		}
12607		mc_mac = &current_mcast_group->mcast_elems[offset];
12608		mc_mac->mac = bnx2x_mc_addr(ha);
12609		list_add_tail(&mc_mac->link, &p->mcast_list);
12610		offset++;
12611		if (offset == MCAST_ELEMS_PER_PG)
12612			offset = 0;
12613	}
12614	p->mcast_list_len = mc_count;
12615	return 0;
12616}
12617
12618/**
12619 * bnx2x_set_uc_list - configure a new unicast MACs list.
12620 *
12621 * @bp: driver handle
12622 *
12623 * We will use zero (0) as a MAC type for these MACs.
12624 */
12625static int bnx2x_set_uc_list(struct bnx2x *bp)
12626{
12627	int rc;
12628	struct net_device *dev = bp->dev;
12629	struct netdev_hw_addr *ha;
12630	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12631	unsigned long ramrod_flags = 0;
12632
12633	/* First schedule a cleanup up of old configuration */
12634	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12635	if (rc < 0) {
12636		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12637		return rc;
12638	}
12639
12640	netdev_for_each_uc_addr(ha, dev) {
12641		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12642				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12643		if (rc == -EEXIST) {
12644			DP(BNX2X_MSG_SP,
12645			   "Failed to schedule ADD operations: %d\n", rc);
12646			/* do not treat adding same MAC as error */
12647			rc = 0;
12648
12649		} else if (rc < 0) {
12650
12651			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12652				  rc);
12653			return rc;
12654		}
12655	}
12656
12657	/* Execute the pending commands */
12658	__set_bit(RAMROD_CONT, &ramrod_flags);
12659	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12660				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12661}
12662
12663static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12664{
12665	LIST_HEAD(mcast_group_list);
12666	struct net_device *dev = bp->dev;
12667	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12668	int rc = 0;
12669
12670	rparam.mcast_obj = &bp->mcast_obj;
12671
12672	/* first, clear all configured multicast MACs */
12673	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12674	if (rc < 0) {
12675		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12676		return rc;
12677	}
12678
12679	/* then, configure a new MACs list */
12680	if (netdev_mc_count(dev)) {
12681		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12682		if (rc)
12683			return rc;
12684
12685		/* Now add the new MACs */
12686		rc = bnx2x_config_mcast(bp, &rparam,
12687					BNX2X_MCAST_CMD_ADD);
12688		if (rc < 0)
12689			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12690				  rc);
12691
12692		bnx2x_free_mcast_macs_list(&mcast_group_list);
12693	}
12694
12695	return rc;
12696}
12697
12698static int bnx2x_set_mc_list(struct bnx2x *bp)
12699{
12700	LIST_HEAD(mcast_group_list);
12701	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12702	struct net_device *dev = bp->dev;
12703	int rc = 0;
12704
12705	/* On older adapters, we need to flush and re-add filters */
12706	if (CHIP_IS_E1x(bp))
12707		return bnx2x_set_mc_list_e1x(bp);
12708
12709	rparam.mcast_obj = &bp->mcast_obj;
12710
12711	if (netdev_mc_count(dev)) {
12712		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12713		if (rc)
12714			return rc;
12715
12716		/* Override the curently configured set of mc filters */
12717		rc = bnx2x_config_mcast(bp, &rparam,
12718					BNX2X_MCAST_CMD_SET);
12719		if (rc < 0)
12720			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12721				  rc);
12722
12723		bnx2x_free_mcast_macs_list(&mcast_group_list);
12724	} else {
12725		/* If no mc addresses are required, flush the configuration */
12726		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12727		if (rc < 0)
12728			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12729				  rc);
12730	}
12731
12732	return rc;
12733}
12734
12735/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12736static void bnx2x_set_rx_mode(struct net_device *dev)
12737{
12738	struct bnx2x *bp = netdev_priv(dev);
12739
12740	if (bp->state != BNX2X_STATE_OPEN) {
12741		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12742		return;
12743	} else {
12744		/* Schedule an SP task to handle rest of change */
12745		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12746				       NETIF_MSG_IFUP);
12747	}
12748}
12749
12750void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12751{
12752	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12753
12754	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12755
12756	netif_addr_lock_bh(bp->dev);
12757
12758	if (bp->dev->flags & IFF_PROMISC) {
12759		rx_mode = BNX2X_RX_MODE_PROMISC;
12760	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12761		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12762		    CHIP_IS_E1(bp))) {
12763		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12764	} else {
12765		if (IS_PF(bp)) {
12766			/* some multicasts */
12767			if (bnx2x_set_mc_list(bp) < 0)
12768				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12769
12770			/* release bh lock, as bnx2x_set_uc_list might sleep */
12771			netif_addr_unlock_bh(bp->dev);
12772			if (bnx2x_set_uc_list(bp) < 0)
12773				rx_mode = BNX2X_RX_MODE_PROMISC;
12774			netif_addr_lock_bh(bp->dev);
12775		} else {
12776			/* configuring mcast to a vf involves sleeping (when we
12777			 * wait for the pf's response).
12778			 */
12779			bnx2x_schedule_sp_rtnl(bp,
12780					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12781		}
12782	}
12783
12784	bp->rx_mode = rx_mode;
12785	/* handle ISCSI SD mode */
12786	if (IS_MF_ISCSI_ONLY(bp))
12787		bp->rx_mode = BNX2X_RX_MODE_NONE;
12788
12789	/* Schedule the rx_mode command */
12790	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12791		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12792		netif_addr_unlock_bh(bp->dev);
12793		return;
12794	}
12795
12796	if (IS_PF(bp)) {
12797		bnx2x_set_storm_rx_mode(bp);
12798		netif_addr_unlock_bh(bp->dev);
12799	} else {
12800		/* VF will need to request the PF to make this change, and so
12801		 * the VF needs to release the bottom-half lock prior to the
12802		 * request (as it will likely require sleep on the VF side)
12803		 */
12804		netif_addr_unlock_bh(bp->dev);
12805		bnx2x_vfpf_storm_rx_mode(bp);
12806	}
12807}
12808
12809/* called with rtnl_lock */
12810static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12811			   int devad, u16 addr)
12812{
12813	struct bnx2x *bp = netdev_priv(netdev);
12814	u16 value;
12815	int rc;
12816
12817	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12818	   prtad, devad, addr);
12819
12820	/* The HW expects different devad if CL22 is used */
12821	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12822
12823	bnx2x_acquire_phy_lock(bp);
12824	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12825	bnx2x_release_phy_lock(bp);
12826	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12827
12828	if (!rc)
12829		rc = value;
12830	return rc;
12831}
12832
12833/* called with rtnl_lock */
12834static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12835			    u16 addr, u16 value)
12836{
12837	struct bnx2x *bp = netdev_priv(netdev);
12838	int rc;
12839
12840	DP(NETIF_MSG_LINK,
12841	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12842	   prtad, devad, addr, value);
12843
12844	/* The HW expects different devad if CL22 is used */
12845	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12846
12847	bnx2x_acquire_phy_lock(bp);
12848	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12849	bnx2x_release_phy_lock(bp);
12850	return rc;
12851}
12852
12853/* called with rtnl_lock */
12854static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12855{
12856	struct bnx2x *bp = netdev_priv(dev);
12857	struct mii_ioctl_data *mdio = if_mii(ifr);
12858
12859	if (!netif_running(dev))
12860		return -EAGAIN;
12861
12862	switch (cmd) {
12863	case SIOCSHWTSTAMP:
12864		return bnx2x_hwtstamp_ioctl(bp, ifr);
12865	default:
12866		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12867		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12868		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12869	}
12870}
12871
12872static int bnx2x_validate_addr(struct net_device *dev)
12873{
12874	struct bnx2x *bp = netdev_priv(dev);
12875
12876	/* query the bulletin board for mac address configured by the PF */
12877	if (IS_VF(bp))
12878		bnx2x_sample_bulletin(bp);
12879
12880	if (!is_valid_ether_addr(dev->dev_addr)) {
12881		BNX2X_ERR("Non-valid Ethernet address\n");
12882		return -EADDRNOTAVAIL;
12883	}
12884	return 0;
12885}
12886
12887static int bnx2x_get_phys_port_id(struct net_device *netdev,
12888				  struct netdev_phys_item_id *ppid)
12889{
12890	struct bnx2x *bp = netdev_priv(netdev);
12891
12892	if (!(bp->flags & HAS_PHYS_PORT_ID))
12893		return -EOPNOTSUPP;
12894
12895	ppid->id_len = sizeof(bp->phys_port_id);
12896	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12897
12898	return 0;
12899}
12900
12901static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12902					      struct net_device *dev,
12903					      netdev_features_t features)
12904{
12905	/*
12906	 * A skb with gso_size + header length > 9700 will cause a
12907	 * firmware panic. Drop GSO support.
12908	 *
12909	 * Eventually the upper layer should not pass these packets down.
12910	 *
12911	 * For speed, if the gso_size is <= 9000, assume there will
12912	 * not be 700 bytes of headers and pass it through. Only do a
12913	 * full (slow) validation if the gso_size is > 9000.
12914	 *
12915	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12916	 * validation in that case.)
