1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Network device driver for the BMAC ethernet controller on
4 * Apple Powermacs.  Assumes it's under a DBDMA controller.
5 *
6 * Copyright (C) 1998 Randy Gobbel.
7 *
8 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
9 * dynamic procfs inode.
10 */
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/netdevice.h>
15#include <linux/etherdevice.h>
16#include <linux/delay.h>
17#include <linux/string.h>
18#include <linux/timer.h>
19#include <linux/proc_fs.h>
20#include <linux/init.h>
21#include <linux/spinlock.h>
22#include <linux/crc32.h>
23#include <linux/crc32poly.h>
24#include <linux/bitrev.h>
25#include <linux/ethtool.h>
26#include <linux/slab.h>
27#include <linux/pgtable.h>
28#include <asm/prom.h>
29#include <asm/dbdma.h>
30#include <asm/io.h>
31#include <asm/page.h>
32#include <asm/machdep.h>
33#include <asm/pmac_feature.h>
34#include <asm/macio.h>
35#include <asm/irq.h>
36
37#include "bmac.h"
38
39#define trunc_page(x)	((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
40#define round_page(x)	trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
41
42/* switch to use multicast code lifted from sunhme driver */
43#define SUNHME_MULTICAST
44
45#define N_RX_RING	64
46#define N_TX_RING	32
47#define MAX_TX_ACTIVE	1
48#define ETHERCRC	4
49#define ETHERMINPACKET	64
50#define ETHERMTU	1500
51#define RX_BUFLEN	(ETHERMTU + 14 + ETHERCRC + 2)
52#define TX_TIMEOUT	HZ	/* 1 second */
53
54/* Bits in transmit DMA status */
55#define TX_DMA_ERR	0x80
56
57#define XXDEBUG(args)
58
59struct bmac_data {
60	/* volatile struct bmac *bmac; */
61	struct sk_buff_head *queue;
62	volatile struct dbdma_regs __iomem *tx_dma;
63	int tx_dma_intr;
64	volatile struct dbdma_regs __iomem *rx_dma;
65	int rx_dma_intr;
66	volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
67	volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
68	struct macio_dev *mdev;
69	int is_bmac_plus;
70	struct sk_buff *rx_bufs[N_RX_RING];
71	int rx_fill;
72	int rx_empty;
73	struct sk_buff *tx_bufs[N_TX_RING];
74	int tx_fill;
75	int tx_empty;
76	unsigned char tx_fullup;
77	struct timer_list tx_timeout;
78	int timeout_active;
79	int sleeping;
80	int opened;
81	unsigned short hash_use_count[64];
82	unsigned short hash_table_mask[4];
83	spinlock_t lock;
84};
85
86#if 0 /* Move that to ethtool */
87
88typedef struct bmac_reg_entry {
89	char *name;
90	unsigned short reg_offset;
91} bmac_reg_entry_t;
92
93#define N_REG_ENTRIES 31
94
95static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
96	{"MEMADD", MEMADD},
97	{"MEMDATAHI", MEMDATAHI},
98	{"MEMDATALO", MEMDATALO},
99	{"TXPNTR", TXPNTR},
100	{"RXPNTR", RXPNTR},
101	{"IPG1", IPG1},
102	{"IPG2", IPG2},
103	{"ALIMIT", ALIMIT},
104	{"SLOT", SLOT},
105	{"PALEN", PALEN},
106	{"PAPAT", PAPAT},
107	{"TXSFD", TXSFD},
108	{"JAM", JAM},
109	{"TXCFG", TXCFG},
110	{"TXMAX", TXMAX},
111	{"TXMIN", TXMIN},
112	{"PAREG", PAREG},
113	{"DCNT", DCNT},
114	{"NCCNT", NCCNT},
115	{"NTCNT", NTCNT},
116	{"EXCNT", EXCNT},
117	{"LTCNT", LTCNT},
118	{"TXSM", TXSM},
119	{"RXCFG", RXCFG},
120	{"RXMAX", RXMAX},
121	{"RXMIN", RXMIN},
122	{"FRCNT", FRCNT},
123	{"AECNT", AECNT},
124	{"FECNT", FECNT},
125	{"RXSM", RXSM},
126	{"RXCV", RXCV}
127};
128
129#endif
130
131static unsigned char *bmac_emergency_rxbuf;
132
133/*
134 * Number of bytes of private data per BMAC: allow enough for
135 * the rx and tx dma commands plus a branch dma command each,
136 * and another 16 bytes to allow us to align the dma command
137 * buffers on a 16 byte boundary.
