1/*
2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3 *
4 *  This file is free software: you may copy, redistribute and/or modify it
5 *  under the terms of the GNU General Public License as published by the
6 *  Free Software Foundation, either version 2 of the License, or (at your
7 *  option) any later version.
8 *
9 *  This file is distributed in the hope that it will be useful, but
10 *  WITHOUT ANY WARRANTY; without even the implied warranty of
11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12 *  General Public License for more details.
13 *
14 *  You should have received a copy of the GNU General Public License
15 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16 *
17 * This file incorporates work covered by the following copyright and
18 * permission notice:
19 *
20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
21 *
22 * Permission to use, copy, modify, and/or distribute this software for any
23 * purpose with or without fee is hereby granted, provided that the above
24 * copyright notice and this permission notice appear in all copies.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33 */
34
35#include <linux/module.h>
36#include <linux/pci.h>
37#include <linux/interrupt.h>
38#include <linux/ip.h>
39#include <linux/ipv6.h>
40#include <linux/if_vlan.h>
41#include <linux/mdio.h>
42#include <linux/aer.h>
43#include <linux/bitops.h>
44#include <linux/netdevice.h>
45#include <linux/etherdevice.h>
46#include <net/ip6_checksum.h>
47#include <linux/crc32.h>
48#include "alx.h"
49#include "hw.h"
50#include "reg.h"
51
52static const char alx_drv_name[] = "alx";
53
54static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
55{
56	struct alx_buffer *txb = &txq->bufs[entry];
57
58	if (dma_unmap_len(txb, size)) {
59		dma_unmap_single(txq->dev,
60				 dma_unmap_addr(txb, dma),
61				 dma_unmap_len(txb, size),
62				 DMA_TO_DEVICE);
63		dma_unmap_len_set(txb, size, 0);
64	}
65
66	if (txb->skb) {
67		dev_kfree_skb_any(txb->skb);
68		txb->skb = NULL;
69	}
70}
71
72static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
73{
74	struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
75	struct sk_buff *skb;
76	struct alx_buffer *cur_buf;
77	dma_addr_t dma;
78	u16 cur, next, count = 0;
79
80	next = cur = rxq->write_idx;
81	if (++next == alx->rx_ringsz)
82		next = 0;
83	cur_buf = &rxq->bufs[cur];
84
85	while (!cur_buf->skb && next != rxq->read_idx) {
86		struct alx_rfd *rfd = &rxq->rfd[cur];
87
88		/*
89		 * When DMA RX address is set to something like
90		 * 0x....fc0, it will be very likely to cause DMA
91		 * RFD overflow issue.
92		 *
93		 * To work around it, we apply rx skb with 64 bytes
94		 * longer space, and offset the address whenever
95		 * 0x....fc0 is detected.
96		 */
97		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
98		if (!skb)
99			break;
100
101		if (((unsigned long)skb->data & 0xfff) == 0xfc0)
102			skb_reserve(skb, 64);
103
104		dma = dma_map_single(&alx->hw.pdev->dev,
105				     skb->data, alx->rxbuf_size,
106				     DMA_FROM_DEVICE);
107		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
108			dev_kfree_skb(skb);
109			break;
110		}
111
112		/* Unfortunately, RX descriptor buffers must be 4-byte
113		 * aligned, so we can't use IP alignment.
114		 */
115		if (WARN_ON(dma & 3)) {
116			dev_kfree_skb(skb);
117			break;
118		}
119
120		cur_buf->skb = skb;
121		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
122		dma_unmap_addr_set(cur_buf, dma, dma);
123		rfd->addr = cpu_to_le64(dma);
124
125		cur = next;
126		if (++next == alx->rx_ringsz)
127			next = 0;
128		cur_buf = &rxq->bufs[cur];
129		count++;
130	}
131
132	if (count) {
133		/* flush all updates before updating hardware */
134		wmb();
135		rxq->write_idx = cur;
136		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
137	}
138
139	return count;
140}
141
142static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
143						 struct sk_buff *skb)
144{
145	unsigned int r_idx = skb->queue_mapping;
146
147	if (r_idx >= alx->num_txq)
148		r_idx = r_idx % alx->num_txq;
149
150	return alx->qnapi[r_idx]->txq;
151}
152
153static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
154{
155	return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
156}
157
158static inline int alx_tpd_avail(struct alx_tx_queue *txq)
159{
160	if (txq->write_idx >= txq->read_idx)
161		return txq->count + txq->read_idx - txq->write_idx - 1;
162	return txq->read_idx - txq->write_idx - 1;
163}
164
165static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
166{
167	struct alx_priv *alx;
168	struct netdev_queue *tx_queue;
169	u16 hw_read_idx, sw_read_idx;
170	unsigned int total_bytes = 0, total_packets = 0;
171	int budget = ALX_DEFAULT_TX_WORK;
172
173	alx = netdev_priv(txq->netdev);
174	tx_queue = alx_get_tx_queue(txq);
175
176	sw_read_idx = txq->read_idx;
177	hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
178
179	if (sw_read_idx != hw_read_idx) {
180		while (sw_read_idx != hw_read_idx && budget > 0) {
181			struct sk_buff *skb;
182
183			skb = txq->bufs[sw_read_idx].skb;
184			if (skb) {
185				total_bytes += skb->len;
186				total_packets++;
187				budget--;
188			}
189
190			alx_free_txbuf(txq, sw_read_idx);
191
192			if (++sw_read_idx == txq->count)
193				sw_read_idx = 0;
194		}
195		txq->read_idx = sw_read_idx;
196
197		netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
198	}
199
200	if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
201	    alx_tpd_avail(txq) > txq->count / 4)
202		netif_tx_wake_queue(tx_queue);
203
204	return sw_read_idx == hw_read_idx;
205}
206
207static void alx_schedule_link_check(struct alx_priv *alx)
208{
209	schedule_work(&alx->link_check_wk);
210}
211
212static void alx_schedule_reset(struct alx_priv *alx)
213{
214	schedule_work(&alx->reset_wk);
215}
216
217static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
218{
219	struct alx_priv *alx;
220	struct alx_rrd *rrd;
221	struct alx_buffer *rxb;
222	struct sk_buff *skb;
223	u16 length, rfd_cleaned = 0;
224	int work = 0;
225
226	alx = netdev_priv(rxq->netdev);
227
228	while (work < budget) {
229		rrd = &rxq->rrd[rxq->rrd_read_idx];
230		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
231			break;
232		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
233
234		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
235				  RRD_SI) != rxq->read_idx ||
236		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
237				  RRD_NOR) != 1) {
238			alx_schedule_reset(alx);
239			return work;
240		}
241
242		rxb = &rxq->bufs[rxq->read_idx];
243		dma_unmap_single(rxq->dev,
