1/*
2 * AMD 10Gb Ethernet driver
3 *
4 * This file is available to you under your choice of the following two
5 * licenses:
6 *
7 * License 1: GPLv2
8 *
9 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
10 *
11 * This file is free software; you may copy, redistribute and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation, either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This file is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23 *
24 * This file incorporates work covered by the following copyright and
25 * permission notice:
26 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29 *     and you.
30 *
31 *     The Software IS NOT an item of Licensed Software or Licensed Product
32 *     under any End User Software License Agreement or Agreement for Licensed
33 *     Product with Synopsys or any supplement thereto.  Permission is hereby
34 *     granted, free of charge, to any person obtaining a copy of this software
35 *     annotated with this license and the Software, to deal in the Software
36 *     without restriction, including without limitation the rights to use,
37 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38 *     of the Software, and to permit persons to whom the Software is furnished
39 *     to do so, subject to the following conditions:
40 *
41 *     The above copyright notice and this permission notice shall be included
42 *     in all copies or substantial portions of the Software.
43 *
44 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54 *     THE POSSIBILITY OF SUCH DAMAGE.
55 *
56 *
57 * License 2: Modified BSD
58 *
59 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
60 * All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions are met:
64 *     * Redistributions of source code must retain the above copyright
65 *       notice, this list of conditions and the following disclaimer.
66 *     * Redistributions in binary form must reproduce the above copyright
67 *       notice, this list of conditions and the following disclaimer in the
68 *       documentation and/or other materials provided with the distribution.
69 *     * Neither the name of Advanced Micro Devices, Inc. nor the
70 *       names of its contributors may be used to endorse or promote products
71 *       derived from this software without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83 *
84 * This file incorporates work covered by the following copyright and
85 * permission notice:
86 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89 *     and you.
90 *
91 *     The Software IS NOT an item of Licensed Software or Licensed Product
92 *     under any End User Software License Agreement or Agreement for Licensed
93 *     Product with Synopsys or any supplement thereto.  Permission is hereby
94 *     granted, free of charge, to any person obtaining a copy of this software
95 *     annotated with this license and the Software, to deal in the Software
96 *     without restriction, including without limitation the rights to use,
97 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98 *     of the Software, and to permit persons to whom the Software is furnished
99 *     to do so, subject to the following conditions:
100 *
101 *     The above copyright notice and this permission notice shall be included
102 *     in all copies or substantial portions of the Software.
103 *
104 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114 *     THE POSSIBILITY OF SUCH DAMAGE.
115 */
116
117#include <linux/phy.h>
118#include <linux/mdio.h>
119#include <linux/clk.h>
120#include <linux/bitrev.h>
121#include <linux/crc32.h>
122#include <linux/crc32poly.h>
123
124#include "xgbe.h"
125#include "xgbe-common.h"
126
127static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
128{
129	return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
130}
131
132static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
133				      unsigned int usec)
134{
135	unsigned long rate;
136	unsigned int ret;
137
138	DBGPR("-->xgbe_usec_to_riwt\n");
139
140	rate = pdata->sysclk_rate;
141
142	/*
143	 * Convert the input usec value to the watchdog timer value. Each
144	 * watchdog timer value is equivalent to 256 clock cycles.
145	 * Calculate the required value as:
146	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
147	 */
148	ret = (usec * (rate / 1000000)) / 256;
149
150	DBGPR("<--xgbe_usec_to_riwt\n");
151
152	return ret;
153}
154
155static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
156				      unsigned int riwt)
157{
158	unsigned long rate;
159	unsigned int ret;
160
161	DBGPR("-->xgbe_riwt_to_usec\n");
162
163	rate = pdata->sysclk_rate;
164
165	/*
166	 * Convert the input watchdog timer value to the usec value. Each
167	 * watchdog timer value is equivalent to 256 clock cycles.
168	 * Calculate the required value as:
169	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
170	 */
171	ret = (riwt * 256) / (rate / 1000000);
172
173	DBGPR("<--xgbe_riwt_to_usec\n");
174
175	return ret;
176}
177
178static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
179{
180	unsigned int pblx8, pbl;
181	unsigned int i;
182
183	pblx8 = DMA_PBL_X8_DISABLE;
184	pbl = pdata->pbl;
185
186	if (pdata->pbl > 32) {
187		pblx8 = DMA_PBL_X8_ENABLE;
188		pbl >>= 3;
189	}
190
191	for (i = 0; i < pdata->channel_count; i++) {
192		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
193				       pblx8);
194
195		if (pdata->channel[i]->tx_ring)
196			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
197					       PBL, pbl);
198
199		if (pdata->channel[i]->rx_ring)
200			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
201					       PBL, pbl);
202	}
203
204	return 0;
205}
206
207static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
208{
209	unsigned int i;
210
211	for (i = 0; i < pdata->channel_count; i++) {
212		if (!pdata->channel[i]->tx_ring)
213			break;
214
215		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
216				       pdata->tx_osp_mode);
217	}
218
219	return 0;
220}
221
222static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
223{
224	unsigned int i;
225
226	for (i = 0; i < pdata->rx_q_count; i++)
227		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
228
229	return 0;
230}
231
232static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
233{
234	unsigned int i;
235
236	for (i = 0; i < pdata->tx_q_count; i++)
237		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
238
239	return 0;
240}
241
242static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
243				    unsigned int val)
244{
245	unsigned int i;
246
247	for (i = 0; i < pdata->rx_q_count; i++)
248		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
249
250	return 0;
251}
252
253static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
254				    unsigned int val)
255{
256	unsigned int i;
257
258	for (i = 0; i < pdata->tx_q_count; i++)
259		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
260
261	return 0;
262}
263
264static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
265{
266	unsigned int i;
267
268	for (i = 0; i < pdata->channel_count; i++) {
269		if (!pdata->channel[i]->rx_ring)
270			break;
271
272		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
273				       pdata->rx_riwt);
274	}
275
276	return 0;
277}
278
279static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
280{
281	return 0;
282}
283
284static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
285{
286	unsigned int i;
287
288	for (i = 0; i < pdata->channel_count; i++) {
289		if (!pdata->channel[i]->rx_ring)
290			break;
291
292		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
293				       pdata->rx_buf_size);
294	}
295}
296
297static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
298{
299	unsigned int i;
300
301	for (i = 0; i < pdata->channel_count; i++) {
302		if (!pdata->channel[i]->tx_ring)
303			break;
304
305		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
306	}
307}
308
309static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
310{
311	unsigned int i;
312
313	for (i = 0; i < pdata->channel_count; i++) {
314		if (!pdata->channel[i]->rx_ring)
315			break;
316
317		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
318	}
319
320	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
321}
322
323static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
324			      unsigned int index, unsigned int val)
325{
326	unsigned int wait;
327	int ret = 0;
328
329	mutex_lock(&pdata->rss_mutex);
330
331	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
332		ret = -EBUSY;
333		goto unlock;
334	}
335
336	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
337
338	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
339	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
340	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
341	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
342
343	wait = 1000;
344	while (wait--) {
345		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
346			goto unlock;
347
348		usleep_range(1000, 1500);
349	}
350
351	ret = -EBUSY;
352
353unlock:
354	mutex_unlock(&pdata->rss_mutex);
355
356	return ret;
357}
358
359static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
360{
361	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
362	unsigned int *key = (unsigned int *)&pdata->rss_key;
363	int ret;
364
365	while (key_regs--) {
366		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
367					 key_regs, *key++);
368		if (ret)
369			return ret;
370	}
371
372	return 0;
373}
374
375static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
376{
377	unsigned int i;
378	int ret;
379
380	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
381		ret = xgbe_write_rss_reg(pdata,
382					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
383					 pdata->rss_table[i]);
384		if (ret)
385			return ret;
386	}
387
388	return 0;
389}
390
391static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
392{
393	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
394
395	return xgbe_write_rss_hash_key(pdata);
396}
397
398static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
399				     const u32 *table)
400{
401	unsigned int i;
402
403	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
404		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
405
406	return xgbe_write_rss_lookup_table(pdata);
407}
408
409static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
410{
411	int ret;
412
413	if (!pdata->hw_feat.rss)
414		return -EOPNOTSUPP;
415
416	/* Program the hash key */
417	ret = xgbe_write_rss_hash_key(pdata);
418	if (ret)
419		return ret;
420
421	/* Program the lookup table */
422	ret = xgbe_write_rss_lookup_table(pdata);
423	if (ret)
424		return ret;
425
426	/* Set the RSS options */
427	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
428
429	/* Enable RSS */
430	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
431
432	return 0;
433}
434
435static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
436{
437	if (!pdata->hw_feat.rss)
438		return -EOPNOTSUPP;
439
440	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
441
442	return 0;
443}
444
445static void xgbe_config_rss(struct xgbe_prv_data *pdata)
446{
447	int ret;
448
449	if (!pdata->hw_feat.rss)
450		return;
451
452	if (pdata->netdev->features & NETIF_F_RXHASH)
453		ret = xgbe_enable_rss(pdata);
454	else
455		ret = xgbe_disable_rss(pdata);
456
457	if (ret)
458		netdev_err(pdata->netdev,
459			   "error configuring RSS, RSS disabled\n");
460}
461
462static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
463			      unsigned int queue)
464{
465	unsigned int prio, tc;
466
467	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
468		/* Does this queue handle the priority? */
469		if (pdata->prio2q_map[prio] != queue)
470			continue;
471
472		/* Get the Traffic Class for this priority */
473		tc = pdata->ets->prio_tc[prio];
474
475		/* Check if PFC is enabled for this traffic class */
476		if (pdata->pfc->pfc_en & (1 << tc))
477			return true;
478	}
479
480	return false;
481}
482
483static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata)
484{
485	/* Program the VXLAN port */
486	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port);
487
488	netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n",
489		  pdata->vxlan_port);
490}
491
492static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata)
493{
494	if (!pdata->hw_feat.vxn)
495		return;
496
497	/* Program the VXLAN port */
498	xgbe_set_vxlan_id(pdata);
499
500	/* Allow for IPv6/UDP zero-checksum VXLAN packets */
501	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1);
502
503	/* Enable VXLAN tunneling mode */
504	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0);
505	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1);
506
507	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n");
508}
509
510static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata)
511{
512	if (!pdata->hw_feat.vxn)
513		return;
514
515	/* Disable tunneling mode */
516	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0);
517
518	/* Clear IPv6/UDP zero-checksum VXLAN packets setting */
519	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0);
520
521	/* Clear the VXLAN port */
522	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0);
523
524	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n");
525}
526
527static unsigned int xgbe_get_fc_queue_count(struct xgbe_prv_data *pdata)
528{
529	unsigned int max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
530
531	/* From MAC ver 30H the TFCR is per priority, instead of per queue */
532	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) >= 0x30)
533		return max_q_count;