138 */
139#define PRIV_BYTES	(sizeof(struct bmac_data) \
140	+ (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
141	+ sizeof(struct sk_buff_head))
142
143static int bmac_open(struct net_device *dev);
144static int bmac_close(struct net_device *dev);
145static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
146static void bmac_set_multicast(struct net_device *dev);
147static void bmac_reset_and_enable(struct net_device *dev);
148static void bmac_start_chip(struct net_device *dev);
149static void bmac_init_chip(struct net_device *dev);
150static void bmac_init_registers(struct net_device *dev);
151static void bmac_enable_and_reset_chip(struct net_device *dev);
152static int bmac_set_address(struct net_device *dev, void *addr);
153static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
154static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
155static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
156static void bmac_set_timeout(struct net_device *dev);
157static void bmac_tx_timeout(struct timer_list *t);
158static netdev_tx_t bmac_output(struct sk_buff *skb, struct net_device *dev);
159static void bmac_start(struct net_device *dev);
160
161#define	DBDMA_SET(x)	( ((x) | (x) << 16) )
162#define	DBDMA_CLEAR(x)	( (x) << 16)
163
164static inline void
165dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
166{
167	__asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
168}
169
170static inline unsigned long
171dbdma_ld32(volatile __u32 __iomem *a)
172{
173	__u32 swap;
174	__asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
175	return swap;
176}
177
178static void
179dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
180{
181	dbdma_st32(&dmap->control,
182		   DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
183	eieio();
184}
185
186static void
187dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
188{
189	dbdma_st32(&dmap->control,
190		   DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
191	eieio();
192	while (dbdma_ld32(&dmap->status) & RUN)
193		eieio();
194}
195
196static void
197dbdma_setcmd(volatile struct dbdma_cmd *cp,
198	     unsigned short cmd, unsigned count, unsigned long addr,
199	     unsigned long cmd_dep)
200{
201	out_le16(&cp->command, cmd);
202	out_le16(&cp->req_count, count);
203	out_le32(&cp->phy_addr, addr);
204	out_le32(&cp->cmd_dep, cmd_dep);
205	out_le16(&cp->xfer_status, 0);
206	out_le16(&cp->res_count, 0);
207}
208
209static inline
210void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
211{
212	out_le16((void __iomem *)dev->base_addr + reg_offset, data);
213}
214
215
216static inline
217unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
218{
219	return in_le16((void __iomem *)dev->base_addr + reg_offset);
220}
221
222static void
223bmac_enable_and_reset_chip(struct net_device *dev)
224{
225	struct bmac_data *bp = netdev_priv(dev);
226	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
227	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
228
229	if (rd)
230		dbdma_reset(rd);
231	if (td)
232		dbdma_reset(td);
233
234	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
235}
236
237#define MIFDELAY	udelay(10)
238
239static unsigned int
240bmac_mif_readbits(struct net_device *dev, int nb)
241{
242	unsigned int val = 0;
243
244	while (--nb >= 0) {
245		bmwrite(dev, MIFCSR, 0);
246		MIFDELAY;
247		if (bmread(dev, MIFCSR) & 8)
248			val |= 1 << nb;
249		bmwrite(dev, MIFCSR, 1);
250		MIFDELAY;
251	}
252	bmwrite(dev, MIFCSR, 0);
253	MIFDELAY;
254	bmwrite(dev, MIFCSR, 1);
255	MIFDELAY;
256	return val;
257}
258
259static void
260bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
261{
262	int b;
263
264	while (--nb >= 0) {
265		b = (val & (1 << nb))? 6: 4;
266		bmwrite(dev, MIFCSR, b);
267		MIFDELAY;
268		bmwrite(dev, MIFCSR, b|1);
269		MIFDELAY;
270	}
271}
272
273static unsigned int
274bmac_mif_read(struct net_device *dev, unsigned int addr)
275{
276	unsigned int val;
277
278	bmwrite(dev, MIFCSR, 4);
279	MIFDELAY;
280	bmac_mif_writebits(dev, ~0U, 32);
281	bmac_mif_writebits(dev, 6, 4);
282	bmac_mif_writebits(dev, addr, 10);
283	bmwrite(dev, MIFCSR, 2);
284	MIFDELAY;
285	bmwrite(dev, MIFCSR, 1);
286	MIFDELAY;
287	val = bmac_mif_readbits(dev, 17);
288	bmwrite(dev, MIFCSR, 4);
289	MIFDELAY;
290	return val;
291}
292
293static void
294bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
295{
296	bmwrite(dev, MIFCSR, 4);
297	MIFDELAY;
298	bmac_mif_writebits(dev, ~0U, 32);
299	bmac_mif_writebits(dev, 5, 4);
300	bmac_mif_writebits(dev, addr, 10);
301	bmac_mif_writebits(dev, 2, 2);
302	bmac_mif_writebits(dev, val, 16);
303	bmac_mif_writebits(dev, 3, 2);
304}
305
306static void
307bmac_init_registers(struct net_device *dev)
308{
309	struct bmac_data *bp = netdev_priv(dev);
310	volatile unsigned short regValue;
311	unsigned short *pWord16;
312	int i;
313
314	/* XXDEBUG(("bmac: enter init_registers\n")); */
315
316	bmwrite(dev, RXRST, RxResetValue);
317	bmwrite(dev, TXRST, TxResetBit);
318
319	i = 100;
320	do {
321		--i;
322		udelay(10000);
323		regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
324	} while ((regValue & TxResetBit) && i > 0);
325
326	if (!bp->is_bmac_plus) {
327		regValue = bmread(dev, XCVRIF);
328		regValue |= ClkBit | SerialMode | COLActiveLow;
329		bmwrite(dev, XCVRIF, regValue);
330		udelay(10000);
331	}
332
333	bmwrite(dev, RSEED, (unsigned short)0x1968);
334
335	regValue = bmread(dev, XIFC);
336	regValue |= TxOutputEnable;
337	bmwrite(dev, XIFC, regValue);
338
339	bmread(dev, PAREG);
340
341	/* set collision counters to 0 */
342	bmwrite(dev, NCCNT, 0);
343	bmwrite(dev, NTCNT, 0);
344	bmwrite(dev, EXCNT, 0);
345	bmwrite(dev, LTCNT, 0);
346
347	/* set rx counters to 0 */
348	bmwrite(dev, FRCNT, 0);
349	bmwrite(dev, LECNT, 0);
350	bmwrite(dev, AECNT, 0);
351	bmwrite(dev, FECNT, 0);
352	bmwrite(dev, RXCV, 0);
353
354	/* set tx fifo information */
355	bmwrite(dev, TXTH, 4);	/* 4 octets before tx starts */
356
357	bmwrite(dev, TXFIFOCSR, 0);	/* first disable txFIFO */
358	bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
359
360	/* set rx fifo information */
361	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
362	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
363
364	//bmwrite(dev, TXCFG, TxMACEnable);	       	/* TxNeverGiveUp maybe later */
365	bmread(dev, STATUS);		/* read it just to clear it */
366
367	/* zero out the chip Hash Filter registers */
368	for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
369	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); 	/* bits 15 - 0 */
370	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); 	/* bits 31 - 16 */
371	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); 	/* bits 47 - 32 */