12917	 */
12918	if (unlikely(skb_is_gso(skb) &&
12919		     (skb_shinfo(skb)->gso_size > 9000) &&
12920		     !skb_gso_validate_mac_len(skb, 9700)))
12921		features &= ~NETIF_F_GSO_MASK;
12922
12923	features = vlan_features_check(skb, features);
12924	return vxlan_features_check(skb, features);
12925}
12926
12927static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12928{
12929	int rc;
12930
12931	if (IS_PF(bp)) {
12932		unsigned long ramrod_flags = 0;
12933
12934		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12935		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12936					add, &ramrod_flags);
12937	} else {
12938		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12939	}
12940
12941	return rc;
12942}
12943
12944static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12945{
12946	struct bnx2x_vlan_entry *vlan;
12947	int rc = 0;
12948
12949	/* Configure all non-configured entries */
12950	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12951		if (vlan->hw)
12952			continue;
12953
12954		if (bp->vlan_cnt >= bp->vlan_credit)
12955			return -ENOBUFS;
12956
12957		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12958		if (rc) {
12959			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12960			return rc;
12961		}
12962
12963		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12964		vlan->hw = true;
12965		bp->vlan_cnt++;
12966	}
12967
12968	return 0;
12969}
12970
12971static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12972{
12973	bool need_accept_any_vlan;
12974
12975	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12976
12977	if (bp->accept_any_vlan != need_accept_any_vlan) {
12978		bp->accept_any_vlan = need_accept_any_vlan;
12979		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12980		   bp->accept_any_vlan ? "raised" : "cleared");
12981		if (set_rx_mode) {
12982			if (IS_PF(bp))
12983				bnx2x_set_rx_mode_inner(bp);
12984			else
12985				bnx2x_vfpf_storm_rx_mode(bp);
12986		}
12987	}
12988}
12989
12990int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12991{
12992	/* Don't set rx mode here. Our caller will do it. */
12993	bnx2x_vlan_configure(bp, false);
12994
12995	return 0;
12996}
12997
12998static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12999{
13000	struct bnx2x *bp = netdev_priv(dev);
13001	struct bnx2x_vlan_entry *vlan;
13002
13003	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13004
13005	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13006	if (!vlan)
13007		return -ENOMEM;
13008
13009	vlan->vid = vid;
13010	vlan->hw = false;
13011	list_add_tail(&vlan->link, &bp->vlan_reg);
13012
13013	if (netif_running(dev))
13014		bnx2x_vlan_configure(bp, true);
13015
13016	return 0;
13017}
13018
13019static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13020{
13021	struct bnx2x *bp = netdev_priv(dev);
13022	struct bnx2x_vlan_entry *vlan;
13023	bool found = false;
13024	int rc = 0;
13025
13026	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13027
13028	list_for_each_entry(vlan, &bp->vlan_reg, link)
13029		if (vlan->vid == vid) {
13030			found = true;
13031			break;
13032		}
13033
13034	if (!found) {
13035		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13036		return -EINVAL;
13037	}
13038
13039	if (netif_running(dev) && vlan->hw) {
13040		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13041		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13042		bp->vlan_cnt--;
13043	}
13044
13045	list_del(&vlan->link);
13046	kfree(vlan);
13047
13048	if (netif_running(dev))
13049		bnx2x_vlan_configure(bp, true);
13050
13051	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13052
13053	return rc;
13054}
13055
13056static const struct net_device_ops bnx2x_netdev_ops = {
13057	.ndo_open		= bnx2x_open,
13058	.ndo_stop		= bnx2x_close,
13059	.ndo_start_xmit		= bnx2x_start_xmit,
13060	.ndo_select_queue	= bnx2x_select_queue,
13061	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13062	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13063	.ndo_validate_addr	= bnx2x_validate_addr,
13064	.ndo_do_ioctl		= bnx2x_ioctl,
13065	.ndo_change_mtu		= bnx2x_change_mtu,
13066	.ndo_fix_features	= bnx2x_fix_features,
13067	.ndo_set_features	= bnx2x_set_features,
13068	.ndo_tx_timeout		= bnx2x_tx_timeout,
13069	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13070	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13071	.ndo_setup_tc		= __bnx2x_setup_tc,
13072#ifdef CONFIG_BNX2X_SRIOV
13073	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13074	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13075	.ndo_get_vf_config	= bnx2x_get_vf_config,
13076	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13077#endif
13078#ifdef NETDEV_FCOE_WWNN
13079	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13080#endif
13081
13082	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13083	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13084	.ndo_features_check	= bnx2x_features_check,
13085	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
13086	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
13087};
13088
13089static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13090{
13091	struct device *dev = &bp->pdev->dev;
13092
13093	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13094	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13095		dev_err(dev, "System does not support DMA, aborting\n");
13096		return -EIO;
13097	}
13098
13099	return 0;
13100}
13101
13102static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13103{
13104	if (bp->flags & AER_ENABLED) {
13105		pci_disable_pcie_error_reporting(bp->pdev);
13106		bp->flags &= ~AER_ENABLED;
13107	}
13108}
13109
13110static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13111			  struct net_device *dev, unsigned long board_type)
13112{
13113	int rc;
13114	u32 pci_cfg_dword;
13115	bool chip_is_e1x = (board_type == BCM57710 ||
13116			    board_type == BCM57711 ||
13117			    board_type == BCM57711E);
13118
13119	SET_NETDEV_DEV(dev, &pdev->dev);
13120
13121	bp->dev = dev;
13122	bp->pdev = pdev;
13123
13124	rc = pci_enable_device(pdev);
13125	if (rc) {
13126		dev_err(&bp->pdev->dev,
13127			"Cannot enable PCI device, aborting\n");
13128		goto err_out;
13129	}
13130
13131	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13132		dev_err(&bp->pdev->dev,
13133			"Cannot find PCI device base address, aborting\n");
13134		rc = -ENODEV;
13135		goto err_out_disable;
13136	}
13137
13138	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13139		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13140		rc = -ENODEV;
13141		goto err_out_disable;
13142	}
13143
13144	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13145	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13146	    PCICFG_REVESION_ID_ERROR_VAL) {
13147		pr_err("PCI device error, probably due to fan failure, aborting\n");
13148		rc = -ENODEV;
13149		goto err_out_disable;
13150	}
13151
13152	if (atomic_read(&pdev->enable_cnt) == 1) {
13153		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13154		if (rc) {
13155			dev_err(&bp->pdev->dev,
13156				"Cannot obtain PCI resources, aborting\n");
13157			goto err_out_disable;
13158		}
13159
13160		pci_set_master(pdev);
13161		pci_save_state(pdev);
13162	}
13163
13164	if (IS_PF(bp)) {
13165		if (!pdev->pm_cap) {
13166			dev_err(&bp->pdev->dev,
13167				"Cannot find power management capability, aborting\n");
13168			rc = -EIO;
13169			goto err_out_release;
13170		}
13171	}
13172
13173	if (!pci_is_pcie(pdev)) {
13174		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13175		rc = -EIO;
13176		goto err_out_release;
13177	}
13178
13179	rc = bnx2x_set_coherency_mask(bp);
13180	if (rc)
13181		goto err_out_release;
13182
13183	dev->mem_start = pci_resource_start(pdev, 0);
13184	dev->base_addr = dev->mem_start;
13185	dev->mem_end = pci_resource_end(pdev, 0);
13186
13187	dev->irq = pdev->irq;
13188
13189	bp->regview = pci_ioremap_bar(pdev, 0);
13190	if (!bp->regview) {
13191		dev_err(&bp->pdev->dev,
13192			"Cannot map register space, aborting\n");
13193		rc = -ENOMEM;
13194		goto err_out_release;
13195	}
13196
13197	/* In E1/E1H use pci device function given by kernel.
13198	 * In E2/E3 read physical function from ME register since these chips
13199	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13200	 * (depending on hypervisor).
13201	 */
13202	if (chip_is_e1x) {
13203		bp->pf_num = PCI_FUNC(pdev->devfn);
13204	} else {
13205		/* chip is E2/3*/
13206		pci_read_config_dword(bp->pdev,
13207				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13208		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13209				  ME_REG_ABS_PF_NUM_SHIFT);
13210	}
13211	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13212
13213	/* clean indirect addresses */
13214	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13215			       PCICFG_VENDOR_ID_OFFSET);
13216
13217	/* Set PCIe reset type to fundamental for EEH recovery */
13218	pdev->needs_freset = 1;
13219
13220	/* AER (Advanced Error reporting) configuration */
13221	rc = pci_enable_pcie_error_reporting(pdev);
13222	if (!rc)
13223		bp->flags |= AER_ENABLED;
13224	else
13225		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13226
13227	/*
13228	 * Clean the following indirect addresses for all functions since it
13229	 * is not used by the driver.