534	else
535		return min_t(unsigned int, pdata->tx_q_count, max_q_count);
536}
537
538static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
539{
540	unsigned int reg, reg_val;
541	unsigned int i, q_count;
542
543	/* Clear MTL flow control */
544	for (i = 0; i < pdata->rx_q_count; i++)
545		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
546
547	/* Clear MAC flow control */
548	q_count = xgbe_get_fc_queue_count(pdata);
549	reg = MAC_Q0TFCR;
550	for (i = 0; i < q_count; i++) {
551		reg_val = XGMAC_IOREAD(pdata, reg);
552		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
553		XGMAC_IOWRITE(pdata, reg, reg_val);
554
555		reg += MAC_QTFCR_INC;
556	}
557
558	return 0;
559}
560
561static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
562{
563	struct ieee_pfc *pfc = pdata->pfc;
564	struct ieee_ets *ets = pdata->ets;
565	unsigned int reg, reg_val;
566	unsigned int i, q_count;
567
568	/* Set MTL flow control */
569	for (i = 0; i < pdata->rx_q_count; i++) {
570		unsigned int ehfc = 0;
571
572		if (pdata->rx_rfd[i]) {
573			/* Flow control thresholds are established */
574			if (pfc && ets) {
575				if (xgbe_is_pfc_queue(pdata, i))
576					ehfc = 1;
577			} else {
578				ehfc = 1;
579			}
580		}
581
582		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
583
584		netif_dbg(pdata, drv, pdata->netdev,
585			  "flow control %s for RXq%u\n",
586			  ehfc ? "enabled" : "disabled", i);
587	}
588
589	/* Set MAC flow control */
590	q_count = xgbe_get_fc_queue_count(pdata);
591	reg = MAC_Q0TFCR;
592	for (i = 0; i < q_count; i++) {
593		reg_val = XGMAC_IOREAD(pdata, reg);
594
595		/* Enable transmit flow control */
596		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
597		/* Set pause time */
598		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
599
600		XGMAC_IOWRITE(pdata, reg, reg_val);
601
602		reg += MAC_QTFCR_INC;
603	}
604
605	return 0;
606}
607
608static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
609{
610	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
611
612	return 0;
613}
614
615static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
616{
617	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
618
619	return 0;
620}
621
622static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
623{
624	struct ieee_pfc *pfc = pdata->pfc;
625
626	if (pdata->tx_pause || (pfc && pfc->pfc_en))
627		xgbe_enable_tx_flow_control(pdata);
628	else
629		xgbe_disable_tx_flow_control(pdata);
630
631	return 0;
632}
633
634static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
635{
636	struct ieee_pfc *pfc = pdata->pfc;
637
638	if (pdata->rx_pause || (pfc && pfc->pfc_en))
639		xgbe_enable_rx_flow_control(pdata);
640	else
641		xgbe_disable_rx_flow_control(pdata);
642
643	return 0;
644}
645
646static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
647{
648	struct ieee_pfc *pfc = pdata->pfc;
649
650	xgbe_config_tx_flow_control(pdata);
651	xgbe_config_rx_flow_control(pdata);
652
653	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
654			   (pfc && pfc->pfc_en) ? 1 : 0);
655}
656
657static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
658{
659	struct xgbe_channel *channel;
660	unsigned int i, ver;
661
662	/* Set the interrupt mode if supported */
663	if (pdata->channel_irq_mode)
664		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
665				   pdata->channel_irq_mode);
666
667	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
668
669	for (i = 0; i < pdata->channel_count; i++) {
670		channel = pdata->channel[i];
671
672		/* Clear all the interrupts which are set */
673		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
674				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
675
676		/* Clear all interrupt enable bits */
677		channel->curr_ier = 0;
678
679		/* Enable following interrupts
680		 *   NIE  - Normal Interrupt Summary Enable
681		 *   AIE  - Abnormal Interrupt Summary Enable
682		 *   FBEE - Fatal Bus Error Enable
683		 */
684		if (ver < 0x21) {
685			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
686			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
687		} else {
688			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
689			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
690		}
691		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
692
693		if (channel->tx_ring) {
694			/* Enable the following Tx interrupts
695			 *   TIE  - Transmit Interrupt Enable (unless using
696			 *          per channel interrupts in edge triggered
697			 *          mode)
698			 */
699			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
700				XGMAC_SET_BITS(channel->curr_ier,
701					       DMA_CH_IER, TIE, 1);
702		}
703		if (channel->rx_ring) {
704			/* Enable following Rx interrupts
705			 *   RBUE - Receive Buffer Unavailable Enable
706			 *   RIE  - Receive Interrupt Enable (unless using
707			 *          per channel interrupts in edge triggered
708			 *          mode)
709			 */
710			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
711			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
712				XGMAC_SET_BITS(channel->curr_ier,
713					       DMA_CH_IER, RIE, 1);
714		}
715
716		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
717	}
718}
719
720static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
721{
722	unsigned int mtl_q_isr;
723	unsigned int q_count, i;
724
725	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
726	for (i = 0; i < q_count; i++) {
727		/* Clear all the interrupts which are set */
728		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
729		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
730
731		/* No MTL interrupts to be enabled */
732		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
733	}
734}
735
736static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
737{
738	unsigned int mac_ier = 0;
739
740	/* Enable Timestamp interrupt */
741	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
742
743	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
744
745	/* Enable all counter interrupts */
746	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
747	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
748
749	/* Enable MDIO single command completion interrupt */
750	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
751}
752
753static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
754{
755	unsigned int ecc_isr, ecc_ier = 0;
756
757	if (!pdata->vdata->ecc_support)
758		return;
759
760	/* Clear all the interrupts which are set */
761	ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
762	XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
763
764	/* Enable ECC interrupts */
765	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
766	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
767	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
768	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
769	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
770	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
771
772	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
773}
774
775static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
776{
777	unsigned int ecc_ier;
778
779	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
780
781	/* Disable ECC DED interrupts */
782	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
783	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
784	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
785
786	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
787}
788
789static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
790				 enum xgbe_ecc_sec sec)
791{
792	unsigned int ecc_ier;
793
794	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
795
796	/* Disable ECC SEC interrupt */
797	switch (sec) {
798	case XGBE_ECC_SEC_TX:
799	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
800		break;
801	case XGBE_ECC_SEC_RX:
802	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
803		break;
804	case XGBE_ECC_SEC_DESC:
805	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
806		break;
807	}
808
809	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
810}
811
812static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
813{
814	unsigned int ss;
815
816	switch (speed) {
817	case SPEED_1000:
818		ss = 0x03;
819		break;
820	case SPEED_2500:
821		ss = 0x02;
822		break;
823	case SPEED_10000:
824		ss = 0x00;
825		break;
826	default:
827		return -EINVAL;
828	}
829
830	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
831		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
832
833	return 0;
834}
835
836static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
837{
838	/* Put the VLAN tag in the Rx descriptor */
839	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
840
841	/* Don't check the VLAN type */
842	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
843
844	/* Check only C-TAG (0x8100) packets */
845	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
846
847	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
848	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
849
850	/* Enable VLAN tag stripping */
851	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
852
853	return 0;
854}
855
856static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
857{
858	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
859
860	return 0;
861}
862
863static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
864{
865	/* Enable VLAN filtering */
866	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
867
868	/* Enable VLAN Hash Table filtering */
869	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
870
871	/* Disable VLAN tag inverse matching */
872	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
873
874	/* Only filter on the lower 12-bits of the VLAN tag */
875	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
876
877	/* In order for the VLAN Hash Table filtering to be effective,
878	 * the VLAN tag identifier in the VLAN Tag Register must not
879	 * be zero.  Set the VLAN tag identifier to "1" to enable the
880	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
881	 * 1 will always pass filtering.
882	 */
883	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
884
885	return 0;
886}
887
888static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
889{
890	/* Disable VLAN filtering */
891	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
892
893	return 0;
894}
895
896static u32 xgbe_vid_crc32_le(__le16 vid_le)
897{
898	u32 crc = ~0;
899	u32 temp = 0;
900	unsigned char *data = (unsigned char *)&vid_le;
901	unsigned char data_byte = 0;
902	int i, bits;
903
904	bits = get_bitmask_order(VLAN_VID_MASK);
905	for (i = 0; i < bits; i++) {
906		if ((i % 8) == 0)
907			data_byte = data[i / 8];
908
909		temp = ((crc & 1) ^ data_byte) & 1;
910		crc >>= 1;
911		data_byte >>= 1;
912
913		if (temp)
914			crc ^= CRC32_POLY_LE;
915	}
916
917	return crc;
918}
919
920static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
921{
922	u32 crc;
923	u16 vid;
924	__le16 vid_le;
925	u16 vlan_hash_table = 0;
926
927	/* Generate the VLAN Hash Table value */
928	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
929		/* Get the CRC32 value of the VLAN ID */
930		vid_le = cpu_to_le16(vid);
931		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
932
933		vlan_hash_table |= (1 << crc);
934	}
935
936	/* Set the VLAN Hash Table filtering register */
937	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
938
939	return 0;
940}
941
942static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
943				     unsigned int enable)
944{
945	unsigned int val = enable ? 1 : 0;
946
947	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
948		return 0;
949
950	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
951		  enable ? "entering" : "leaving");
952	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
953
954	/* Hardware will still perform VLAN filtering in promiscuous mode */
955	if (enable) {
956		xgbe_disable_rx_vlan_filtering(pdata);
957	} else {
958		if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
959			xgbe_enable_rx_vlan_filtering(pdata);
960	}
961
962	return 0;
963}
964
965static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
966				       unsigned int enable)
967{
968	unsigned int val = enable ? 1 : 0;
969
970	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
971		return 0;
972
973	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
974		  enable ? "entering" : "leaving");
975	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
976
977	return 0;
978}
979
980static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
981			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
982{
983	unsigned int mac_addr_hi, mac_addr_lo;
984	u8 *mac_addr;
985
986	mac_addr_lo = 0;
987	mac_addr_hi = 0;
988
989	if (ha) {
990		mac_addr = (u8 *)&mac_addr_lo;
991		mac_addr[0] = ha->addr[0];
992		mac_addr[1] = ha->addr[1];
993		mac_addr[2] = ha->addr[2];
994		mac_addr[3] = ha->addr[3];
995		mac_addr = (u8 *)&mac_addr_hi;
996		mac_addr[0] = ha->addr[4];
997		mac_addr[1] = ha->addr[5];
998
999		netif_dbg(pdata, drv, pdata->netdev,
1000			  "adding mac address %pM at %#x\n",
1001			  ha->addr, *mac_reg);
1002
1003		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
1004	}
1005
1006	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
1007	*mac_reg += MAC_MACA_INC;
1008	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
1009	*mac_reg += MAC_MACA_INC;
1010}
1011
1012static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
1013{
1014	struct net_device *netdev = pdata->netdev;
1015	struct netdev_hw_addr *ha;
1016	unsigned int mac_reg;
1017	unsigned int addn_macs;
1018
1019	mac_reg = MAC_MACA1HR;