372	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); 	/* bits 63 - 48 */
373
374	pWord16 = (unsigned short *)dev->dev_addr;
375	bmwrite(dev, MADD0, *pWord16++);
376	bmwrite(dev, MADD1, *pWord16++);
377	bmwrite(dev, MADD2, *pWord16);
378
379	bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
380
381	bmwrite(dev, INTDISABLE, EnableNormal);
382}
383
384#if 0
385static void
386bmac_disable_interrupts(struct net_device *dev)
387{
388	bmwrite(dev, INTDISABLE, DisableAll);
389}
390
391static void
392bmac_enable_interrupts(struct net_device *dev)
393{
394	bmwrite(dev, INTDISABLE, EnableNormal);
395}
396#endif
397
398
399static void
400bmac_start_chip(struct net_device *dev)
401{
402	struct bmac_data *bp = netdev_priv(dev);
403	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
404	unsigned short	oldConfig;
405
406	/* enable rx dma channel */
407	dbdma_continue(rd);
408
409	oldConfig = bmread(dev, TXCFG);
410	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
411
412	/* turn on rx plus any other bits already on (promiscuous possibly) */
413	oldConfig = bmread(dev, RXCFG);
414	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
415	udelay(20000);
416}
417
418static void
419bmac_init_phy(struct net_device *dev)
420{
421	unsigned int addr;
422	struct bmac_data *bp = netdev_priv(dev);
423
424	printk(KERN_DEBUG "phy registers:");
425	for (addr = 0; addr < 32; ++addr) {
426		if ((addr & 7) == 0)
427			printk(KERN_DEBUG);
428		printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
429	}
430	printk(KERN_CONT "\n");
431
432	if (bp->is_bmac_plus) {
433		unsigned int capable, ctrl;
434
435		ctrl = bmac_mif_read(dev, 0);
436		capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
437		if (bmac_mif_read(dev, 4) != capable ||
438		    (ctrl & 0x1000) == 0) {
439			bmac_mif_write(dev, 4, capable);
440			bmac_mif_write(dev, 0, 0x1200);
441		} else
442			bmac_mif_write(dev, 0, 0x1000);
443	}
444}
445
446static void bmac_init_chip(struct net_device *dev)
447{
448	bmac_init_phy(dev);
449	bmac_init_registers(dev);
450}
451
452#ifdef CONFIG_PM
453static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
454{
455	struct net_device* dev = macio_get_drvdata(mdev);
456	struct bmac_data *bp = netdev_priv(dev);
457	unsigned long flags;
458	unsigned short config;
459	int i;
460
461	netif_device_detach(dev);
462	/* prolly should wait for dma to finish & turn off the chip */
463	spin_lock_irqsave(&bp->lock, flags);
464	if (bp->timeout_active) {
465		del_timer(&bp->tx_timeout);
466		bp->timeout_active = 0;
467	}
468	disable_irq(dev->irq);
469	disable_irq(bp->tx_dma_intr);
470	disable_irq(bp->rx_dma_intr);
471	bp->sleeping = 1;
472	spin_unlock_irqrestore(&bp->lock, flags);
473	if (bp->opened) {
474		volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
475		volatile struct dbdma_regs __iomem *td = bp->tx_dma;
476
477		config = bmread(dev, RXCFG);
478		bmwrite(dev, RXCFG, (config & ~RxMACEnable));
479		config = bmread(dev, TXCFG);
480       		bmwrite(dev, TXCFG, (config & ~TxMACEnable));
481		bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
482       		/* disable rx and tx dma */
483		rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
484		td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
485       		/* free some skb's */
486       		for (i=0; i<N_RX_RING; i++) {
487       			if (bp->rx_bufs[i] != NULL) {
488       				dev_kfree_skb(bp->rx_bufs[i]);
489       				bp->rx_bufs[i] = NULL;
490       			}
491       		}
492       		for (i = 0; i<N_TX_RING; i++) {
493			if (bp->tx_bufs[i] != NULL) {
494		       		dev_kfree_skb(bp->tx_bufs[i]);
495	       			bp->tx_bufs[i] = NULL;
496		       	}
497		}
498	}
499       	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
500	return 0;
501}
502
503static int bmac_resume(struct macio_dev *mdev)
504{
505	struct net_device* dev = macio_get_drvdata(mdev);
506	struct bmac_data *bp = netdev_priv(dev);
507
508	/* see if this is enough */
509	if (bp->opened)
510		bmac_reset_and_enable(dev);
511
512	enable_irq(dev->irq);
513       	enable_irq(bp->tx_dma_intr);
514       	enable_irq(bp->rx_dma_intr);
515       	netif_device_attach(dev);
516
517	return 0;
518}
519#endif /* CONFIG_PM */
520
521static int bmac_set_address(struct net_device *dev, void *addr)
522{
523	struct bmac_data *bp = netdev_priv(dev);
524	unsigned char *p = addr;
525	unsigned short *pWord16;
526	unsigned long flags;
527	int i;
528
529	XXDEBUG(("bmac: enter set_address\n"));
530	spin_lock_irqsave(&bp->lock, flags);
531
532	for (i = 0; i < 6; ++i) {
533		dev->dev_addr[i] = p[i];
534	}
535	/* load up the hardware address */
536	pWord16  = (unsigned short *)dev->dev_addr;
537	bmwrite(dev, MADD0, *pWord16++);
538	bmwrite(dev, MADD1, *pWord16++);
539	bmwrite(dev, MADD2, *pWord16);
540
541	spin_unlock_irqrestore(&bp->lock, flags);
542	XXDEBUG(("bmac: exit set_address\n"));
543	return 0;
544}
545
546static inline void bmac_set_timeout(struct net_device *dev)
547{
548	struct bmac_data *bp = netdev_priv(dev);
549	unsigned long flags;
550
551	spin_lock_irqsave(&bp->lock, flags);
552	if (bp->timeout_active)
553		del_timer(&bp->tx_timeout);
554	bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
555	add_timer(&bp->tx_timeout);
556	bp->timeout_active = 1;
557	spin_unlock_irqrestore(&bp->lock, flags);
558}
559
560static void
561bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
562{
563	void *vaddr;
564	unsigned long baddr;
565	unsigned long len;
566
567	len = skb->len;
568	vaddr = skb->data;
569	baddr = virt_to_bus(vaddr);
570
571	dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
572}
573
574static void
575bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
576{
577	unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
578
579	dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
580		     virt_to_bus(addr), 0);
581}
582
583static void
584bmac_init_tx_ring(struct bmac_data *bp)
585{
586	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
587
588	memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
589
590	bp->tx_empty = 0;
591	bp->tx_fill = 0;
592	bp->tx_fullup = 0;
593
594	/* put a branch at the end of the tx command list */
595	dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
596		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
597
598	/* reset tx dma */
599	dbdma_reset(td);
600	out_le32(&td->wait_sel, 0x00200020);
601	out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
602}
603
604static int
605bmac_init_rx_ring(struct net_device *dev)
606{
607	struct bmac_data *bp = netdev_priv(dev);
608	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
609	int i;
610	struct sk_buff *skb;
611
612	/* initialize list of sk_buffs for receiving and set up recv dma */
