1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for BCM963xx builtin Ethernet mac
4 *
5 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
6 */
7#include <linux/init.h>
8#include <linux/interrupt.h>
9#include <linux/module.h>
10#include <linux/clk.h>
11#include <linux/etherdevice.h>
12#include <linux/slab.h>
13#include <linux/delay.h>
14#include <linux/ethtool.h>
15#include <linux/crc32.h>
16#include <linux/err.h>
17#include <linux/dma-mapping.h>
18#include <linux/platform_device.h>
19#include <linux/if_vlan.h>
20
21#include <bcm63xx_dev_enet.h>
22#include "bcm63xx_enet.h"
23
24static char bcm_enet_driver_name[] = "bcm63xx_enet";
25
26static int copybreak __read_mostly = 128;
27module_param(copybreak, int, 0);
28MODULE_PARM_DESC(copybreak, "Receive copy threshold");
29
30/* io registers memory shared between all devices */
31static void __iomem *bcm_enet_shared_base[3];
32
33/*
34 * io helpers to access mac registers
35 */
36static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
37{
38	return bcm_readl(priv->base + off);
39}
40
41static inline void enet_writel(struct bcm_enet_priv *priv,
42			       u32 val, u32 off)
43{
44	bcm_writel(val, priv->base + off);
45}
46
47/*
48 * io helpers to access switch registers
49 */
50static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
51{
52	return bcm_readl(priv->base + off);
53}
54
55static inline void enetsw_writel(struct bcm_enet_priv *priv,
56				 u32 val, u32 off)
57{
58	bcm_writel(val, priv->base + off);
59}
60
61static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
62{
63	return bcm_readw(priv->base + off);
64}
65
66static inline void enetsw_writew(struct bcm_enet_priv *priv,
67				 u16 val, u32 off)
68{
69	bcm_writew(val, priv->base + off);
70}
71
72static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
73{
74	return bcm_readb(priv->base + off);
75}
76
77static inline void enetsw_writeb(struct bcm_enet_priv *priv,
78				 u8 val, u32 off)
79{
80	bcm_writeb(val, priv->base + off);
81}
82
83
84/* io helpers to access shared registers */
85static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
86{
87	return bcm_readl(bcm_enet_shared_base[0] + off);
88}
89
90static inline void enet_dma_writel(struct bcm_enet_priv *priv,
91				       u32 val, u32 off)
92{
93	bcm_writel(val, bcm_enet_shared_base[0] + off);
94}
95
96static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
97{
98	return bcm_readl(bcm_enet_shared_base[1] +
99		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
100}
101
102static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
103				       u32 val, u32 off, int chan)
104{
105	bcm_writel(val, bcm_enet_shared_base[1] +
106		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
107}
108
109static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
110{
111	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
112}
113
114static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
115				       u32 val, u32 off, int chan)
116{
117	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
118}
119
120/*
121 * write given data into mii register and wait for transfer to end
122 * with timeout (average measured transfer time is 25us)
123 */
124static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
125{
126	int limit;
127
128	/* make sure mii interrupt status is cleared */
129	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
130
131	enet_writel(priv, data, ENET_MIIDATA_REG);
132	wmb();
133
134	/* busy wait on mii interrupt bit, with timeout */
135	limit = 1000;
136	do {
137		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
138			break;
139		udelay(1);
140	} while (limit-- > 0);
141
142	return (limit < 0) ? 1 : 0;
143}
144
145/*
146 * MII internal read callback
147 */
148static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
149			      int regnum)
150{
151	u32 tmp, val;
152
153	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
154	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
155	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
156	tmp |= ENET_MIIDATA_OP_READ_MASK;
157
158	if (do_mdio_op(priv, tmp))
159		return -1;
160
161	val = enet_readl(priv, ENET_MIIDATA_REG);
162	val &= 0xffff;
163	return val;
164}
165
166/*
167 * MII internal write callback
168 */
169static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
170			       int regnum, u16 value)
171{
172	u32 tmp;
173
174	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
175	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
176	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
177	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
178	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
179
180	(void)do_mdio_op(priv, tmp);
181	return 0;
182}
183
184/*
185 * MII read callback from phylib
186 */
187static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
188				     int regnum)
189{
190	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
191}
192
193/*
194 * MII write callback from phylib
195 */
196static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
197				      int regnum, u16 value)
198{
199	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
200}
201
202/*
203 * MII read callback from mii core
204 */
205static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
206				  int regnum)
207{
208	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
209}
210
211/*
212 * MII write callback from mii core
213 */
214static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
215				    int regnum, int value)
216{
217	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
218}
219
220/*
221 * refill rx queue
222 */
223static int bcm_enet_refill_rx(struct net_device *dev)
224{
225	struct bcm_enet_priv *priv;
226
227	priv = netdev_priv(dev);
228
229	while (priv->rx_desc_count < priv->rx_ring_size) {
230		struct bcm_enet_desc *desc;
231		struct sk_buff *skb;
232		dma_addr_t p;
233		int desc_idx;
234		u32 len_stat;
235
236		desc_idx = priv->rx_dirty_desc;
237		desc = &priv->rx_desc_cpu[desc_idx];
238
239		if (!priv->rx_skb[desc_idx]) {
240			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
241			if (!skb)
242				break;
243			priv->rx_skb[desc_idx] = skb;
244			p = dma_map_single(&priv->pdev->dev, skb->data,
245					   priv->rx_skb_size,
246					   DMA_FROM_DEVICE);
247			desc->address = p;
248		}
249
250		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
251		len_stat |= DMADESC_OWNER_MASK;
252		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
253			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
254			priv->rx_dirty_desc = 0;
255		} else {
256			priv->rx_dirty_desc++;
257		}
258		wmb();
259		desc->len_stat = len_stat;
260
261		priv->rx_desc_count++;
262
263		/* tell dma engine we allocated one buffer */
264		if (priv->dma_has_sram)
265			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
266		else
267			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
268	}
269
270	/* If rx ring is still empty, set a timer to try allocating
271	 * again at a later time. */
272	if (priv->rx_desc_count == 0 && netif_running(dev)) {
273		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
274		priv->rx_timeout.expires = jiffies + HZ;
275		add_timer(&priv->rx_timeout);
276	}
277
278	return 0;
279}
280
281/*
282 * timer callback to defer refill rx queue in case we're OOM
283 */
284static void bcm_enet_refill_rx_timer(struct timer_list *t)
285{
286	struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout);
287	struct net_device *dev = priv->net_dev;
288
289	spin_lock(&priv->rx_lock);
290	bcm_enet_refill_rx(dev);
291	spin_unlock(&priv->rx_lock);
292}
293
294/*
295 * extract packet from rx queue
296 */
297static int bcm_enet_receive_queue(struct net_device *dev, int budget)
298{
299	struct bcm_enet_priv *priv;
300	struct device *kdev;
301	int processed;
302
303	priv = netdev_priv(dev);
304	kdev = &priv->pdev->dev;
305	processed = 0;
306
307	/* don't scan ring further than number of refilled
308	 * descriptor */
309	if (budget > priv->rx_desc_count)
310		budget = priv->rx_desc_count;
311
312	do {
313		struct bcm_enet_desc *desc;
314		struct sk_buff *skb;
315		int desc_idx;
316		u32 len_stat;
317		unsigned int len;
318
319		desc_idx = priv->rx_curr_desc;
320		desc = &priv->rx_desc_cpu[desc_idx];
321
322		/* make sure we actually read the descriptor status at
323		 * each loop */
324		rmb();
325
326		len_stat = desc->len_stat;
327
328		/* break if dma ownership belongs to hw */
329		if (len_stat & DMADESC_OWNER_MASK)
330			break;
331
332		processed++;
333		priv->rx_curr_desc++;
334		if (priv->rx_curr_desc == priv->rx_ring_size)
335			priv->rx_curr_desc = 0;
336		priv->rx_desc_count--;
337
338		/* if the packet does not have start of packet _and_
339		 * end of packet flag set, then just recycle it */
340		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
341			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
342			dev->stats.rx_dropped++;
343			continue;
344		}
345
346		/* recycle packet if it's marked as bad */
347		if (!priv->enet_is_sw &&
348		    unlikely(len_stat & DMADESC_ERR_MASK)) {
349			dev->stats.rx_errors++;
350
351			if (len_stat & DMADESC_OVSIZE_MASK)
352				dev->stats.rx_length_errors++;
353			if (len_stat & DMADESC_CRC_MASK)
354				dev->stats.rx_crc_errors++;
355			if (len_stat & DMADESC_UNDER_MASK)
356				dev->stats.rx_frame_errors++;
357			if (len_stat & DMADESC_OV_MASK)
358				dev->stats.rx_fifo_errors++;
359			continue;
360		}
361
362		/* valid packet */
363		skb = priv->rx_skb[desc_idx];
364		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
365		/* don't include FCS */
366		len -= 4;
367
368		if (len < copybreak) {
369			struct sk_buff *nskb;
370
371			nskb = napi_alloc_skb(&priv->napi, len);
372			if (!nskb) {
373				/* forget packet, just rearm desc */
374				dev->stats.rx_dropped++;
375				continue;
376			}
377
378			dma_sync_single_for_cpu(kdev, desc->address,
379						len, DMA_FROM_DEVICE);
380			memcpy(nskb->data, skb->data, len);
381			dma_sync_single_for_device(kdev, desc->address,
382						   len, DMA_FROM_DEVICE);
383			skb = nskb;
384		} else {
385			dma_unmap_single(&priv->pdev->dev, desc->address,
386					 priv->rx_skb_size, DMA_FROM_DEVICE);
387			priv->rx_skb[desc_idx] = NULL;
388		}
389
390		skb_put(skb, len);
391		skb->protocol = eth_type_trans(skb, dev);
392		dev->stats.rx_packets++;
393		dev->stats.rx_bytes += len;
394		netif_receive_skb(skb);
395
396	} while (--budget > 0);
397
398	if (processed || !priv->rx_desc_count) {
399		bcm_enet_refill_rx(dev);
400
401		/* kick rx dma */
402		enet_dmac_writel(priv, priv->dma_chan_en_mask,
403					 ENETDMAC_CHANCFG, priv->rx_chan);
404	}
405
406	return processed;
407}
408
409
410/*