1020	addn_macs = pdata->hw_feat.addn_mac;
1021
1022	if (netdev_uc_count(netdev) > addn_macs) {
1023		xgbe_set_promiscuous_mode(pdata, 1);
1024	} else {
1025		netdev_for_each_uc_addr(ha, netdev) {
1026			xgbe_set_mac_reg(pdata, ha, &mac_reg);
1027			addn_macs--;
1028		}
1029
1030		if (netdev_mc_count(netdev) > addn_macs) {
1031			xgbe_set_all_multicast_mode(pdata, 1);
1032		} else {
1033			netdev_for_each_mc_addr(ha, netdev) {
1034				xgbe_set_mac_reg(pdata, ha, &mac_reg);
1035				addn_macs--;
1036			}
1037		}
1038	}
1039
1040	/* Clear remaining additional MAC address entries */
1041	while (addn_macs--)
1042		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1043}
1044
1045static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1046{
1047	struct net_device *netdev = pdata->netdev;
1048	struct netdev_hw_addr *ha;
1049	unsigned int hash_reg;
1050	unsigned int hash_table_shift, hash_table_count;
1051	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1052	u32 crc;
1053	unsigned int i;
1054
1055	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1056	hash_table_count = pdata->hw_feat.hash_table_size / 32;
1057	memset(hash_table, 0, sizeof(hash_table));
1058
1059	/* Build the MAC Hash Table register values */
1060	netdev_for_each_uc_addr(ha, netdev) {
1061		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1062		crc >>= hash_table_shift;
1063		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1064	}
1065
1066	netdev_for_each_mc_addr(ha, netdev) {
1067		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1068		crc >>= hash_table_shift;
1069		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1070	}
1071
1072	/* Set the MAC Hash Table registers */
1073	hash_reg = MAC_HTR0;
1074	for (i = 0; i < hash_table_count; i++) {
1075		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1076		hash_reg += MAC_HTR_INC;
1077	}
1078}
1079
1080static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1081{
1082	if (pdata->hw_feat.hash_table_size)
1083		xgbe_set_mac_hash_table(pdata);
1084	else
1085		xgbe_set_mac_addn_addrs(pdata);
1086
1087	return 0;
1088}
1089
1090static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
1091{
1092	unsigned int mac_addr_hi, mac_addr_lo;
1093
1094	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
1095	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1096		      (addr[1] <<  8) | (addr[0] <<  0);
1097
1098	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1099	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1100
1101	return 0;
1102}
1103
1104static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1105{
1106	struct net_device *netdev = pdata->netdev;
1107	unsigned int pr_mode, am_mode;
1108
1109	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1110	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1111
1112	xgbe_set_promiscuous_mode(pdata, pr_mode);
1113	xgbe_set_all_multicast_mode(pdata, am_mode);
1114
1115	xgbe_add_mac_addresses(pdata);
1116
1117	return 0;
1118}
1119
1120static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1121{
1122	unsigned int reg;
1123
1124	if (gpio > 15)
1125		return -EINVAL;
1126
1127	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1128
1129	reg &= ~(1 << (gpio + 16));
1130	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1131
1132	return 0;
1133}
1134
1135static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1136{
1137	unsigned int reg;
1138
1139	if (gpio > 15)
1140		return -EINVAL;
1141
1142	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1143
1144	reg |= (1 << (gpio + 16));
1145	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1146
1147	return 0;
1148}
1149
1150static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1151				 int mmd_reg)
1152{
1153	unsigned long flags;
1154	unsigned int mmd_address, index, offset;
1155	int mmd_data;
1156
1157	if (mmd_reg & MII_ADDR_C45)
1158		mmd_address = mmd_reg & ~MII_ADDR_C45;
1159	else
1160		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1161
1162	/* The PCS registers are accessed using mmio. The underlying
1163	 * management interface uses indirect addressing to access the MMD
1164	 * register sets. This requires accessing of the PCS register in two
1165	 * phases, an address phase and a data phase.
1166	 *
1167	 * The mmio interface is based on 16-bit offsets and values. All
1168	 * register offsets must therefore be adjusted by left shifting the
1169	 * offset 1 bit and reading 16 bits of data.
1170	 */
1171	mmd_address <<= 1;
1172	index = mmd_address & ~pdata->xpcs_window_mask;
1173	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1174
1175	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1176	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1177	mmd_data = XPCS16_IOREAD(pdata, offset);
1178	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1179
1180	return mmd_data;
1181}
1182
1183static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1184				   int mmd_reg, int mmd_data)
1185{
1186	unsigned long flags;
1187	unsigned int mmd_address, index, offset;
1188
1189	if (mmd_reg & MII_ADDR_C45)
1190		mmd_address = mmd_reg & ~MII_ADDR_C45;
1191	else
1192		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1193
1194	/* The PCS registers are accessed using mmio. The underlying
1195	 * management interface uses indirect addressing to access the MMD
1196	 * register sets. This requires accessing of the PCS register in two
1197	 * phases, an address phase and a data phase.
1198	 *
1199	 * The mmio interface is based on 16-bit offsets and values. All
1200	 * register offsets must therefore be adjusted by left shifting the
1201	 * offset 1 bit and writing 16 bits of data.
1202	 */
1203	mmd_address <<= 1;
1204	index = mmd_address & ~pdata->xpcs_window_mask;
1205	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1206
1207	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1208	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1209	XPCS16_IOWRITE(pdata, offset, mmd_data);
1210	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1211}
1212
1213static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1214				 int mmd_reg)
1215{
1216	unsigned long flags;
1217	unsigned int mmd_address;
1218	int mmd_data;
1219
1220	if (mmd_reg & MII_ADDR_C45)
1221		mmd_address = mmd_reg & ~MII_ADDR_C45;
1222	else
1223		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1224
1225	/* The PCS registers are accessed using mmio. The underlying APB3
1226	 * management interface uses indirect addressing to access the MMD
1227	 * register sets. This requires accessing of the PCS register in two
1228	 * phases, an address phase and a data phase.
1229	 *
1230	 * The mmio interface is based on 32-bit offsets and values. All
1231	 * register offsets must therefore be adjusted by left shifting the
1232	 * offset 2 bits and reading 32 bits of data.
1233	 */
1234	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1235	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1236	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1237	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1238
1239	return mmd_data;
1240}
1241
1242static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1243				   int mmd_reg, int mmd_data)
1244{
1245	unsigned int mmd_address;
1246	unsigned long flags;
1247
1248	if (mmd_reg & MII_ADDR_C45)
1249		mmd_address = mmd_reg & ~MII_ADDR_C45;
1250	else
1251		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1252
1253	/* The PCS registers are accessed using mmio. The underlying APB3
1254	 * management interface uses indirect addressing to access the MMD
1255	 * register sets. This requires accessing of the PCS register in two
1256	 * phases, an address phase and a data phase.
1257	 *
1258	 * The mmio interface is based on 32-bit offsets and values. All
1259	 * register offsets must therefore be adjusted by left shifting the
1260	 * offset 2 bits and writing 32 bits of data.
1261	 */
1262	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1263	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1264	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1265	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1266}
1267
1268static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1269			      int mmd_reg)
1270{
1271	switch (pdata->vdata->xpcs_access) {
1272	case XGBE_XPCS_ACCESS_V1:
1273		return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1274
1275	case XGBE_XPCS_ACCESS_V2:
1276	default:
1277		return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1278	}
1279}
1280
1281static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1282				int mmd_reg, int mmd_data)
1283{
1284	switch (pdata->vdata->xpcs_access) {
1285	case XGBE_XPCS_ACCESS_V1:
1286		return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1287
1288	case XGBE_XPCS_ACCESS_V2:
1289	default:
1290		return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1291	}
1292}
1293
1294static unsigned int xgbe_create_mdio_sca(int port, int reg)
1295{
1296	unsigned int mdio_sca, da;
1297
1298	da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1299
1300	mdio_sca = 0;
1301	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1302	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1303	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1304
1305	return mdio_sca;
1306}
1307
1308static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1309				   int reg, u16 val)
1310{
1311	unsigned int mdio_sca, mdio_sccd;
1312
1313	reinit_completion(&pdata->mdio_complete);
1314
1315	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1316	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1317
1318	mdio_sccd = 0;
1319	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1320	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1321	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1322	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1323
1324	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1325		netdev_err(pdata->netdev, "mdio write operation timed out\n");
1326		return -ETIMEDOUT;
1327	}
1328
1329	return 0;
1330}
1331
1332static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1333				  int reg)
1334{
1335	unsigned int mdio_sca, mdio_sccd;
1336
1337	reinit_completion(&pdata->mdio_complete);
1338
1339	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1340	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1341
1342	mdio_sccd = 0;
1343	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1344	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1345	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1346
1347	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1348		netdev_err(pdata->netdev, "mdio read operation timed out\n");
1349		return -ETIMEDOUT;
1350	}
1351
1352	return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1353}
1354
1355static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1356				 enum xgbe_mdio_mode mode)
1357{
1358	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1359
1360	switch (mode) {
1361	case XGBE_MDIO_MODE_CL22:
1362		if (port > XGMAC_MAX_C22_PORT)
1363			return -EINVAL;
1364		reg_val |= (1 << port);
1365		break;
1366	case XGBE_MDIO_MODE_CL45:
1367		break;
1368	default:
1369		return -EINVAL;
1370	}
1371
1372	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1373
1374	return 0;
1375}
1376
1377static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1378{
1379	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1380}
1381
1382static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1383{
1384	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1385
1386	return 0;
1387}
1388
1389static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1390{
1391	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1392
1393	return 0;
1394}
1395
1396static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1397{
1398	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1399
1400	/* Reset the Tx descriptor
1401	 *   Set buffer 1 (lo) address to zero
1402	 *   Set buffer 1 (hi) address to zero
1403	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1404	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1405	 */
1406	rdesc->desc0 = 0;
1407	rdesc->desc1 = 0;
1408	rdesc->desc2 = 0;
1409	rdesc->desc3 = 0;
1410
1411	/* Make sure ownership is written to the descriptor */
1412	dma_wmb();
1413}
1414
1415static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1416{
1417	struct xgbe_ring *ring = channel->tx_ring;
1418	struct xgbe_ring_data *rdata;
1419	int i;
1420	int start_index = ring->cur;
1421
1422	DBGPR("-->tx_desc_init\n");
1423
1424	/* Initialze all descriptors */
1425	for (i = 0; i < ring->rdesc_count; i++) {
1426		rdata = XGBE_GET_DESC_DATA(ring, i);
1427
1428		/* Initialize Tx descriptor */
1429		xgbe_tx_desc_reset(rdata);
1430	}
1431
1432	/* Update the total number of Tx descriptors */
1433	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1434
1435	/* Update the starting address of descriptor ring */
1436	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1437	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1438			  upper_32_bits(rdata->rdesc_dma));
1439	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1440			  lower_32_bits(rdata->rdesc_dma));
1441
1442	DBGPR("<--tx_desc_init\n");
1443}
1444
1445static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1446			       struct xgbe_ring_data *rdata, unsigned int index)
1447{
1448	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1449	unsigned int rx_usecs = pdata->rx_usecs;
1450	unsigned int rx_frames = pdata->rx_frames;
1451	unsigned int inte;
1452	dma_addr_t hdr_dma, buf_dma;
1453
1454	if (!rx_usecs && !rx_frames) {
1455		/* No coalescing, interrupt for every descriptor */
1456		inte = 1;
1457	} else {