613	memset((char *)bp->rx_cmds, 0,
614	       (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
615	for (i = 0; i < N_RX_RING; i++) {
616		if ((skb = bp->rx_bufs[i]) == NULL) {
617			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
618			if (skb != NULL)
619				skb_reserve(skb, 2);
620		}
621		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
622	}
623
624	bp->rx_empty = 0;
625	bp->rx_fill = i;
626
627	/* Put a branch back to the beginning of the receive command list */
628	dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
629		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
630
631	/* start rx dma */
632	dbdma_reset(rd);
633	out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
634
635	return 1;
636}
637
638
639static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
640{
641	struct bmac_data *bp = netdev_priv(dev);
642	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
643	int i;
644
645	/* see if there's a free slot in the tx ring */
646	/* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
647	/* 	     bp->tx_empty, bp->tx_fill)); */
648	i = bp->tx_fill + 1;
649	if (i >= N_TX_RING)
650		i = 0;
651	if (i == bp->tx_empty) {
652		netif_stop_queue(dev);
653		bp->tx_fullup = 1;
654		XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
655		return -1;		/* can't take it at the moment */
656	}
657
658	dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
659
660	bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
661
662	bp->tx_bufs[bp->tx_fill] = skb;
663	bp->tx_fill = i;
664
665	dev->stats.tx_bytes += skb->len;
666
667	dbdma_continue(td);
668
669	return 0;
670}
671
672static int rxintcount;
673
674static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
675{
676	struct net_device *dev = (struct net_device *) dev_id;
677	struct bmac_data *bp = netdev_priv(dev);
678	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
679	volatile struct dbdma_cmd *cp;
680	int i, nb, stat;
681	struct sk_buff *skb;
682	unsigned int residual;
683	int last;
684	unsigned long flags;
685
686	spin_lock_irqsave(&bp->lock, flags);
687
688	if (++rxintcount < 10) {
689		XXDEBUG(("bmac_rxdma_intr\n"));
690	}
691
692	last = -1;
693	i = bp->rx_empty;
694
695	while (1) {
696		cp = &bp->rx_cmds[i];
697		stat = le16_to_cpu(cp->xfer_status);
698		residual = le16_to_cpu(cp->res_count);
699		if ((stat & ACTIVE) == 0)
700			break;
701		nb = RX_BUFLEN - residual - 2;
702		if (nb < (ETHERMINPACKET - ETHERCRC)) {
703			skb = NULL;
704			dev->stats.rx_length_errors++;
705			dev->stats.rx_errors++;
706		} else {
707			skb = bp->rx_bufs[i];
708			bp->rx_bufs[i] = NULL;
709		}
710		if (skb != NULL) {
711			nb -= ETHERCRC;
712			skb_put(skb, nb);
713			skb->protocol = eth_type_trans(skb, dev);
714			netif_rx(skb);
715			++dev->stats.rx_packets;
716			dev->stats.rx_bytes += nb;
717		} else {
718			++dev->stats.rx_dropped;
719		}
720		if ((skb = bp->rx_bufs[i]) == NULL) {
721			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
722			if (skb != NULL)
723				skb_reserve(bp->rx_bufs[i], 2);
724		}
725		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
726		cp->res_count = cpu_to_le16(0);
727		cp->xfer_status = cpu_to_le16(0);
728		last = i;
729		if (++i >= N_RX_RING) i = 0;
730	}
731
732	if (last != -1) {
733		bp->rx_fill = last;
734		bp->rx_empty = i;
735	}
736
737	dbdma_continue(rd);
738	spin_unlock_irqrestore(&bp->lock, flags);
739
740	if (rxintcount < 10) {
741		XXDEBUG(("bmac_rxdma_intr done\n"));
742	}
743	return IRQ_HANDLED;
744}
745
746static int txintcount;
747
748static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
749{
750	struct net_device *dev = (struct net_device *) dev_id;
751	struct bmac_data *bp = netdev_priv(dev);
752	volatile struct dbdma_cmd *cp;
753	int stat;
754	unsigned long flags;
755
756	spin_lock_irqsave(&bp->lock, flags);
757
758	if (txintcount++ < 10) {
759		XXDEBUG(("bmac_txdma_intr\n"));
760	}
761
762	/*     del_timer(&bp->tx_timeout); */
763	/*     bp->timeout_active = 0; */
764
765	while (1) {
766		cp = &bp->tx_cmds[bp->tx_empty];
767		stat = le16_to_cpu(cp->xfer_status);
768		if (txintcount < 10) {
769			XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
770		}
771		if (!(stat & ACTIVE)) {
772			/*
773			 * status field might not have been filled by DBDMA
774			 */
775			if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
776				break;
777		}
778
779		if (bp->tx_bufs[bp->tx_empty]) {
780			++dev->stats.tx_packets;
781			dev_consume_skb_irq(bp->tx_bufs[bp->tx_empty]);
782		}
783		bp->tx_bufs[bp->tx_empty] = NULL;
784		bp->tx_fullup = 0;
785		netif_wake_queue(dev);
786		if (++bp->tx_empty >= N_TX_RING)
787			bp->tx_empty = 0;
788		if (bp->tx_empty == bp->tx_fill)
789			break;
790	}
791
792	spin_unlock_irqrestore(&bp->lock, flags);
793
794	if (txintcount < 10) {
795		XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
796	}
797
798	bmac_start(dev);
799	return IRQ_HANDLED;
800}
801
802#ifndef SUNHME_MULTICAST
803/* Real fast bit-reversal algorithm, 6-bit values */
804static int reverse6[64] = {
805	0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
806	0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
807	0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
808	0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
809	0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
810	0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
811	0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
812	0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
813};
814
815static unsigned int
816crc416(unsigned int curval, unsigned short nxtval)
817{
818	unsigned int counter, cur = curval, next = nxtval;
819	int high_crc_set, low_data_set;
820
821	/* Swap bytes */
822	next = ((next & 0x00FF) << 8) | (next >> 8);
823
824	/* Compute bit-by-bit */
825	for (counter = 0; counter < 16; ++counter) {
826		/* is high CRC bit set? */
827		if ((cur & 0x80000000) == 0) high_crc_set = 0;
828		else high_crc_set = 1;
829
830		cur = cur << 1;
831
832		if ((next & 0x0001) == 0) low_data_set = 0;
833		else low_data_set = 1;
834
835		next = next >> 1;
836
837		/* do the XOR */
838		if (high_crc_set ^ low_data_set) cur = cur ^ CRC32_POLY_BE;
839	}
840	return cur;
841}
842
843static unsigned int
844bmac_crc(unsigned short *address)
845{
846	unsigned int newcrc;
847
848	XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
849	newcrc = crc416(0xffffffff, *address);	/* address bits 47 - 32 */
850	newcrc = crc416(newcrc, address[1]);	/* address bits 31 - 16 */
851	newcrc = crc416(newcrc, address[2]);	/* address bits 15 - 0  */
852
853	return(newcrc);
854}
855
856/*
857 * Add requested mcast addr to BMac's hash table filter.