13230	 */
13231	if (IS_PF(bp)) {
13232		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13233		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13234		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13235		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13236
13237		if (chip_is_e1x) {
13238			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13239			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13240			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13241			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13242		}
13243
13244		/* Enable internal target-read (in case we are probed after PF
13245		 * FLR). Must be done prior to any BAR read access. Only for
13246		 * 57712 and up
13247		 */
13248		if (!chip_is_e1x)
13249			REG_WR(bp,
13250			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13251	}
13252
13253	dev->watchdog_timeo = TX_TIMEOUT;
13254
13255	dev->netdev_ops = &bnx2x_netdev_ops;
13256	bnx2x_set_ethtool_ops(bp, dev);
13257
13258	dev->priv_flags |= IFF_UNICAST_FLT;
13259
13260	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13261		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13262		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13263		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13264	if (!chip_is_e1x) {
13265		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13266				    NETIF_F_GSO_IPXIP4 |
13267				    NETIF_F_GSO_UDP_TUNNEL |
13268				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13269				    NETIF_F_GSO_PARTIAL;
13270
13271		dev->hw_enc_features =
13272			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13273			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13274			NETIF_F_GSO_IPXIP4 |
13275			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13276			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13277			NETIF_F_GSO_PARTIAL;
13278
13279		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13280					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13281
13282		if (IS_PF(bp))
13283			dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13284	}
13285
13286	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13287		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13288
13289	if (IS_PF(bp)) {
13290		if (chip_is_e1x)
13291			bp->accept_any_vlan = true;
13292		else
13293			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13294	}
13295	/* For VF we'll know whether to enable VLAN filtering after
13296	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13297	 */
13298
13299	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13300	dev->features |= NETIF_F_HIGHDMA;
13301	if (dev->features & NETIF_F_LRO)
13302		dev->features &= ~NETIF_F_GRO_HW;
13303
13304	/* Add Loopback capability to the device */
13305	dev->hw_features |= NETIF_F_LOOPBACK;
13306
13307#ifdef BCM_DCBNL
13308	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13309#endif
13310
13311	/* MTU range, 46 - 9600 */
13312	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13313	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13314
13315	/* get_port_hwinfo() will set prtad and mmds properly */
13316	bp->mdio.prtad = MDIO_PRTAD_NONE;
13317	bp->mdio.mmds = 0;
13318	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13319	bp->mdio.dev = dev;
13320	bp->mdio.mdio_read = bnx2x_mdio_read;
13321	bp->mdio.mdio_write = bnx2x_mdio_write;
13322
13323	return 0;
13324
13325err_out_release:
13326	if (atomic_read(&pdev->enable_cnt) == 1)
13327		pci_release_regions(pdev);
13328
13329err_out_disable:
13330	pci_disable_device(pdev);
13331
13332err_out:
13333	return rc;
13334}
13335
13336static int bnx2x_check_firmware(struct bnx2x *bp)
13337{
13338	const struct firmware *firmware = bp->firmware;
13339	struct bnx2x_fw_file_hdr *fw_hdr;
13340	struct bnx2x_fw_file_section *sections;
13341	u32 offset, len, num_ops;
13342	__be16 *ops_offsets;
13343	int i;
13344	const u8 *fw_ver;
13345
13346	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13347		BNX2X_ERR("Wrong FW size\n");
13348		return -EINVAL;
13349	}
13350
13351	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13352	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13353
13354	/* Make sure none of the offsets and sizes make us read beyond
13355	 * the end of the firmware data */
13356	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13357		offset = be32_to_cpu(sections[i].offset);
13358		len = be32_to_cpu(sections[i].len);
13359		if (offset + len > firmware->size) {
13360			BNX2X_ERR("Section %d length is out of bounds\n", i);
13361			return -EINVAL;
13362		}
13363	}
13364
13365	/* Likewise for the init_ops offsets */
13366	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13367	ops_offsets = (__force __be16 *)(firmware->data + offset);
13368	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13369
13370	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13371		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13372			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13373			return -EINVAL;
13374		}
13375	}
13376
13377	/* Check FW version */
13378	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13379	fw_ver = firmware->data + offset;
13380	if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13381	    fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13382		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13383			  fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13384			  bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13385		return -EINVAL;
13386	}
13387
13388	return 0;
13389}
13390
13391static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13392{
13393	const __be32 *source = (const __be32 *)_source;
13394	u32 *target = (u32 *)_target;
13395	u32 i;
13396
13397	for (i = 0; i < n/4; i++)
13398		target[i] = be32_to_cpu(source[i]);
13399}
13400
13401/*
13402   Ops array is stored in the following format:
13403   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13404 */
13405static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13406{
13407	const __be32 *source = (const __be32 *)_source;
13408	struct raw_op *target = (struct raw_op *)_target;
13409	u32 i, j, tmp;
13410
13411	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13412		tmp = be32_to_cpu(source[j]);
13413		target[i].op = (tmp >> 24) & 0xff;
13414		target[i].offset = tmp & 0xffffff;
13415		target[i].raw_data = be32_to_cpu(source[j + 1]);
13416	}
13417}
13418
13419/* IRO array is stored in the following format:
13420 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13421 */
13422static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13423{
13424	const __be32 *source = (const __be32 *)_source;
13425	struct iro *target = (struct iro *)_target;
13426	u32 i, j, tmp;
13427
13428	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13429		target[i].base = be32_to_cpu(source[j]);
13430		j++;
13431		tmp = be32_to_cpu(source[j]);
13432		target[i].m1 = (tmp >> 16) & 0xffff;
13433		target[i].m2 = tmp & 0xffff;
13434		j++;
13435		tmp = be32_to_cpu(source[j]);
13436		target[i].m3 = (tmp >> 16) & 0xffff;
13437		target[i].size = tmp & 0xffff;
13438		j++;
13439	}
13440}
13441
13442static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13443{
13444	const __be16 *source = (const __be16 *)_source;
13445	u16 *target = (u16 *)_target;
13446	u32 i;
13447
13448	for (i = 0; i < n/2; i++)
13449		target[i] = be16_to_cpu(source[i]);
13450}
13451
13452#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13453do {									\
13454	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13455	bp->arr = kmalloc(len, GFP_KERNEL);				\
13456	if (!bp->arr)							\
13457		goto lbl;						\
13458	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13459	     (u8 *)bp->arr, len);					\
13460} while (0)
13461
13462static int bnx2x_init_firmware(struct bnx2x *bp)
13463{
13464	const char *fw_file_name, *fw_file_name_v15;
13465	struct bnx2x_fw_file_hdr *fw_hdr;
13466	int rc;
13467
13468	if (bp->firmware)
13469		return 0;
13470
13471	if (CHIP_IS_E1(bp)) {
13472		fw_file_name = FW_FILE_NAME_E1;
13473		fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13474	} else if (CHIP_IS_E1H(bp)) {
13475		fw_file_name = FW_FILE_NAME_E1H;
13476		fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13477	} else if (!CHIP_IS_E1x(bp)) {
13478		fw_file_name = FW_FILE_NAME_E2;
13479		fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13480	} else {
13481		BNX2X_ERR("Unsupported chip revision\n");
13482		return -EINVAL;
13483	}
13484
13485	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13486
13487	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13488	if (rc) {
13489		BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13490
13491		/* try to load prev version */
13492		rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13493
13494		if (rc)
13495			goto request_firmware_exit;
13496
13497		bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13498	} else {
13499		bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13500		bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13501	}
13502
13503	bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13504	bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13505	bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13506
13507	rc = bnx2x_check_firmware(bp);
13508	if (rc) {
13509		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13510		goto request_firmware_exit;
13511	}
13512
13513	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13514
13515	/* Initialize the pointers to the init arrays */
13516	/* Blob */
13517	rc = -ENOMEM;
13518	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13519
13520	/* Opcodes */
13521	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13522
13523	/* Offsets */
13524	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13525			    be16_to_cpu_n);
13526
13527	/* STORMs firmware */
13528	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13529			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13530	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13531			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13532	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13533			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13534	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13535			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13536	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13537			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13538	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13539			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13540	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13541			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13542	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13543			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13544	/* IRO */
13545	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13546
13547	return 0;
13548
13549iro_alloc_err:
13550	kfree(bp->init_ops_offsets);
13551init_offsets_alloc_err:
13552	kfree(bp->init_ops);
13553init_ops_alloc_err:
13554	kfree(bp->init_data);
13555request_firmware_exit:
13556	release_firmware(bp->firmware);
13557	bp->firmware = NULL;
13558
13559	return rc;
13560}
13561
13562static void bnx2x_release_firmware(struct bnx2x *bp)
13563{
13564	kfree(bp->init_ops_offsets);
13565	kfree(bp->init_ops);
13566	kfree(bp->init_data);
13567	release_firmware(bp->firmware);
13568	bp->firmware = NULL;
13569}
13570
13571static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13572	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13573	.init_hw_cmn      = bnx2x_init_hw_common,
13574	.init_hw_port     = bnx2x_init_hw_port,
13575	.init_hw_func     = bnx2x_init_hw_func,
13576
13577	.reset_hw_cmn     = bnx2x_reset_common,
13578	.reset_hw_port    = bnx2x_reset_port,
13579	.reset_hw_func    = bnx2x_reset_func,
13580
13581	.gunzip_init      = bnx2x_gunzip_init,
13582	.gunzip_end       = bnx2x_gunzip_end,
13583
13584	.init_fw          = bnx2x_init_firmware,
13585	.release_fw       = bnx2x_release_firmware,
13586};
13587
13588void bnx2x__init_func_obj(struct bnx2x *bp)
13589{
13590	/* Prepare DMAE related driver resources */
13591	bnx2x_setup_dmae(bp);
13592
13593	bnx2x_init_func_obj(bp, &bp->func_obj,
13594			    bnx2x_sp(bp, func_rdata),
13595			    bnx2x_sp_mapping(bp, func_rdata),
13596			    bnx2x_sp(bp, func_afex_rdata),
13597			    bnx2x_sp_mapping(bp, func_afex_rdata),
13598			    &bnx2x_func_sp_drv);
13599}
13600
13601/* must be called after sriov-enable */
13602static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13603{
13604	int cid_count = BNX2X_L2_MAX_CID(bp);
13605
13606	if (IS_SRIOV(bp))
13607		cid_count += BNX2X_VF_CIDS;
13608
13609	if (CNIC_SUPPORT(bp))
13610		cid_count += CNIC_CID_MAX;
13611
13612	return roundup(cid_count, QM_CID_ROUND);
13613}
13614
13615/**
13616 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13617 * @pdev: pci device
13618 * @cnic_cnt: count
13619 *
13620 */
13621static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13622{
13623	int index;
13624	u16 control = 0;
13625
13626	/*
13627	 * If MSI-X is not supported - return number of SBs needed to support
13628	 * one fast path queue: one FP queue + SB for CNIC
13629	 */
13630	if (!pdev->msix_cap) {
13631		dev_info(&pdev->dev, "no msix capability found\n");
13632		return 1 + cnic_cnt;
13633	}
13634	dev_info(&pdev->dev, "msix capability found\n");
13635
13636	/*
13637	 * The value in the PCI configuration space is the index of the last
13638	 * entry, namely one less than the actual size of the table, which is
13639	 * exactly what we want to return from this function: number of all SBs
13640	 * without the default SB.
13641	 * For VFs there is no default SB, then we return (index+1).