244				 dma_unmap_addr(rxb, dma),
245				 dma_unmap_len(rxb, size),
246				 DMA_FROM_DEVICE);
247		dma_unmap_len_set(rxb, size, 0);
248		skb = rxb->skb;
249		rxb->skb = NULL;
250
251		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
252		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
253			rrd->word3 = 0;
254			dev_kfree_skb_any(skb);
255			goto next_pkt;
256		}
257
258		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
259				       RRD_PKTLEN) - ETH_FCS_LEN;
260		skb_put(skb, length);
261		skb->protocol = eth_type_trans(skb, rxq->netdev);
262
263		skb_checksum_none_assert(skb);
264		if (alx->dev->features & NETIF_F_RXCSUM &&
265		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
266				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
267			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
268					      RRD_PID)) {
269			case RRD_PID_IPV6UDP:
270			case RRD_PID_IPV4UDP:
271			case RRD_PID_IPV4TCP:
272			case RRD_PID_IPV6TCP:
273				skb->ip_summed = CHECKSUM_UNNECESSARY;
274				break;
275			}
276		}
277
278		napi_gro_receive(&rxq->np->napi, skb);
279		work++;
280
281next_pkt:
282		if (++rxq->read_idx == rxq->count)
283			rxq->read_idx = 0;
284		if (++rxq->rrd_read_idx == rxq->count)
285			rxq->rrd_read_idx = 0;
286
287		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
288			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
289	}
290
291	if (rfd_cleaned)
292		alx_refill_rx_ring(alx, GFP_ATOMIC);
293
294	return work;
295}
296
297static int alx_poll(struct napi_struct *napi, int budget)
298{
299	struct alx_napi *np = container_of(napi, struct alx_napi, napi);
300	struct alx_priv *alx = np->alx;
301	struct alx_hw *hw = &alx->hw;
302	unsigned long flags;
303	bool tx_complete = true;
304	int work = 0;
305
306	if (np->txq)
307		tx_complete = alx_clean_tx_irq(np->txq);
308	if (np->rxq)
309		work = alx_clean_rx_irq(np->rxq, budget);
310
311	if (!tx_complete || work == budget)
312		return budget;
313
314	napi_complete_done(&np->napi, work);
315
316	/* enable interrupt */
317	if (alx->hw.pdev->msix_enabled) {
318		alx_mask_msix(hw, np->vec_idx, false);
319	} else {
320		spin_lock_irqsave(&alx->irq_lock, flags);
321		alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
322		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
323		spin_unlock_irqrestore(&alx->irq_lock, flags);
324	}
325
326	alx_post_write(hw);
327
328	return work;
329}
330
331static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
332{
333	struct alx_hw *hw = &alx->hw;
334
335	if (intr & ALX_ISR_FATAL) {
336		netif_warn(alx, hw, alx->dev,
337			   "fatal interrupt 0x%x, resetting\n", intr);
338		alx_schedule_reset(alx);
339		return true;
340	}
341
342	if (intr & ALX_ISR_ALERT)
343		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
344
345	if (intr & ALX_ISR_PHY) {
346		/* suppress PHY interrupt, because the source
347		 * is from PHY internal. only the internal status
348		 * is cleared, the interrupt status could be cleared.
349		 */
350		alx->int_mask &= ~ALX_ISR_PHY;
351		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
352		alx_schedule_link_check(alx);
353	}
354
355	return false;
356}
357
358static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
359{
360	struct alx_hw *hw = &alx->hw;
361
362	spin_lock(&alx->irq_lock);
363
364	/* ACK interrupt */
365	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
366	intr &= alx->int_mask;
367
368	if (alx_intr_handle_misc(alx, intr))
369		goto out;
370
371	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
372		napi_schedule(&alx->qnapi[0]->napi);
373		/* mask rx/tx interrupt, enable them when napi complete */
374		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
375		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
376	}
377
378	alx_write_mem32(hw, ALX_ISR, 0);
379
380 out:
381	spin_unlock(&alx->irq_lock);
382	return IRQ_HANDLED;
383}
384
385static irqreturn_t alx_intr_msix_ring(int irq, void *data)
386{
387	struct alx_napi *np = data;
388	struct alx_hw *hw = &np->alx->hw;
389
390	/* mask interrupt to ACK chip */
391	alx_mask_msix(hw, np->vec_idx, true);
392	/* clear interrupt status */
393	alx_write_mem32(hw, ALX_ISR, np->vec_mask);
394
395	napi_schedule(&np->napi);
396
397	return IRQ_HANDLED;
398}
399
400static irqreturn_t alx_intr_msix_misc(int irq, void *data)
401{
402	struct alx_priv *alx = data;
403	struct alx_hw *hw = &alx->hw;
404	u32 intr;
405
406	/* mask interrupt to ACK chip */
407	alx_mask_msix(hw, 0, true);
408
409	/* read interrupt status */
410	intr = alx_read_mem32(hw, ALX_ISR);
411	intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
412
413	if (alx_intr_handle_misc(alx, intr))
414		return IRQ_HANDLED;
415
416	/* clear interrupt status */
417	alx_write_mem32(hw, ALX_ISR, intr);
418
419	/* enable interrupt again */
420	alx_mask_msix(hw, 0, false);
421
422	return IRQ_HANDLED;
423}
424
425static irqreturn_t alx_intr_msi(int irq, void *data)
426{
427	struct alx_priv *alx = data;
428
429	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
430}
431
432static irqreturn_t alx_intr_legacy(int irq, void *data)
433{
434	struct alx_priv *alx = data;
435	struct alx_hw *hw = &alx->hw;
436	u32 intr;
437
438	intr = alx_read_mem32(hw, ALX_ISR);
439
440	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
441		return IRQ_NONE;
442
443	return alx_intr_handle(alx, intr);
444}
445
446static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
447					ALX_TPD_PRI1_ADDR_LO,
448					ALX_TPD_PRI2_ADDR_LO,
449					ALX_TPD_PRI3_ADDR_LO};
450
451static void alx_init_ring_ptrs(struct alx_priv *alx)
452{
453	struct alx_hw *hw = &alx->hw;
454	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
455	struct alx_napi *np;
456	int i;
457
458	for (i = 0; i < alx->num_napi; i++) {
459		np = alx->qnapi[i];
460		if (np->txq) {
461			np->txq->read_idx = 0;
462			np->txq->write_idx = 0;
463			alx_write_mem32(hw,
464					txring_header_reg[np->txq->queue_idx],
465					np->txq->tpd_dma);
466		}
467
468		if (np->rxq) {
469			np->rxq->read_idx = 0;
470			np->rxq->write_idx = 0;
471			np->rxq->rrd_read_idx = 0;
472			alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
473			alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
474		}
475	}
476
477	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
478	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
479
480	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
481	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
482	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
483	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
484