858 *
859 */
860
861static void
862bmac_addhash(struct bmac_data *bp, unsigned char *addr)
863{
864	unsigned int	 crc;
865	unsigned short	 mask;
866
867	if (!(*addr)) return;
868	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
869	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
870	if (bp->hash_use_count[crc]++) return; /* This bit is already set */
871	mask = crc % 16;
872	mask = (unsigned char)1 << mask;
873	bp->hash_use_count[crc/16] |= mask;
874}
875
876static void
877bmac_removehash(struct bmac_data *bp, unsigned char *addr)
878{
879	unsigned int crc;
880	unsigned char mask;
881
882	/* Now, delete the address from the filter copy, as indicated */
883	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
884	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
885	if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
886	if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
887	mask = crc % 16;
888	mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
889	bp->hash_table_mask[crc/16] &= mask;
890}
891
892/*
893 * Sync the adapter with the software copy of the multicast mask
894 *  (logical address filter).
895 */
896
897static void
898bmac_rx_off(struct net_device *dev)
899{
900	unsigned short rx_cfg;
901
902	rx_cfg = bmread(dev, RXCFG);
903	rx_cfg &= ~RxMACEnable;
904	bmwrite(dev, RXCFG, rx_cfg);
905	do {
906		rx_cfg = bmread(dev, RXCFG);
907	}  while (rx_cfg & RxMACEnable);
908}
909
910unsigned short
911bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
912{
913	unsigned short rx_cfg;
914
915	rx_cfg = bmread(dev, RXCFG);
916	rx_cfg |= RxMACEnable;
917	if (hash_enable) rx_cfg |= RxHashFilterEnable;
918	else rx_cfg &= ~RxHashFilterEnable;
919	if (promisc_enable) rx_cfg |= RxPromiscEnable;
920	else rx_cfg &= ~RxPromiscEnable;
921	bmwrite(dev, RXRST, RxResetValue);
922	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
923	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
924	bmwrite(dev, RXCFG, rx_cfg );
925	return rx_cfg;
926}
927
928static void
929bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
930{
931	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
932	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
933	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
934	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
935}
936
937#if 0
938static void
939bmac_add_multi(struct net_device *dev,
940	       struct bmac_data *bp, unsigned char *addr)
941{
942	/* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
943	bmac_addhash(bp, addr);
944	bmac_rx_off(dev);
945	bmac_update_hash_table_mask(dev, bp);
946	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
947	/* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
948}
949
950static void
951bmac_remove_multi(struct net_device *dev,
952		  struct bmac_data *bp, unsigned char *addr)
953{
954	bmac_removehash(bp, addr);
955	bmac_rx_off(dev);
956	bmac_update_hash_table_mask(dev, bp);
957	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
958}
959#endif
960
961/* Set or clear the multicast filter for this adaptor.
962    num_addrs == -1	Promiscuous mode, receive all packets
963    num_addrs == 0	Normal mode, clear multicast list
964    num_addrs > 0	Multicast mode, receive normal and MC packets, and do
965			best-effort filtering.
966 */
967static void bmac_set_multicast(struct net_device *dev)
968{
969	struct netdev_hw_addr *ha;
970	struct bmac_data *bp = netdev_priv(dev);
971	int num_addrs = netdev_mc_count(dev);
972	unsigned short rx_cfg;
973	int i;
974
975	if (bp->sleeping)
976		return;
977
978	XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
979
980	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
981		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
982		bmac_update_hash_table_mask(dev, bp);
983		rx_cfg = bmac_rx_on(dev, 1, 0);
984		XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
985	} else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
986		rx_cfg = bmread(dev, RXCFG);
987		rx_cfg |= RxPromiscEnable;
988		bmwrite(dev, RXCFG, rx_cfg);
989		rx_cfg = bmac_rx_on(dev, 0, 1);
990		XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
991	} else {
992		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
993		for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
994		if (num_addrs == 0) {
995			rx_cfg = bmac_rx_on(dev, 0, 0);
996			XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
997		} else {
998			netdev_for_each_mc_addr(ha, dev)
999				bmac_addhash(bp, ha->addr);
1000			bmac_update_hash_table_mask(dev, bp);
1001			rx_cfg = bmac_rx_on(dev, 1, 0);
1002			XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1003		}
1004	}
1005	/* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1006}
1007#else /* ifdef SUNHME_MULTICAST */
1008
1009/* The version of set_multicast below was lifted from sunhme.c */
1010
1011static void bmac_set_multicast(struct net_device *dev)
1012{
1013	struct netdev_hw_addr *ha;
1014	unsigned short rx_cfg;
1015	u32 crc;
1016
1017	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1018		bmwrite(dev, BHASH0, 0xffff);
1019		bmwrite(dev, BHASH1, 0xffff);
1020		bmwrite(dev, BHASH2, 0xffff);
1021		bmwrite(dev, BHASH3, 0xffff);
1022	} else if(dev->flags & IFF_PROMISC) {
1023		rx_cfg = bmread(dev, RXCFG);