13642	 */
13643	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13644
13645	index = control & PCI_MSIX_FLAGS_QSIZE;
13646
13647	return index;
13648}
13649
13650static int set_max_cos_est(int chip_id)
13651{
13652	switch (chip_id) {
13653	case BCM57710:
13654	case BCM57711:
13655	case BCM57711E:
13656		return BNX2X_MULTI_TX_COS_E1X;
13657	case BCM57712:
13658	case BCM57712_MF:
13659		return BNX2X_MULTI_TX_COS_E2_E3A0;
13660	case BCM57800:
13661	case BCM57800_MF:
13662	case BCM57810:
13663	case BCM57810_MF:
13664	case BCM57840_4_10:
13665	case BCM57840_2_20:
13666	case BCM57840_O:
13667	case BCM57840_MFO:
13668	case BCM57840_MF:
13669	case BCM57811:
13670	case BCM57811_MF:
13671		return BNX2X_MULTI_TX_COS_E3B0;
13672	case BCM57712_VF:
13673	case BCM57800_VF:
13674	case BCM57810_VF:
13675	case BCM57840_VF:
13676	case BCM57811_VF:
13677		return 1;
13678	default:
13679		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13680		return -ENODEV;
13681	}
13682}
13683
13684static int set_is_vf(int chip_id)
13685{
13686	switch (chip_id) {
13687	case BCM57712_VF:
13688	case BCM57800_VF:
13689	case BCM57810_VF:
13690	case BCM57840_VF:
13691	case BCM57811_VF:
13692		return true;
13693	default:
13694		return false;
13695	}
13696}
13697
13698/* nig_tsgen registers relative address */
13699#define tsgen_ctrl 0x0
13700#define tsgen_freecount 0x10
13701#define tsgen_synctime_t0 0x20
13702#define tsgen_offset_t0 0x28
13703#define tsgen_drift_t0 0x30
13704#define tsgen_synctime_t1 0x58
13705#define tsgen_offset_t1 0x60
13706#define tsgen_drift_t1 0x68
13707
13708/* FW workaround for setting drift */
13709static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13710					  int best_val, int best_period)
13711{
13712	struct bnx2x_func_state_params func_params = {NULL};
13713	struct bnx2x_func_set_timesync_params *set_timesync_params =
13714		&func_params.params.set_timesync;
13715
13716	/* Prepare parameters for function state transitions */
13717	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13718	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13719
13720	func_params.f_obj = &bp->func_obj;
13721	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13722
13723	/* Function parameters */
13724	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13725	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13726	set_timesync_params->add_sub_drift_adjust_value =
13727		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13728	set_timesync_params->drift_adjust_value = best_val;
13729	set_timesync_params->drift_adjust_period = best_period;
13730
13731	return bnx2x_func_state_change(bp, &func_params);
13732}
13733
13734static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13735{
13736	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13737	int rc;
13738	int drift_dir = 1;
13739	int val, period, period1, period2, dif, dif1, dif2;
13740	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13741
13742	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13743
13744	if (!netif_running(bp->dev)) {
13745		DP(BNX2X_MSG_PTP,
13746		   "PTP adjfreq called while the interface is down\n");
13747		return -ENETDOWN;
13748	}
13749
13750	if (ppb < 0) {
13751		ppb = -ppb;
13752		drift_dir = 0;
13753	}
13754
13755	if (ppb == 0) {
13756		best_val = 1;
13757		best_period = 0x1FFFFFF;
13758	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13759		best_val = 31;
13760		best_period = 1;
13761	} else {
13762		/* Changed not to allow val = 8, 16, 24 as these values
13763		 * are not supported in workaround.
13764		 */
13765		for (val = 0; val <= 31; val++) {
13766			if ((val & 0x7) == 0)
13767				continue;
13768			period1 = val * 1000000 / ppb;
13769			period2 = period1 + 1;
13770			if (period1 != 0)
13771				dif1 = ppb - (val * 1000000 / period1);
13772			else
13773				dif1 = BNX2X_MAX_PHC_DRIFT;
13774			if (dif1 < 0)
13775				dif1 = -dif1;
13776			dif2 = ppb - (val * 1000000 / period2);
13777			if (dif2 < 0)
13778				dif2 = -dif2;
13779			dif = (dif1 < dif2) ? dif1 : dif2;
13780			period = (dif1 < dif2) ? period1 : period2;
13781			if (dif < best_dif) {
13782				best_dif = dif;
13783				best_val = val;
13784				best_period = period;
13785			}
13786		}
13787	}
13788
13789	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13790					    best_period);
13791	if (rc) {
13792		BNX2X_ERR("Failed to set drift\n");
13793		return -EFAULT;
13794	}
13795
13796	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13797	   best_period);
13798
13799	return 0;
13800}
13801
13802static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13803{
13804	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13805
13806	if (!netif_running(bp->dev)) {
13807		DP(BNX2X_MSG_PTP,
13808		   "PTP adjtime called while the interface is down\n");
13809		return -ENETDOWN;
13810	}
13811
13812	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13813
13814	timecounter_adjtime(&bp->timecounter, delta);
13815
13816	return 0;
13817}
13818
13819static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13820{
13821	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13822	u64 ns;
13823
13824	if (!netif_running(bp->dev)) {
13825		DP(BNX2X_MSG_PTP,
13826		   "PTP gettime called while the interface is down\n");
13827		return -ENETDOWN;
13828	}
13829
13830	ns = timecounter_read(&bp->timecounter);
13831
13832	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13833
13834	*ts = ns_to_timespec64(ns);
13835
13836	return 0;
13837}
13838
13839static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13840			     const struct timespec64 *ts)
13841{
13842	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13843	u64 ns;
13844
13845	if (!netif_running(bp->dev)) {
13846		DP(BNX2X_MSG_PTP,
13847		   "PTP settime called while the interface is down\n");
13848		return -ENETDOWN;
13849	}
13850
13851	ns = timespec64_to_ns(ts);
13852
13853	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13854
13855	/* Re-init the timecounter */
13856	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13857
13858	return 0;
13859}
13860
13861/* Enable (or disable) ancillary features of the phc subsystem */
13862static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13863			    struct ptp_clock_request *rq, int on)
13864{
13865	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13866
13867	BNX2X_ERR("PHC ancillary features are not supported\n");
13868	return -ENOTSUPP;
13869}
13870
13871void bnx2x_register_phc(struct bnx2x *bp)
13872{
13873	/* Fill the ptp_clock_info struct and register PTP clock*/
13874	bp->ptp_clock_info.owner = THIS_MODULE;
13875	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13876	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13877	bp->ptp_clock_info.n_alarm = 0;
13878	bp->ptp_clock_info.n_ext_ts = 0;
13879	bp->ptp_clock_info.n_per_out = 0;
13880	bp->ptp_clock_info.pps = 0;
13881	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13882	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13883	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13884	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13885	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13886
13887	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13888	if (IS_ERR(bp->ptp_clock)) {
13889		bp->ptp_clock = NULL;
13890		BNX2X_ERR("PTP clock registration failed\n");
13891	}
13892}
13893
13894static int bnx2x_init_one(struct pci_dev *pdev,
13895				    const struct pci_device_id *ent)
13896{
13897	struct net_device *dev = NULL;
13898	struct bnx2x *bp;
13899	int rc, max_non_def_sbs;
13900	int rx_count, tx_count, rss_count, doorbell_size;
13901	int max_cos_est;
13902	bool is_vf;
13903	int cnic_cnt;
13904
13905	/* Management FW 'remembers' living interfaces. Allow it some time
13906	 * to forget previously living interfaces, allowing a proper re-load.
13907	 */
13908	if (is_kdump_kernel()) {
13909		ktime_t now = ktime_get_boottime();
13910		ktime_t fw_ready_time = ktime_set(5, 0);
13911
13912		if (ktime_before(now, fw_ready_time))
13913			msleep(ktime_ms_delta(fw_ready_time, now));
13914	}
13915
13916	/* An estimated maximum supported CoS number according to the chip
13917	 * version.
13918	 * We will try to roughly estimate the maximum number of CoSes this chip
13919	 * may support in order to minimize the memory allocated for Tx
13920	 * netdev_queue's. This number will be accurately calculated during the
13921	 * initialization of bp->max_cos based on the chip versions AND chip
13922	 * revision in the bnx2x_init_bp().
13923	 */
13924	max_cos_est = set_max_cos_est(ent->driver_data);
13925	if (max_cos_est < 0)
13926		return max_cos_est;
13927	is_vf = set_is_vf(ent->driver_data);
13928	cnic_cnt = is_vf ? 0 : 1;
13929
13930	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13931
13932	/* add another SB for VF as it has no default SB */
13933	max_non_def_sbs += is_vf ? 1 : 0;
13934
13935	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13936	rss_count = max_non_def_sbs - cnic_cnt;
13937
13938	if (rss_count < 1)
13939		return -EINVAL;
13940
13941	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13942	rx_count = rss_count + cnic_cnt;
13943
13944	/* Maximum number of netdev Tx queues:
13945	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13946	 */
13947	tx_count = rss_count * max_cos_est + cnic_cnt;
13948
13949	/* dev zeroed in init_etherdev */
13950	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13951	if (!dev)
13952		return -ENOMEM;
13953
13954	bp = netdev_priv(dev);
13955
13956	bp->flags = 0;
13957	if (is_vf)
13958		bp->flags |= IS_VF_FLAG;
13959
13960	bp->igu_sb_cnt = max_non_def_sbs;
13961	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13962	bp->msg_enable = debug;
13963	bp->cnic_support = cnic_cnt;
13964	bp->cnic_probe = bnx2x_cnic_probe;
13965
13966	pci_set_drvdata(pdev, dev);
13967
13968	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13969	if (rc < 0) {
13970		free_netdev(dev);
13971		return rc;
13972	}
13973
13974	BNX2X_DEV_INFO("This is a %s function\n",
13975		       IS_PF(bp) ? "physical" : "virtual");
13976	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13977	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13978	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13979		       tx_count, rx_count);
13980
13981	rc = bnx2x_init_bp(bp);
13982	if (rc)
13983		goto init_one_exit;
13984
13985	/* Map doorbells here as we need the real value of bp->max_cos which
13986	 * is initialized in bnx2x_init_bp() to determine the number of
13987	 * l2 connections.
13988	 */
13989	if (IS_VF(bp)) {
13990		bp->doorbells = bnx2x_vf_doorbells(bp);
13991		rc = bnx2x_vf_pci_alloc(bp);
13992		if (rc)
13993			goto init_one_freemem;
13994	} else {
13995		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13996		if (doorbell_size > pci_resource_len(pdev, 2)) {
13997			dev_err(&bp->pdev->dev,
13998				"Cannot map doorbells, bar size too small, aborting\n");
13999			rc = -ENOMEM;
14000			goto init_one_freemem;
14001		}
14002		bp->doorbells = ioremap(pci_resource_start(pdev, 2),
14003						doorbell_size);
14004	}
14005	if (!bp->doorbells) {
14006		dev_err(&bp->pdev->dev,
14007			"Cannot map doorbell space, aborting\n");
14008		rc = -ENOMEM;
14009		goto init_one_freemem;
14010	}
14011
14012	if (IS_VF(bp)) {
14013		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14014		if (rc)
14015			goto init_one_freemem;
14016
14017#ifdef CONFIG_BNX2X_SRIOV
14018		/* VF with OLD Hypervisor or old PF do not support filtering */
14019		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14020			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14021			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14022		}
14023#endif
14024	}
14025
14026	/* Enable SRIOV if capability found in configuration space */
14027	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14028	if (rc)
14029		goto init_one_freemem;
14030
14031	/* calc qm_cid_count */
14032	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14033	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14034
14035	/* disable FCOE L2 queue for E1x*/
14036	if (CHIP_IS_E1x(bp))
14037		bp->flags |= NO_FCOE_FLAG;
14038
14039	/* Set bp->num_queues for MSI-X mode*/
14040	bnx2x_set_num_queues(bp);
14041
14042	/* Configure interrupt mode: try to enable MSI-X/MSI if
14043	 * needed.