485	/* load these pointers into the chip */
486	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
487}
488
489static void alx_free_txring_buf(struct alx_tx_queue *txq)
490{
491	int i;
492
493	if (!txq->bufs)
494		return;
495
496	for (i = 0; i < txq->count; i++)
497		alx_free_txbuf(txq, i);
498
499	memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
500	memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
501	txq->write_idx = 0;
502	txq->read_idx = 0;
503
504	netdev_tx_reset_queue(alx_get_tx_queue(txq));
505}
506
507static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
508{
509	struct alx_buffer *cur_buf;
510	u16 i;
511
512	if (!rxq->bufs)
513		return;
514
515	for (i = 0; i < rxq->count; i++) {
516		cur_buf = rxq->bufs + i;
517		if (cur_buf->skb) {
518			dma_unmap_single(rxq->dev,
519					 dma_unmap_addr(cur_buf, dma),
520					 dma_unmap_len(cur_buf, size),
521					 DMA_FROM_DEVICE);
522			dev_kfree_skb(cur_buf->skb);
523			cur_buf->skb = NULL;
524			dma_unmap_len_set(cur_buf, size, 0);
525			dma_unmap_addr_set(cur_buf, dma, 0);
526		}
527	}
528
529	rxq->write_idx = 0;
530	rxq->read_idx = 0;
531	rxq->rrd_read_idx = 0;
532}
533
534static void alx_free_buffers(struct alx_priv *alx)
535{
536	int i;
537
538	for (i = 0; i < alx->num_txq; i++)
539		if (alx->qnapi[i] && alx->qnapi[i]->txq)
540			alx_free_txring_buf(alx->qnapi[i]->txq);
541
542	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
543		alx_free_rxring_buf(alx->qnapi[0]->rxq);
544}
545
546static int alx_reinit_rings(struct alx_priv *alx)
547{
548	alx_free_buffers(alx);
549
550	alx_init_ring_ptrs(alx);
551
552	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
553		return -ENOMEM;
554
555	return 0;
556}
557
558static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
559{
560	u32 crc32, bit, reg;
561
562	crc32 = ether_crc(ETH_ALEN, addr);
563	reg = (crc32 >> 31) & 0x1;
564	bit = (crc32 >> 26) & 0x1F;
565
566	mc_hash[reg] |= BIT(bit);
567}
568
569static void __alx_set_rx_mode(struct net_device *netdev)
570{
571	struct alx_priv *alx = netdev_priv(netdev);
572	struct alx_hw *hw = &alx->hw;
573	struct netdev_hw_addr *ha;
574	u32 mc_hash[2] = {};
575
576	if (!(netdev->flags & IFF_ALLMULTI)) {
577		netdev_for_each_mc_addr(ha, netdev)
578			alx_add_mc_addr(hw, ha->addr, mc_hash);
579
580		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
581		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
582	}
583
584	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
585	if (netdev->flags & IFF_PROMISC)
586		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
587	if (netdev->flags & IFF_ALLMULTI)
588		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
589
590	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
591}
592
593static void alx_set_rx_mode(struct net_device *netdev)
594{
595	__alx_set_rx_mode(netdev);
596}
597
598static int alx_set_mac_address(struct net_device *netdev, void *data)
599{
600	struct alx_priv *alx = netdev_priv(netdev);
601	struct alx_hw *hw = &alx->hw;
602	struct sockaddr *addr = data;
603
604	if (!is_valid_ether_addr(addr->sa_data))
605		return -EADDRNOTAVAIL;
606
607	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
608		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
609
610	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
611	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
612	alx_set_macaddr(hw, hw->mac_addr);
613
614	return 0;
615}
616
617static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
618			     int offset)
619{
620	txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
621	if (!txq->bufs)
622		return -ENOMEM;
623
624	txq->tpd = alx->descmem.virt + offset;
625	txq->tpd_dma = alx->descmem.dma + offset;
626	offset += sizeof(struct alx_txd) * txq->count;
627
628	return offset;
629}
630
631static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
632			     int offset)
633{
634	rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
635	if (!rxq->bufs)
636		return -ENOMEM;
637
638	rxq->rrd = alx->descmem.virt + offset;
639	rxq->rrd_dma = alx->descmem.dma + offset;
640	offset += sizeof(struct alx_rrd) * rxq->count;
641
642	rxq->rfd = alx->descmem.virt + offset;
643	rxq->rfd_dma = alx->descmem.dma + offset;
644	offset += sizeof(struct alx_rfd) * rxq->count;
645
646	return offset;
647}
648
649static int alx_alloc_rings(struct alx_priv *alx)
650{
651	int i, offset = 0;
652
653	/* physical tx/rx ring descriptors
654	 *
655	 * Allocate them as a single chunk because they must not cross a
656	 * 4G boundary (hardware has a single register for high 32 bits
657	 * of addresses only)
658	 */
659	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
660			    alx->num_txq +
661			    sizeof(struct alx_rrd) * alx->rx_ringsz +
662			    sizeof(struct alx_rfd) * alx->rx_ringsz;
663	alx->descmem.virt = dma_alloc_coherent(&alx->hw.pdev->dev,
664					       alx->descmem.size,
665					       &alx->descmem.dma, GFP_KERNEL);
666	if (!alx->descmem.virt)
667		return -ENOMEM;
668
669	/* alignment requirements */
670	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
671	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
672
673	for (i = 0; i < alx->num_txq; i++) {
674		offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
675		if (offset < 0) {
676			netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
677			return -ENOMEM;
678		}
679	}
680
681	offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
682	if (offset < 0) {
683		netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
684		return -ENOMEM;
685	}
686
687	return 0;
688}
689
690static void alx_free_rings(struct alx_priv *alx)
691{
692	int i;
693
694	alx_free_buffers(alx);
695
696	for (i = 0; i < alx->num_txq; i++)
697		if (alx->qnapi[i] && alx->qnapi[i]->txq)
698			kfree(alx->qnapi[i]->txq->bufs);
699
700	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
701		kfree(alx->qnapi[0]->rxq->bufs);
702
703	if (alx->descmem.virt)
704		dma_free_coherent(&alx->hw.pdev->dev,
705				  alx->descmem.size,
706				  alx->descmem.virt,
707				  alx->descmem.dma);
708}
709
710static void alx_free_napis(struct alx_priv *alx)
711{
712	struct alx_napi *np;
713	int i;
714
715	for (i = 0; i < alx->num_napi; i++) {
716		np = alx->qnapi[i];
717		if (!np)
718			continue;
719
720		netif_napi_del(&np->napi);
721		kfree(np->txq);
722		kfree(np->rxq);
723		kfree(np);
724		alx->qnapi[i] = NULL;
725	}
726}
727
728static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
729				  ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
730static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