1458		/* Set interrupt based on Rx frame coalescing setting */
1459		if (rx_frames && !((index + 1) % rx_frames))
1460			inte = 1;
1461		else
1462			inte = 0;
1463	}
1464
1465	/* Reset the Rx descriptor
1466	 *   Set buffer 1 (lo) address to header dma address (lo)
1467	 *   Set buffer 1 (hi) address to header dma address (hi)
1468	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1469	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1470	 *     set control bits OWN and INTE
1471	 */
1472	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1473	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1474	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1475	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1476	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1477	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1478
1479	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1480
1481	/* Since the Rx DMA engine is likely running, make sure everything
1482	 * is written to the descriptor(s) before setting the OWN bit
1483	 * for the descriptor
1484	 */
1485	dma_wmb();
1486
1487	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1488
1489	/* Make sure ownership is written to the descriptor */
1490	dma_wmb();
1491}
1492
1493static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1494{
1495	struct xgbe_prv_data *pdata = channel->pdata;
1496	struct xgbe_ring *ring = channel->rx_ring;
1497	struct xgbe_ring_data *rdata;
1498	unsigned int start_index = ring->cur;
1499	unsigned int i;
1500
1501	DBGPR("-->rx_desc_init\n");
1502
1503	/* Initialize all descriptors */
1504	for (i = 0; i < ring->rdesc_count; i++) {
1505		rdata = XGBE_GET_DESC_DATA(ring, i);
1506
1507		/* Initialize Rx descriptor */
1508		xgbe_rx_desc_reset(pdata, rdata, i);
1509	}
1510
1511	/* Update the total number of Rx descriptors */
1512	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1513
1514	/* Update the starting address of descriptor ring */
1515	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1516	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1517			  upper_32_bits(rdata->rdesc_dma));
1518	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1519			  lower_32_bits(rdata->rdesc_dma));
1520
1521	/* Update the Rx Descriptor Tail Pointer */
1522	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1523	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1524			  lower_32_bits(rdata->rdesc_dma));
1525
1526	DBGPR("<--rx_desc_init\n");
1527}
1528
1529static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1530				      unsigned int addend)
1531{
1532	unsigned int count = 10000;
1533
1534	/* Set the addend register value and tell the device */
1535	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1536	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1537
1538	/* Wait for addend update to complete */
1539	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1540		udelay(5);
1541
1542	if (!count)
1543		netdev_err(pdata->netdev,
1544			   "timed out updating timestamp addend register\n");
1545}
1546
1547static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1548				 unsigned int nsec)
1549{
1550	unsigned int count = 10000;
1551
1552	/* Set the time values and tell the device */
1553	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1554	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1555	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1556
1557	/* Wait for time update to complete */
1558	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1559		udelay(5);
1560
1561	if (!count)
1562		netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1563}
1564
1565static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1566{
1567	u64 nsec;
1568
1569	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1570	nsec *= NSEC_PER_SEC;
1571	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1572
1573	return nsec;
1574}
1575
1576static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1577{
1578	unsigned int tx_snr, tx_ssr;
1579	u64 nsec;
1580
1581	if (pdata->vdata->tx_tstamp_workaround) {
1582		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1583		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1584	} else {
1585		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1586		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1587	}
1588
1589	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1590		return 0;
1591
1592	nsec = tx_ssr;
1593	nsec *= NSEC_PER_SEC;
1594	nsec += tx_snr;
1595
1596	return nsec;
1597}
1598
1599static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1600			       struct xgbe_ring_desc *rdesc)
1601{
1602	u64 nsec;
1603
1604	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1605	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1606		nsec = le32_to_cpu(rdesc->desc1);
1607		nsec <<= 32;
1608		nsec |= le32_to_cpu(rdesc->desc0);
1609		if (nsec != 0xffffffffffffffffULL) {
1610			packet->rx_tstamp = nsec;
1611			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1612				       RX_TSTAMP, 1);
1613		}
1614	}
1615}
1616
1617static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1618			      unsigned int mac_tscr)
1619{
1620	/* Set one nano-second accuracy */
1621	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1622
1623	/* Set fine timestamp update */
1624	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1625
1626	/* Overwrite earlier timestamps */
1627	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1628
1629	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1630
1631	/* Exit if timestamping is not enabled */
1632	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1633		return 0;
1634
1635	/* Initialize time registers */
1636	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1637	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1638	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1639	xgbe_set_tstamp_time(pdata, 0, 0);
1640
1641	/* Initialize the timecounter */
1642	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1643			 ktime_to_ns(ktime_get_real()));
1644
1645	return 0;
1646}
1647
1648static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1649			       struct xgbe_ring *ring)
1650{
1651	struct xgbe_prv_data *pdata = channel->pdata;
1652	struct xgbe_ring_data *rdata;
1653
1654	/* Make sure everything is written before the register write */
1655	wmb();
1656
1657	/* Issue a poll command to Tx DMA by writing address
1658	 * of next immediate free descriptor */
1659	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1660	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1661			  lower_32_bits(rdata->rdesc_dma));
1662
1663	/* Start the Tx timer */
1664	if (pdata->tx_usecs && !channel->tx_timer_active) {
1665		channel->tx_timer_active = 1;
1666		mod_timer(&channel->tx_timer,
1667			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1668	}
1669
1670	ring->tx.xmit_more = 0;
1671}
1672
1673static void xgbe_dev_xmit(struct xgbe_channel *channel)
1674{
1675	struct xgbe_prv_data *pdata = channel->pdata;
1676	struct xgbe_ring *ring = channel->tx_ring;
1677	struct xgbe_ring_data *rdata;
1678	struct xgbe_ring_desc *rdesc;
1679	struct xgbe_packet_data *packet = &ring->packet_data;
1680	unsigned int tx_packets, tx_bytes;
1681	unsigned int csum, tso, vlan, vxlan;
1682	unsigned int tso_context, vlan_context;
1683	unsigned int tx_set_ic;
1684	int start_index = ring->cur;
1685	int cur_index = ring->cur;
1686	int i;
1687
1688	DBGPR("-->xgbe_dev_xmit\n");
1689
1690	tx_packets = packet->tx_packets;
1691	tx_bytes = packet->tx_bytes;
1692
1693	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1694			      CSUM_ENABLE);
1695	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1696			     TSO_ENABLE);
1697	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1698			      VLAN_CTAG);
1699	vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1700			       VXLAN);
1701
1702	if (tso && (packet->mss != ring->tx.cur_mss))
1703		tso_context = 1;
1704	else
1705		tso_context = 0;
1706
1707	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1708		vlan_context = 1;
1709	else
1710		vlan_context = 0;
1711
1712	/* Determine if an interrupt should be generated for this Tx:
1713	 *   Interrupt:
1714	 *     - Tx frame count exceeds the frame count setting
1715	 *     - Addition of Tx frame count to the frame count since the
1716	 *       last interrupt was set exceeds the frame count setting
1717	 *   No interrupt:
1718	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1719	 *     - Addition of Tx frame count to the frame count since the
1720	 *       last interrupt was set does not exceed the frame count setting
1721	 */
1722	ring->coalesce_count += tx_packets;
1723	if (!pdata->tx_frames)
1724		tx_set_ic = 0;
1725	else if (tx_packets > pdata->tx_frames)
1726		tx_set_ic = 1;
1727	else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets)
1728		tx_set_ic = 1;
1729	else
1730		tx_set_ic = 0;
1731
1732	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1733	rdesc = rdata->rdesc;
1734
1735	/* Create a context descriptor if this is a TSO packet */
1736	if (tso_context || vlan_context) {
1737		if (tso_context) {
1738			netif_dbg(pdata, tx_queued, pdata->netdev,
1739				  "TSO context descriptor, mss=%u\n",
1740				  packet->mss);
1741
1742			/* Set the MSS size */
1743			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1744					  MSS, packet->mss);
1745
1746			/* Mark it as a CONTEXT descriptor */
1747			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1748					  CTXT, 1);
1749
1750			/* Indicate this descriptor contains the MSS */
1751			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1752					  TCMSSV, 1);
1753
1754			ring->tx.cur_mss = packet->mss;
1755		}
1756
1757		if (vlan_context) {
1758			netif_dbg(pdata, tx_queued, pdata->netdev,
1759				  "VLAN context descriptor, ctag=%u\n",
1760				  packet->vlan_ctag);
1761
1762			/* Mark it as a CONTEXT descriptor */
1763			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1764					  CTXT, 1);
1765
1766			/* Set the VLAN tag */
1767			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1768					  VT, packet->vlan_ctag);
1769
1770			/* Indicate this descriptor contains the VLAN tag */
1771			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1772					  VLTV, 1);
1773
1774			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1775		}
1776
1777		cur_index++;
1778		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1779		rdesc = rdata->rdesc;
1780	}
1781
1782	/* Update buffer address (for TSO this is the header) */
1783	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1784	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1785
1786	/* Update the buffer length */
1787	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1788			  rdata->skb_dma_len);
1789
1790	/* VLAN tag insertion check */
1791	if (vlan)
1792		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1793				  TX_NORMAL_DESC2_VLAN_INSERT);
1794
1795	/* Timestamp enablement check */
1796	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1797		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1798
1799	/* Mark it as First Descriptor */
1800	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1801
1802	/* Mark it as a NORMAL descriptor */
1803	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1804
1805	/* Set OWN bit if not the first descriptor */
1806	if (cur_index != start_index)
1807		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1808
1809	if (tso) {
1810		/* Enable TSO */
1811		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1812		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1813				  packet->tcp_payload_len);
1814		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1815				  packet->tcp_header_len / 4);
1816
1817		pdata->ext_stats.tx_tso_packets += tx_packets;
1818	} else {
1819		/* Enable CRC and Pad Insertion */
1820		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1821
1822		/* Enable HW CSUM */
1823		if (csum)
1824			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1825					  CIC, 0x3);
1826
1827		/* Set the total length to be transmitted */
1828		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1829				  packet->length);
1830	}
1831
1832	if (vxlan) {
1833		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP,
1834				  TX_NORMAL_DESC3_VXLAN_PACKET);
1835
1836		pdata->ext_stats.tx_vxlan_packets += packet->tx_packets;
1837	}
1838
1839	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1840		cur_index++;
1841		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1842		rdesc = rdata->rdesc;
1843
1844		/* Update buffer address */
1845		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1846		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1847
1848		/* Update the buffer length */
1849		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1850				  rdata->skb_dma_len);
1851
1852		/* Set OWN bit */
1853		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1854
1855		/* Mark it as NORMAL descriptor */
1856		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1857
1858		/* Enable HW CSUM */
1859		if (csum)
1860			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1861					  CIC, 0x3);
1862	}
1863
1864	/* Set LAST bit for the last descriptor */
1865	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1866
1867	/* Set IC bit based on Tx coalescing settings */
1868	if (tx_set_ic)
1869		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1870
1871	/* Save the Tx info to report back during cleanup */
1872	rdata->tx.packets = tx_packets;
1873	rdata->tx.bytes = tx_bytes;
1874
1875	pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets;
1876	pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes;