14044	 */
14045	rc = bnx2x_set_int_mode(bp);
14046	if (rc) {
14047		dev_err(&pdev->dev, "Cannot set interrupts\n");
14048		goto init_one_freemem;
14049	}
14050	BNX2X_DEV_INFO("set interrupts successfully\n");
14051
14052	/* register the net device */
14053	rc = register_netdev(dev);
14054	if (rc) {
14055		dev_err(&pdev->dev, "Cannot register net device\n");
14056		goto init_one_freemem;
14057	}
14058	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14059
14060	if (!NO_FCOE(bp)) {
14061		/* Add storage MAC address */
14062		rtnl_lock();
14063		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14064		rtnl_unlock();
14065	}
14066	BNX2X_DEV_INFO(
14067	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14068	       board_info[ent->driver_data].name,
14069	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14070	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14071	pcie_print_link_status(bp->pdev);
14072
14073	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14074		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14075
14076	return 0;
14077
14078init_one_freemem:
14079	bnx2x_free_mem_bp(bp);
14080
14081init_one_exit:
14082	bnx2x_disable_pcie_error_reporting(bp);
14083
14084	if (bp->regview)
14085		iounmap(bp->regview);
14086
14087	if (IS_PF(bp) && bp->doorbells)
14088		iounmap(bp->doorbells);
14089
14090	free_netdev(dev);
14091
14092	if (atomic_read(&pdev->enable_cnt) == 1)
14093		pci_release_regions(pdev);
14094
14095	pci_disable_device(pdev);
14096
14097	return rc;
14098}
14099
14100static void __bnx2x_remove(struct pci_dev *pdev,
14101			   struct net_device *dev,
14102			   struct bnx2x *bp,
14103			   bool remove_netdev)
14104{
14105	/* Delete storage MAC address */
14106	if (!NO_FCOE(bp)) {
14107		rtnl_lock();
14108		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14109		rtnl_unlock();
14110	}
14111
14112#ifdef BCM_DCBNL
14113	/* Delete app tlvs from dcbnl */
14114	bnx2x_dcbnl_update_applist(bp, true);
14115#endif
14116
14117	if (IS_PF(bp) &&
14118	    !BP_NOMCP(bp) &&
14119	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14120		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14121
14122	/* Close the interface - either directly or implicitly */
14123	if (remove_netdev) {
14124		unregister_netdev(dev);
14125	} else {
14126		rtnl_lock();
14127		dev_close(dev);
14128		rtnl_unlock();
14129	}
14130
14131	bnx2x_iov_remove_one(bp);
14132
14133	/* Power on: we can't let PCI layer write to us while we are in D3 */
14134	if (IS_PF(bp)) {
14135		bnx2x_set_power_state(bp, PCI_D0);
14136		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14137
14138		/* Set endianity registers to reset values in case next driver
14139		 * boots in different endianty environment.
14140		 */
14141		bnx2x_reset_endianity(bp);
14142	}
14143
14144	/* Disable MSI/MSI-X */
14145	bnx2x_disable_msi(bp);
14146
14147	/* Power off */
14148	if (IS_PF(bp))
14149		bnx2x_set_power_state(bp, PCI_D3hot);
14150
14151	/* Make sure RESET task is not scheduled before continuing */
14152	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14153
14154	/* send message via vfpf channel to release the resources of this vf */
14155	if (IS_VF(bp))
14156		bnx2x_vfpf_release(bp);
14157
14158	/* Assumes no further PCIe PM changes will occur */
14159	if (system_state == SYSTEM_POWER_OFF) {
14160		pci_wake_from_d3(pdev, bp->wol);
14161		pci_set_power_state(pdev, PCI_D3hot);
14162	}
14163
14164	bnx2x_disable_pcie_error_reporting(bp);
14165	if (remove_netdev) {
14166		if (bp->regview)
14167			iounmap(bp->regview);
14168
14169		/* For vfs, doorbells are part of the regview and were unmapped
14170		 * along with it. FW is only loaded by PF.
14171		 */
14172		if (IS_PF(bp)) {
14173			if (bp->doorbells)
14174				iounmap(bp->doorbells);
14175
14176			bnx2x_release_firmware(bp);
14177		} else {
14178			bnx2x_vf_pci_dealloc(bp);
14179		}
14180		bnx2x_free_mem_bp(bp);
14181
14182		free_netdev(dev);
14183
14184		if (atomic_read(&pdev->enable_cnt) == 1)
14185			pci_release_regions(pdev);
14186
14187		pci_disable_device(pdev);
14188	}
14189}
14190
14191static void bnx2x_remove_one(struct pci_dev *pdev)
14192{
14193	struct net_device *dev = pci_get_drvdata(pdev);
14194	struct bnx2x *bp;
14195
14196	if (!dev) {
14197		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14198		return;
14199	}
14200	bp = netdev_priv(dev);
14201
14202	__bnx2x_remove(pdev, dev, bp, true);
14203}
14204
14205static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14206{
14207	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14208
14209	bp->rx_mode = BNX2X_RX_MODE_NONE;
14210
14211	if (CNIC_LOADED(bp))
14212		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14213
14214	/* Stop Tx */
14215	bnx2x_tx_disable(bp);
14216	netdev_reset_tc(bp->dev);
14217
14218	del_timer_sync(&bp->timer);
14219	cancel_delayed_work_sync(&bp->sp_task);
14220	cancel_delayed_work_sync(&bp->period_task);
14221
14222	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14223		bp->stats_state = STATS_STATE_DISABLED;
14224		up(&bp->stats_lock);
14225	}
14226
14227	bnx2x_save_statistics(bp);
14228
14229	netif_carrier_off(bp->dev);
14230
14231	return 0;
14232}
14233
14234/**
14235 * bnx2x_io_error_detected - called when PCI error is detected
14236 * @pdev: Pointer to PCI device
14237 * @state: The current pci connection state
14238 *
14239 * This function is called after a PCI bus error affecting
14240 * this device has been detected.
14241 */
14242static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14243						pci_channel_state_t state)
14244{
14245	struct net_device *dev = pci_get_drvdata(pdev);
14246	struct bnx2x *bp = netdev_priv(dev);
14247
14248	rtnl_lock();
14249
14250	BNX2X_ERR("IO error detected\n");
14251
14252	netif_device_detach(dev);
14253
14254	if (state == pci_channel_io_perm_failure) {
14255		rtnl_unlock();
14256		return PCI_ERS_RESULT_DISCONNECT;
14257	}
14258
14259	if (netif_running(dev))
14260		bnx2x_eeh_nic_unload(bp);
14261
14262	bnx2x_prev_path_mark_eeh(bp);
14263
14264	pci_disable_device(pdev);
14265
14266	rtnl_unlock();
14267
14268	/* Request a slot reset */
14269	return PCI_ERS_RESULT_NEED_RESET;
14270}
14271
14272/**
14273 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14274 * @pdev: Pointer to PCI device
14275 *
14276 * Restart the card from scratch, as if from a cold-boot.
14277 */
14278static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14279{
14280	struct net_device *dev = pci_get_drvdata(pdev);
14281	struct bnx2x *bp = netdev_priv(dev);
14282	int i;
14283
14284	rtnl_lock();
14285	BNX2X_ERR("IO slot reset initializing...\n");
14286	if (pci_enable_device(pdev)) {
14287		dev_err(&pdev->dev,
14288			"Cannot re-enable PCI device after reset\n");
14289		rtnl_unlock();
14290		return PCI_ERS_RESULT_DISCONNECT;
14291	}
14292
14293	pci_set_master(pdev);
14294	pci_restore_state(pdev);
14295	pci_save_state(pdev);
14296
14297	if (netif_running(dev))
14298		bnx2x_set_power_state(bp, PCI_D0);
14299
14300	if (netif_running(dev)) {
14301		BNX2X_ERR("IO slot reset --> driver unload\n");
14302
14303		/* MCP should have been reset; Need to wait for validity */
14304		if (bnx2x_init_shmem(bp)) {
14305			rtnl_unlock();
14306			return PCI_ERS_RESULT_DISCONNECT;
14307		}
14308
14309		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14310			u32 v;
14311
14312			v = SHMEM2_RD(bp,
14313				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14314			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14315				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14316		}
14317		bnx2x_drain_tx_queues(bp);
14318		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14319		bnx2x_netif_stop(bp, 1);
14320		bnx2x_del_all_napi(bp);
14321
14322		if (CNIC_LOADED(bp))
14323			bnx2x_del_all_napi_cnic(bp);
14324
14325		bnx2x_free_irq(bp);
14326
14327		/* Report UNLOAD_DONE to MCP */
14328		bnx2x_send_unload_done(bp, true);
14329
14330		bp->sp_state = 0;
14331		bp->port.pmf = 0;
14332
14333		bnx2x_prev_unload(bp);
14334
14335		/* We should have reseted the engine, so It's fair to
14336		 * assume the FW will no longer write to the bnx2x driver.
14337		 */
14338		bnx2x_squeeze_objects(bp);
14339		bnx2x_free_skbs(bp);
14340		for_each_rx_queue(bp, i)
14341			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14342		bnx2x_free_fp_mem(bp);
14343		bnx2x_free_mem(bp);
14344
14345		bp->state = BNX2X_STATE_CLOSED;
14346	}
14347
14348	rtnl_unlock();
14349
14350	return PCI_ERS_RESULT_RECOVERED;
14351}
14352
14353/**
14354 * bnx2x_io_resume - called when traffic can start flowing again
14355 * @pdev: Pointer to PCI device
14356 *
14357 * This callback is called when the error recovery driver tells us that
14358 * its OK to resume normal operation.