731				  ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
732static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
733				   ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
734static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
735				   ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
736				   ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
737				   ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
738
739static int alx_alloc_napis(struct alx_priv *alx)
740{
741	struct alx_napi *np;
742	struct alx_rx_queue *rxq;
743	struct alx_tx_queue *txq;
744	int i;
745
746	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
747
748	/* allocate alx_napi structures */
749	for (i = 0; i < alx->num_napi; i++) {
750		np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
751		if (!np)
752			goto err_out;
753
754		np->alx = alx;
755		netif_napi_add(alx->dev, &np->napi, alx_poll, 64);
756		alx->qnapi[i] = np;
757	}
758
759	/* allocate tx queues */
760	for (i = 0; i < alx->num_txq; i++) {
761		np = alx->qnapi[i];
762		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
763		if (!txq)
764			goto err_out;
765
766		np->txq = txq;
767		txq->p_reg = tx_pidx_reg[i];
768		txq->c_reg = tx_cidx_reg[i];
769		txq->queue_idx = i;
770		txq->count = alx->tx_ringsz;
771		txq->netdev = alx->dev;
772		txq->dev = &alx->hw.pdev->dev;
773		np->vec_mask |= tx_vect_mask[i];
774		alx->int_mask |= tx_vect_mask[i];
775	}
776
777	/* allocate rx queues */
778	np = alx->qnapi[0];
779	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
780	if (!rxq)
781		goto err_out;
782
783	np->rxq = rxq;
784	rxq->np = alx->qnapi[0];
785	rxq->queue_idx = 0;
786	rxq->count = alx->rx_ringsz;
787	rxq->netdev = alx->dev;
788	rxq->dev = &alx->hw.pdev->dev;
789	np->vec_mask |= rx_vect_mask[0];
790	alx->int_mask |= rx_vect_mask[0];
791
792	return 0;
793
794err_out:
795	netdev_err(alx->dev, "error allocating internal structures\n");
796	alx_free_napis(alx);
797	return -ENOMEM;
798}
799
800static const int txq_vec_mapping_shift[] = {
801	0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
802	0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
803	1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
804	1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
805};
806
807static void alx_config_vector_mapping(struct alx_priv *alx)
808{
809	struct alx_hw *hw = &alx->hw;
810	u32 tbl[2] = {0, 0};
811	int i, vector, idx, shift;
812
813	if (alx->hw.pdev->msix_enabled) {
814		/* tx mappings */
815		for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
816			idx = txq_vec_mapping_shift[i * 2];
817			shift = txq_vec_mapping_shift[i * 2 + 1];
818			tbl[idx] |= vector << shift;
819		}
820
821		/* rx mapping */
822		tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
823	}
824
825	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
826	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
827	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
828}
829
830static int alx_enable_msix(struct alx_priv *alx)
831{
832	int err, num_vec, num_txq, num_rxq;
833
834	num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
835	num_rxq = 1;
836	num_vec = max_t(int, num_txq, num_rxq) + 1;
837
838	err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
839			PCI_IRQ_MSIX);
840	if (err < 0) {
841		netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
842		return err;
843	}
844
845	alx->num_vec = num_vec;
846	alx->num_napi = num_vec - 1;
847	alx->num_txq = num_txq;
848	alx->num_rxq = num_rxq;
849
850	return err;
851}
852
853static int alx_request_msix(struct alx_priv *alx)
854{
855	struct net_device *netdev = alx->dev;
856	int i, err, vector = 0, free_vector = 0;
857
858	err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
859			  0, netdev->name, alx);
860	if (err)
861		goto out_err;
862
863	for (i = 0; i < alx->num_napi; i++) {
864		struct alx_napi *np = alx->qnapi[i];
865
866		vector++;
867
868		if (np->txq && np->rxq)
869			sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
870				np->txq->queue_idx);
871		else if (np->txq)
872			sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
873				np->txq->queue_idx);
874		else if (np->rxq)
875			sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
876				np->rxq->queue_idx);
877		else
878			sprintf(np->irq_lbl, "%s-unused", netdev->name);
879
880		np->vec_idx = vector;
881		err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
882				  alx_intr_msix_ring, 0, np->irq_lbl, np);
883		if (err)
884			goto out_free;
885	}
886	return 0;
887
888out_free:
889	free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
890
891	vector--;
892	for (i = 0; i < vector; i++)
893		free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
894			 alx->qnapi[i]);
895
896out_err:
897	return err;
898}
899
900static int alx_init_intr(struct alx_priv *alx)
901{
902	int ret;
903
904	ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
905			PCI_IRQ_MSI | PCI_IRQ_LEGACY);
906	if (ret < 0)
907		return ret;
908
909	alx->num_vec = 1;
910	alx->num_napi = 1;
911	alx->num_txq = 1;
912	alx->num_rxq = 1;
913	return 0;
914}
915
916static void alx_irq_enable(struct alx_priv *alx)
917{
918	struct alx_hw *hw = &alx->hw;
919	int i;
920
921	/* level-1 interrupt switch */
922	alx_write_mem32(hw, ALX_ISR, 0);
923	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
924	alx_post_write(hw);
925
926	if (alx->hw.pdev->msix_enabled) {
927		/* enable all msix irqs */
928		for (i = 0; i < alx->num_vec; i++)
929			alx_mask_msix(hw, i, false);
930	}
931}
932
933static void alx_irq_disable(struct alx_priv *alx)
934{
935	struct alx_hw *hw = &alx->hw;
936	int i;
937
938	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
939	alx_write_mem32(hw, ALX_IMR, 0);
940	alx_post_write(hw);
941
942	if (alx->hw.pdev->msix_enabled) {
943		for (i = 0; i < alx->num_vec; i++) {
944			alx_mask_msix(hw, i, true);
945			synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
946		}
947	} else {
948		synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
949	}
950}
951
952static int alx_realloc_resources(struct alx_priv *alx)
953{
954	int err;
955
956	alx_free_rings(alx);
957	alx_free_napis(alx);
958	pci_free_irq_vectors(alx->hw.pdev);
959
960	err = alx_init_intr(alx);
961	if (err)
962		return err;
963
964	err = alx_alloc_napis(alx);
965	if (err)
966		return err;
967
968	err = alx_alloc_rings(alx);
969	if (err)
970		return err;
971
972	return 0;
973}
974
975static int alx_request_irq(struct alx_priv *alx)
976{
977	struct pci_dev *pdev = alx->hw.pdev;
978	struct alx_hw *hw = &alx->hw;
979	int err;