1877
1878	/* In case the Tx DMA engine is running, make sure everything
1879	 * is written to the descriptor(s) before setting the OWN bit
1880	 * for the first descriptor
1881	 */
1882	dma_wmb();
1883
1884	/* Set OWN bit for the first descriptor */
1885	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1886	rdesc = rdata->rdesc;
1887	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1888
1889	if (netif_msg_tx_queued(pdata))
1890		xgbe_dump_tx_desc(pdata, ring, start_index,
1891				  packet->rdesc_count, 1);
1892
1893	/* Make sure ownership is written to the descriptor */
1894	smp_wmb();
1895
1896	ring->cur = cur_index + 1;
1897	if (!netdev_xmit_more() ||
1898	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1899						   channel->queue_index)))
1900		xgbe_tx_start_xmit(channel, ring);
1901	else
1902		ring->tx.xmit_more = 1;
1903
1904	DBGPR("  %s: descriptors %u to %u written\n",
1905	      channel->name, start_index & (ring->rdesc_count - 1),
1906	      (ring->cur - 1) & (ring->rdesc_count - 1));
1907
1908	DBGPR("<--xgbe_dev_xmit\n");
1909}
1910
1911static int xgbe_dev_read(struct xgbe_channel *channel)
1912{
1913	struct xgbe_prv_data *pdata = channel->pdata;
1914	struct xgbe_ring *ring = channel->rx_ring;
1915	struct xgbe_ring_data *rdata;
1916	struct xgbe_ring_desc *rdesc;
1917	struct xgbe_packet_data *packet = &ring->packet_data;
1918	struct net_device *netdev = pdata->netdev;
1919	unsigned int err, etlt, l34t;
1920
1921	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1922
1923	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1924	rdesc = rdata->rdesc;
1925
1926	/* Check for data availability */
1927	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1928		return 1;
1929
1930	/* Make sure descriptor fields are read after reading the OWN bit */
1931	dma_rmb();
1932
1933	if (netif_msg_rx_status(pdata))
1934		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1935
1936	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1937		/* Timestamp Context Descriptor */
1938		xgbe_get_rx_tstamp(packet, rdesc);
1939
1940		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1941			       CONTEXT, 1);
1942		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1943			       CONTEXT_NEXT, 0);
1944		return 0;
1945	}
1946
1947	/* Normal Descriptor, be sure Context Descriptor bit is off */
1948	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1949
1950	/* Indicate if a Context Descriptor is next */
1951	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1952		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1953			       CONTEXT_NEXT, 1);
1954
1955	/* Get the header length */
1956	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1957		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1958			       FIRST, 1);
1959		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1960						      RX_NORMAL_DESC2, HL);
1961		if (rdata->rx.hdr_len)
1962			pdata->ext_stats.rx_split_header_packets++;
1963	} else {
1964		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1965			       FIRST, 0);
1966	}
1967
1968	/* Get the RSS hash */
1969	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1970		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1971			       RSS_HASH, 1);
1972
1973		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1974
1975		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1976		switch (l34t) {
1977		case RX_DESC3_L34T_IPV4_TCP:
1978		case RX_DESC3_L34T_IPV4_UDP:
1979		case RX_DESC3_L34T_IPV6_TCP:
1980		case RX_DESC3_L34T_IPV6_UDP:
1981			packet->rss_hash_type = PKT_HASH_TYPE_L4;
1982			break;
1983		default:
1984			packet->rss_hash_type = PKT_HASH_TYPE_L3;
1985		}
1986	}
1987
1988	/* Not all the data has been transferred for this packet */
1989	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
1990		return 0;
1991
1992	/* This is the last of the data for this packet */
1993	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1994		       LAST, 1);
1995
1996	/* Get the packet length */
1997	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1998
1999	/* Set checksum done indicator as appropriate */
2000	if (netdev->features & NETIF_F_RXCSUM) {
2001		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2002			       CSUM_DONE, 1);
2003		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2004			       TNPCSUM_DONE, 1);
2005	}
2006
2007	/* Set the tunneled packet indicator */
2008	if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) {
2009		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2010			       TNP, 1);
2011		pdata->ext_stats.rx_vxlan_packets++;
2012
2013		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2014		switch (l34t) {
2015		case RX_DESC3_L34T_IPV4_UNKNOWN:
2016		case RX_DESC3_L34T_IPV6_UNKNOWN:
2017			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2018				       TNPCSUM_DONE, 0);
2019			break;
2020		}
2021	}
2022
2023	/* Check for errors (only valid in last descriptor) */
2024	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
2025	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
2026	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
2027
2028	if (!err || !etlt) {
2029		/* No error if err is 0 or etlt is 0 */
2030		if ((etlt == 0x09) &&
2031		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
2032			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2033				       VLAN_CTAG, 1);
2034			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
2035							      RX_NORMAL_DESC0,
2036							      OVT);
2037			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
2038				  packet->vlan_ctag);
2039		}
2040	} else {
2041		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
2042						  RX_PACKET_ATTRIBUTES, TNP);
2043
2044		if ((etlt == 0x05) || (etlt == 0x06)) {
2045			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2046				       CSUM_DONE, 0);
2047			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2048				       TNPCSUM_DONE, 0);
2049			pdata->ext_stats.rx_csum_errors++;
2050		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
2051			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2052				       CSUM_DONE, 0);
2053			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2054				       TNPCSUM_DONE, 0);
2055			pdata->ext_stats.rx_vxlan_csum_errors++;
2056		} else {
2057			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
2058				       FRAME, 1);
2059		}
2060	}
2061
2062	pdata->ext_stats.rxq_packets[channel->queue_index]++;
2063	pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len;
2064
2065	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
2066	      ring->cur & (ring->rdesc_count - 1), ring->cur);
2067
2068	return 0;
2069}
2070
2071static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
2072{
2073	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
2074	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
2075}
2076
2077static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
2078{
2079	/* Rx and Tx share LD bit, so check TDES3.LD bit */
2080	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
2081}
2082
2083static int xgbe_enable_int(struct xgbe_channel *channel,
2084			   enum xgbe_int int_id)
2085{
2086	switch (int_id) {
2087	case XGMAC_INT_DMA_CH_SR_TI:
2088		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2089		break;
2090	case XGMAC_INT_DMA_CH_SR_TPS:
2091		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
2092		break;
2093	case XGMAC_INT_DMA_CH_SR_TBU:
2094		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
2095		break;
2096	case XGMAC_INT_DMA_CH_SR_RI:
2097		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2098		break;
2099	case XGMAC_INT_DMA_CH_SR_RBU:
2100		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
2101		break;
2102	case XGMAC_INT_DMA_CH_SR_RPS:
2103		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
2104		break;
2105	case XGMAC_INT_DMA_CH_SR_TI_RI:
2106		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2107		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2108		break;
2109	case XGMAC_INT_DMA_CH_SR_FBE:
2110		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
2111		break;
2112	case XGMAC_INT_DMA_ALL:
2113		channel->curr_ier |= channel->saved_ier;
2114		break;
2115	default:
2116		return -1;
2117	}
2118
2119	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2120
2121	return 0;
2122}
2123
2124static int xgbe_disable_int(struct xgbe_channel *channel,
2125			    enum xgbe_int int_id)
2126{
2127	switch (int_id) {
2128	case XGMAC_INT_DMA_CH_SR_TI:
2129		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2130		break;
2131	case XGMAC_INT_DMA_CH_SR_TPS:
2132		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
2133		break;
2134	case XGMAC_INT_DMA_CH_SR_TBU:
2135		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
2136		break;
2137	case XGMAC_INT_DMA_CH_SR_RI:
2138		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2139		break;
2140	case XGMAC_INT_DMA_CH_SR_RBU:
2141		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
2142		break;
2143	case XGMAC_INT_DMA_CH_SR_RPS:
2144		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
2145		break;
2146	case XGMAC_INT_DMA_CH_SR_TI_RI:
2147		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2148		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2149		break;
2150	case XGMAC_INT_DMA_CH_SR_FBE:
2151		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
2152		break;
2153	case XGMAC_INT_DMA_ALL:
2154		channel->saved_ier = channel->curr_ier;
2155		channel->curr_ier = 0;
2156		break;
2157	default:
2158		return -1;
2159	}
2160
2161	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2162
2163	return 0;
2164}
2165
2166static int __xgbe_exit(struct xgbe_prv_data *pdata)
2167{
2168	unsigned int count = 2000;
2169
2170	DBGPR("-->xgbe_exit\n");
2171
2172	/* Issue a software reset */
2173	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2174	usleep_range(10, 15);
2175
2176	/* Poll Until Poll Condition */
2177	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2178		usleep_range(500, 600);
2179
2180	if (!count)
2181		return -EBUSY;
2182
2183	DBGPR("<--xgbe_exit\n");
2184
2185	return 0;
2186}
2187
2188static int xgbe_exit(struct xgbe_prv_data *pdata)
2189{
2190	int ret;
2191
2192	/* To guard against possible incorrectly generated interrupts,
2193	 * issue the software reset twice.
2194	 */
2195	ret = __xgbe_exit(pdata);
2196	if (ret)
2197		return ret;
2198
2199	return __xgbe_exit(pdata);
2200}
2201
2202static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2203{
2204	unsigned int i, count;
2205
2206	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2207		return 0;
2208
2209	for (i = 0; i < pdata->tx_q_count; i++)
2210		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2211
2212	/* Poll Until Poll Condition */
2213	for (i = 0; i < pdata->tx_q_count; i++) {
2214		count = 2000;
2215		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2216							MTL_Q_TQOMR, FTQ))
2217			usleep_range(500, 600);
2218
2219		if (!count)
2220			return -EBUSY;
2221	}
2222
2223	return 0;
2224}
2225
2226static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2227{
2228	unsigned int sbmr;
2229
2230	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2231
2232	/* Set enhanced addressing mode */
2233	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2234
2235	/* Set the System Bus mode */
2236	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2237	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2238	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2239	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2240	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2241
2242	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2243
2244	/* Set descriptor fetching threshold */
2245	if (pdata->vdata->tx_desc_prefetch)
2246		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2247				   pdata->vdata->tx_desc_prefetch);
2248
2249	if (pdata->vdata->rx_desc_prefetch)
2250		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2251				   pdata->vdata->rx_desc_prefetch);
2252}
2253
2254static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2255{
2256	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2257	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2258	if (pdata->awarcr)
2259		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
2260}
2261
2262static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2263{
2264	unsigned int i;
2265
2266	/* Set Tx to weighted round robin scheduling algorithm */
2267	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2268
2269	/* Set Tx traffic classes to use WRR algorithm with equal weights */
2270	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2271		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2272				       MTL_TSA_ETS);
2273		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2274	}
2275
2276	/* Set Rx to strict priority algorithm */
2277	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2278}
2279
2280static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2281					      unsigned int queue,
2282					      unsigned int q_fifo_size)
2283{
2284	unsigned int frame_fifo_size;
2285	unsigned int rfa, rfd;
2286
2287	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2288
2289	if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2290		/* PFC is active for this queue */
2291		rfa = pdata->pfc_rfa;
2292		rfd = rfa + frame_fifo_size;
2293		if (rfd > XGMAC_FLOW_CONTROL_MAX)
2294			rfd = XGMAC_FLOW_CONTROL_MAX;
2295		if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2296			rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2297	} else {
2298		/* This path deals with just maximum frame sizes which are
2299		 * limited to a jumbo frame of 9,000 (plus headers, etc.)