411 * try to or force reclaim of transmitted buffers
412 */
413static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
414{
415	struct bcm_enet_priv *priv;
416	int released;
417
418	priv = netdev_priv(dev);
419	released = 0;
420
421	while (priv->tx_desc_count < priv->tx_ring_size) {
422		struct bcm_enet_desc *desc;
423		struct sk_buff *skb;
424
425		/* We run in a bh and fight against start_xmit, which
426		 * is called with bh disabled  */
427		spin_lock(&priv->tx_lock);
428
429		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
430
431		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
432			spin_unlock(&priv->tx_lock);
433			break;
434		}
435
436		/* ensure other field of the descriptor were not read
437		 * before we checked ownership */
438		rmb();
439
440		skb = priv->tx_skb[priv->tx_dirty_desc];
441		priv->tx_skb[priv->tx_dirty_desc] = NULL;
442		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
443				 DMA_TO_DEVICE);
444
445		priv->tx_dirty_desc++;
446		if (priv->tx_dirty_desc == priv->tx_ring_size)
447			priv->tx_dirty_desc = 0;
448		priv->tx_desc_count++;
449
450		spin_unlock(&priv->tx_lock);
451
452		if (desc->len_stat & DMADESC_UNDER_MASK)
453			dev->stats.tx_errors++;
454
455		dev_kfree_skb(skb);
456		released++;
457	}
458
459	if (netif_queue_stopped(dev) && released)
460		netif_wake_queue(dev);
461
462	return released;
463}
464
465/*
466 * poll func, called by network core
467 */
468static int bcm_enet_poll(struct napi_struct *napi, int budget)
469{
470	struct bcm_enet_priv *priv;
471	struct net_device *dev;
472	int rx_work_done;
473
474	priv = container_of(napi, struct bcm_enet_priv, napi);
475	dev = priv->net_dev;
476
477	/* ack interrupts */
478	enet_dmac_writel(priv, priv->dma_chan_int_mask,
479			 ENETDMAC_IR, priv->rx_chan);
480	enet_dmac_writel(priv, priv->dma_chan_int_mask,
481			 ENETDMAC_IR, priv->tx_chan);
482
483	/* reclaim sent skb */
484	bcm_enet_tx_reclaim(dev, 0);
485
486	spin_lock(&priv->rx_lock);
487	rx_work_done = bcm_enet_receive_queue(dev, budget);
488	spin_unlock(&priv->rx_lock);
489
490	if (rx_work_done >= budget) {
491		/* rx queue is not yet empty/clean */
492		return rx_work_done;
493	}
494
495	/* no more packet in rx/tx queue, remove device from poll
496	 * queue */
497	napi_complete_done(napi, rx_work_done);
498
499	/* restore rx/tx interrupt */
500	enet_dmac_writel(priv, priv->dma_chan_int_mask,
501			 ENETDMAC_IRMASK, priv->rx_chan);
502	enet_dmac_writel(priv, priv->dma_chan_int_mask,
503			 ENETDMAC_IRMASK, priv->tx_chan);
504
505	return rx_work_done;
506}
507
508/*
509 * mac interrupt handler
510 */
511static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
512{
513	struct net_device *dev;
514	struct bcm_enet_priv *priv;
515	u32 stat;
516
517	dev = dev_id;
518	priv = netdev_priv(dev);
519
520	stat = enet_readl(priv, ENET_IR_REG);
521	if (!(stat & ENET_IR_MIB))
522		return IRQ_NONE;
523
524	/* clear & mask interrupt */
525	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
526	enet_writel(priv, 0, ENET_IRMASK_REG);
527
528	/* read mib registers in workqueue */
529	schedule_work(&priv->mib_update_task);
530
531	return IRQ_HANDLED;
532}
533
534/*
535 * rx/tx dma interrupt handler
536 */
537static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
538{
539	struct net_device *dev;
540	struct bcm_enet_priv *priv;
541
542	dev = dev_id;
543	priv = netdev_priv(dev);
544
545	/* mask rx/tx interrupts */
546	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
547	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
548
549	napi_schedule(&priv->napi);
550
551	return IRQ_HANDLED;
552}
553
554/*
555 * tx request callback
556 */
557static netdev_tx_t
558bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
559{
560	struct bcm_enet_priv *priv;
561	struct bcm_enet_desc *desc;
562	u32 len_stat;
563	netdev_tx_t ret;
564
565	priv = netdev_priv(dev);
566
567	/* lock against tx reclaim */
568	spin_lock(&priv->tx_lock);
569
570	/* make sure  the tx hw queue  is not full,  should not happen
571	 * since we stop queue before it's the case */
572	if (unlikely(!priv->tx_desc_count)) {
573		netif_stop_queue(dev);
574		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
575			"available?\n");
576		ret = NETDEV_TX_BUSY;
577		goto out_unlock;
578	}
579
580	/* pad small packets sent on a switch device */
581	if (priv->enet_is_sw && skb->len < 64) {
582		int needed = 64 - skb->len;
583		char *data;
584
585		if (unlikely(skb_tailroom(skb) < needed)) {
586			struct sk_buff *nskb;
587
588			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
589			if (!nskb) {
590				ret = NETDEV_TX_BUSY;
591				goto out_unlock;
592			}
593			dev_kfree_skb(skb);
594			skb = nskb;
595		}
596		data = skb_put_zero(skb, needed);
597	}
598
599	/* point to the next available desc */
600	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
601	priv->tx_skb[priv->tx_curr_desc] = skb;
602
603	/* fill descriptor */
604	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
605				       DMA_TO_DEVICE);
606
607	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
608	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
609		DMADESC_APPEND_CRC |
610		DMADESC_OWNER_MASK;
611
612	priv->tx_curr_desc++;
613	if (priv->tx_curr_desc == priv->tx_ring_size) {
614		priv->tx_curr_desc = 0;
615		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
616	}
617	priv->tx_desc_count--;
618
619	/* dma might be already polling, make sure we update desc
620	 * fields in correct order */
621	wmb();
622	desc->len_stat = len_stat;
623	wmb();
624
625	/* kick tx dma */
626	enet_dmac_writel(priv, priv->dma_chan_en_mask,
627				 ENETDMAC_CHANCFG, priv->tx_chan);
628
629	/* stop queue if no more desc available */
630	if (!priv->tx_desc_count)
631		netif_stop_queue(dev);
632
633	dev->stats.tx_bytes += skb->len;
634	dev->stats.tx_packets++;
635	ret = NETDEV_TX_OK;
636
637out_unlock:
638	spin_unlock(&priv->tx_lock);
639	return ret;
640}
641
642/*
643 * Change the interface's mac address.
644 */
645static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
646{
647	struct bcm_enet_priv *priv;
648	struct sockaddr *addr = p;
649	u32 val;
650
651	priv = netdev_priv(dev);
652	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
653
654	/* use perfect match register 0 to store my mac address */
655	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
656		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
657	enet_writel(priv, val, ENET_PML_REG(0));
658
659	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
660	val |= ENET_PMH_DATAVALID_MASK;
661	enet_writel(priv, val, ENET_PMH_REG(0));
662
663	return 0;
664}
665
666/*
667 * Change rx mode (promiscuous/allmulti) and update multicast list
668 */
669static void bcm_enet_set_multicast_list(struct net_device *dev)
670{
671	struct bcm_enet_priv *priv;
672	struct netdev_hw_addr *ha;
673	u32 val;
674	int i;
675
676	priv = netdev_priv(dev);
677
678	val = enet_readl(priv, ENET_RXCFG_REG);
679
680	if (dev->flags & IFF_PROMISC)
681		val |= ENET_RXCFG_PROMISC_MASK;
682	else
683		val &= ~ENET_RXCFG_PROMISC_MASK;
684
685	/* only 3 perfect match registers left, first one is used for
686	 * own mac address */
687	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
688		val |= ENET_RXCFG_ALLMCAST_MASK;
689	else
690		val &= ~ENET_RXCFG_ALLMCAST_MASK;
691
692	/* no need to set perfect match registers if we catch all
693	 * multicast */
694	if (val & ENET_RXCFG_ALLMCAST_MASK) {
695		enet_writel(priv, val, ENET_RXCFG_REG);
696		return;
697	}
698
699	i = 0;
700	netdev_for_each_mc_addr(ha, dev) {
701		u8 *dmi_addr;
702		u32 tmp;
703
704		if (i == 3)
705			break;
706		/* update perfect match registers */
707		dmi_addr = ha->addr;
708		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
709			(dmi_addr[4] << 8) | dmi_addr[5];
710		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
711
712		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
713		tmp |= ENET_PMH_DATAVALID_MASK;
714		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
715	}
716
717	for (; i < 3; i++) {
718		enet_writel(priv, 0, ENET_PML_REG(i + 1));
719		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
720	}
721
722	enet_writel(priv, val, ENET_RXCFG_REG);
723}
724
725/*
726 * set mac duplex parameters
727 */
728static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
729{
730	u32 val;
731
732	val = enet_readl(priv, ENET_TXCTL_REG);
733	if (fullduplex)
734		val |= ENET_TXCTL_FD_MASK;
735	else
736		val &= ~ENET_TXCTL_FD_MASK;
737	enet_writel(priv, val, ENET_TXCTL_REG);
738}
739
740/*
741 * set mac flow control parameters
742 */
743static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
744{
745	u32 val;
746
747	/* rx flow control (pause frame handling) */
748	val = enet_readl(priv, ENET_RXCFG_REG);
749	if (rx_en)
750		val |= ENET_RXCFG_ENFLOW_MASK;
751	else
752		val &= ~ENET_RXCFG_ENFLOW_MASK;
753	enet_writel(priv, val, ENET_RXCFG_REG);
754
755	if (!priv->dma_has_sram)
756		return;
757
758	/* tx flow control (pause frame generation) */
759	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
760	if (tx_en)
761		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
762	else
763		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
764	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
765}
766
767/*
768 * link changed callback (from phylib)
769 */
770static void bcm_enet_adjust_phy_link(struct net_device *dev)
771{
772	struct bcm_enet_priv *priv;
773	struct phy_device *phydev;
774	int status_changed;
775
776	priv = netdev_priv(dev);
777	phydev = dev->phydev;
778	status_changed = 0;
779
780	if (priv->old_link != phydev->link) {
781		status_changed = 1;
782		priv->old_link = phydev->link;
783	}
784
785	/* reflect duplex change in mac configuration */
786	if (phydev->link && phydev->duplex != priv->old_duplex) {
787		bcm_enet_set_duplex(priv,
788				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
789		status_changed = 1;
790		priv->old_duplex = phydev->duplex;
791	}
792
793	/* enable flow control if remote advertise it (trust phylib to
794	 * check that duplex is full */
795	if (phydev->link && phydev->pause != priv->old_pause) {
796		int rx_pause_en, tx_pause_en;
797
798		if (phydev->pause) {
799			/* pause was advertised by lpa and us */
800			rx_pause_en = 1;
801			tx_pause_en = 1;
802		} else if (!priv->pause_auto) {
803			/* pause setting overridden by user */
804			rx_pause_en = priv->pause_rx;
805			tx_pause_en = priv->pause_tx;
806		} else {
807			rx_pause_en = 0;
808			tx_pause_en = 0;
809		}
810
811		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
812		status_changed = 1;
813		priv->old_pause = phydev->pause;
814	}
815
816	if (status_changed) {
817		pr_info("%s: link %s", dev->name, phydev->link ?