1024		rx_cfg |= RxPromiscEnable;
1025		bmwrite(dev, RXCFG, rx_cfg);
1026	} else {
1027		u16 hash_table[4] = { 0 };
1028
1029		rx_cfg = bmread(dev, RXCFG);
1030		rx_cfg &= ~RxPromiscEnable;
1031		bmwrite(dev, RXCFG, rx_cfg);
1032
1033		netdev_for_each_mc_addr(ha, dev) {
1034			crc = ether_crc_le(6, ha->addr);
1035			crc >>= 26;
1036			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1037		}
1038		bmwrite(dev, BHASH0, hash_table[0]);
1039		bmwrite(dev, BHASH1, hash_table[1]);
1040		bmwrite(dev, BHASH2, hash_table[2]);
1041		bmwrite(dev, BHASH3, hash_table[3]);
1042	}
1043}
1044#endif /* SUNHME_MULTICAST */
1045
1046static int miscintcount;
1047
1048static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1049{
1050	struct net_device *dev = (struct net_device *) dev_id;
1051	unsigned int status = bmread(dev, STATUS);
1052	if (miscintcount++ < 10) {
1053		XXDEBUG(("bmac_misc_intr\n"));
1054	}
1055	/* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1056	/*     bmac_txdma_intr_inner(irq, dev_id); */
1057	/*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1058	if (status & RxErrorMask) dev->stats.rx_errors++;
1059	if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1060	if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1061	if (status & RxOverFlow) dev->stats.rx_over_errors++;
1062	if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1063
1064	/*   if (status & FrameSent) dev->stats.tx_dropped++; */
1065	if (status & TxErrorMask) dev->stats.tx_errors++;
1066	if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1067	if (status & TxNormalCollExp) dev->stats.collisions++;
1068	return IRQ_HANDLED;
1069}
1070
1071/*
1072 * Procedure for reading EEPROM
1073 */
1074#define SROMAddressLength	5
1075#define DataInOn		0x0008
1076#define DataInOff		0x0000
1077#define Clk			0x0002
1078#define ChipSelect		0x0001
1079#define SDIShiftCount		3
1080#define SD0ShiftCount		2
1081#define	DelayValue		1000	/* number of microseconds */
1082#define SROMStartOffset		10	/* this is in words */
1083#define SROMReadCount		3	/* number of words to read from SROM */
1084#define SROMAddressBits		6
1085#define EnetAddressOffset	20
1086
1087static unsigned char
1088bmac_clock_out_bit(struct net_device *dev)
1089{
1090	unsigned short         data;
1091	unsigned short         val;
1092
1093	bmwrite(dev, SROMCSR, ChipSelect | Clk);
1094	udelay(DelayValue);
1095
1096	data = bmread(dev, SROMCSR);
1097	udelay(DelayValue);
1098	val = (data >> SD0ShiftCount) & 1;
1099
1100	bmwrite(dev, SROMCSR, ChipSelect);
1101	udelay(DelayValue);
1102
1103	return val;
1104}
1105
1106static void
1107bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1108{
1109	unsigned short data;
1110
1111	if (val != 0 && val != 1) return;
1112
1113	data = (val << SDIShiftCount);
1114	bmwrite(dev, SROMCSR, data | ChipSelect  );
1115	udelay(DelayValue);
1116
1117	bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1118	udelay(DelayValue);
1119
1120	bmwrite(dev, SROMCSR, data | ChipSelect);
1121	udelay(DelayValue);
1122}
1123
1124static void
1125reset_and_select_srom(struct net_device *dev)
1126{
1127	/* first reset */
1128	bmwrite(dev, SROMCSR, 0);
1129	udelay(DelayValue);
1130
1131	/* send it the read command (110) */
1132	bmac_clock_in_bit(dev, 1);
1133	bmac_clock_in_bit(dev, 1);
1134	bmac_clock_in_bit(dev, 0);
1135}
1136
1137static unsigned short
1138read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1139{
1140	unsigned short data, val;
1141	int i;
1142
1143	/* send out the address we want to read from */
1144	for (i = 0; i < addr_len; i++)	{
1145		val = addr >> (addr_len-i-1);
1146		bmac_clock_in_bit(dev, val & 1);
1147	}
1148
1149	/* Now read in the 16-bit data */
1150	data = 0;
1151	for (i = 0; i < 16; i++)	{
1152		val = bmac_clock_out_bit(dev);
1153		data <<= 1;
1154		data |= val;
1155	}
1156	bmwrite(dev, SROMCSR, 0);
1157
1158	return data;
1159}
1160
1161/*
1162 * It looks like Cogent and SMC use different methods for calculating
1163 * checksums. What a pain..
1164 */
1165
1166static int
1167bmac_verify_checksum(struct net_device *dev)
1168{
1169	unsigned short data, storedCS;
1170
1171	reset_and_select_srom(dev);
1172	data = read_srom(dev, 3, SROMAddressBits);
1173	storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1174
1175	return 0;
1176}
1177
1178
1179static void
1180bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1181{
1182	int i;
1183	unsigned short data;
1184
1185	for (i = 0; i < 3; i++)
1186		{
1187			reset_and_select_srom(dev);
1188			data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1189			ea[2*i]   = bitrev8(data & 0x0ff);
1190			ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1191		}
1192}
1193
1194static void bmac_reset_and_enable(struct net_device *dev)
1195{
1196	struct bmac_data *bp = netdev_priv(dev);
1197	unsigned long flags;
1198	struct sk_buff *skb;
1199	unsigned char *data;
1200
1201	spin_lock_irqsave(&bp->lock, flags);
1202	bmac_enable_and_reset_chip(dev);
1203	bmac_init_tx_ring(bp);
1204	bmac_init_rx_ring(dev);
1205	bmac_init_chip(dev);
1206	bmac_start_chip(dev);
1207	bmwrite(dev, INTDISABLE, EnableNormal);
1208	bp->sleeping = 0;
1209
1210	/*
1211	 * It seems that the bmac can't receive until it's transmitted
1212	 * a packet.  So we give it a dummy packet to transmit.