2300		 * so we can never exceed the maximum allowable RFA/RFD
2301		 * values.
2302		 */
2303		if (q_fifo_size <= 2048) {
2304			/* rx_rfd to zero to signal no flow control */
2305			pdata->rx_rfa[queue] = 0;
2306			pdata->rx_rfd[queue] = 0;
2307			return;
2308		}
2309
2310		if (q_fifo_size <= 4096) {
2311			/* Between 2048 and 4096 */
2312			pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
2313			pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
2314			return;
2315		}
2316
2317		if (q_fifo_size <= frame_fifo_size) {
2318			/* Between 4096 and max-frame */
2319			pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
2320			pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
2321			return;
2322		}
2323
2324		if (q_fifo_size <= (frame_fifo_size * 3)) {
2325			/* Between max-frame and 3 max-frames,
2326			 * trigger if we get just over a frame of data and
2327			 * resume when we have just under half a frame left.
2328			 */
2329			rfa = q_fifo_size - frame_fifo_size;
2330			rfd = rfa + (frame_fifo_size / 2);
2331		} else {
2332			/* Above 3 max-frames - trigger when just over
2333			 * 2 frames of space available
2334			 */
2335			rfa = frame_fifo_size * 2;
2336			rfa += XGMAC_FLOW_CONTROL_UNIT;
2337			rfd = rfa + frame_fifo_size;
2338		}
2339	}
2340
2341	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2342	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2343}
2344
2345static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2346						  unsigned int *fifo)
2347{
2348	unsigned int q_fifo_size;
2349	unsigned int i;
2350
2351	for (i = 0; i < pdata->rx_q_count; i++) {
2352		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2353
2354		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2355	}
2356}
2357
2358static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2359{
2360	unsigned int i;
2361
2362	for (i = 0; i < pdata->rx_q_count; i++) {
2363		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2364				       pdata->rx_rfa[i]);
2365		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2366				       pdata->rx_rfd[i]);
2367	}
2368}
2369
2370static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2371{
2372	/* The configured value may not be the actual amount of fifo RAM */
2373	return min_t(unsigned int, pdata->tx_max_fifo_size,
2374		     pdata->hw_feat.tx_fifo_size);
2375}
2376
2377static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2378{
2379	/* The configured value may not be the actual amount of fifo RAM */
2380	return min_t(unsigned int, pdata->rx_max_fifo_size,
2381		     pdata->hw_feat.rx_fifo_size);
2382}
2383
2384static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2385				      unsigned int queue_count,
2386				      unsigned int *fifo)
2387{
2388	unsigned int q_fifo_size;
2389	unsigned int p_fifo;
2390	unsigned int i;
2391
2392	q_fifo_size = fifo_size / queue_count;
2393
2394	/* Calculate the fifo setting by dividing the queue's fifo size
2395	 * by the fifo allocation increment (with 0 representing the
2396	 * base allocation increment so decrement the result by 1).
2397	 */
2398	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2399	if (p_fifo)
2400		p_fifo--;
2401
2402	/* Distribute the fifo equally amongst the queues */
2403	for (i = 0; i < queue_count; i++)
2404		fifo[i] = p_fifo;
2405}
2406
2407static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2408					   unsigned int queue_count,
2409					   unsigned int *fifo)
2410{
2411	unsigned int i;
2412
2413	BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2414
2415	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2416		return fifo_size;
2417
2418	/* Rx queues 9 and up are for specialized packets,
2419	 * such as PTP or DCB control packets, etc. and
2420	 * don't require a large fifo
2421	 */
2422	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2423		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2424		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2425	}
2426
2427	return fifo_size;
2428}
2429
2430static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2431{
2432	unsigned int delay;
2433
2434	/* If a delay has been provided, use that */
2435	if (pdata->pfc->delay)
2436		return pdata->pfc->delay / 8;
2437
2438	/* Allow for two maximum size frames */
2439	delay = xgbe_get_max_frame(pdata);
2440	delay += XGMAC_ETH_PREAMBLE;
2441	delay *= 2;
2442
2443	/* Allow for PFC frame */
2444	delay += XGMAC_PFC_DATA_LEN;
2445	delay += ETH_HLEN + ETH_FCS_LEN;
2446	delay += XGMAC_ETH_PREAMBLE;
2447
2448	/* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2449	delay += XGMAC_PFC_DELAYS;
2450
2451	return delay;
2452}
2453
2454static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2455{
2456	unsigned int count, prio_queues;
2457	unsigned int i;
2458
2459	if (!pdata->pfc->pfc_en)
2460		return 0;
2461
2462	count = 0;
2463	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2464	for (i = 0; i < prio_queues; i++) {
2465		if (!xgbe_is_pfc_queue(pdata, i))
2466			continue;
2467
2468		pdata->pfcq[i] = 1;
2469		count++;
2470	}
2471
2472	return count;
2473}
2474
2475static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2476				    unsigned int fifo_size,
2477				    unsigned int *fifo)
2478{
2479	unsigned int q_fifo_size, rem_fifo, addn_fifo;
2480	unsigned int prio_queues;
2481	unsigned int pfc_count;
2482	unsigned int i;
2483
2484	q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2485	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2486	pfc_count = xgbe_get_pfc_queues(pdata);
2487
2488	if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2489		/* No traffic classes with PFC enabled or can't do lossless */
2490		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2491		return;
2492	}
2493
2494	/* Calculate how much fifo we have to play with */
2495	rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2496
2497	/* Calculate how much more than base fifo PFC needs, which also
2498	 * becomes the threshold activation point (RFA)
2499	 */
2500	pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2501	pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2502
2503	if (pdata->pfc_rfa > q_fifo_size) {
2504		addn_fifo = pdata->pfc_rfa - q_fifo_size;
2505		addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2506	} else {
2507		addn_fifo = 0;
2508	}
2509
2510	/* Calculate DCB fifo settings:
2511	 *   - distribute remaining fifo between the VLAN priority
2512	 *     queues based on traffic class PFC enablement and overall
2513	 *     priority (0 is lowest priority, so start at highest)
2514	 */
2515	i = prio_queues;
2516	while (i > 0) {
2517		i--;
2518
2519		fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2520
2521		if (!pdata->pfcq[i] || !addn_fifo)
2522			continue;
2523
2524		if (addn_fifo > rem_fifo) {
2525			netdev_warn(pdata->netdev,
2526				    "RXq%u cannot set needed fifo size\n", i);
2527			if (!rem_fifo)
2528				continue;
2529
2530			addn_fifo = rem_fifo;
2531		}
2532
2533		fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2534		rem_fifo -= addn_fifo;
2535	}
2536
2537	if (rem_fifo) {
2538		unsigned int inc_fifo = rem_fifo / prio_queues;
2539
2540		/* Distribute remaining fifo across queues */
2541		for (i = 0; i < prio_queues; i++)
2542			fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2543	}
2544}
2545
2546static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2547{
2548	unsigned int fifo_size;
2549	unsigned int fifo[XGBE_MAX_QUEUES];
2550	unsigned int i;
2551
2552	fifo_size = xgbe_get_tx_fifo_size(pdata);
2553
2554	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2555
2556	for (i = 0; i < pdata->tx_q_count; i++)
2557		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2558
2559	netif_info(pdata, drv, pdata->netdev,
2560		   "%d Tx hardware queues, %d byte fifo per queue\n",
2561		   pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2562}
2563
2564static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2565{
2566	unsigned int fifo_size;
2567	unsigned int fifo[XGBE_MAX_QUEUES];
2568	unsigned int prio_queues;
2569	unsigned int i;
2570
2571	/* Clear any DCB related fifo/queue information */
2572	memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2573	pdata->pfc_rfa = 0;
2574
2575	fifo_size = xgbe_get_rx_fifo_size(pdata);
2576	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2577
2578	/* Assign a minimum fifo to the non-VLAN priority queues */
2579	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2580
2581	if (pdata->pfc && pdata->ets)
2582		xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2583	else
2584		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2585
2586	for (i = 0; i < pdata->rx_q_count; i++)
2587		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2588
2589	xgbe_calculate_flow_control_threshold(pdata, fifo);
2590	xgbe_config_flow_control_threshold(pdata);
2591
2592	if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2593		netif_info(pdata, drv, pdata->netdev,
2594			   "%u Rx hardware queues\n", pdata->rx_q_count);
2595		for (i = 0; i < pdata->rx_q_count; i++)
2596			netif_info(pdata, drv, pdata->netdev,
2597				   "RxQ%u, %u byte fifo queue\n", i,
2598				   ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2599	} else {
2600		netif_info(pdata, drv, pdata->netdev,
2601			   "%u Rx hardware queues, %u byte fifo per queue\n",
2602			   pdata->rx_q_count,
2603			   ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2604	}
2605}
2606
2607static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2608{
2609	unsigned int qptc, qptc_extra, queue;
2610	unsigned int prio_queues;
2611	unsigned int ppq, ppq_extra, prio;
2612	unsigned int mask;
2613	unsigned int i, j, reg, reg_val;
2614
2615	/* Map the MTL Tx Queues to Traffic Classes
2616	 *   Note: Tx Queues >= Traffic Classes
2617	 */
2618	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2619	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2620
2621	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2622		for (j = 0; j < qptc; j++) {
2623			netif_dbg(pdata, drv, pdata->netdev,
2624				  "TXq%u mapped to TC%u\n", queue, i);
2625			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2626					       Q2TCMAP, i);
2627			pdata->q2tc_map[queue++] = i;
2628		}
2629
2630		if (i < qptc_extra) {
2631			netif_dbg(pdata, drv, pdata->netdev,
2632				  "TXq%u mapped to TC%u\n", queue, i);
2633			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2634					       Q2TCMAP, i);
2635			pdata->q2tc_map[queue++] = i;
2636		}
2637	}
2638
2639	/* Map the 8 VLAN priority values to available MTL Rx queues */
2640	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2641	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2642	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2643
2644	reg = MAC_RQC2R;
2645	reg_val = 0;
2646	for (i = 0, prio = 0; i < prio_queues;) {
2647		mask = 0;
2648		for (j = 0; j < ppq; j++) {
2649			netif_dbg(pdata, drv, pdata->netdev,
2650				  "PRIO%u mapped to RXq%u\n", prio, i);
2651			mask |= (1 << prio);
2652			pdata->prio2q_map[prio++] = i;
2653		}
2654
2655		if (i < ppq_extra) {
2656			netif_dbg(pdata, drv, pdata->netdev,
2657				  "PRIO%u mapped to RXq%u\n", prio, i);
2658			mask |= (1 << prio);
2659			pdata->prio2q_map[prio++] = i;
2660		}
2661
2662		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2663
2664		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2665			continue;
2666
2667		XGMAC_IOWRITE(pdata, reg, reg_val);
2668		reg += MAC_RQC2_INC;
2669		reg_val = 0;
2670	}
2671
2672	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2673	reg = MTL_RQDCM0R;
2674	reg_val = 0;
2675	for (i = 0; i < pdata->rx_q_count;) {
2676		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2677
2678		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2679			continue;
2680
2681		XGMAC_IOWRITE(pdata, reg, reg_val);
2682
2683		reg += MTL_RQDCM_INC;
2684		reg_val = 0;
2685	}
2686}
2687
2688static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2689{
2690	unsigned int offset, queue, prio;
2691	u8 i;
2692
2693	netdev_reset_tc(pdata->netdev);
2694	if (!pdata->num_tcs)
2695		return;
2696
2697	netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2698
2699	for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2700		while ((queue < pdata->tx_q_count) &&
2701		       (pdata->q2tc_map[queue] == i))
2702			queue++;
2703
2704		netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2705			  i, offset, queue - 1);
2706		netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2707		offset = queue;
2708	}
2709
2710	if (!pdata->ets)
2711		return;
2712
2713	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2714		netdev_set_prio_tc_map(pdata->netdev, prio,
2715				       pdata->ets->prio_tc[prio]);
2716}
2717
2718static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2719{
2720	struct ieee_ets *ets = pdata->ets;
2721	unsigned int total_weight, min_weight, weight;
2722	unsigned int mask, reg, reg_val;
2723	unsigned int i, prio;
2724
2725	if (!ets)
2726		return;
2727
2728	/* Set Tx to deficit weighted round robin scheduling algorithm (when
2729	 * traffic class is using ETS algorithm)
2730	 */
2731	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2732
2733	/* Set Traffic Class algorithms */
2734	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2735	min_weight = total_weight / 100;
2736	if (!min_weight)
2737		min_weight = 1;
2738
2739	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2740		/* Map the priorities to the traffic class */
2741		mask = 0;
2742		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2743			if (ets->prio_tc[prio] == i)
2744				mask |= (1 << prio);
2745		}
2746		mask &= 0xff;
2747
2748		netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2749			  i, mask);
2750		reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2751		reg_val = XGMAC_IOREAD(pdata, reg);
2752
2753		reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2754		reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2755
2756		XGMAC_IOWRITE(pdata, reg, reg_val);
2757
2758		/* Set the traffic class algorithm */
2759		switch (ets->tc_tsa[i]) {
2760		case IEEE_8021QAZ_TSA_STRICT:
2761			netif_dbg(pdata, drv, pdata->netdev,
2762				  "TC%u using SP\n", i);
2763			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2764					       MTL_TSA_SP);
2765			break;
2766		case IEEE_8021QAZ_TSA_ETS:
2767			weight = total_weight * ets->tc_tx_bw[i] / 100;
2768			weight = clamp(weight, min_weight, total_weight);
2769
2770			netif_dbg(pdata, drv, pdata->netdev,
2771				  "TC%u using DWRR (weight %u)\n", i, weight);
2772			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2773					       MTL_TSA_ETS);
2774			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2775					       weight);
2776			break;
2777		}
2778	}
2779
2780	xgbe_config_tc(pdata);
2781}
2782
2783static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2784{