818			"UP" : "DOWN");
819		if (phydev->link)
820			pr_cont(" - %d/%s - flow control %s", phydev->speed,
821			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
822			       phydev->pause == 1 ? "rx&tx" : "off");
823
824		pr_cont("\n");
825	}
826}
827
828/*
829 * link changed callback (if phylib is not used)
830 */
831static void bcm_enet_adjust_link(struct net_device *dev)
832{
833	struct bcm_enet_priv *priv;
834
835	priv = netdev_priv(dev);
836	bcm_enet_set_duplex(priv, priv->force_duplex_full);
837	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
838	netif_carrier_on(dev);
839
840	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
841		dev->name,
842		priv->force_speed_100 ? 100 : 10,
843		priv->force_duplex_full ? "full" : "half",
844		priv->pause_rx ? "rx" : "off",
845		priv->pause_tx ? "tx" : "off");
846}
847
848/*
849 * open callback, allocate dma rings & buffers and start rx operation
850 */
851static int bcm_enet_open(struct net_device *dev)
852{
853	struct bcm_enet_priv *priv;
854	struct sockaddr addr;
855	struct device *kdev;
856	struct phy_device *phydev;
857	int i, ret;
858	unsigned int size;
859	char phy_id[MII_BUS_ID_SIZE + 3];
860	void *p;
861	u32 val;
862
863	priv = netdev_priv(dev);
864	kdev = &priv->pdev->dev;
865
866	if (priv->has_phy) {
867		/* connect to PHY */
868		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
869			 priv->mii_bus->id, priv->phy_id);
870
871		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
872				     PHY_INTERFACE_MODE_MII);
873
874		if (IS_ERR(phydev)) {
875			dev_err(kdev, "could not attach to PHY\n");
876			return PTR_ERR(phydev);
877		}
878
879		/* mask with MAC supported features */
880		phy_support_sym_pause(phydev);
881		phy_set_max_speed(phydev, SPEED_100);
882		phy_set_sym_pause(phydev, priv->pause_rx, priv->pause_rx,
883				  priv->pause_auto);
884
885		phy_attached_info(phydev);
886
887		priv->old_link = 0;
888		priv->old_duplex = -1;
889		priv->old_pause = -1;
890	} else {
891		phydev = NULL;
892	}
893
894	/* mask all interrupts and request them */
895	enet_writel(priv, 0, ENET_IRMASK_REG);
896	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
897	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
898
899	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
900	if (ret)
901		goto out_phy_disconnect;
902
903	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
904			  dev->name, dev);
905	if (ret)
906		goto out_freeirq;
907
908	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
909			  0, dev->name, dev);
910	if (ret)
911		goto out_freeirq_rx;
912
913	/* initialize perfect match registers */
914	for (i = 0; i < 4; i++) {
915		enet_writel(priv, 0, ENET_PML_REG(i));
916		enet_writel(priv, 0, ENET_PMH_REG(i));
917	}
918
919	/* write device mac address */
920	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
921	bcm_enet_set_mac_address(dev, &addr);
922
923	/* allocate rx dma ring */
924	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
925	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
926	if (!p) {
927		ret = -ENOMEM;
928		goto out_freeirq_tx;
929	}
930
931	priv->rx_desc_alloc_size = size;
932	priv->rx_desc_cpu = p;
933
934	/* allocate tx dma ring */
935	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
936	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
937	if (!p) {
938		ret = -ENOMEM;
939		goto out_free_rx_ring;
940	}
941
942	priv->tx_desc_alloc_size = size;
943	priv->tx_desc_cpu = p;
944
945	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
946			       GFP_KERNEL);
947	if (!priv->tx_skb) {
948		ret = -ENOMEM;
949		goto out_free_tx_ring;
950	}
951
952	priv->tx_desc_count = priv->tx_ring_size;
953	priv->tx_dirty_desc = 0;
954	priv->tx_curr_desc = 0;
955	spin_lock_init(&priv->tx_lock);
956
957	/* init & fill rx ring with skbs */
958	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
959			       GFP_KERNEL);
960	if (!priv->rx_skb) {
961		ret = -ENOMEM;
962		goto out_free_tx_skb;
963	}
964
965	priv->rx_desc_count = 0;
966	priv->rx_dirty_desc = 0;
967	priv->rx_curr_desc = 0;
968
969	/* initialize flow control buffer allocation */
970	if (priv->dma_has_sram)
971		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
972				ENETDMA_BUFALLOC_REG(priv->rx_chan));
973	else
974		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
975				ENETDMAC_BUFALLOC, priv->rx_chan);
976
977	if (bcm_enet_refill_rx(dev)) {
978		dev_err(kdev, "cannot allocate rx skb queue\n");
979		ret = -ENOMEM;
980		goto out;
981	}
982
983	/* write rx & tx ring addresses */
984	if (priv->dma_has_sram) {
985		enet_dmas_writel(priv, priv->rx_desc_dma,
986				 ENETDMAS_RSTART_REG, priv->rx_chan);
987		enet_dmas_writel(priv, priv->tx_desc_dma,
988			 ENETDMAS_RSTART_REG, priv->tx_chan);
989	} else {
990		enet_dmac_writel(priv, priv->rx_desc_dma,
991				ENETDMAC_RSTART, priv->rx_chan);
992		enet_dmac_writel(priv, priv->tx_desc_dma,
993				ENETDMAC_RSTART, priv->tx_chan);
994	}
995
996	/* clear remaining state ram for rx & tx channel */
997	if (priv->dma_has_sram) {
998		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
999		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1000		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1001		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1002		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1003		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1004	} else {
1005		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1006		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1007	}
1008
1009	/* set max rx/tx length */
1010	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1011	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1012
1013	/* set dma maximum burst len */
1014	enet_dmac_writel(priv, priv->dma_maxburst,
1015			 ENETDMAC_MAXBURST, priv->rx_chan);
1016	enet_dmac_writel(priv, priv->dma_maxburst,
1017			 ENETDMAC_MAXBURST, priv->tx_chan);
1018
1019	/* set correct transmit fifo watermark */
1020	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1021
1022	/* set flow control low/high threshold to 1/3 / 2/3 */
1023	if (priv->dma_has_sram) {
1024		val = priv->rx_ring_size / 3;
1025		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1026		val = (priv->rx_ring_size * 2) / 3;
1027		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1028	} else {
1029		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1030		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1031		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1032	}
1033
1034	/* all set, enable mac and interrupts, start dma engine and
1035	 * kick rx dma channel */
1036	wmb();
1037	val = enet_readl(priv, ENET_CTL_REG);
1038	val |= ENET_CTL_ENABLE_MASK;
1039	enet_writel(priv, val, ENET_CTL_REG);
1040	if (priv->dma_has_sram)
1041		enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1042	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1043			 ENETDMAC_CHANCFG, priv->rx_chan);
1044
1045	/* watch "mib counters about to overflow" interrupt */
1046	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1047	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1048
1049	/* watch "packet transferred" interrupt in rx and tx */
1050	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1051			 ENETDMAC_IR, priv->rx_chan);
1052	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1053			 ENETDMAC_IR, priv->tx_chan);
1054
1055	/* make sure we enable napi before rx interrupt  */
1056	napi_enable(&priv->napi);
1057
1058	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1059			 ENETDMAC_IRMASK, priv->rx_chan);
1060	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1061			 ENETDMAC_IRMASK, priv->tx_chan);
1062
1063	if (phydev)
1064		phy_start(phydev);
1065	else
1066		bcm_enet_adjust_link(dev);
1067
1068	netif_start_queue(dev);
1069	return 0;
1070
1071out:
1072	for (i = 0; i < priv->rx_ring_size; i++) {
1073		struct bcm_enet_desc *desc;
1074
1075		if (!priv->rx_skb[i])
1076			continue;
1077
1078		desc = &priv->rx_desc_cpu[i];
1079		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1080				 DMA_FROM_DEVICE);
1081		kfree_skb(priv->rx_skb[i]);
1082	}
1083	kfree(priv->rx_skb);
1084
1085out_free_tx_skb:
1086	kfree(priv->tx_skb);
1087
1088out_free_tx_ring:
1089	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1090			  priv->tx_desc_cpu, priv->tx_desc_dma);
1091
1092out_free_rx_ring:
1093	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1094			  priv->rx_desc_cpu, priv->rx_desc_dma);
1095
1096out_freeirq_tx:
1097	free_irq(priv->irq_tx, dev);
1098
1099out_freeirq_rx:
1100	free_irq(priv->irq_rx, dev);
1101
1102out_freeirq:
1103	free_irq(dev->irq, dev);
1104
1105out_phy_disconnect:
1106	if (phydev)
1107		phy_disconnect(phydev);
1108
1109	return ret;
1110}
1111
1112/*
1113 * disable mac
1114 */
1115static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1116{
1117	int limit;
1118	u32 val;
1119
1120	val = enet_readl(priv, ENET_CTL_REG);
1121	val |= ENET_CTL_DISABLE_MASK;
1122	enet_writel(priv, val, ENET_CTL_REG);
1123
1124	limit = 1000;
1125	do {
1126		u32 val;
1127
1128		val = enet_readl(priv, ENET_CTL_REG);
1129		if (!(val & ENET_CTL_DISABLE_MASK))
1130			break;
1131		udelay(1);
1132	} while (limit--);
1133}
1134
1135/*
1136 * disable dma in given channel
1137 */
1138static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1139{
1140	int limit;
1141