980	u32 msi_ctrl;
981
982	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
983
984	if (alx->hw.pdev->msix_enabled) {
985		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
986		err = alx_request_msix(alx);
987		if (!err)
988			goto out;
989
990		/* msix request failed, realloc resources */
991		err = alx_realloc_resources(alx);
992		if (err)
993			goto out;
994	}
995
996	if (alx->hw.pdev->msi_enabled) {
997		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
998				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
999		err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
1000				  alx->dev->name, alx);
1001		if (!err)
1002			goto out;
1003
1004		/* fall back to legacy interrupt */
1005		pci_free_irq_vectors(alx->hw.pdev);
1006	}
1007
1008	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1009	err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
1010			  alx->dev->name, alx);
1011out:
1012	if (!err)
1013		alx_config_vector_mapping(alx);
1014	else
1015		netdev_err(alx->dev, "IRQ registration failed!\n");
1016	return err;
1017}
1018
1019static void alx_free_irq(struct alx_priv *alx)
1020{
1021	struct pci_dev *pdev = alx->hw.pdev;
1022	int i;
1023
1024	free_irq(pci_irq_vector(pdev, 0), alx);
1025	if (alx->hw.pdev->msix_enabled) {
1026		for (i = 0; i < alx->num_napi; i++)
1027			free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
1028	}
1029
1030	pci_free_irq_vectors(pdev);
1031}
1032
1033static int alx_identify_hw(struct alx_priv *alx)
1034{
1035	struct alx_hw *hw = &alx->hw;
1036	int rev = alx_hw_revision(hw);
1037
1038	if (rev > ALX_REV_C0)
1039		return -EINVAL;
1040
1041	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1042
1043	return 0;
1044}
1045
1046static int alx_init_sw(struct alx_priv *alx)
1047{
1048	struct pci_dev *pdev = alx->hw.pdev;
1049	struct alx_hw *hw = &alx->hw;
1050	int err;
1051
1052	err = alx_identify_hw(alx);
1053	if (err) {
1054		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1055		return err;
1056	}
1057
1058	alx->hw.lnk_patch =
1059		pdev->device == ALX_DEV_ID_AR8161 &&
1060		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1061		pdev->subsystem_device == 0x0091 &&
1062		pdev->revision == 0;
1063
1064	hw->smb_timer = 400;
1065	hw->mtu = alx->dev->mtu;
1066	alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1067	/* MTU range: 34 - 9256 */
1068	alx->dev->min_mtu = 34;
1069	alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1070	alx->tx_ringsz = 256;
1071	alx->rx_ringsz = 512;
1072	hw->imt = 200;
1073	alx->int_mask = ALX_ISR_MISC;
1074	hw->dma_chnl = hw->max_dma_chnl;
1075	hw->ith_tpd = alx->tx_ringsz / 3;
1076	hw->link_speed = SPEED_UNKNOWN;
1077	hw->duplex = DUPLEX_UNKNOWN;
1078	hw->adv_cfg = ADVERTISED_Autoneg |
1079		      ADVERTISED_10baseT_Half |
1080		      ADVERTISED_10baseT_Full |
1081		      ADVERTISED_100baseT_Full |
1082		      ADVERTISED_100baseT_Half |
1083		      ADVERTISED_1000baseT_Full;
1084	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1085
1086	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1087		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
1088		      ALX_MAC_CTRL_BRD_EN |
1089		      ALX_MAC_CTRL_PCRCE |
1090		      ALX_MAC_CTRL_CRCE |
1091		      ALX_MAC_CTRL_RXFC_EN |
1092		      ALX_MAC_CTRL_TXFC_EN |
1093		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1094
1095	return err;
1096}
1097
1098
1099static netdev_features_t alx_fix_features(struct net_device *netdev,
1100					  netdev_features_t features)
1101{
1102	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1103		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1104
1105	return features;
1106}
1107
1108static void alx_netif_stop(struct alx_priv *alx)
1109{
1110	int i;
1111
1112	netif_trans_update(alx->dev);
1113	if (netif_carrier_ok(alx->dev)) {
1114		netif_carrier_off(alx->dev);
1115		netif_tx_disable(alx->dev);
1116		for (i = 0; i < alx->num_napi; i++)
1117			napi_disable(&alx->qnapi[i]->napi);
1118	}
1119}
1120
1121static void alx_halt(struct alx_priv *alx)
1122{
1123	struct alx_hw *hw = &alx->hw;
1124
1125	alx_netif_stop(alx);
1126	hw->link_speed = SPEED_UNKNOWN;
1127	hw->duplex = DUPLEX_UNKNOWN;
1128
1129	alx_reset_mac(hw);
1130
1131	/* disable l0s/l1 */
1132	alx_enable_aspm(hw, false, false);
1133	alx_irq_disable(alx);
1134	alx_free_buffers(alx);
1135}
1136
1137static void alx_configure(struct alx_priv *alx)
1138{
1139	struct alx_hw *hw = &alx->hw;
1140
1141	alx_configure_basic(hw);
1142	alx_disable_rss(hw);
1143	__alx_set_rx_mode(alx->dev);
1144
1145	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1146}
1147
1148static void alx_activate(struct alx_priv *alx)
1149{
1150	/* hardware setting lost, restore it */
1151	alx_reinit_rings(alx);
1152	alx_configure(alx);
1153
1154	/* clear old interrupts */
1155	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1156
1157	alx_irq_enable(alx);
1158
1159	alx_schedule_link_check(alx);
1160}
1161
1162static void alx_reinit(struct alx_priv *alx)
1163{
1164	ASSERT_RTNL();
1165
1166	alx_halt(alx);
1167	alx_activate(alx);
1168}
1169
1170static int alx_change_mtu(struct net_device *netdev, int mtu)
1171{
1172	struct alx_priv *alx = netdev_priv(netdev);
1173	int max_frame = ALX_MAX_FRAME_LEN(mtu);
1174
1175	netdev->mtu = mtu;
1176	alx->hw.mtu = mtu;
1177	alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1178	netdev_update_features(netdev);
1179	if (netif_running(netdev))
1180		alx_reinit(alx);
1181	return 0;
1182}
1183
1184static void alx_netif_start(struct alx_priv *alx)
1185{
1186	int i;
1187
1188	netif_tx_wake_all_queues(alx->dev);
1189	for (i = 0; i < alx->num_napi; i++)
1190		napi_enable(&alx->qnapi[i]->napi);
1191	netif_carrier_on(alx->dev);
1192}
1193
1194static int __alx_open(struct alx_priv *alx, bool resume)
1195{
1196	int err;
1197
1198	err = alx_enable_msix(alx);
1199	if (err < 0) {
1200		err = alx_init_intr(alx);
1201		if (err)
1202			return err;
1203	}
1204
1205	if (!resume)
1206		netif_carrier_off(alx->dev);
1207
1208	err = alx_alloc_napis(alx);
1209	if (err)
1210		goto out_disable_adv_intr;
1211
1212	err = alx_alloc_rings(alx);
1213	if (err)
1214		goto out_free_rings;
1215
1216	alx_configure(alx);
1217
1218	err = alx_request_irq(alx);
1219	if (err)
1220		goto out_free_rings;
1221
1222	/* must be called after alx_request_irq because the chip stops working
1223	 * if we copy the dma addresses in alx_init_ring_ptrs twice when
1224	 * requesting msi-x interrupts failed
1225	 */
1226	alx_reinit_rings(alx);
1227
1228	netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1229	netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1230