2785	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2786		/* Just stop the Tx queues while Rx fifo is changed */
2787		netif_tx_stop_all_queues(pdata->netdev);
2788
2789		/* Suspend Rx so that fifo's can be adjusted */
2790		pdata->hw_if.disable_rx(pdata);
2791	}
2792
2793	xgbe_config_rx_fifo_size(pdata);
2794	xgbe_config_flow_control(pdata);
2795
2796	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2797		/* Resume Rx */
2798		pdata->hw_if.enable_rx(pdata);
2799
2800		/* Resume Tx queues */
2801		netif_tx_start_all_queues(pdata->netdev);
2802	}
2803}
2804
2805static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2806{
2807	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2808
2809	/* Filtering is done using perfect filtering and hash filtering */
2810	if (pdata->hw_feat.hash_table_size) {
2811		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2812		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2813		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2814	}
2815}
2816
2817static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2818{
2819	unsigned int val;
2820
2821	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2822
2823	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2824}
2825
2826static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2827{
2828	xgbe_set_speed(pdata, pdata->phy_speed);
2829}
2830
2831static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2832{
2833	if (pdata->netdev->features & NETIF_F_RXCSUM)
2834		xgbe_enable_rx_csum(pdata);
2835	else
2836		xgbe_disable_rx_csum(pdata);
2837}
2838
2839static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2840{
2841	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2842	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2843	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2844
2845	/* Set the current VLAN Hash Table register value */
2846	xgbe_update_vlan_hash_table(pdata);
2847
2848	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2849		xgbe_enable_rx_vlan_filtering(pdata);
2850	else
2851		xgbe_disable_rx_vlan_filtering(pdata);
2852
2853	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2854		xgbe_enable_rx_vlan_stripping(pdata);
2855	else
2856		xgbe_disable_rx_vlan_stripping(pdata);
2857}
2858
2859static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2860{
2861	bool read_hi;
2862	u64 val;
2863
2864	if (pdata->vdata->mmc_64bit) {
2865		switch (reg_lo) {
2866		/* These registers are always 32 bit */
2867		case MMC_RXRUNTERROR:
2868		case MMC_RXJABBERERROR:
2869		case MMC_RXUNDERSIZE_G:
2870		case MMC_RXOVERSIZE_G:
2871		case MMC_RXWATCHDOGERROR:
2872			read_hi = false;
2873			break;
2874
2875		default:
2876			read_hi = true;
2877		}
2878	} else {
2879		switch (reg_lo) {
2880		/* These registers are always 64 bit */
2881		case MMC_TXOCTETCOUNT_GB_LO:
2882		case MMC_TXOCTETCOUNT_G_LO:
2883		case MMC_RXOCTETCOUNT_GB_LO:
2884		case MMC_RXOCTETCOUNT_G_LO:
2885			read_hi = true;
2886			break;
2887
2888		default:
2889			read_hi = false;
2890		}
2891	}
2892
2893	val = XGMAC_IOREAD(pdata, reg_lo);
2894
2895	if (read_hi)
2896		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2897
2898	return val;
2899}
2900
2901static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2902{
2903	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2904	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2905
2906	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2907		stats->txoctetcount_gb +=
2908			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2909
2910	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2911		stats->txframecount_gb +=
2912			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2913
2914	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2915		stats->txbroadcastframes_g +=
2916			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2917
2918	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2919		stats->txmulticastframes_g +=
2920			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2921
2922	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2923		stats->tx64octets_gb +=
2924			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2925
2926	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2927		stats->tx65to127octets_gb +=
2928			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2929
2930	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2931		stats->tx128to255octets_gb +=
2932			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2933
2934	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2935		stats->tx256to511octets_gb +=
2936			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2937
2938	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2939		stats->tx512to1023octets_gb +=
2940			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2941
2942	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2943		stats->tx1024tomaxoctets_gb +=
2944			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2945
2946	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2947		stats->txunicastframes_gb +=
2948			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2949
2950	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2951		stats->txmulticastframes_gb +=
2952			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2953
2954	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2955		stats->txbroadcastframes_g +=
2956			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2957
2958	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2959		stats->txunderflowerror +=
2960			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2961
2962	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2963		stats->txoctetcount_g +=
2964			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2965
2966	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2967		stats->txframecount_g +=
2968			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2969
2970	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2971		stats->txpauseframes +=
2972			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2973
2974	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2975		stats->txvlanframes_g +=
2976			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2977}
2978
2979static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2980{
2981	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2982	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2983
2984	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2985		stats->rxframecount_gb +=
2986			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2987
2988	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2989		stats->rxoctetcount_gb +=
2990			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2991
2992	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2993		stats->rxoctetcount_g +=
2994			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2995
2996	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2997		stats->rxbroadcastframes_g +=
2998			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2999
3000	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
3001		stats->rxmulticastframes_g +=
3002			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3003
3004	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
3005		stats->rxcrcerror +=
3006			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3007
3008	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
3009		stats->rxrunterror +=
3010			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3011
3012	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
3013		stats->rxjabbererror +=
3014			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3015
3016	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
3017		stats->rxundersize_g +=
3018			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3019
3020	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
3021		stats->rxoversize_g +=
3022			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3023
3024	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
3025		stats->rx64octets_gb +=
3026			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3027
3028	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
3029		stats->rx65to127octets_gb +=
3030			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3031
3032	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
3033		stats->rx128to255octets_gb +=
3034			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3035
3036	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
3037		stats->rx256to511octets_gb +=
3038			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3039
3040	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
3041		stats->rx512to1023octets_gb +=
3042			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3043
3044	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
3045		stats->rx1024tomaxoctets_gb +=
3046			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3047
3048	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
3049		stats->rxunicastframes_g +=
3050			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3051
3052	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
3053		stats->rxlengtherror +=
3054			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3055
3056	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
3057		stats->rxoutofrangetype +=
3058			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3059
3060	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
3061		stats->rxpauseframes +=
3062			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3063
3064	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
3065		stats->rxfifooverflow +=
3066			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3067
3068	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
3069		stats->rxvlanframes_gb +=
3070			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3071
3072	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
3073		stats->rxwatchdogerror +=
3074			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3075}
3076
3077static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
3078{
3079	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3080
3081	/* Freeze counters */
3082	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
3083
3084	stats->txoctetcount_gb +=
3085		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3086
3087	stats->txframecount_gb +=
3088		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3089
3090	stats->txbroadcastframes_g +=
3091		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3092
3093	stats->txmulticastframes_g +=
3094		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3095
3096	stats->tx64octets_gb +=
3097		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3098
3099	stats->tx65to127octets_gb +=
3100		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3101
3102	stats->tx128to255octets_gb +=
3103		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3104
3105	stats->tx256to511octets_gb +=
3106		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3107
3108	stats->tx512to1023octets_gb +=
3109		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3110
3111	stats->tx1024tomaxoctets_gb +=
3112		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3113
3114	stats->txunicastframes_gb +=
3115		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3116
3117	stats->txmulticastframes_gb +=
3118		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3119
3120	stats->txbroadcastframes_g +=
3121		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3122
3123	stats->txunderflowerror +=
3124		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3125
3126	stats->txoctetcount_g +=
3127		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3128
3129	stats->txframecount_g +=
3130		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3131
3132	stats->txpauseframes +=
3133		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3134
3135	stats->txvlanframes_g +=
3136		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3137
3138	stats->rxframecount_gb +=
3139		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3140
3141	stats->rxoctetcount_gb +=
3142		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3143
3144	stats->rxoctetcount_g +=
3145		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3146
3147	stats->rxbroadcastframes_g +=
3148		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3149
3150	stats->rxmulticastframes_g +=
3151		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3152
3153	stats->rxcrcerror +=
3154		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3155
3156	stats->rxrunterror +=
3157		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3158
3159	stats->rxjabbererror +=
3160		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3161
3162	stats->rxundersize_g +=
3163		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3164
3165	stats->rxoversize_g +=
3166		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3167
3168	stats->rx64octets_gb +=
3169		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3170
3171	stats->rx65to127octets_gb +=
3172		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3173
3174	stats->rx128to255octets_gb +=
3175		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3176
3177	stats->rx256to511octets_gb +=
3178		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3179
3180	stats->rx512to1023octets_gb +=
3181		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3182
3183	stats->rx1024tomaxoctets_gb +=
3184		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3185
3186	stats->rxunicastframes_g +=
3187		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3188
3189	stats->rxlengtherror +=
3190		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3191
3192	stats->rxoutofrangetype +=
3193		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3194
3195	stats->rxpauseframes +=
3196		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3197
3198	stats->rxfifooverflow +=
3199		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3200
3201	stats->rxvlanframes_gb +=
3202		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3203
3204	stats->rxwatchdogerror +=
3205		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3206
3207	/* Un-freeze counters */
3208	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3209}
3210
3211static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3212{
3213	/* Set counters to reset on read */
3214	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3215
3216	/* Reset the counters */
3217	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3218}
3219
3220static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3221				     unsigned int queue)
3222{
3223	unsigned int tx_status;
3224	unsigned long tx_timeout;
3225
3226	/* The Tx engine cannot be stopped if it is actively processing
3227	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
3228	 * wait forever though...