1142	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1143
1144	limit = 1000;
1145	do {
1146		u32 val;
1147
1148		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1149		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1150			break;
1151		udelay(1);
1152	} while (limit--);
1153}
1154
1155/*
1156 * stop callback
1157 */
1158static int bcm_enet_stop(struct net_device *dev)
1159{
1160	struct bcm_enet_priv *priv;
1161	struct device *kdev;
1162	int i;
1163
1164	priv = netdev_priv(dev);
1165	kdev = &priv->pdev->dev;
1166
1167	netif_stop_queue(dev);
1168	napi_disable(&priv->napi);
1169	if (priv->has_phy)
1170		phy_stop(dev->phydev);
1171	del_timer_sync(&priv->rx_timeout);
1172
1173	/* mask all interrupts */
1174	enet_writel(priv, 0, ENET_IRMASK_REG);
1175	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1176	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1177
1178	/* make sure no mib update is scheduled */
1179	cancel_work_sync(&priv->mib_update_task);
1180
1181	/* disable dma & mac */
1182	bcm_enet_disable_dma(priv, priv->tx_chan);
1183	bcm_enet_disable_dma(priv, priv->rx_chan);
1184	bcm_enet_disable_mac(priv);
1185
1186	/* force reclaim of all tx buffers */
1187	bcm_enet_tx_reclaim(dev, 1);
1188
1189	/* free the rx skb ring */
1190	for (i = 0; i < priv->rx_ring_size; i++) {
1191		struct bcm_enet_desc *desc;
1192
1193		if (!priv->rx_skb[i])
1194			continue;
1195
1196		desc = &priv->rx_desc_cpu[i];
1197		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1198				 DMA_FROM_DEVICE);
1199		kfree_skb(priv->rx_skb[i]);
1200	}
1201
1202	/* free remaining allocated memory */
1203	kfree(priv->rx_skb);
1204	kfree(priv->tx_skb);
1205	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1206			  priv->rx_desc_cpu, priv->rx_desc_dma);
1207	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1208			  priv->tx_desc_cpu, priv->tx_desc_dma);
1209	free_irq(priv->irq_tx, dev);
1210	free_irq(priv->irq_rx, dev);
1211	free_irq(dev->irq, dev);
1212
1213	/* release phy */
1214	if (priv->has_phy)
1215		phy_disconnect(dev->phydev);
1216
1217	return 0;
1218}
1219
1220/*
1221 * ethtool callbacks
1222 */
1223struct bcm_enet_stats {
1224	char stat_string[ETH_GSTRING_LEN];
1225	int sizeof_stat;
1226	int stat_offset;
1227	int mib_reg;
1228};
1229
1230#define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1231		     offsetof(struct bcm_enet_priv, m)
1232#define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1233		     offsetof(struct net_device_stats, m)
1234
1235static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1236	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1237	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1238	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1239	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1240	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1241	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1242	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1243	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1244
1245	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1246	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1247	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1248	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1249	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1250	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1251	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1252	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1253	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1254	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1255	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1256	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1257	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1258	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1259	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1260	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1261	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1262	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1263	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1264	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1265	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1266
1267	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1268	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1269	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1270	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1271	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1272	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1273	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1274	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1275	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1276	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1277	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1278	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1279	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1280	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1281	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1282	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1283	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1284	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1285	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1286	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1287	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1288	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1289
1290};
1291
1292#define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1293
1294static const u32 unused_mib_regs[] = {
1295	ETH_MIB_TX_ALL_OCTETS,
1296	ETH_MIB_TX_ALL_PKTS,
1297	ETH_MIB_RX_ALL_OCTETS,
1298	ETH_MIB_RX_ALL_PKTS,
1299};
1300
1301
1302static void bcm_enet_get_drvinfo(struct net_device *netdev,
1303				 struct ethtool_drvinfo *drvinfo)
1304{
1305	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1306	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1307}
1308
1309static int bcm_enet_get_sset_count(struct net_device *netdev,
1310					int string_set)
1311{
1312	switch (string_set) {
1313	case ETH_SS_STATS:
1314		return BCM_ENET_STATS_LEN;
1315	default:
1316		return -EINVAL;
1317	}
1318}
1319
1320static void bcm_enet_get_strings(struct net_device *netdev,
1321				 u32 stringset, u8 *data)
1322{
1323	int i;
1324
1325	switch (stringset) {
1326	case ETH_SS_STATS:
1327		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1328			memcpy(data + i * ETH_GSTRING_LEN,
1329			       bcm_enet_gstrings_stats[i].stat_string,
1330			       ETH_GSTRING_LEN);
1331		}
1332		break;
1333	}
1334}
1335
1336static void update_mib_counters(struct bcm_enet_priv *priv)
1337{
1338	int i;
1339
1340	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1341		const struct bcm_enet_stats *s;
1342		u32 val;
1343		char *p;
1344
1345		s = &bcm_enet_gstrings_stats[i];
1346		if (s->mib_reg == -1)
1347			continue;
1348
1349		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1350		p = (char *)priv + s->stat_offset;
1351
1352		if (s->sizeof_stat == sizeof(u64))
1353			*(u64 *)p += val;
1354		else
1355			*(u32 *)p += val;
1356	}
1357
1358	/* also empty unused mib counters to make sure mib counter
1359	 * overflow interrupt is cleared */
1360	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1361		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1362}
1363
1364static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1365{
1366	struct bcm_enet_priv *priv;
1367
1368	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1369	mutex_lock(&priv->mib_update_lock);
1370	update_mib_counters(priv);
1371	mutex_unlock(&priv->mib_update_lock);
1372
1373	/* reenable mib interrupt */
1374	if (netif_running(priv->net_dev))
1375		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1376}
1377
1378static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1379				       struct ethtool_stats *stats,
1380				       u64 *data)
1381{
1382	struct bcm_enet_priv *priv;
1383	int i;
1384
1385	priv = netdev_priv(netdev);
1386
1387	mutex_lock(&priv->mib_update_lock);
1388	update_mib_counters(priv);
1389
1390	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1391		const struct bcm_enet_stats *s;
1392		char *p;
1393
1394		s = &bcm_enet_gstrings_stats[i];
1395		if (s->mib_reg == -1)
1396			p = (char *)&netdev->stats;
1397		else
1398			p = (char *)priv;
1399		p += s->stat_offset;
1400		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1401			*(u64 *)p : *(u32 *)p;
1402	}
1403	mutex_unlock(&priv->mib_update_lock);
1404}
1405
1406static int bcm_enet_nway_reset(struct net_device *dev)
1407{
1408	struct bcm_enet_priv *priv;
1409
1410	priv = netdev_priv(dev);
1411	if (priv->has_phy)
1412		return phy_ethtool_nway_reset(dev);
1413
1414	return -EOPNOTSUPP;
1415}
1416
1417static int bcm_enet_get_link_ksettings(struct net_device *dev,
1418				       struct ethtool_link_ksettings *cmd)
1419{
1420	struct bcm_enet_priv *priv;
1421	u32 supported, advertising;
1422
1423	priv = netdev_priv(dev);
1424
1425	if (priv->has_phy) {
1426		if (!dev->phydev)
1427			return -ENODEV;
1428
1429		phy_ethtool_ksettings_get(dev->phydev, cmd);
1430
1431		return 0;
1432	} else {
1433		cmd->base.autoneg = 0;
1434		cmd->base.speed = (priv->force_speed_100) ?
1435			SPEED_100 : SPEED_10;
1436		cmd->base.duplex = (priv->force_duplex_full) ?