1231	/* clear old interrupts */
1232	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1233
1234	alx_irq_enable(alx);
1235
1236	if (!resume)
1237		netif_tx_start_all_queues(alx->dev);
1238
1239	alx_schedule_link_check(alx);
1240	return 0;
1241
1242out_free_rings:
1243	alx_free_rings(alx);
1244	alx_free_napis(alx);
1245out_disable_adv_intr:
1246	pci_free_irq_vectors(alx->hw.pdev);
1247	return err;
1248}
1249
1250static void __alx_stop(struct alx_priv *alx)
1251{
1252	alx_free_irq(alx);
1253
1254	cancel_work_sync(&alx->link_check_wk);
1255	cancel_work_sync(&alx->reset_wk);
1256
1257	alx_halt(alx);
1258	alx_free_rings(alx);
1259	alx_free_napis(alx);
1260}
1261
1262static const char *alx_speed_desc(struct alx_hw *hw)
1263{
1264	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1265	case ADVERTISED_1000baseT_Full:
1266		return "1 Gbps Full";
1267	case ADVERTISED_100baseT_Full:
1268		return "100 Mbps Full";
1269	case ADVERTISED_100baseT_Half:
1270		return "100 Mbps Half";
1271	case ADVERTISED_10baseT_Full:
1272		return "10 Mbps Full";
1273	case ADVERTISED_10baseT_Half:
1274		return "10 Mbps Half";
1275	default:
1276		return "Unknown speed";
1277	}
1278}
1279
1280static void alx_check_link(struct alx_priv *alx)
1281{
1282	struct alx_hw *hw = &alx->hw;
1283	unsigned long flags;
1284	int old_speed;
1285	int err;
1286
1287	/* clear PHY internal interrupt status, otherwise the main
1288	 * interrupt status will be asserted forever
1289	 */
1290	alx_clear_phy_intr(hw);
1291
1292	old_speed = hw->link_speed;
1293	err = alx_read_phy_link(hw);
1294	if (err < 0)
1295		goto reset;
1296
1297	spin_lock_irqsave(&alx->irq_lock, flags);
1298	alx->int_mask |= ALX_ISR_PHY;
1299	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1300	spin_unlock_irqrestore(&alx->irq_lock, flags);
1301
1302	if (old_speed == hw->link_speed)
1303		return;
1304
1305	if (hw->link_speed != SPEED_UNKNOWN) {
1306		netif_info(alx, link, alx->dev,
1307			   "NIC Up: %s\n", alx_speed_desc(hw));
1308		alx_post_phy_link(hw);
1309		alx_enable_aspm(hw, true, true);
1310		alx_start_mac(hw);
1311
1312		if (old_speed == SPEED_UNKNOWN)
1313			alx_netif_start(alx);
1314	} else {
1315		/* link is now down */
1316		alx_netif_stop(alx);
1317		netif_info(alx, link, alx->dev, "Link Down\n");
1318		err = alx_reset_mac(hw);
1319		if (err)
1320			goto reset;
1321		alx_irq_disable(alx);
1322
1323		/* MAC reset causes all HW settings to be lost, restore all */
1324		err = alx_reinit_rings(alx);
1325		if (err)
1326			goto reset;
1327		alx_configure(alx);
1328		alx_enable_aspm(hw, false, true);
1329		alx_post_phy_link(hw);
1330		alx_irq_enable(alx);
1331	}
1332
1333	return;
1334
1335reset:
1336	alx_schedule_reset(alx);
1337}
1338
1339static int alx_open(struct net_device *netdev)
1340{
1341	return __alx_open(netdev_priv(netdev), false);
1342}
1343
1344static int alx_stop(struct net_device *netdev)
1345{
1346	__alx_stop(netdev_priv(netdev));
1347	return 0;
1348}
1349
1350static void alx_link_check(struct work_struct *work)
1351{
1352	struct alx_priv *alx;
1353
1354	alx = container_of(work, struct alx_priv, link_check_wk);
1355
1356	rtnl_lock();
1357	alx_check_link(alx);
1358	rtnl_unlock();
1359}
1360
1361static void alx_reset(struct work_struct *work)
1362{
1363	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1364
1365	rtnl_lock();
1366	alx_reinit(alx);
1367	rtnl_unlock();
1368}
1369
1370static int alx_tpd_req(struct sk_buff *skb)
1371{
1372	int num;
1373
1374	num = skb_shinfo(skb)->nr_frags + 1;
1375	/* we need one extra descriptor for LSOv2 */
1376	if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1377		num++;
1378
1379	return num;
1380}
1381
1382static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1383{
1384	u8 cso, css;
1385
1386	if (skb->ip_summed != CHECKSUM_PARTIAL)
1387		return 0;
1388
1389	cso = skb_checksum_start_offset(skb);
1390	if (cso & 1)
1391		return -EINVAL;
1392
1393	css = cso + skb->csum_offset;
1394	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1395	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1396	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1397
1398	return 0;
1399}
1400
1401static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1402{
1403	int err;
1404
1405	if (skb->ip_summed != CHECKSUM_PARTIAL)
1406		return 0;
1407
1408	if (!skb_is_gso(skb))
1409		return 0;
1410
1411	err = skb_cow_head(skb, 0);
1412	if (err < 0)
1413		return err;
1414
1415	if (skb->protocol == htons(ETH_P_IP)) {
1416		struct iphdr *iph = ip_hdr(skb);
1417
1418		iph->check = 0;
1419		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1420							 0, IPPROTO_TCP, 0);
1421		first->word1 |= 1 << TPD_IPV4_SHIFT;
1422	} else if (skb_is_gso_v6(skb)) {
1423		tcp_v6_gso_csum_prep(skb);
1424		/* LSOv2: the first TPD only provides the packet length */
1425		first->adrl.l.pkt_len = skb->len;
1426		first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1427	}
1428
1429	first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1430	first->word1 |= (skb_transport_offset(skb) &
1431			 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1432	first->word1 |= (skb_shinfo(skb)->gso_size &
1433			 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1434	return 1;
1435}
1436
1437static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1438{
1439	struct alx_txd *tpd, *first_tpd;
1440	dma_addr_t dma;
1441	int maplen, f, first_idx = txq->write_idx;
1442
1443	first_tpd = &txq->tpd[txq->write_idx];
1444	tpd = first_tpd;
1445
1446	if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1447		if (++txq->write_idx == txq->count)
1448			txq->write_idx = 0;
1449
1450		tpd = &txq->tpd[txq->write_idx];
1451		tpd->len = first_tpd->len;
1452		tpd->vlan_tag = first_tpd->vlan_tag;
1453		tpd->word1 = first_tpd->word1;
1454	}
1455
1456	maplen = skb_headlen(skb);
1457	dma = dma_map_single(txq->dev, skb->data, maplen,
1458			     DMA_TO_DEVICE);
1459	if (dma_mapping_error(txq->dev, dma))
1460		goto err_dma;
1461
1462	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1463	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1464
1465	tpd->adrl.addr = cpu_to_le64(dma);
1466	tpd->len = cpu_to_le16(maplen);
1467
1468	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1469		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1470
1471		if (++txq->write_idx == txq->count)
1472			txq->write_idx = 0;
1473		tpd = &txq->tpd[txq->write_idx];
1474
1475		tpd->word1 = first_tpd->word1;
1476
1477		maplen = skb_frag_size(frag);
1478		dma = skb_frag_dma_map(txq->dev, frag, 0,
1479				       maplen, DMA_TO_DEVICE);