14359 */
14360static void bnx2x_io_resume(struct pci_dev *pdev)
14361{
14362	struct net_device *dev = pci_get_drvdata(pdev);
14363	struct bnx2x *bp = netdev_priv(dev);
14364
14365	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14366		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14367		return;
14368	}
14369
14370	rtnl_lock();
14371
14372	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14373							DRV_MSG_SEQ_NUMBER_MASK;
14374
14375	if (netif_running(dev)) {
14376		if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
14377			netdev_err(bp->dev, "Error during driver initialization, try unloading/reloading the driver\n");
14378			goto done;
14379		}
14380	}
14381
14382	netif_device_attach(dev);
14383
14384done:
14385	rtnl_unlock();
14386}
14387
14388static const struct pci_error_handlers bnx2x_err_handler = {
14389	.error_detected = bnx2x_io_error_detected,
14390	.slot_reset     = bnx2x_io_slot_reset,
14391	.resume         = bnx2x_io_resume,
14392};
14393
14394static void bnx2x_shutdown(struct pci_dev *pdev)
14395{
14396	struct net_device *dev = pci_get_drvdata(pdev);
14397	struct bnx2x *bp;
14398
14399	if (!dev)
14400		return;
14401
14402	bp = netdev_priv(dev);
14403	if (!bp)
14404		return;
14405
14406	rtnl_lock();
14407	netif_device_detach(dev);
14408	rtnl_unlock();
14409
14410	/* Don't remove the netdevice, as there are scenarios which will cause
14411	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14412	 * rootfs is mounted from SAN.
14413	 */
14414	__bnx2x_remove(pdev, dev, bp, false);
14415}
14416
14417static struct pci_driver bnx2x_pci_driver = {
14418	.name        = DRV_MODULE_NAME,
14419	.id_table    = bnx2x_pci_tbl,
14420	.probe       = bnx2x_init_one,
14421	.remove      = bnx2x_remove_one,
14422	.driver.pm   = &bnx2x_pm_ops,
14423	.err_handler = &bnx2x_err_handler,
14424#ifdef CONFIG_BNX2X_SRIOV
14425	.sriov_configure = bnx2x_sriov_configure,
14426#endif
14427	.shutdown    = bnx2x_shutdown,
14428};
14429
14430static int __init bnx2x_init(void)
14431{
14432	int ret;
14433
14434	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14435	if (bnx2x_wq == NULL) {
14436		pr_err("Cannot create workqueue\n");
14437		return -ENOMEM;
14438	}
14439	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14440	if (!bnx2x_iov_wq) {
14441		pr_err("Cannot create iov workqueue\n");
14442		destroy_workqueue(bnx2x_wq);
14443		return -ENOMEM;
14444	}
14445
14446	ret = pci_register_driver(&bnx2x_pci_driver);
14447	if (ret) {
14448		pr_err("Cannot register driver\n");
14449		destroy_workqueue(bnx2x_wq);
14450		destroy_workqueue(bnx2x_iov_wq);
14451	}
14452	return ret;
14453}
14454
14455static void __exit bnx2x_cleanup(void)
14456{
14457	struct list_head *pos, *q;
14458
14459	pci_unregister_driver(&bnx2x_pci_driver);
14460
14461	destroy_workqueue(bnx2x_wq);
14462	destroy_workqueue(bnx2x_iov_wq);
14463
14464	/* Free globally allocated resources */
14465	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14466		struct bnx2x_prev_path_list *tmp =
14467			list_entry(pos, struct bnx2x_prev_path_list, list);
14468		list_del(pos);
14469		kfree(tmp);
14470	}
14471}
14472
14473void bnx2x_notify_link_changed(struct bnx2x *bp)
14474{
14475	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14476}
14477
14478module_init(bnx2x_init);
14479module_exit(bnx2x_cleanup);
14480
14481/**
14482 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14483 * @bp:		driver handle
14484 *
14485 * This function will wait until the ramrod completion returns.
14486 * Return 0 if success, -ENODEV if ramrod doesn't return.
14487 */
14488static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14489{
14490	unsigned long ramrod_flags = 0;
14491
14492	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14493	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14494				 &bp->iscsi_l2_mac_obj, true,
14495				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14496}
14497
14498/* count denotes the number of new completions we have seen */
14499static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14500{
14501	struct eth_spe *spe;
14502	int cxt_index, cxt_offset;
14503
14504#ifdef BNX2X_STOP_ON_ERROR
14505	if (unlikely(bp->panic))
14506		return;
14507#endif
14508
14509	spin_lock_bh(&bp->spq_lock);
14510	BUG_ON(bp->cnic_spq_pending < count);
14511	bp->cnic_spq_pending -= count;
14512
14513	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14514		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14515				& SPE_HDR_CONN_TYPE) >>
14516				SPE_HDR_CONN_TYPE_SHIFT;
14517		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14518				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14519
14520		/* Set validation for iSCSI L2 client before sending SETUP
14521		 *  ramrod
14522		 */
14523		if (type == ETH_CONNECTION_TYPE) {
14524			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14525				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14526					ILT_PAGE_CIDS;
14527				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14528					(cxt_index * ILT_PAGE_CIDS);
14529				bnx2x_set_ctx_validation(bp,
14530					&bp->context[cxt_index].
14531							 vcxt[cxt_offset].eth,
14532					BNX2X_ISCSI_ETH_CID(bp));
14533			}
14534		}
14535
14536		/*
14537		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14538		 * and in the air. We also check that number of outstanding
14539		 * COMMON ramrods is not more than the EQ and SPQ can
14540		 * accommodate.
14541		 */
14542		if (type == ETH_CONNECTION_TYPE) {
14543			if (!atomic_read(&bp->cq_spq_left))
14544				break;
14545			else
14546				atomic_dec(&bp->cq_spq_left);
14547		} else if (type == NONE_CONNECTION_TYPE) {
14548			if (!atomic_read(&bp->eq_spq_left))
14549				break;
14550			else
14551				atomic_dec(&bp->eq_spq_left);
14552		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14553			   (type == FCOE_CONNECTION_TYPE)) {
14554			if (bp->cnic_spq_pending >=
14555			    bp->cnic_eth_dev.max_kwqe_pending)
14556				break;
14557			else
14558				bp->cnic_spq_pending++;
14559		} else {
14560			BNX2X_ERR("Unknown SPE type: %d\n", type);
14561			bnx2x_panic();
14562			break;
14563		}
14564
14565		spe = bnx2x_sp_get_next(bp);
14566		*spe = *bp->cnic_kwq_cons;
14567
14568		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14569		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14570
14571		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14572			bp->cnic_kwq_cons = bp->cnic_kwq;
14573		else
14574			bp->cnic_kwq_cons++;
14575	}
14576	bnx2x_sp_prod_update(bp);
14577	spin_unlock_bh(&bp->spq_lock);
14578}
14579
14580static int bnx2x_cnic_sp_queue(struct net_device *dev,
14581			       struct kwqe_16 *kwqes[], u32 count)
14582{
14583	struct bnx2x *bp = netdev_priv(dev);
14584	int i;
14585
14586#ifdef BNX2X_STOP_ON_ERROR
14587	if (unlikely(bp->panic)) {
14588		BNX2X_ERR("Can't post to SP queue while panic\n");
14589		return -EIO;
14590	}
14591#endif
14592
14593	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14594	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14595		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14596		return -EAGAIN;
14597	}
14598
14599	spin_lock_bh(&bp->spq_lock);
14600
14601	for (i = 0; i < count; i++) {
14602		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14603
14604		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14605			break;
14606
14607		*bp->cnic_kwq_prod = *spe;
14608
14609		bp->cnic_kwq_pending++;
14610
14611		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14612		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14613		   spe->data.update_data_addr.hi,
14614		   spe->data.update_data_addr.lo,
14615		   bp->cnic_kwq_pending);
14616
14617		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14618			bp->cnic_kwq_prod = bp->cnic_kwq;
14619		else
14620			bp->cnic_kwq_prod++;
14621	}
14622
14623	spin_unlock_bh(&bp->spq_lock);
14624
14625	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14626		bnx2x_cnic_sp_post(bp, 0);
14627
14628	return i;
14629}
14630
14631static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14632{
14633	struct cnic_ops *c_ops;
14634	int rc = 0;
14635
14636	mutex_lock(&bp->cnic_mutex);
14637	c_ops = rcu_dereference_protected(bp->cnic_ops,
14638					  lockdep_is_held(&bp->cnic_mutex));
14639	if (c_ops)
14640		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14641	mutex_unlock(&bp->cnic_mutex);
14642
14643	return rc;
14644}
14645
14646static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14647{
14648	struct cnic_ops *c_ops;
14649	int rc = 0;
14650
14651	rcu_read_lock();
14652	c_ops = rcu_dereference(bp->cnic_ops);
14653	if (c_ops)
14654		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14655	rcu_read_unlock();
14656
14657	return rc;
14658}
14659
14660/*
14661 * for commands that have no data
14662 */
14663int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14664{
14665	struct cnic_ctl_info ctl = {0};
14666
14667	ctl.cmd = cmd;
14668
14669	return bnx2x_cnic_ctl_send(bp, &ctl);
14670}
14671
14672static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14673{
14674	struct cnic_ctl_info ctl = {0};
14675
14676	/* first we tell CNIC and only then we count this as a completion */
14677	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14678	ctl.data.comp.cid = cid;
14679	ctl.data.comp.error = err;
14680
14681	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14682	bnx2x_cnic_sp_post(bp, 0);
14683}
14684
14685/* Called with netif_addr_lock_bh() taken.
14686 * Sets an rx_mode config for an iSCSI ETH client.
14687 * Doesn't block.
14688 * Completion should be checked outside.
14689 */
14690static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14691{
14692	unsigned long accept_flags = 0, ramrod_flags = 0;
14693	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14694	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14695
14696	if (start) {
14697		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14698		 * because it's the only way for UIO Queue to accept
14699		 * multicasts (in non-promiscuous mode only one Queue per
14700		 * function will receive multicast packets (leading in our
14701		 * case).