1437			DUPLEX_FULL : DUPLEX_HALF;
1438		supported = ADVERTISED_10baseT_Half |
1439			ADVERTISED_10baseT_Full |
1440			ADVERTISED_100baseT_Half |
1441			ADVERTISED_100baseT_Full;
1442		advertising = 0;
1443		ethtool_convert_legacy_u32_to_link_mode(
1444			cmd->link_modes.supported, supported);
1445		ethtool_convert_legacy_u32_to_link_mode(
1446			cmd->link_modes.advertising, advertising);
1447		cmd->base.port = PORT_MII;
1448	}
1449	return 0;
1450}
1451
1452static int bcm_enet_set_link_ksettings(struct net_device *dev,
1453				       const struct ethtool_link_ksettings *cmd)
1454{
1455	struct bcm_enet_priv *priv;
1456
1457	priv = netdev_priv(dev);
1458	if (priv->has_phy) {
1459		if (!dev->phydev)
1460			return -ENODEV;
1461		return phy_ethtool_ksettings_set(dev->phydev, cmd);
1462	} else {
1463
1464		if (cmd->base.autoneg ||
1465		    (cmd->base.speed != SPEED_100 &&
1466		     cmd->base.speed != SPEED_10) ||
1467		    cmd->base.port != PORT_MII)
1468			return -EINVAL;
1469
1470		priv->force_speed_100 =
1471			(cmd->base.speed == SPEED_100) ? 1 : 0;
1472		priv->force_duplex_full =
1473			(cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1474
1475		if (netif_running(dev))
1476			bcm_enet_adjust_link(dev);
1477		return 0;
1478	}
1479}
1480
1481static void bcm_enet_get_ringparam(struct net_device *dev,
1482				   struct ethtool_ringparam *ering)
1483{
1484	struct bcm_enet_priv *priv;
1485
1486	priv = netdev_priv(dev);
1487
1488	/* rx/tx ring is actually only limited by memory */
1489	ering->rx_max_pending = 8192;
1490	ering->tx_max_pending = 8192;
1491	ering->rx_pending = priv->rx_ring_size;
1492	ering->tx_pending = priv->tx_ring_size;
1493}
1494
1495static int bcm_enet_set_ringparam(struct net_device *dev,
1496				  struct ethtool_ringparam *ering)
1497{
1498	struct bcm_enet_priv *priv;
1499	int was_running;
1500
1501	priv = netdev_priv(dev);
1502
1503	was_running = 0;
1504	if (netif_running(dev)) {
1505		bcm_enet_stop(dev);
1506		was_running = 1;
1507	}
1508
1509	priv->rx_ring_size = ering->rx_pending;
1510	priv->tx_ring_size = ering->tx_pending;
1511
1512	if (was_running) {
1513		int err;
1514
1515		err = bcm_enet_open(dev);
1516		if (err)
1517			dev_close(dev);
1518		else
1519			bcm_enet_set_multicast_list(dev);
1520	}
1521	return 0;
1522}
1523
1524static void bcm_enet_get_pauseparam(struct net_device *dev,
1525				    struct ethtool_pauseparam *ecmd)
1526{
1527	struct bcm_enet_priv *priv;
1528
1529	priv = netdev_priv(dev);
1530	ecmd->autoneg = priv->pause_auto;
1531	ecmd->rx_pause = priv->pause_rx;
1532	ecmd->tx_pause = priv->pause_tx;
1533}
1534
1535static int bcm_enet_set_pauseparam(struct net_device *dev,
1536				   struct ethtool_pauseparam *ecmd)
1537{
1538	struct bcm_enet_priv *priv;
1539
1540	priv = netdev_priv(dev);
1541
1542	if (priv->has_phy) {
1543		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1544			/* asymetric pause mode not supported,
1545			 * actually possible but integrated PHY has RO
1546			 * asym_pause bit */
1547			return -EINVAL;
1548		}
1549	} else {
1550		/* no pause autoneg on direct mii connection */
1551		if (ecmd->autoneg)
1552			return -EINVAL;
1553	}
1554
1555	priv->pause_auto = ecmd->autoneg;
1556	priv->pause_rx = ecmd->rx_pause;
1557	priv->pause_tx = ecmd->tx_pause;
1558
1559	return 0;
1560}
1561
1562static const struct ethtool_ops bcm_enet_ethtool_ops = {
1563	.get_strings		= bcm_enet_get_strings,
1564	.get_sset_count		= bcm_enet_get_sset_count,
1565	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1566	.nway_reset		= bcm_enet_nway_reset,
1567	.get_drvinfo		= bcm_enet_get_drvinfo,
1568	.get_link		= ethtool_op_get_link,
1569	.get_ringparam		= bcm_enet_get_ringparam,
1570	.set_ringparam		= bcm_enet_set_ringparam,
1571	.get_pauseparam		= bcm_enet_get_pauseparam,
1572	.set_pauseparam		= bcm_enet_set_pauseparam,
1573	.get_link_ksettings	= bcm_enet_get_link_ksettings,
1574	.set_link_ksettings	= bcm_enet_set_link_ksettings,
1575};
1576
1577static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1578{
1579	struct bcm_enet_priv *priv;
1580
1581	priv = netdev_priv(dev);
1582	if (priv->has_phy) {
1583		if (!dev->phydev)
1584			return -ENODEV;
1585		return phy_mii_ioctl(dev->phydev, rq, cmd);
1586	} else {
1587		struct mii_if_info mii;
1588
1589		mii.dev = dev;
1590		mii.mdio_read = bcm_enet_mdio_read_mii;
1591		mii.mdio_write = bcm_enet_mdio_write_mii;
1592		mii.phy_id = 0;
1593		mii.phy_id_mask = 0x3f;
1594		mii.reg_num_mask = 0x1f;
1595		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1596	}
1597}
1598
1599/*
1600 * adjust mtu, can't be called while device is running
1601 */
1602static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1603{
1604	struct bcm_enet_priv *priv = netdev_priv(dev);
1605	int actual_mtu = new_mtu;
1606
1607	if (netif_running(dev))
1608		return -EBUSY;
1609
1610	/* add ethernet header + vlan tag size */
1611	actual_mtu += VLAN_ETH_HLEN;
1612
1613	/*
1614	 * setup maximum size before we get overflow mark in
1615	 * descriptor, note that this will not prevent reception of
1616	 * big frames, they will be split into multiple buffers
1617	 * anyway
1618	 */
1619	priv->hw_mtu = actual_mtu;
1620
1621	/*
1622	 * align rx buffer size to dma burst len, account FCS since
1623	 * it's appended
1624	 */
1625	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1626				  priv->dma_maxburst * 4);
1627
1628	dev->mtu = new_mtu;
1629	return 0;
1630}
1631
1632/*
1633 * preinit hardware to allow mii operation while device is down
1634 */
1635static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1636{
1637	u32 val;
1638	int limit;
1639
1640	/* make sure mac is disabled */
1641	bcm_enet_disable_mac(priv);
1642
1643	/* soft reset mac */
1644	val = ENET_CTL_SRESET_MASK;
1645	enet_writel(priv, val, ENET_CTL_REG);
1646	wmb();
1647
1648	limit = 1000;
1649	do {
1650		val = enet_readl(priv, ENET_CTL_REG);
1651		if (!(val & ENET_CTL_SRESET_MASK))
1652			break;
1653		udelay(1);
1654	} while (limit--);
1655
1656	/* select correct mii interface */
1657	val = enet_readl(priv, ENET_CTL_REG);
1658	if (priv->use_external_mii)
1659		val |= ENET_CTL_EPHYSEL_MASK;
1660	else
1661		val &= ~ENET_CTL_EPHYSEL_MASK;
1662	enet_writel(priv, val, ENET_CTL_REG);
1663
1664	/* turn on mdc clock */
1665	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1666		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1667
1668	/* set mib counters to self-clear when read */
1669	val = enet_readl(priv, ENET_MIBCTL_REG);
1670	val |= ENET_MIBCTL_RDCLEAR_MASK;
1671	enet_writel(priv, val, ENET_MIBCTL_REG);
1672}
1673
1674static const struct net_device_ops bcm_enet_ops = {
1675	.ndo_open		= bcm_enet_open,
1676	.ndo_stop		= bcm_enet_stop,
1677	.ndo_start_xmit		= bcm_enet_start_xmit,
1678	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1679	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1680	.ndo_do_ioctl		= bcm_enet_ioctl,
1681	.ndo_change_mtu		= bcm_enet_change_mtu,
1682};
1683
1684/*
1685 * allocate netdevice, request register memory and register device.
1686 */
1687static int bcm_enet_probe(struct platform_device *pdev)
1688{
1689	struct bcm_enet_priv *priv;
1690	struct net_device *dev;
1691	struct bcm63xx_enet_platform_data *pd;
1692	struct resource *res_irq, *res_irq_rx, *res_irq_tx;
1693	struct mii_bus *bus;
1694	int i, ret;
1695
1696	if (!bcm_enet_shared_base[0])
1697		return -EPROBE_DEFER;
1698
1699	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1700	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1701	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1702	if (!res_irq || !res_irq_rx || !res_irq_tx)
1703		return -ENODEV;
1704
1705	dev = alloc_etherdev(sizeof(*priv));
1706	if (!dev)
1707		return -ENOMEM;
1708	priv = netdev_priv(dev);
1709
1710	priv->enet_is_sw = false;
1711	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1712
1713	ret = bcm_enet_change_mtu(dev, dev->mtu);
1714	if (ret)
1715		goto out;
1716
1717	priv->base = devm_platform_ioremap_resource(pdev, 0);
1718	if (IS_ERR(priv->base)) {
1719		ret = PTR_ERR(priv->base);
1720		goto out;
1721	}
1722
1723	dev->irq = priv->irq = res_irq->start;
1724	priv->irq_rx = res_irq_rx->start;
1725	priv->irq_tx = res_irq_tx->start;
1726
1727	priv->mac_clk = devm_clk_get(&pdev->dev, "enet");
1728	if (IS_ERR(priv->mac_clk)) {
1729		ret = PTR_ERR(priv->mac_clk);
1730		goto out;
1731	}
1732	ret = clk_prepare_enable(priv->mac_clk);
1733	if (ret)
1734		goto out;
1735
1736	/* initialize default and fetch platform data */
1737	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1738	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1739
1740	pd = dev_get_platdata(&pdev->dev);
1741	if (pd) {
1742		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1743		priv->has_phy = pd->has_phy;
1744		priv->phy_id = pd->phy_id;
1745		priv->has_phy_interrupt = pd->has_phy_interrupt;
1746		priv->phy_interrupt = pd->phy_interrupt;
1747		priv->use_external_mii = !pd->use_internal_phy;
1748		priv->pause_auto = pd->pause_auto;
1749		priv->pause_rx = pd->pause_rx;
1750		priv->pause_tx = pd->pause_tx;
1751		priv->force_duplex_full = pd->force_duplex_full;
1752		priv->force_speed_100 = pd->force_speed_100;
1753		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1754		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1755		priv->dma_chan_width = pd->dma_chan_width;
1756		priv->dma_has_sram = pd->dma_has_sram;
1757		priv->dma_desc_shift = pd->dma_desc_shift;
1758		priv->rx_chan = pd->rx_chan;
1759		priv->tx_chan = pd->tx_chan;
1760	}
1761
1762	if (priv->has_phy && !priv->use_external_mii) {