1480		if (dma_mapping_error(txq->dev, dma))
1481			goto err_dma;
1482		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1483		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1484
1485		tpd->adrl.addr = cpu_to_le64(dma);
1486		tpd->len = cpu_to_le16(maplen);
1487	}
1488
1489	/* last TPD, set EOP flag and store skb */
1490	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1491	txq->bufs[txq->write_idx].skb = skb;
1492
1493	if (++txq->write_idx == txq->count)
1494		txq->write_idx = 0;
1495
1496	return 0;
1497
1498err_dma:
1499	f = first_idx;
1500	while (f != txq->write_idx) {
1501		alx_free_txbuf(txq, f);
1502		if (++f == txq->count)
1503			f = 0;
1504	}
1505	return -ENOMEM;
1506}
1507
1508static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1509				       struct alx_tx_queue *txq)
1510{
1511	struct alx_priv *alx;
1512	struct alx_txd *first;
1513	int tso;
1514
1515	alx = netdev_priv(txq->netdev);
1516
1517	if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1518		netif_tx_stop_queue(alx_get_tx_queue(txq));
1519		goto drop;
1520	}
1521
1522	first = &txq->tpd[txq->write_idx];
1523	memset(first, 0, sizeof(*first));
1524
1525	tso = alx_tso(skb, first);
1526	if (tso < 0)
1527		goto drop;
1528	else if (!tso && alx_tx_csum(skb, first))
1529		goto drop;
1530
1531	if (alx_map_tx_skb(txq, skb) < 0)
1532		goto drop;
1533
1534	netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1535
1536	/* flush updates before updating hardware */
1537	wmb();
1538	alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1539
1540	if (alx_tpd_avail(txq) < txq->count / 8)
1541		netif_tx_stop_queue(alx_get_tx_queue(txq));
1542
1543	return NETDEV_TX_OK;
1544
1545drop:
1546	dev_kfree_skb_any(skb);
1547	return NETDEV_TX_OK;
1548}
1549
1550static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1551				  struct net_device *netdev)
1552{
1553	struct alx_priv *alx = netdev_priv(netdev);
1554	return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1555}
1556
1557static void alx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1558{
1559	struct alx_priv *alx = netdev_priv(dev);
1560
1561	alx_schedule_reset(alx);
1562}
1563
1564static int alx_mdio_read(struct net_device *netdev,
1565			 int prtad, int devad, u16 addr)
1566{
1567	struct alx_priv *alx = netdev_priv(netdev);
1568	struct alx_hw *hw = &alx->hw;
1569	u16 val;
1570	int err;
1571
1572	if (prtad != hw->mdio.prtad)
1573		return -EINVAL;
1574
1575	if (devad == MDIO_DEVAD_NONE)
1576		err = alx_read_phy_reg(hw, addr, &val);
1577	else
1578		err = alx_read_phy_ext(hw, devad, addr, &val);
1579
1580	if (err)
1581		return err;
1582	return val;
1583}
1584
1585static int alx_mdio_write(struct net_device *netdev,
1586			  int prtad, int devad, u16 addr, u16 val)
1587{
1588	struct alx_priv *alx = netdev_priv(netdev);
1589	struct alx_hw *hw = &alx->hw;
1590
1591	if (prtad != hw->mdio.prtad)
1592		return -EINVAL;
1593
1594	if (devad == MDIO_DEVAD_NONE)
1595		return alx_write_phy_reg(hw, addr, val);
1596
1597	return alx_write_phy_ext(hw, devad, addr, val);
1598}
1599
1600static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1601{
1602	struct alx_priv *alx = netdev_priv(netdev);
1603
1604	if (!netif_running(netdev))
1605		return -EAGAIN;
1606
1607	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1608}
1609
1610#ifdef CONFIG_NET_POLL_CONTROLLER
1611static void alx_poll_controller(struct net_device *netdev)
1612{
1613	struct alx_priv *alx = netdev_priv(netdev);
1614	int i;
1615
1616	if (alx->hw.pdev->msix_enabled) {
1617		alx_intr_msix_misc(0, alx);
1618		for (i = 0; i < alx->num_txq; i++)
1619			alx_intr_msix_ring(0, alx->qnapi[i]);
1620	} else if (alx->hw.pdev->msi_enabled)
1621		alx_intr_msi(0, alx);
1622	else
1623		alx_intr_legacy(0, alx);
1624}
1625#endif
1626
1627static void alx_get_stats64(struct net_device *dev,
1628			    struct rtnl_link_stats64 *net_stats)
1629{
1630	struct alx_priv *alx = netdev_priv(dev);
1631	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1632
1633	spin_lock(&alx->stats_lock);
1634
1635	alx_update_hw_stats(&alx->hw);
1636
1637	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1638	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1639	net_stats->multicast  = hw_stats->rx_mcast;
1640	net_stats->collisions = hw_stats->tx_single_col +
1641				hw_stats->tx_multi_col +
1642				hw_stats->tx_late_col +
1643				hw_stats->tx_abort_col;
1644
1645	net_stats->rx_errors  = hw_stats->rx_frag +
1646				hw_stats->rx_fcs_err +
1647				hw_stats->rx_len_err +
1648				hw_stats->rx_ov_sz +
1649				hw_stats->rx_ov_rrd +
1650				hw_stats->rx_align_err +
1651				hw_stats->rx_ov_rxf;
1652
1653	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1654	net_stats->rx_length_errors = hw_stats->rx_len_err;
1655	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1656	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1657	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1658
1659	net_stats->tx_errors = hw_stats->tx_late_col +
1660			       hw_stats->tx_abort_col +
1661			       hw_stats->tx_underrun +
1662			       hw_stats->tx_trunc;
1663
1664	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1665	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1666	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1667
1668	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1669	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1670
1671	spin_unlock(&alx->stats_lock);
1672}
1673
1674static const struct net_device_ops alx_netdev_ops = {
1675	.ndo_open               = alx_open,
1676	.ndo_stop               = alx_stop,
1677	.ndo_start_xmit         = alx_start_xmit,
1678	.ndo_get_stats64        = alx_get_stats64,
1679	.ndo_set_rx_mode        = alx_set_rx_mode,
1680	.ndo_validate_addr      = eth_validate_addr,
1681	.ndo_set_mac_address    = alx_set_mac_address,
1682	.ndo_change_mtu         = alx_change_mtu,
1683	.ndo_do_ioctl           = alx_ioctl,
1684	.ndo_tx_timeout         = alx_tx_timeout,
1685	.ndo_fix_features	= alx_fix_features,
1686#ifdef CONFIG_NET_POLL_CONTROLLER
1687	.ndo_poll_controller    = alx_poll_controller,
1688#endif
1689};
1690
1691static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1692{
1693	struct net_device *netdev;
1694	struct alx_priv *alx;
1695	struct alx_hw *hw;
1696	bool phy_configured;
1697	int err;
1698
1699	err = pci_enable_device_mem(pdev);
1700	if (err)
1701		return err;
1702
1703	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1704	 * shared register for the high 32 bits, so only a single, aligned,
1705	 * 4 GB physical address range can be used for descriptors.