1213	 */
1214	skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1215	if (skb != NULL) {
1216		data = skb_put_zero(skb, ETHERMINPACKET);
1217		memcpy(data, dev->dev_addr, ETH_ALEN);
1218		memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1219		bmac_transmit_packet(skb, dev);
1220	}
1221	spin_unlock_irqrestore(&bp->lock, flags);
1222}
1223
1224static const struct ethtool_ops bmac_ethtool_ops = {
1225	.get_link		= ethtool_op_get_link,
1226};
1227
1228static const struct net_device_ops bmac_netdev_ops = {
1229	.ndo_open		= bmac_open,
1230	.ndo_stop		= bmac_close,
1231	.ndo_start_xmit		= bmac_output,
1232	.ndo_set_rx_mode	= bmac_set_multicast,
1233	.ndo_set_mac_address	= bmac_set_address,
1234	.ndo_validate_addr	= eth_validate_addr,
1235};
1236
1237static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1238{
1239	int j, rev, ret;
1240	struct bmac_data *bp;
1241	const unsigned char *prop_addr;
1242	unsigned char addr[6];
1243	struct net_device *dev;
1244	int is_bmac_plus = ((int)match->data) != 0;
1245
1246	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1247		printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1248		return -ENODEV;
1249	}
1250	prop_addr = of_get_property(macio_get_of_node(mdev),
1251			"mac-address", NULL);
1252	if (prop_addr == NULL) {
1253		prop_addr = of_get_property(macio_get_of_node(mdev),
1254				"local-mac-address", NULL);
1255		if (prop_addr == NULL) {
1256			printk(KERN_ERR "BMAC: Can't get mac-address\n");
1257			return -ENODEV;
1258		}
1259	}
1260	memcpy(addr, prop_addr, sizeof(addr));
1261
1262	dev = alloc_etherdev(PRIV_BYTES);
1263	if (!dev)
1264		return -ENOMEM;
1265
1266	bp = netdev_priv(dev);
1267	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1268	macio_set_drvdata(mdev, dev);
1269
1270	bp->mdev = mdev;
1271	spin_lock_init(&bp->lock);
1272
1273	if (macio_request_resources(mdev, "bmac")) {
1274		printk(KERN_ERR "BMAC: can't request IO resource !\n");
1275		goto out_free;
1276	}
1277
1278	dev->base_addr = (unsigned long)
1279		ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1280	if (dev->base_addr == 0)
1281		goto out_release;
1282
1283	dev->irq = macio_irq(mdev, 0);
1284
1285	bmac_enable_and_reset_chip(dev);
1286	bmwrite(dev, INTDISABLE, DisableAll);
1287
1288	rev = addr[0] == 0 && addr[1] == 0xA0;
1289	for (j = 0; j < 6; ++j)
1290		dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1291
1292	/* Enable chip without interrupts for now */
1293	bmac_enable_and_reset_chip(dev);
1294	bmwrite(dev, INTDISABLE, DisableAll);
1295
1296	dev->netdev_ops = &bmac_netdev_ops;
1297	dev->ethtool_ops = &bmac_ethtool_ops;
1298
1299	bmac_get_station_address(dev, addr);
1300	if (bmac_verify_checksum(dev) != 0)
1301		goto err_out_iounmap;
1302
1303	bp->is_bmac_plus = is_bmac_plus;
1304	bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1305	if (!bp->tx_dma)
1306		goto err_out_iounmap;
1307	bp->tx_dma_intr = macio_irq(mdev, 1);
1308	bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1309	if (!bp->rx_dma)
1310		goto err_out_iounmap_tx;
1311	bp->rx_dma_intr = macio_irq(mdev, 2);
1312
1313	bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1314	bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1315
1316	bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1317	skb_queue_head_init(bp->queue);
1318
1319	timer_setup(&bp->tx_timeout, bmac_tx_timeout, 0);
1320
1321	ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1322	if (ret) {
1323		printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1324		goto err_out_iounmap_rx;
1325	}
1326	ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1327	if (ret) {
1328		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1329		goto err_out_irq0;
1330	}
1331	ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1332	if (ret) {
1333		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1334		goto err_out_irq1;
1335	}
1336
1337	/* Mask chip interrupts and disable chip, will be
1338	 * re-enabled on open()
1339	 */
1340	disable_irq(dev->irq);
1341	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1342
1343	if (register_netdev(dev) != 0) {
1344		printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1345		goto err_out_irq2;
1346	}
1347
1348	printk(KERN_INFO "%s: BMAC%s at %pM",
1349	       dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1350	XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1351	printk("\n");
1352
1353	return 0;
1354
1355err_out_irq2:
1356	free_irq(bp->rx_dma_intr, dev);
1357err_out_irq1:
1358	free_irq(bp->tx_dma_intr, dev);
1359err_out_irq0:
1360	free_irq(dev->irq, dev);
1361err_out_iounmap_rx:
1362	iounmap(bp->rx_dma);
1363err_out_iounmap_tx:
1364	iounmap(bp->tx_dma);
1365err_out_iounmap:
1366	iounmap((void __iomem *)dev->base_addr);
1367out_release:
1368	macio_release_resources(mdev);
1369out_free:
1370	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1371	free_netdev(dev);
1372
1373	return -ENODEV;
1374}
1375
1376static int bmac_open(struct net_device *dev)
1377{
1378	struct bmac_data *bp = netdev_priv(dev);
1379	/* XXDEBUG(("bmac: enter open\n")); */
1380	/* reset the chip */
1381	bp->opened = 1;
1382	bmac_reset_and_enable(dev);
1383	enable_irq(dev->irq);
1384	return 0;
1385}
1386
1387static int bmac_close(struct net_device *dev)
1388{
1389	struct bmac_data *bp = netdev_priv(dev);
1390	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1391	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1392	unsigned short config;
1393	int i;
1394
1395	bp->sleeping = 1;
1396
1397	/* disable rx and tx */
1398	config = bmread(dev, RXCFG);
1399	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1400
1401	config = bmread(dev, TXCFG);
1402	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1403
1404	bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1405
1406	/* disable rx and tx dma */
1407	rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1408	td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1409
1410	/* free some skb's */
1411	XXDEBUG(("bmac: free rx bufs\n"));
1412	for (i=0; i<N_RX_RING; i++) {
1413		if (bp->rx_bufs[i] != NULL) {
1414			dev_kfree_skb(bp->rx_bufs[i]);
1415			bp->rx_bufs[i] = NULL;
1416		}
1417	}
1418	XXDEBUG(("bmac: free tx bufs\n"));
1419	for (i = 0; i<N_TX_RING; i++) {
1420		if (bp->tx_bufs[i] != NULL) {
1421			dev_kfree_skb(bp->tx_bufs[i]);
1422			bp->tx_bufs[i] = NULL;
1423		}
1424	}
1425	XXDEBUG(("bmac: all bufs freed\n"));
1426
1427	bp->opened = 0;