1763		/* using internal PHY, enable clock */
1764		priv->phy_clk = devm_clk_get(&pdev->dev, "ephy");
1765		if (IS_ERR(priv->phy_clk)) {
1766			ret = PTR_ERR(priv->phy_clk);
1767			priv->phy_clk = NULL;
1768			goto out_disable_clk_mac;
1769		}
1770		ret = clk_prepare_enable(priv->phy_clk);
1771		if (ret)
1772			goto out_disable_clk_mac;
1773	}
1774
1775	/* do minimal hardware init to be able to probe mii bus */
1776	bcm_enet_hw_preinit(priv);
1777
1778	/* MII bus registration */
1779	if (priv->has_phy) {
1780
1781		priv->mii_bus = mdiobus_alloc();
1782		if (!priv->mii_bus) {
1783			ret = -ENOMEM;
1784			goto out_uninit_hw;
1785		}
1786
1787		bus = priv->mii_bus;
1788		bus->name = "bcm63xx_enet MII bus";
1789		bus->parent = &pdev->dev;
1790		bus->priv = priv;
1791		bus->read = bcm_enet_mdio_read_phylib;
1792		bus->write = bcm_enet_mdio_write_phylib;
1793		sprintf(bus->id, "%s-%d", pdev->name, pdev->id);
1794
1795		/* only probe bus where we think the PHY is, because
1796		 * the mdio read operation return 0 instead of 0xffff
1797		 * if a slave is not present on hw */
1798		bus->phy_mask = ~(1 << priv->phy_id);
1799
1800		if (priv->has_phy_interrupt)
1801			bus->irq[priv->phy_id] = priv->phy_interrupt;
1802
1803		ret = mdiobus_register(bus);
1804		if (ret) {
1805			dev_err(&pdev->dev, "unable to register mdio bus\n");
1806			goto out_free_mdio;
1807		}
1808	} else {
1809
1810		/* run platform code to initialize PHY device */
1811		if (pd && pd->mii_config &&
1812		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1813				   bcm_enet_mdio_write_mii)) {
1814			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1815			goto out_uninit_hw;
1816		}
1817	}
1818
1819	spin_lock_init(&priv->rx_lock);
1820
1821	/* init rx timeout (used for oom) */
1822	timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
1823
1824	/* init the mib update lock&work */
1825	mutex_init(&priv->mib_update_lock);
1826	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1827
1828	/* zero mib counters */
1829	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1830		enet_writel(priv, 0, ENET_MIB_REG(i));
1831
1832	/* register netdevice */
1833	dev->netdev_ops = &bcm_enet_ops;
1834	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1835
1836	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1837	/* MTU range: 46 - 2028 */
1838	dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1839	dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1840	SET_NETDEV_DEV(dev, &pdev->dev);
1841
1842	ret = register_netdev(dev);
1843	if (ret)
1844		goto out_unregister_mdio;
1845
1846	netif_carrier_off(dev);
1847	platform_set_drvdata(pdev, dev);
1848	priv->pdev = pdev;
1849	priv->net_dev = dev;
1850
1851	return 0;
1852
1853out_unregister_mdio:
1854	if (priv->mii_bus)
1855		mdiobus_unregister(priv->mii_bus);
1856
1857out_free_mdio:
1858	if (priv->mii_bus)
1859		mdiobus_free(priv->mii_bus);
1860
1861out_uninit_hw:
1862	/* turn off mdc clock */
1863	enet_writel(priv, 0, ENET_MIISC_REG);
1864	clk_disable_unprepare(priv->phy_clk);
1865
1866out_disable_clk_mac:
1867	clk_disable_unprepare(priv->mac_clk);
1868out:
1869	free_netdev(dev);
1870	return ret;
1871}
1872
1873
1874/*
1875 * exit func, stops hardware and unregisters netdevice
1876 */
1877static int bcm_enet_remove(struct platform_device *pdev)
1878{
1879	struct bcm_enet_priv *priv;
1880	struct net_device *dev;
1881
1882	/* stop netdevice */
1883	dev = platform_get_drvdata(pdev);
1884	priv = netdev_priv(dev);
1885	unregister_netdev(dev);
1886
1887	/* turn off mdc clock */
1888	enet_writel(priv, 0, ENET_MIISC_REG);
1889
1890	if (priv->has_phy) {
1891		mdiobus_unregister(priv->mii_bus);
1892		mdiobus_free(priv->mii_bus);
1893	} else {
1894		struct bcm63xx_enet_platform_data *pd;
1895
1896		pd = dev_get_platdata(&pdev->dev);
1897		if (pd && pd->mii_config)
1898			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1899				       bcm_enet_mdio_write_mii);
1900	}
1901
1902	/* disable hw block clocks */
1903	clk_disable_unprepare(priv->phy_clk);
1904	clk_disable_unprepare(priv->mac_clk);
1905
1906	free_netdev(dev);
1907	return 0;
1908}
1909
1910struct platform_driver bcm63xx_enet_driver = {
1911	.probe	= bcm_enet_probe,
1912	.remove	= bcm_enet_remove,
1913	.driver	= {
1914		.name	= "bcm63xx_enet",
1915		.owner  = THIS_MODULE,
1916	},
1917};
1918
1919/*
1920 * switch mii access callbacks
1921 */
1922static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1923				int ext, int phy_id, int location)
1924{
1925	u32 reg;
1926	int ret;
1927
1928	spin_lock_bh(&priv->enetsw_mdio_lock);
1929	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1930
1931	reg = ENETSW_MDIOC_RD_MASK |
1932		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1933		(location << ENETSW_MDIOC_REG_SHIFT);
1934
1935	if (ext)
1936		reg |= ENETSW_MDIOC_EXT_MASK;
1937
1938	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1939	udelay(50);
1940	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1941	spin_unlock_bh(&priv->enetsw_mdio_lock);
1942	return ret;
1943}
1944
1945static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1946				 int ext, int phy_id, int location,
1947				 uint16_t data)
1948{
1949	u32 reg;
1950
1951	spin_lock_bh(&priv->enetsw_mdio_lock);
1952	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1953
1954	reg = ENETSW_MDIOC_WR_MASK |
1955		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1956		(location << ENETSW_MDIOC_REG_SHIFT);
1957
1958	if (ext)
1959		reg |= ENETSW_MDIOC_EXT_MASK;
1960
1961	reg |= data;
1962
1963	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1964	udelay(50);
1965	spin_unlock_bh(&priv->enetsw_mdio_lock);
1966}
1967
1968static inline int bcm_enet_port_is_rgmii(int portid)
1969{
1970	return portid >= ENETSW_RGMII_PORT0;
1971}
1972
1973/*
1974 * enet sw PHY polling
1975 */
1976static void swphy_poll_timer(struct timer_list *t)
1977{
1978	struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll);
1979	unsigned int i;
1980
1981	for (i = 0; i < priv->num_ports; i++) {
1982		struct bcm63xx_enetsw_port *port;
1983		int val, j, up, advertise, lpa, speed, duplex, media;
1984		int external_phy = bcm_enet_port_is_rgmii(i);
1985		u8 override;
1986
1987		port = &priv->used_ports[i];
1988		if (!port->used)
1989			continue;
1990
1991		if (port->bypass_link)
1992			continue;
1993
1994		/* dummy read to clear */
1995		for (j = 0; j < 2; j++)
1996			val = bcmenet_sw_mdio_read(priv, external_phy,
1997						   port->phy_id, MII_BMSR);
1998
1999		if (val == 0xffff)
2000			continue;
2001
2002		up = (val & BMSR_LSTATUS) ? 1 : 0;
2003		if (!(up ^ priv->sw_port_link[i]))
2004			continue;
2005
2006		priv->sw_port_link[i] = up;
2007
2008		/* link changed */
2009		if (!up) {
2010			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2011				 port->name);
2012			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2013				      ENETSW_PORTOV_REG(i));
2014			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2015				      ENETSW_PTCTRL_TXDIS_MASK,
2016				      ENETSW_PTCTRL_REG(i));
2017			continue;
2018		}
2019
2020		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2021						 port->phy_id, MII_ADVERTISE);
2022
2023		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2024					   MII_LPA);
2025
2026		/* figure out media and duplex from advertise and LPA values */
2027		media = mii_nway_result(lpa & advertise);
2028		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2029
2030		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2031			speed = 100;
2032		else
2033			speed = 10;
2034
2035		if (val & BMSR_ESTATEN) {
2036			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2037						port->phy_id, MII_CTRL1000);
2038
2039			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2040						port->phy_id, MII_STAT1000);
2041
2042			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2043					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2044				speed = 1000;
2045				duplex = (lpa & LPA_1000FULL);
2046			}
2047		}
2048
2049		dev_info(&priv->pdev->dev,
2050			 "link UP on %s, %dMbps, %s-duplex\n",
2051			 port->name, speed, duplex ? "full" : "half");
2052
2053		override = ENETSW_PORTOV_ENABLE_MASK |
2054			ENETSW_PORTOV_LINKUP_MASK;
2055
2056		if (speed == 1000)
2057			override |= ENETSW_IMPOV_1000_MASK;
2058		else if (speed == 100)
2059			override |= ENETSW_IMPOV_100_MASK;
2060		if (duplex)
2061			override |= ENETSW_IMPOV_FDX_MASK;
2062
2063		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2064		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2065	}
2066
2067	priv->swphy_poll.expires = jiffies + HZ;
2068	add_timer(&priv->swphy_poll);
2069}
2070
2071/*
2072 * open callback, allocate dma rings & buffers and start rx operation
2073 */
2074static int bcm_enetsw_open(struct net_device *dev)
2075{
2076	struct bcm_enet_priv *priv;
2077	struct device *kdev;
2078	int i, ret;
2079	unsigned int size;
2080	void *p;
2081	u32 val;
2082
2083	priv = netdev_priv(dev);
2084	kdev = &priv->pdev->dev;
2085
2086	/* mask all interrupts and request them */
2087	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2088	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2089
2090	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2091			  0, dev->name, dev);
2092	if (ret)
2093		goto out_freeirq;
2094
2095	if (priv->irq_tx != -1) {
2096		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2097				  0, dev->name, dev);
2098		if (ret)
2099			goto out_freeirq_rx;
2100	}
2101
2102	/* allocate rx dma ring */
2103	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2104	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2105	if (!p) {