14702		 */
14703		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14704		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14705		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14706		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14707
14708		/* Clear STOP_PENDING bit if START is requested */
14709		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14710
14711		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14712	} else
14713		/* Clear START_PENDING bit if STOP is requested */
14714		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14715
14716	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14717		set_bit(sched_state, &bp->sp_state);
14718	else {
14719		__set_bit(RAMROD_RX, &ramrod_flags);
14720		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14721				    ramrod_flags);
14722	}
14723}
14724
14725static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14726{
14727	struct bnx2x *bp = netdev_priv(dev);
14728	int rc = 0;
14729
14730	switch (ctl->cmd) {
14731	case DRV_CTL_CTXTBL_WR_CMD: {
14732		u32 index = ctl->data.io.offset;
14733		dma_addr_t addr = ctl->data.io.dma_addr;
14734
14735		bnx2x_ilt_wr(bp, index, addr);
14736		break;
14737	}
14738
14739	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14740		int count = ctl->data.credit.credit_count;
14741
14742		bnx2x_cnic_sp_post(bp, count);
14743		break;
14744	}
14745
14746	/* rtnl_lock is held.  */
14747	case DRV_CTL_START_L2_CMD: {
14748		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14749		unsigned long sp_bits = 0;
14750
14751		/* Configure the iSCSI classification object */
14752		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14753				   cp->iscsi_l2_client_id,
14754				   cp->iscsi_l2_cid, BP_FUNC(bp),
14755				   bnx2x_sp(bp, mac_rdata),
14756				   bnx2x_sp_mapping(bp, mac_rdata),
14757				   BNX2X_FILTER_MAC_PENDING,
14758				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14759				   &bp->macs_pool);
14760
14761		/* Set iSCSI MAC address */
14762		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14763		if (rc)
14764			break;
14765
14766		barrier();
14767
14768		/* Start accepting on iSCSI L2 ring */
14769
14770		netif_addr_lock_bh(dev);
14771		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14772		netif_addr_unlock_bh(dev);
14773
14774		/* bits to wait on */
14775		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14776		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14777
14778		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14779			BNX2X_ERR("rx_mode completion timed out!\n");
14780
14781		break;
14782	}
14783
14784	/* rtnl_lock is held.  */
14785	case DRV_CTL_STOP_L2_CMD: {
14786		unsigned long sp_bits = 0;
14787
14788		/* Stop accepting on iSCSI L2 ring */
14789		netif_addr_lock_bh(dev);
14790		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14791		netif_addr_unlock_bh(dev);
14792
14793		/* bits to wait on */
14794		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14795		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14796
14797		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14798			BNX2X_ERR("rx_mode completion timed out!\n");
14799
14800		barrier();
14801
14802		/* Unset iSCSI L2 MAC */
14803		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14804					BNX2X_ISCSI_ETH_MAC, true);
14805		break;
14806	}
14807	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14808		int count = ctl->data.credit.credit_count;
14809
14810		smp_mb__before_atomic();
14811		atomic_add(count, &bp->cq_spq_left);
14812		smp_mb__after_atomic();
14813		break;
14814	}
14815	case DRV_CTL_ULP_REGISTER_CMD: {
14816		int ulp_type = ctl->data.register_data.ulp_type;
14817
14818		if (CHIP_IS_E3(bp)) {
14819			int idx = BP_FW_MB_IDX(bp);
14820			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14821			int path = BP_PATH(bp);
14822			int port = BP_PORT(bp);
14823			int i;
14824			u32 scratch_offset;
14825			u32 *host_addr;
14826
14827			/* first write capability to shmem2 */
14828			if (ulp_type == CNIC_ULP_ISCSI)
14829				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14830			else if (ulp_type == CNIC_ULP_FCOE)
14831				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14832			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14833
14834			if ((ulp_type != CNIC_ULP_FCOE) ||
14835			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14836			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14837				break;
14838
14839			/* if reached here - should write fcoe capabilities */
14840			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14841			if (!scratch_offset)
14842				break;
14843			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14844						   fcoe_features[path][port]);
14845			host_addr = (u32 *) &(ctl->data.register_data.
14846					      fcoe_features);
14847			for (i = 0; i < sizeof(struct fcoe_capabilities);
14848			     i += 4)
14849				REG_WR(bp, scratch_offset + i,
14850				       *(host_addr + i/4));
14851		}
14852		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14853		break;
14854	}
14855
14856	case DRV_CTL_ULP_UNREGISTER_CMD: {
14857		int ulp_type = ctl->data.ulp_type;
14858
14859		if (CHIP_IS_E3(bp)) {
14860			int idx = BP_FW_MB_IDX(bp);
14861			u32 cap;
14862
14863			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14864			if (ulp_type == CNIC_ULP_ISCSI)
14865				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14866			else if (ulp_type == CNIC_ULP_FCOE)
14867				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14868			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14869		}
14870		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14871		break;
14872	}
14873
14874	default:
14875		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14876		rc = -EINVAL;
14877	}
14878
14879	/* For storage-only interfaces, change driver state */
14880	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14881		switch (ctl->drv_state) {
14882		case DRV_NOP:
14883			break;
14884		case DRV_ACTIVE:
14885			bnx2x_set_os_driver_state(bp,
14886						  OS_DRIVER_STATE_ACTIVE);
14887			break;
14888		case DRV_INACTIVE:
14889			bnx2x_set_os_driver_state(bp,
14890						  OS_DRIVER_STATE_DISABLED);
14891			break;
14892		case DRV_UNLOADED:
14893			bnx2x_set_os_driver_state(bp,
14894						  OS_DRIVER_STATE_NOT_LOADED);
14895			break;
14896		default:
14897		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14898		}
14899	}
14900
14901	return rc;
14902}
14903
14904static int bnx2x_get_fc_npiv(struct net_device *dev,
14905			     struct cnic_fc_npiv_tbl *cnic_tbl)
14906{
14907	struct bnx2x *bp = netdev_priv(dev);
14908	struct bdn_fc_npiv_tbl *tbl = NULL;
14909	u32 offset, entries;
14910	int rc = -EINVAL;
14911	int i;
14912
14913	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14914		goto out;
14915
14916	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14917
14918	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14919	if (!tbl) {
14920		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14921		goto out;
14922	}
14923
14924	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14925	if (!offset) {
14926		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14927		goto out;
14928	}
14929	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14930
14931	/* Read the table contents from nvram */
14932	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14933		BNX2X_ERR("Failed to read FC-NPIV table\n");
14934		goto out;
14935	}
14936
14937	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14938	 * the number of entries back to cpu endianness.
14939	 */
14940	entries = tbl->fc_npiv_cfg.num_of_npiv;
14941	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14942	tbl->fc_npiv_cfg.num_of_npiv = entries;
14943
14944	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14945		DP(BNX2X_MSG_MCP,
14946		   "No FC-NPIV table [valid, simply not present]\n");
14947		goto out;
14948	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14949		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14950			  tbl->fc_npiv_cfg.num_of_npiv);
14951		goto out;
14952	} else {
14953		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14954		   tbl->fc_npiv_cfg.num_of_npiv);
14955	}
14956
14957	/* Copy the data into cnic-provided struct */
14958	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14959	for (i = 0; i < cnic_tbl->count; i++) {
14960		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14961		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14962	}
14963
14964	rc = 0;
14965out:
14966	kfree(tbl);
14967	return rc;
14968}
14969
14970void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14971{
14972	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14973
14974	if (bp->flags & USING_MSIX_FLAG) {
14975		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14976		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14977		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14978	} else {
14979		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14980		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14981	}
14982	if (!CHIP_IS_E1x(bp))
14983		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14984	else
14985		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14986
14987	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14988	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14989	cp->irq_arr[1].status_blk = bp->def_status_blk;
14990	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14991	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14992
14993	cp->num_irq = 2;
14994}
14995
14996void bnx2x_setup_cnic_info(struct bnx2x *bp)
14997{
14998	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14999
15000	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15001			     bnx2x_cid_ilt_lines(bp);
15002	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15003	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15004	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15005
15006	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15007	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15008	   cp->iscsi_l2_cid);
15009
15010	if (NO_ISCSI_OOO(bp))
15011		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15012}
15013
15014static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15015			       void *data)
15016{
15017	struct bnx2x *bp = netdev_priv(dev);
15018	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15019	int rc;
15020
15021	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15022
15023	if (ops == NULL) {
15024		BNX2X_ERR("NULL ops received\n");
15025		return -EINVAL;
15026	}
15027
15028	if (!CNIC_SUPPORT(bp)) {
15029		BNX2X_ERR("Can't register CNIC when not supported\n");
15030		return -EOPNOTSUPP;
15031	}
15032
15033	if (!CNIC_LOADED(bp)) {
15034		rc = bnx2x_load_cnic(bp);
15035		if (rc) {
15036			BNX2X_ERR("CNIC-related load failed\n");
15037			return rc;
15038		}
15039	}
15040
15041	bp->cnic_enabled = true;
15042
15043	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15044	if (!bp->cnic_kwq)
15045		return -ENOMEM;
15046
15047	bp->cnic_kwq_cons = bp->cnic_kwq;
15048	bp->cnic_kwq_prod = bp->cnic_kwq;
15049	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15050
15051	bp->cnic_spq_pending = 0;
15052	bp->cnic_kwq_pending = 0;
15053
15054	bp->cnic_data = data;
15055
15056	cp->num_irq = 0;
15057	cp->drv_state |= CNIC_DRV_STATE_REGD;
15058	cp->iro_arr = bp->iro_arr;
15059
15060	bnx2x_setup_cnic_irq_info(bp);
15061
15062	rcu_assign_pointer(bp->cnic_ops, ops);
15063
15064	/* Schedule driver to read CNIC driver versions */
15065	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15066
15067	return 0;
15068}
15069
15070static int bnx2x_unregister_cnic(struct net_device *dev)
15071{
15072	struct bnx2x *bp = netdev_priv(dev);
15073	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15074
15075	mutex_lock(&bp->cnic_mutex);
15076	cp->drv_state = 0;
15077	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15078	mutex_unlock(&bp->cnic_mutex);
15079	synchronize_rcu();
15080	bp->cnic_enabled = false;
15081	kfree(bp->cnic_kwq);
15082	bp->cnic_kwq = NULL;
15083
15084	return 0;
15085}
15086
15087static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15088{
15089	struct bnx2x *bp = netdev_priv(dev);
15090	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15091
15092	/* If both iSCSI and FCoE are disabled - return NULL in
15093	 * order to indicate CNIC that it should not try to work
15094	 * with this device.