1428	disable_irq(dev->irq);
1429	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1430
1431	return 0;
1432}
1433
1434static void
1435bmac_start(struct net_device *dev)
1436{
1437	struct bmac_data *bp = netdev_priv(dev);
1438	int i;
1439	struct sk_buff *skb;
1440	unsigned long flags;
1441
1442	if (bp->sleeping)
1443		return;
1444
1445	spin_lock_irqsave(&bp->lock, flags);
1446	while (1) {
1447		i = bp->tx_fill + 1;
1448		if (i >= N_TX_RING)
1449			i = 0;
1450		if (i == bp->tx_empty)
1451			break;
1452		skb = skb_dequeue(bp->queue);
1453		if (skb == NULL)
1454			break;
1455		bmac_transmit_packet(skb, dev);
1456	}
1457	spin_unlock_irqrestore(&bp->lock, flags);
1458}
1459
1460static netdev_tx_t
1461bmac_output(struct sk_buff *skb, struct net_device *dev)
1462{
1463	struct bmac_data *bp = netdev_priv(dev);
1464	skb_queue_tail(bp->queue, skb);
1465	bmac_start(dev);
1466	return NETDEV_TX_OK;
1467}
1468
1469static void bmac_tx_timeout(struct timer_list *t)
1470{
1471	struct bmac_data *bp = from_timer(bp, t, tx_timeout);
1472	struct net_device *dev = macio_get_drvdata(bp->mdev);
1473	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1474	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1475	volatile struct dbdma_cmd *cp;
1476	unsigned long flags;
1477	unsigned short config, oldConfig;
1478	int i;
1479
1480	XXDEBUG(("bmac: tx_timeout called\n"));
1481	spin_lock_irqsave(&bp->lock, flags);
1482	bp->timeout_active = 0;
1483
1484	/* update various counters */
1485/*     	bmac_handle_misc_intrs(bp, 0); */
1486
1487	cp = &bp->tx_cmds[bp->tx_empty];
1488/*	XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1489/* 	   le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1490/* 	   mb->pr, mb->xmtfs, mb->fifofc)); */
1491
1492	/* turn off both tx and rx and reset the chip */
1493	config = bmread(dev, RXCFG);
1494	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1495	config = bmread(dev, TXCFG);
1496	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1497	out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1498	printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1499	bmac_enable_and_reset_chip(dev);
1500
1501	/* restart rx dma */
1502	cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1503	out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1504	out_le16(&cp->xfer_status, 0);
1505	out_le32(&rd->cmdptr, virt_to_bus(cp));
1506	out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1507
1508	/* fix up the transmit side */
1509	XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1510		 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1511	i = bp->tx_empty;
1512	++dev->stats.tx_errors;
1513	if (i != bp->tx_fill) {
1514		dev_kfree_skb_irq(bp->tx_bufs[i]);
1515		bp->tx_bufs[i] = NULL;
1516		if (++i >= N_TX_RING) i = 0;
1517		bp->tx_empty = i;
1518	}
1519	bp->tx_fullup = 0;
1520	netif_wake_queue(dev);
1521	if (i != bp->tx_fill) {
1522		cp = &bp->tx_cmds[i];
1523		out_le16(&cp->xfer_status, 0);
1524		out_le16(&cp->command, OUTPUT_LAST);
1525		out_le32(&td->cmdptr, virt_to_bus(cp));
1526		out_le32(&td->control, DBDMA_SET(RUN));
1527		/* 	bmac_set_timeout(dev); */
1528		XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1529	}
1530
1531	/* turn it back on */
1532	oldConfig = bmread(dev, RXCFG);
1533	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1534	oldConfig = bmread(dev, TXCFG);
1535	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1536
1537	spin_unlock_irqrestore(&bp->lock, flags);
1538}
1539
1540#if 0
1541static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1542{
1543	int i,*ip;
1544
1545	for (i=0;i< count;i++) {
1546		ip = (int*)(cp+i);
1547
1548		printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1549		       le32_to_cpup(ip+0),
1550		       le32_to_cpup(ip+1),
1551		       le32_to_cpup(ip+2),
1552		       le32_to_cpup(ip+3));
1553	}
1554
1555}
1556#endif
1557
1558#if 0
1559static int
1560bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1561{
1562	int len = 0;
1563	off_t pos   = 0;
1564	off_t begin = 0;
1565	int i;
1566
1567	if (bmac_devs == NULL)
1568		return -ENOSYS;
1569
1570	len += sprintf(buffer, "BMAC counters & registers\n");
1571
1572	for (i = 0; i<N_REG_ENTRIES; i++) {
1573		len += sprintf(buffer + len, "%s: %#08x\n",
1574			       reg_entries[i].name,
1575			       bmread(bmac_devs, reg_entries[i].reg_offset));
1576		pos = begin + len;
1577
1578		if (pos < offset) {
1579			len = 0;
1580			begin = pos;
1581		}
1582
1583		if (pos > offset+length) break;
1584	}
1585
1586	*start = buffer + (offset - begin);
1587	len -= (offset - begin);
1588
1589	if (len > length) len = length;
1590
1591	return len;
1592}
1593#endif
1594
1595static int bmac_remove(struct macio_dev *mdev)
1596{
1597	struct net_device *dev = macio_get_drvdata(mdev);
1598	struct bmac_data *bp = netdev_priv(dev);
1599
1600	unregister_netdev(dev);
1601
1602       	free_irq(dev->irq, dev);
1603	free_irq(bp->tx_dma_intr, dev);
1604	free_irq(bp->rx_dma_intr, dev);
1605
1606	iounmap((void __iomem *)dev->base_addr);
1607	iounmap(bp->tx_dma);
1608	iounmap(bp->rx_dma);
1609
1610	macio_release_resources(mdev);
1611
1612	free_netdev(dev);
1613
1614	return 0;
1615}
1616
1617static const struct of_device_id bmac_match[] =
1618{
1619	{
1620	.name 		= "bmac",
1621	.data		= (void *)0,
1622	},
1623	{
1624	.type		= "network",
1625	.compatible	= "bmac+",
1626	.data		= (void *)1,
1627	},
1628	{},
1629};
1630MODULE_DEVICE_TABLE (of, bmac_match);
1631
1632static struct macio_driver bmac_driver =
1633{
1634	.driver = {
1635		.name 		= "bmac",
1636		.owner		= THIS_MODULE,
1637		.of_match_table	= bmac_match,
1638	},
1639	.probe		= bmac_probe,
1640	.remove		= bmac_remove,
1641#ifdef CONFIG_PM
1642	.suspend	= bmac_suspend,
1643	.resume		= bmac_resume,
1644#endif
1645};
1646
1647
1648static int __init bmac_init(void)
1649{
1650	if (bmac_emergency_rxbuf == NULL) {
1651		bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1652		if (bmac_emergency_rxbuf == NULL)
1653			return -ENOMEM;
1654	}
1655
1656	return macio_register_driver(&bmac_driver);
1657}
1658
1659static void __exit bmac_exit(void)
1660{
1661	macio_unregister_driver(&bmac_driver);
1662
1663	kfree(bmac_emergency_rxbuf);
1664	bmac_emergency_rxbuf = NULL;
1665}
1666
1667MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1668MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1669MODULE_LICENSE("GPL");
1670
1671module_init(bmac_init);
1672module_exit(bmac_exit);
1673