2106		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2107		ret = -ENOMEM;
2108		goto out_freeirq_tx;
2109	}
2110
2111	priv->rx_desc_alloc_size = size;
2112	priv->rx_desc_cpu = p;
2113
2114	/* allocate tx dma ring */
2115	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2116	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2117	if (!p) {
2118		dev_err(kdev, "cannot allocate tx ring\n");
2119		ret = -ENOMEM;
2120		goto out_free_rx_ring;
2121	}
2122
2123	priv->tx_desc_alloc_size = size;
2124	priv->tx_desc_cpu = p;
2125
2126	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
2127			       GFP_KERNEL);
2128	if (!priv->tx_skb) {
2129		dev_err(kdev, "cannot allocate rx skb queue\n");
2130		ret = -ENOMEM;
2131		goto out_free_tx_ring;
2132	}
2133
2134	priv->tx_desc_count = priv->tx_ring_size;
2135	priv->tx_dirty_desc = 0;
2136	priv->tx_curr_desc = 0;
2137	spin_lock_init(&priv->tx_lock);
2138
2139	/* init & fill rx ring with skbs */
2140	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
2141			       GFP_KERNEL);
2142	if (!priv->rx_skb) {
2143		dev_err(kdev, "cannot allocate rx skb queue\n");
2144		ret = -ENOMEM;
2145		goto out_free_tx_skb;
2146	}
2147
2148	priv->rx_desc_count = 0;
2149	priv->rx_dirty_desc = 0;
2150	priv->rx_curr_desc = 0;
2151
2152	/* disable all ports */
2153	for (i = 0; i < priv->num_ports; i++) {
2154		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2155			      ENETSW_PORTOV_REG(i));
2156		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2157			      ENETSW_PTCTRL_TXDIS_MASK,
2158			      ENETSW_PTCTRL_REG(i));
2159
2160		priv->sw_port_link[i] = 0;
2161	}
2162
2163	/* reset mib */
2164	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2165	val |= ENETSW_GMCR_RST_MIB_MASK;
2166	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2167	mdelay(1);
2168	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2169	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2170	mdelay(1);
2171
2172	/* force CPU port state */
2173	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2174	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2175	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2176
2177	/* enable switch forward engine */
2178	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2179	val |= ENETSW_SWMODE_FWD_EN_MASK;
2180	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2181
2182	/* enable jumbo on all ports */
2183	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2184	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2185
2186	/* initialize flow control buffer allocation */
2187	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2188			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2189
2190	if (bcm_enet_refill_rx(dev)) {
2191		dev_err(kdev, "cannot allocate rx skb queue\n");
2192		ret = -ENOMEM;
2193		goto out;
2194	}
2195
2196	/* write rx & tx ring addresses */
2197	enet_dmas_writel(priv, priv->rx_desc_dma,
2198			 ENETDMAS_RSTART_REG, priv->rx_chan);
2199	enet_dmas_writel(priv, priv->tx_desc_dma,
2200			 ENETDMAS_RSTART_REG, priv->tx_chan);
2201
2202	/* clear remaining state ram for rx & tx channel */
2203	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2204	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2205	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2206	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2207	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2208	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2209
2210	/* set dma maximum burst len */
2211	enet_dmac_writel(priv, priv->dma_maxburst,
2212			 ENETDMAC_MAXBURST, priv->rx_chan);
2213	enet_dmac_writel(priv, priv->dma_maxburst,
2214			 ENETDMAC_MAXBURST, priv->tx_chan);
2215
2216	/* set flow control low/high threshold to 1/3 / 2/3 */
2217	val = priv->rx_ring_size / 3;
2218	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2219	val = (priv->rx_ring_size * 2) / 3;
2220	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2221
2222	/* all set, enable mac and interrupts, start dma engine and
2223	 * kick rx dma channel
2224	 */
2225	wmb();
2226	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2227	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2228			 ENETDMAC_CHANCFG, priv->rx_chan);
2229
2230	/* watch "packet transferred" interrupt in rx and tx */
2231	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2232			 ENETDMAC_IR, priv->rx_chan);
2233	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2234			 ENETDMAC_IR, priv->tx_chan);
2235
2236	/* make sure we enable napi before rx interrupt  */
2237	napi_enable(&priv->napi);
2238
2239	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2240			 ENETDMAC_IRMASK, priv->rx_chan);
2241	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2242			 ENETDMAC_IRMASK, priv->tx_chan);
2243
2244	netif_carrier_on(dev);
2245	netif_start_queue(dev);
2246
2247	/* apply override config for bypass_link ports here. */
2248	for (i = 0; i < priv->num_ports; i++) {
2249		struct bcm63xx_enetsw_port *port;
2250		u8 override;
2251		port = &priv->used_ports[i];
2252		if (!port->used)
2253			continue;
2254
2255		if (!port->bypass_link)
2256			continue;
2257
2258		override = ENETSW_PORTOV_ENABLE_MASK |
2259			ENETSW_PORTOV_LINKUP_MASK;
2260
2261		switch (port->force_speed) {
2262		case 1000:
2263			override |= ENETSW_IMPOV_1000_MASK;
2264			break;
2265		case 100:
2266			override |= ENETSW_IMPOV_100_MASK;
2267			break;
2268		case 10:
2269			break;
2270		default:
2271			pr_warn("invalid forced speed on port %s: assume 10\n",
2272			       port->name);
2273			break;
2274		}
2275
2276		if (port->force_duplex_full)
2277			override |= ENETSW_IMPOV_FDX_MASK;
2278
2279
2280		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2281		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2282	}
2283
2284	/* start phy polling timer */
2285	timer_setup(&priv->swphy_poll, swphy_poll_timer, 0);
2286	mod_timer(&priv->swphy_poll, jiffies);
2287	return 0;
2288
2289out:
2290	for (i = 0; i < priv->rx_ring_size; i++) {
2291		struct bcm_enet_desc *desc;
2292
2293		if (!priv->rx_skb[i])
2294			continue;
2295
2296		desc = &priv->rx_desc_cpu[i];
2297		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2298				 DMA_FROM_DEVICE);
2299		kfree_skb(priv->rx_skb[i]);
2300	}
2301	kfree(priv->rx_skb);
2302
2303out_free_tx_skb:
2304	kfree(priv->tx_skb);
2305
2306out_free_tx_ring:
2307	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2308			  priv->tx_desc_cpu, priv->tx_desc_dma);
2309
2310out_free_rx_ring:
2311	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2312			  priv->rx_desc_cpu, priv->rx_desc_dma);
2313
2314out_freeirq_tx:
2315	if (priv->irq_tx != -1)
2316		free_irq(priv->irq_tx, dev);
2317
2318out_freeirq_rx:
2319	free_irq(priv->irq_rx, dev);
2320
2321out_freeirq:
2322	return ret;
2323}
2324
2325/* stop callback */
2326static int bcm_enetsw_stop(struct net_device *dev)
2327{
2328	struct bcm_enet_priv *priv;
2329	struct device *kdev;
2330	int i;
2331
2332	priv = netdev_priv(dev);
2333	kdev = &priv->pdev->dev;
2334
2335	del_timer_sync(&priv->swphy_poll);
2336	netif_stop_queue(dev);
2337	napi_disable(&priv->napi);
2338	del_timer_sync(&priv->rx_timeout);
2339
2340	/* mask all interrupts */
2341	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2342	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2343
2344	/* disable dma & mac */
2345	bcm_enet_disable_dma(priv, priv->tx_chan);
2346	bcm_enet_disable_dma(priv, priv->rx_chan);
2347
2348	/* force reclaim of all tx buffers */
2349	bcm_enet_tx_reclaim(dev, 1);
2350
2351	/* free the rx skb ring */
2352	for (i = 0; i < priv->rx_ring_size; i++) {
2353		struct bcm_enet_desc *desc;
2354
2355		if (!priv->rx_skb[i])
2356			continue;
2357
2358		desc = &priv->rx_desc_cpu[i];
2359		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2360				 DMA_FROM_DEVICE);
2361		kfree_skb(priv->rx_skb[i]);
2362	}
2363
2364	/* free remaining allocated memory */
2365	kfree(priv->rx_skb);
2366	kfree(priv->tx_skb);
2367	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2368			  priv->rx_desc_cpu, priv->rx_desc_dma);
2369	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2370			  priv->tx_desc_cpu, priv->tx_desc_dma);
2371	if (priv->irq_tx != -1)
2372		free_irq(priv->irq_tx, dev);
2373	free_irq(priv->irq_rx, dev);
2374
2375	return 0;
2376}
2377
2378/* try to sort out phy external status by walking the used_port field
2379 * in the bcm_enet_priv structure. in case the phy address is not
2380 * assigned to any physical port on the switch, assume it is external
2381 * (and yell at the user).
2382 */
2383static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2384{
2385	int i;
2386
2387	for (i = 0; i < priv->num_ports; ++i) {
2388		if (!priv->used_ports[i].used)
2389			continue;
2390		if (priv->used_ports[i].phy_id == phy_id)
2391			return bcm_enet_port_is_rgmii(i);
2392	}
2393
2394	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2395		    phy_id);
2396	return 1;
2397}
2398
2399/* can't use bcmenet_sw_mdio_read directly as we need to sort out
2400 * external/internal status of the given phy_id first.
2401 */
2402static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2403				    int location)
2404{
2405	struct bcm_enet_priv *priv;
2406
2407	priv = netdev_priv(dev);
2408	return bcmenet_sw_mdio_read(priv,
2409				    bcm_enetsw_phy_is_external(priv, phy_id),
2410				    phy_id, location);
2411}
2412
2413/* can't use bcmenet_sw_mdio_write directly as we need to sort out
2414 * external/internal status of the given phy_id first.