1706	 */
1707	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1708		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1709	} else {
1710		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1711		if (err) {
1712			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1713			goto out_pci_disable;
1714		}
1715	}
1716
1717	err = pci_request_mem_regions(pdev, alx_drv_name);
1718	if (err) {
1719		dev_err(&pdev->dev,
1720			"pci_request_mem_regions failed\n");
1721		goto out_pci_disable;
1722	}
1723
1724	pci_enable_pcie_error_reporting(pdev);
1725	pci_set_master(pdev);
1726
1727	if (!pdev->pm_cap) {
1728		dev_err(&pdev->dev,
1729			"Can't find power management capability, aborting\n");
1730		err = -EIO;
1731		goto out_pci_release;
1732	}
1733
1734	netdev = alloc_etherdev_mqs(sizeof(*alx),
1735				    ALX_MAX_TX_QUEUES, 1);
1736	if (!netdev) {
1737		err = -ENOMEM;
1738		goto out_pci_release;
1739	}
1740
1741	SET_NETDEV_DEV(netdev, &pdev->dev);
1742	alx = netdev_priv(netdev);
1743	spin_lock_init(&alx->hw.mdio_lock);
1744	spin_lock_init(&alx->irq_lock);
1745	spin_lock_init(&alx->stats_lock);
1746	alx->dev = netdev;
1747	alx->hw.pdev = pdev;
1748	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1749			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1750	hw = &alx->hw;
1751	pci_set_drvdata(pdev, alx);
1752
1753	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1754	if (!hw->hw_addr) {
1755		dev_err(&pdev->dev, "cannot map device registers\n");
1756		err = -EIO;
1757		goto out_free_netdev;
1758	}
1759
1760	netdev->netdev_ops = &alx_netdev_ops;
1761	netdev->ethtool_ops = &alx_ethtool_ops;
1762	netdev->irq = pci_irq_vector(pdev, 0);
1763	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1764
1765	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1766		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1767
1768	err = alx_init_sw(alx);
1769	if (err) {
1770		dev_err(&pdev->dev, "net device private data init failed\n");
1771		goto out_unmap;
1772	}
1773
1774	alx_reset_pcie(hw);
1775
1776	phy_configured = alx_phy_configured(hw);
1777
1778	if (!phy_configured)
1779		alx_reset_phy(hw);
1780
1781	err = alx_reset_mac(hw);
1782	if (err) {
1783		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1784		goto out_unmap;
1785	}
1786
1787	/* setup link to put it in a known good starting state */
1788	if (!phy_configured) {
1789		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1790		if (err) {
1791			dev_err(&pdev->dev,
1792				"failed to configure PHY speed/duplex (err=%d)\n",
1793				err);
1794			goto out_unmap;
1795		}
1796	}
1797
1798	netdev->hw_features = NETIF_F_SG |
1799			      NETIF_F_HW_CSUM |
1800			      NETIF_F_RXCSUM |
1801			      NETIF_F_TSO |
1802			      NETIF_F_TSO6;
1803
1804	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1805		dev_warn(&pdev->dev,
1806			 "Invalid permanent address programmed, using random one\n");
1807		eth_hw_addr_random(netdev);
1808		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1809	}
1810
1811	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1812	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1813	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1814
1815	hw->mdio.prtad = 0;
1816	hw->mdio.mmds = 0;
1817	hw->mdio.dev = netdev;
1818	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1819				MDIO_SUPPORTS_C22 |
1820				MDIO_EMULATE_C22;
1821	hw->mdio.mdio_read = alx_mdio_read;
1822	hw->mdio.mdio_write = alx_mdio_write;
1823
1824	if (!alx_get_phy_info(hw)) {
1825		dev_err(&pdev->dev, "failed to identify PHY\n");
1826		err = -EIO;
1827		goto out_unmap;
1828	}
1829
1830	INIT_WORK(&alx->link_check_wk, alx_link_check);
1831	INIT_WORK(&alx->reset_wk, alx_reset);
1832	netif_carrier_off(netdev);
1833
1834	err = register_netdev(netdev);
1835	if (err) {
1836		dev_err(&pdev->dev, "register netdevice failed\n");
1837		goto out_unmap;
1838	}
1839
1840	netdev_info(netdev,
1841		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1842		    netdev->dev_addr);
1843
1844	return 0;
1845
1846out_unmap:
1847	iounmap(hw->hw_addr);
1848out_free_netdev:
1849	free_netdev(netdev);
1850out_pci_release:
1851	pci_release_mem_regions(pdev);
1852	pci_disable_pcie_error_reporting(pdev);
1853out_pci_disable:
1854	pci_disable_device(pdev);
1855	return err;
1856}
1857
1858static void alx_remove(struct pci_dev *pdev)
1859{
1860	struct alx_priv *alx = pci_get_drvdata(pdev);
1861	struct alx_hw *hw = &alx->hw;
1862
1863	/* restore permanent mac address */
1864	alx_set_macaddr(hw, hw->perm_addr);
1865
1866	unregister_netdev(alx->dev);
1867	iounmap(hw->hw_addr);
1868	pci_release_mem_regions(pdev);
1869
1870	pci_disable_pcie_error_reporting(pdev);
1871	pci_disable_device(pdev);
1872
1873	free_netdev(alx->dev);
1874}
1875
1876#ifdef CONFIG_PM_SLEEP
1877static int alx_suspend(struct device *dev)
1878{
1879	struct alx_priv *alx = dev_get_drvdata(dev);
1880
1881	if (!netif_running(alx->dev))
1882		return 0;
1883	netif_device_detach(alx->dev);
1884	__alx_stop(alx);
1885	return 0;
1886}
1887
1888static int alx_resume(struct device *dev)
1889{
1890	struct alx_priv *alx = dev_get_drvdata(dev);
1891	struct alx_hw *hw = &alx->hw;
1892	int err;
1893
1894	alx_reset_phy(hw);
1895
1896	if (!netif_running(alx->dev))
1897		return 0;
1898
1899	rtnl_lock();
1900	err = __alx_open(alx, true);
1901	rtnl_unlock();
1902	if (err)
1903		return err;
1904
1905	netif_device_attach(alx->dev);
1906
1907	return 0;
1908}
1909
1910static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1911#define ALX_PM_OPS      (&alx_pm_ops)
1912#else
1913#define ALX_PM_OPS      NULL
1914#endif
1915
1916
1917static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1918					       pci_channel_state_t state)
1919{
1920	struct alx_priv *alx = pci_get_drvdata(pdev);
1921	struct net_device *netdev = alx->dev;
1922	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1923
1924	dev_info(&pdev->dev, "pci error detected\n");
1925
1926	rtnl_lock();
1927
1928	if (netif_running(netdev)) {
1929		netif_device_detach(netdev);
1930		alx_halt(alx);
1931	}
1932
1933	if (state == pci_channel_io_perm_failure)
1934		rc = PCI_ERS_RESULT_DISCONNECT;
1935	else
1936		pci_disable_device(pdev);
1937
1938	rtnl_unlock();
1939
1940	return rc;
1941}
1942
1943static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1944{
1945	struct alx_priv *alx = pci_get_drvdata(pdev);
1946	struct alx_hw *hw = &alx->hw;
1947	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1948
1949	dev_info(&pdev->dev, "pci error slot reset\n");
1950
1951	rtnl_lock();
1952
1953	if (pci_enable_device(pdev)) {
1954		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1955		goto out;
1956	}
1957
1958	pci_set_master(pdev);
1959
1960	alx_reset_pcie(hw);
1961	if (!alx_reset_mac(hw))
1962		rc = PCI_ERS_RESULT_RECOVERED;
1963out:
1964	rtnl_unlock();
1965
1966	return rc;
1967}
1968
1969static void alx_pci_error_resume(struct pci_dev *pdev)
1970{
1971	struct alx_priv *alx = pci_get_drvdata(pdev);
1972	struct net_device *netdev = alx->dev;
1973
1974	dev_info(&pdev->dev, "pci error resume\n");
1975
1976	rtnl_lock();
1977
1978	if (netif_running(netdev)) {
1979		alx_activate(alx);
1980		netif_device_attach(netdev);
1981	}
1982
1983	rtnl_unlock();
1984}
1985
1986static const struct pci_error_handlers alx_err_handlers = {
1987	.error_detected = alx_pci_error_detected,
1988	.slot_reset     = alx_pci_error_slot_reset,
1989	.resume         = alx_pci_error_resume,
1990};
1991
1992static const struct pci_device_id alx_pci_tbl[] = {
1993	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1994	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1995	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1996	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1997	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1998	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1999	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
2000	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2001	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2002	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2003	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2004	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2005	{}
2006};
2007
2008static struct pci_driver alx_driver = {
2009	.name        = alx_drv_name,
2010	.id_table    = alx_pci_tbl,
2011	.probe       = alx_probe,
2012	.remove      = alx_remove,
2013	.err_handler = &alx_err_handlers,
2014	.driver.pm   = ALX_PM_OPS,
2015};
2016
2017module_pci_driver(alx_driver);
2018MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2019MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2020MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
2021MODULE_DESCRIPTION(
2022	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2023MODULE_LICENSE("GPL");
2024