15095	 */
15096	if (NO_ISCSI(bp) && NO_FCOE(bp))
15097		return NULL;
15098
15099	cp->drv_owner = THIS_MODULE;
15100	cp->chip_id = CHIP_ID(bp);
15101	cp->pdev = bp->pdev;
15102	cp->io_base = bp->regview;
15103	cp->io_base2 = bp->doorbells;
15104	cp->max_kwqe_pending = 8;
15105	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15106	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15107			     bnx2x_cid_ilt_lines(bp);
15108	cp->ctx_tbl_len = CNIC_ILT_LINES;
15109	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15110	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15111	cp->drv_ctl = bnx2x_drv_ctl;
15112	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15113	cp->drv_register_cnic = bnx2x_register_cnic;
15114	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15115	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15116	cp->iscsi_l2_client_id =
15117		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15118	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15119
15120	if (NO_ISCSI_OOO(bp))
15121		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15122
15123	if (NO_ISCSI(bp))
15124		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15125
15126	if (NO_FCOE(bp))
15127		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15128
15129	BNX2X_DEV_INFO(
15130		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15131	   cp->ctx_blk_size,
15132	   cp->ctx_tbl_offset,
15133	   cp->ctx_tbl_len,
15134	   cp->starting_cid);
15135	return cp;
15136}
15137
15138static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15139{
15140	struct bnx2x *bp = fp->bp;
15141	u32 offset = BAR_USTRORM_INTMEM;
15142
15143	if (IS_VF(bp))
15144		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15145	else if (!CHIP_IS_E1x(bp))
15146		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15147	else
15148		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15149
15150	return offset;
15151}
15152
15153/* called only on E1H or E2.
15154 * When pretending to be PF, the pretend value is the function number 0...7
15155 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15156 * combination
15157 */
15158int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15159{
15160	u32 pretend_reg;
15161
15162	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15163		return -1;
15164
15165	/* get my own pretend register */
15166	pretend_reg = bnx2x_get_pretend_reg(bp);
15167	REG_WR(bp, pretend_reg, pretend_func_val);
15168	REG_RD(bp, pretend_reg);
15169	return 0;
15170}
15171
15172static void bnx2x_ptp_task(struct work_struct *work)
15173{
15174	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15175	int port = BP_PORT(bp);
15176	u32 val_seq;
15177	u64 timestamp, ns;
15178	struct skb_shared_hwtstamps shhwtstamps;
15179	bool bail = true;
15180	int i;
15181
15182	/* FW may take a while to complete timestamping; try a bit and if it's
15183	 * still not complete, may indicate an error state - bail out then.
15184	 */
15185	for (i = 0; i < 10; i++) {
15186		/* Read Tx timestamp registers */
15187		val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15188				 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15189		if (val_seq & 0x10000) {
15190			bail = false;
15191			break;
15192		}
15193		msleep(1 << i);
15194	}
15195
15196	if (!bail) {
15197		/* There is a valid timestamp value */
15198		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15199				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15200		timestamp <<= 32;
15201		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15202				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15203		/* Reset timestamp register to allow new timestamp */
15204		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15205		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15206		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15207
15208		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15209		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15210		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15211
15212		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15213		   timestamp, ns);
15214	} else {
15215		DP(BNX2X_MSG_PTP,
15216		   "Tx timestamp is not recorded (register read=%u)\n",
15217		   val_seq);
15218		bp->eth_stats.ptp_skip_tx_ts++;
15219	}
15220
15221	dev_kfree_skb_any(bp->ptp_tx_skb);
15222	bp->ptp_tx_skb = NULL;
15223}
15224
15225void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15226{
15227	int port = BP_PORT(bp);
15228	u64 timestamp, ns;
15229
15230	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15231			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15232	timestamp <<= 32;
15233	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15234			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15235
15236	/* Reset timestamp register to allow new timestamp */
15237	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15238	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15239
15240	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15241
15242	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15243
15244	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15245	   timestamp, ns);
15246}
15247
15248/* Read the PHC */
15249static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15250{
15251	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15252	int port = BP_PORT(bp);
15253	u32 wb_data[2];
15254	u64 phc_cycles;
15255
15256	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15257		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15258	phc_cycles = wb_data[1];
15259	phc_cycles = (phc_cycles << 32) + wb_data[0];
15260
15261	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15262
15263	return phc_cycles;
15264}
15265
15266static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15267{
15268	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15269	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15270	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15271	bp->cyclecounter.shift = 0;
15272	bp->cyclecounter.mult = 1;
15273}
15274
15275static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15276{
15277	struct bnx2x_func_state_params func_params = {NULL};
15278	struct bnx2x_func_set_timesync_params *set_timesync_params =
15279		&func_params.params.set_timesync;
15280
15281	/* Prepare parameters for function state transitions */
15282	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15283	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15284
15285	func_params.f_obj = &bp->func_obj;
15286	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15287
15288	/* Function parameters */
15289	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15290	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15291
15292	return bnx2x_func_state_change(bp, &func_params);
15293}
15294
15295static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15296{
15297	struct bnx2x_queue_state_params q_params;
15298	int rc, i;
15299
15300	/* send queue update ramrod to enable PTP packets */
15301	memset(&q_params, 0, sizeof(q_params));
15302	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15303	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15304	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15305		  &q_params.params.update.update_flags);
15306	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15307		  &q_params.params.update.update_flags);
15308
15309	/* send the ramrod on all the queues of the PF */
15310	for_each_eth_queue(bp, i) {
15311		struct bnx2x_fastpath *fp = &bp->fp[i];
15312
15313		/* Set the appropriate Queue object */
15314		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15315
15316		/* Update the Queue state */
15317		rc = bnx2x_queue_state_change(bp, &q_params);
15318		if (rc) {
15319			BNX2X_ERR("Failed to enable PTP packets\n");
15320			return rc;
15321		}
15322	}
15323
15324	return 0;
15325}
15326
15327#define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15328#define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15329#define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15330#define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15331#define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15332#define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15333#define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15334#define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15335#define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15336#define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15337#define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15338#define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15339
15340int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15341{
15342	int port = BP_PORT(bp);
15343	u32 param, rule;
15344	int rc;
15345
15346	if (!bp->hwtstamp_ioctl_called)
15347		return 0;
15348
15349	param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15350		NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15351	rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15352		NIG_REG_P0_TLLH_PTP_RULE_MASK;
15353	switch (bp->tx_type) {
15354	case HWTSTAMP_TX_ON:
15355		bp->flags |= TX_TIMESTAMPING_EN;
15356		REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15357		REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15358		break;
15359	case HWTSTAMP_TX_ONESTEP_SYNC:
15360	case HWTSTAMP_TX_ONESTEP_P2P:
15361		BNX2X_ERR("One-step timestamping is not supported\n");
15362		return -ERANGE;
15363	}
15364
15365	param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15366		NIG_REG_P0_LLH_PTP_PARAM_MASK;
15367	rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15368		NIG_REG_P0_LLH_PTP_RULE_MASK;
15369	switch (bp->rx_filter) {
15370	case HWTSTAMP_FILTER_NONE:
15371		break;
15372	case HWTSTAMP_FILTER_ALL:
15373	case HWTSTAMP_FILTER_SOME:
15374	case HWTSTAMP_FILTER_NTP_ALL:
15375		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15376		break;
15377	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15378	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15379	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15380		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15381		/* Initialize PTP detection for UDP/IPv4 events */
15382		REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15383		REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15384		break;
15385	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15386	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15387	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15388		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15389		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15390		REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15391		REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15392		break;
15393	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15394	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15395	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15396		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15397		/* Initialize PTP detection L2 events */
15398		REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15399		REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15400
15401		break;
15402	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15403	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15404	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15405		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15406		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15407		REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15408		REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15409		break;
15410	}
15411
15412	/* Indicate to FW that this PF expects recorded PTP packets */
15413	rc = bnx2x_enable_ptp_packets(bp);
15414	if (rc)
15415		return rc;
15416
15417	/* Enable sending PTP packets to host */
15418	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15419	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15420
15421	return 0;
15422}
15423
15424static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15425{
15426	struct hwtstamp_config config;
15427	int rc;
15428
15429	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15430
15431	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15432		return -EFAULT;
15433
15434	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15435	   config.tx_type, config.rx_filter);
15436
15437	if (config.flags) {
15438		BNX2X_ERR("config.flags is reserved for future use\n");
15439		return -EINVAL;
15440	}
15441
15442	bp->hwtstamp_ioctl_called = true;
15443	bp->tx_type = config.tx_type;
15444	bp->rx_filter = config.rx_filter;
15445
15446	rc = bnx2x_configure_ptp_filters(bp);
15447	if (rc)
15448		return rc;
15449
15450	config.rx_filter = bp->rx_filter;
15451
15452	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15453		-EFAULT : 0;
15454}
15455
15456/* Configures HW for PTP */
15457static int bnx2x_configure_ptp(struct bnx2x *bp)
15458{
15459	int rc, port = BP_PORT(bp);
15460	u32 wb_data[2];
15461
15462	/* Reset PTP event detection rules - will be configured in the IOCTL */
15463	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15464	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15465	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15466	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15467	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15468	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15469	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15470	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15471
15472	/* Disable PTP packets to host - will be configured in the IOCTL*/
15473	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15474	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15475
15476	/* Enable the PTP feature */
15477	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15478	       NIG_REG_P0_PTP_EN, 0x3F);
15479
15480	/* Enable the free-running counter */
15481	wb_data[0] = 0;
15482	wb_data[1] = 0;
15483	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15484
15485	/* Reset drift register (offset register is not reset) */
15486	rc = bnx2x_send_reset_timesync_ramrod(bp);
15487	if (rc) {
15488		BNX2X_ERR("Failed to reset PHC drift register\n");
15489		return -EFAULT;
15490	}
15491
15492	/* Reset possibly old timestamps */
15493	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15494	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15495	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15496	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15497
15498	return 0;
15499}
15500
15501/* Called during load, to initialize PTP-related stuff */
15502void bnx2x_init_ptp(struct bnx2x *bp)
15503{
15504	int rc;
15505
15506	/* Configure PTP in HW */
15507	rc = bnx2x_configure_ptp(bp);
15508	if (rc) {
15509		BNX2X_ERR("Stopping PTP initialization\n");
15510		return;
15511	}
15512
15513	/* Init work queue for Tx timestamping */
15514	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15515
15516	/* Init cyclecounter and timecounter. This is done only in the first
15517	 * load. If done in every load, PTP application will fail when doing
15518	 * unload / load (e.g. MTU change) while it is running.
15519	 */
15520	if (!bp->timecounter_init_done) {
15521		bnx2x_init_cyclecounter(bp);
15522		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15523				 ktime_to_ns(ktime_get_real()));
15524		bp->timecounter_init_done = true;
15525	}
15526
15527	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15528}
15529