2415 */
2416static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2417				      int location,
2418				      int val)
2419{
2420	struct bcm_enet_priv *priv;
2421
2422	priv = netdev_priv(dev);
2423	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2424			      phy_id, location, val);
2425}
2426
2427static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2428{
2429	struct mii_if_info mii;
2430
2431	mii.dev = dev;
2432	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2433	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2434	mii.phy_id = 0;
2435	mii.phy_id_mask = 0x3f;
2436	mii.reg_num_mask = 0x1f;
2437	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2438
2439}
2440
2441static const struct net_device_ops bcm_enetsw_ops = {
2442	.ndo_open		= bcm_enetsw_open,
2443	.ndo_stop		= bcm_enetsw_stop,
2444	.ndo_start_xmit		= bcm_enet_start_xmit,
2445	.ndo_change_mtu		= bcm_enet_change_mtu,
2446	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2447};
2448
2449
2450static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2451	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2452	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2453	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2454	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2455	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2456	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2457	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2458	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2459
2460	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2461	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2462	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2463	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2464	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2465	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2466	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2467	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2468	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2469	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2470	  ETHSW_MIB_RX_1024_1522 },
2471	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2472	  ETHSW_MIB_RX_1523_2047 },
2473	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2474	  ETHSW_MIB_RX_2048_4095 },
2475	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2476	  ETHSW_MIB_RX_4096_8191 },
2477	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2478	  ETHSW_MIB_RX_8192_9728 },
2479	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2480	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2481	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2482	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2483	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2484
2485	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2486	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2487	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2488	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2489	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2490	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2491
2492};
2493
2494#define BCM_ENETSW_STATS_LEN	\
2495	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2496
2497static void bcm_enetsw_get_strings(struct net_device *netdev,
2498				   u32 stringset, u8 *data)
2499{
2500	int i;
2501
2502	switch (stringset) {
2503	case ETH_SS_STATS:
2504		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2505			memcpy(data + i * ETH_GSTRING_LEN,
2506			       bcm_enetsw_gstrings_stats[i].stat_string,
2507			       ETH_GSTRING_LEN);
2508		}
2509		break;
2510	}
2511}
2512
2513static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2514				     int string_set)
2515{
2516	switch (string_set) {
2517	case ETH_SS_STATS:
2518		return BCM_ENETSW_STATS_LEN;
2519	default:
2520		return -EINVAL;
2521	}
2522}
2523
2524static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2525				   struct ethtool_drvinfo *drvinfo)
2526{
2527	strncpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
2528	strncpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
2529}
2530
2531static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2532					 struct ethtool_stats *stats,
2533					 u64 *data)
2534{
2535	struct bcm_enet_priv *priv;
2536	int i;
2537
2538	priv = netdev_priv(netdev);
2539
2540	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2541		const struct bcm_enet_stats *s;
2542		u32 lo, hi;
2543		char *p;
2544		int reg;
2545
2546		s = &bcm_enetsw_gstrings_stats[i];
2547
2548		reg = s->mib_reg;
2549		if (reg == -1)
2550			continue;
2551
2552		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2553		p = (char *)priv + s->stat_offset;
2554
2555		if (s->sizeof_stat == sizeof(u64)) {
2556			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2557			*(u64 *)p = ((u64)hi << 32 | lo);
2558		} else {
2559			*(u32 *)p = lo;
2560		}
2561	}
2562
2563	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2564		const struct bcm_enet_stats *s;
2565		char *p;
2566
2567		s = &bcm_enetsw_gstrings_stats[i];
2568
2569		if (s->mib_reg == -1)
2570			p = (char *)&netdev->stats + s->stat_offset;
2571		else
2572			p = (char *)priv + s->stat_offset;
2573
2574		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2575			*(u64 *)p : *(u32 *)p;
2576	}
2577}
2578
2579static void bcm_enetsw_get_ringparam(struct net_device *dev,
2580				     struct ethtool_ringparam *ering)
2581{
2582	struct bcm_enet_priv *priv;
2583
2584	priv = netdev_priv(dev);
2585
2586	/* rx/tx ring is actually only limited by memory */
2587	ering->rx_max_pending = 8192;
2588	ering->tx_max_pending = 8192;
2589	ering->rx_mini_max_pending = 0;
2590	ering->rx_jumbo_max_pending = 0;
2591	ering->rx_pending = priv->rx_ring_size;
2592	ering->tx_pending = priv->tx_ring_size;
2593}
2594
2595static int bcm_enetsw_set_ringparam(struct net_device *dev,
2596				    struct ethtool_ringparam *ering)
2597{
2598	struct bcm_enet_priv *priv;
2599	int was_running;
2600
2601	priv = netdev_priv(dev);
2602
2603	was_running = 0;
2604	if (netif_running(dev)) {
2605		bcm_enetsw_stop(dev);
2606		was_running = 1;
2607	}
2608
2609	priv->rx_ring_size = ering->rx_pending;
2610	priv->tx_ring_size = ering->tx_pending;
2611
2612	if (was_running) {
2613		int err;
2614
2615		err = bcm_enetsw_open(dev);
2616		if (err)
2617			dev_close(dev);
2618	}
2619	return 0;
2620}
2621
2622static const struct ethtool_ops bcm_enetsw_ethtool_ops = {
2623	.get_strings		= bcm_enetsw_get_strings,
2624	.get_sset_count		= bcm_enetsw_get_sset_count,
2625	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2626	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2627	.get_ringparam		= bcm_enetsw_get_ringparam,
2628	.set_ringparam		= bcm_enetsw_set_ringparam,
2629};
2630
2631/* allocate netdevice, request register memory and register device. */
2632static int bcm_enetsw_probe(struct platform_device *pdev)
2633{
2634	struct bcm_enet_priv *priv;
2635	struct net_device *dev;
2636	struct bcm63xx_enetsw_platform_data *pd;
2637	struct resource *res_mem;
2638	int ret, irq_rx, irq_tx;
2639
2640	if (!bcm_enet_shared_base[0])
2641		return -EPROBE_DEFER;
2642
2643	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2644	irq_rx = platform_get_irq(pdev, 0);
2645	irq_tx = platform_get_irq(pdev, 1);
2646	if (!res_mem || irq_rx < 0)
2647		return -ENODEV;
2648
2649	ret = 0;
2650	dev = alloc_etherdev(sizeof(*priv));
2651	if (!dev)
2652		return -ENOMEM;
2653	priv = netdev_priv(dev);
2654
2655	/* initialize default and fetch platform data */
2656	priv->enet_is_sw = true;
2657	priv->irq_rx = irq_rx;
2658	priv->irq_tx = irq_tx;
2659	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2660	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2661	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2662
2663	pd = dev_get_platdata(&pdev->dev);
2664	if (pd) {
2665		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2666		memcpy(priv->used_ports, pd->used_ports,
2667		       sizeof(pd->used_ports));
2668		priv->num_ports = pd->num_ports;
2669		priv->dma_has_sram = pd->dma_has_sram;
2670		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2671		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2672		priv->dma_chan_width = pd->dma_chan_width;
2673	}
2674
2675	ret = bcm_enet_change_mtu(dev, dev->mtu);
2676	if (ret)
2677		goto out;
2678
2679	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
2680	if (IS_ERR(priv->base)) {
2681		ret = PTR_ERR(priv->base);
2682		goto out;
2683	}
2684
2685	priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw");
2686	if (IS_ERR(priv->mac_clk)) {
2687		ret = PTR_ERR(priv->mac_clk);
2688		goto out;
2689	}
2690	ret = clk_prepare_enable(priv->mac_clk);
2691	if (ret)
2692		goto out;
2693
2694	priv->rx_chan = 0;
2695	priv->tx_chan = 1;
2696	spin_lock_init(&priv->rx_lock);
2697
2698	/* init rx timeout (used for oom) */
2699	timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
2700
2701	/* register netdevice */
2702	dev->netdev_ops = &bcm_enetsw_ops;
2703	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2704	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2705	SET_NETDEV_DEV(dev, &pdev->dev);
2706
2707	spin_lock_init(&priv->enetsw_mdio_lock);
2708
2709	ret = register_netdev(dev);
2710	if (ret)
2711		goto out_disable_clk;
2712
2713	netif_carrier_off(dev);
2714	platform_set_drvdata(pdev, dev);
2715	priv->pdev = pdev;
2716	priv->net_dev = dev;
2717
2718	return 0;
2719
2720out_disable_clk:
2721	clk_disable_unprepare(priv->mac_clk);
2722out:
2723	free_netdev(dev);
2724	return ret;
2725}
2726
2727
2728/* exit func, stops hardware and unregisters netdevice */
2729static int bcm_enetsw_remove(struct platform_device *pdev)
2730{
2731	struct bcm_enet_priv *priv;
2732	struct net_device *dev;
2733
2734	/* stop netdevice */
2735	dev = platform_get_drvdata(pdev);
2736	priv = netdev_priv(dev);
2737	unregister_netdev(dev);
2738
2739	clk_disable_unprepare(priv->mac_clk);
2740
2741	free_netdev(dev);
2742	return 0;
2743}
2744
2745struct platform_driver bcm63xx_enetsw_driver = {
2746	.probe	= bcm_enetsw_probe,
2747	.remove	= bcm_enetsw_remove,
2748	.driver	= {
2749		.name	= "bcm63xx_enetsw",
2750		.owner  = THIS_MODULE,
2751	},
2752};
2753
2754/* reserve & remap memory space shared between all macs */
2755static int bcm_enet_shared_probe(struct platform_device *pdev)
2756{
2757	void __iomem *p[3];
2758	unsigned int i;
2759
2760	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2761
2762	for (i = 0; i < 3; i++) {
2763		p[i] = devm_platform_ioremap_resource(pdev, i);
2764		if (IS_ERR(p[i]))
2765			return PTR_ERR(p[i]);
2766	}
2767
2768	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2769
2770	return 0;
2771}
2772
2773static int bcm_enet_shared_remove(struct platform_device *pdev)
2774{
2775	return 0;
2776}
2777
2778/* this "shared" driver is needed because both macs share a single
2779 * address space
2780 */
2781struct platform_driver bcm63xx_enet_shared_driver = {
2782	.probe	= bcm_enet_shared_probe,
2783	.remove	= bcm_enet_shared_remove,
2784	.driver	= {
2785		.name	= "bcm63xx_enet_shared",
2786		.owner  = THIS_MODULE,
2787	},
2788};
2789
2790static struct platform_driver * const drivers[] = {
2791	&bcm63xx_enet_shared_driver,
2792	&bcm63xx_enet_driver,
2793	&bcm63xx_enetsw_driver,
2794};
2795
2796/* entry point */
2797static int __init bcm_enet_init(void)
2798{
2799	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2800}
2801
2802static void __exit bcm_enet_exit(void)
2803{
2804	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2805}
2806
2807
2808module_init(bcm_enet_init);
2809module_exit(bcm_enet_exit);
2810
2811MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2812MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2813MODULE_LICENSE("GPL");
2814