3229	 */
3230	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3231	while (time_before(jiffies, tx_timeout)) {
3232		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3233		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3234		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3235			break;
3236
3237		usleep_range(500, 1000);
3238	}
3239
3240	if (!time_before(jiffies, tx_timeout))
3241		netdev_info(pdata->netdev,
3242			    "timed out waiting for Tx queue %u to empty\n",
3243			    queue);
3244}
3245
3246static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3247				 unsigned int queue)
3248{
3249	unsigned int tx_dsr, tx_pos, tx_qidx;
3250	unsigned int tx_status;
3251	unsigned long tx_timeout;
3252
3253	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3254		return xgbe_txq_prepare_tx_stop(pdata, queue);
3255
3256	/* Calculate the status register to read and the position within */
3257	if (queue < DMA_DSRX_FIRST_QUEUE) {
3258		tx_dsr = DMA_DSR0;
3259		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3260	} else {
3261		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3262
3263		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3264		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3265			 DMA_DSRX_TPS_START;
3266	}
3267
3268	/* The Tx engine cannot be stopped if it is actively processing
3269	 * descriptors. Wait for the Tx engine to enter the stopped or
3270	 * suspended state.  Don't wait forever though...
3271	 */
3272	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3273	while (time_before(jiffies, tx_timeout)) {
3274		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3275		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3276		if ((tx_status == DMA_TPS_STOPPED) ||
3277		    (tx_status == DMA_TPS_SUSPENDED))
3278			break;
3279
3280		usleep_range(500, 1000);
3281	}
3282
3283	if (!time_before(jiffies, tx_timeout))
3284		netdev_info(pdata->netdev,
3285			    "timed out waiting for Tx DMA channel %u to stop\n",
3286			    queue);
3287}
3288
3289static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3290{
3291	unsigned int i;
3292
3293	/* Enable each Tx DMA channel */
3294	for (i = 0; i < pdata->channel_count; i++) {
3295		if (!pdata->channel[i]->tx_ring)
3296			break;
3297
3298		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3299	}
3300
3301	/* Enable each Tx queue */
3302	for (i = 0; i < pdata->tx_q_count; i++)
3303		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3304				       MTL_Q_ENABLED);
3305
3306	/* Enable MAC Tx */
3307	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3308}
3309
3310static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3311{
3312	unsigned int i;
3313
3314	/* Prepare for Tx DMA channel stop */
3315	for (i = 0; i < pdata->tx_q_count; i++)
3316		xgbe_prepare_tx_stop(pdata, i);
3317
3318	/* Disable MAC Tx */
3319	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3320
3321	/* Disable each Tx queue */
3322	for (i = 0; i < pdata->tx_q_count; i++)
3323		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3324
3325	/* Disable each Tx DMA channel */
3326	for (i = 0; i < pdata->channel_count; i++) {
3327		if (!pdata->channel[i]->tx_ring)
3328			break;
3329
3330		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3331	}
3332}
3333
3334static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3335				 unsigned int queue)
3336{
3337	unsigned int rx_status;
3338	unsigned long rx_timeout;
3339
3340	/* The Rx engine cannot be stopped if it is actively processing
3341	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
3342	 * wait forever though...
3343	 */
3344	rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3345	while (time_before(jiffies, rx_timeout)) {
3346		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3347		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3348		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3349			break;
3350
3351		usleep_range(500, 1000);
3352	}
3353
3354	if (!time_before(jiffies, rx_timeout))
3355		netdev_info(pdata->netdev,
3356			    "timed out waiting for Rx queue %u to empty\n",
3357			    queue);
3358}
3359
3360static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3361{
3362	unsigned int reg_val, i;
3363
3364	/* Enable each Rx DMA channel */
3365	for (i = 0; i < pdata->channel_count; i++) {
3366		if (!pdata->channel[i]->rx_ring)
3367			break;
3368
3369		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3370	}
3371
3372	/* Enable each Rx queue */
3373	reg_val = 0;
3374	for (i = 0; i < pdata->rx_q_count; i++)
3375		reg_val |= (0x02 << (i << 1));
3376	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3377
3378	/* Enable MAC Rx */
3379	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3380	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3381	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3382	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3383}
3384
3385static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3386{
3387	unsigned int i;
3388
3389	/* Disable MAC Rx */
3390	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3391	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3392	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3393	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3394
3395	/* Prepare for Rx DMA channel stop */
3396	for (i = 0; i < pdata->rx_q_count; i++)
3397		xgbe_prepare_rx_stop(pdata, i);
3398
3399	/* Disable each Rx queue */
3400	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3401
3402	/* Disable each Rx DMA channel */
3403	for (i = 0; i < pdata->channel_count; i++) {
3404		if (!pdata->channel[i]->rx_ring)
3405			break;
3406
3407		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3408	}
3409}
3410
3411static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3412{
3413	unsigned int i;
3414
3415	/* Enable each Tx DMA channel */
3416	for (i = 0; i < pdata->channel_count; i++) {
3417		if (!pdata->channel[i]->tx_ring)
3418			break;
3419
3420		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3421	}
3422
3423	/* Enable MAC Tx */
3424	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3425}
3426
3427static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3428{
3429	unsigned int i;
3430
3431	/* Prepare for Tx DMA channel stop */
3432	for (i = 0; i < pdata->tx_q_count; i++)
3433		xgbe_prepare_tx_stop(pdata, i);
3434
3435	/* Disable MAC Tx */
3436	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3437
3438	/* Disable each Tx DMA channel */
3439	for (i = 0; i < pdata->channel_count; i++) {
3440		if (!pdata->channel[i]->tx_ring)
3441			break;
3442
3443		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3444	}
3445}
3446
3447static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3448{
3449	unsigned int i;
3450
3451	/* Enable each Rx DMA channel */
3452	for (i = 0; i < pdata->channel_count; i++) {
3453		if (!pdata->channel[i]->rx_ring)
3454			break;
3455
3456		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3457	}
3458}
3459
3460static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3461{
3462	unsigned int i;
3463
3464	/* Disable each Rx DMA channel */
3465	for (i = 0; i < pdata->channel_count; i++) {
3466		if (!pdata->channel[i]->rx_ring)
3467			break;
3468
3469		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3470	}
3471}
3472
3473static int xgbe_init(struct xgbe_prv_data *pdata)
3474{
3475	struct xgbe_desc_if *desc_if = &pdata->desc_if;
3476	int ret;
3477
3478	DBGPR("-->xgbe_init\n");
3479
3480	/* Flush Tx queues */
3481	ret = xgbe_flush_tx_queues(pdata);
3482	if (ret) {
3483		netdev_err(pdata->netdev, "error flushing TX queues\n");
3484		return ret;
3485	}
3486
3487	/*
3488	 * Initialize DMA related features
3489	 */
3490	xgbe_config_dma_bus(pdata);
3491	xgbe_config_dma_cache(pdata);
3492	xgbe_config_osp_mode(pdata);
3493	xgbe_config_pbl_val(pdata);
3494	xgbe_config_rx_coalesce(pdata);
3495	xgbe_config_tx_coalesce(pdata);
3496	xgbe_config_rx_buffer_size(pdata);
3497	xgbe_config_tso_mode(pdata);
3498	xgbe_config_sph_mode(pdata);
3499	xgbe_config_rss(pdata);
3500	desc_if->wrapper_tx_desc_init(pdata);
3501	desc_if->wrapper_rx_desc_init(pdata);
3502	xgbe_enable_dma_interrupts(pdata);
3503
3504	/*
3505	 * Initialize MTL related features
3506	 */
3507	xgbe_config_mtl_mode(pdata);
3508	xgbe_config_queue_mapping(pdata);
3509	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3510	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3511	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3512	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3513	xgbe_config_tx_fifo_size(pdata);
3514	xgbe_config_rx_fifo_size(pdata);
3515	/*TODO: Error Packet and undersized good Packet forwarding enable
3516		(FEP and FUP)
3517	 */
3518	xgbe_config_dcb_tc(pdata);
3519	xgbe_enable_mtl_interrupts(pdata);
3520
3521	/*
3522	 * Initialize MAC related features
3523	 */
3524	xgbe_config_mac_address(pdata);
3525	xgbe_config_rx_mode(pdata);
3526	xgbe_config_jumbo_enable(pdata);
3527	xgbe_config_flow_control(pdata);
3528	xgbe_config_mac_speed(pdata);
3529	xgbe_config_checksum_offload(pdata);
3530	xgbe_config_vlan_support(pdata);
3531	xgbe_config_mmc(pdata);
3532	xgbe_enable_mac_interrupts(pdata);
3533
3534	/*
3535	 * Initialize ECC related features
3536	 */
3537	xgbe_enable_ecc_interrupts(pdata);
3538
3539	DBGPR("<--xgbe_init\n");
3540
3541	return 0;
3542}
3543
3544void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3545{
3546	DBGPR("-->xgbe_init_function_ptrs\n");
3547
3548	hw_if->tx_complete = xgbe_tx_complete;
3549
3550	hw_if->set_mac_address = xgbe_set_mac_address;
3551	hw_if->config_rx_mode = xgbe_config_rx_mode;
3552
3553	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3554	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3555
3556	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3557	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3558	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3559	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3560	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3561
3562	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3563	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3564
3565	hw_if->set_speed = xgbe_set_speed;
3566
3567	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3568	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
3569	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
3570
3571	hw_if->set_gpio = xgbe_set_gpio;
3572	hw_if->clr_gpio = xgbe_clr_gpio;
3573
3574	hw_if->enable_tx = xgbe_enable_tx;
3575	hw_if->disable_tx = xgbe_disable_tx;
3576	hw_if->enable_rx = xgbe_enable_rx;
3577	hw_if->disable_rx = xgbe_disable_rx;
3578
3579	hw_if->powerup_tx = xgbe_powerup_tx;
3580	hw_if->powerdown_tx = xgbe_powerdown_tx;
3581	hw_if->powerup_rx = xgbe_powerup_rx;
3582	hw_if->powerdown_rx = xgbe_powerdown_rx;
3583
3584	hw_if->dev_xmit = xgbe_dev_xmit;
3585	hw_if->dev_read = xgbe_dev_read;
3586	hw_if->enable_int = xgbe_enable_int;
3587	hw_if->disable_int = xgbe_disable_int;
3588	hw_if->init = xgbe_init;
3589	hw_if->exit = xgbe_exit;
3590
3591	/* Descriptor related Sequences have to be initialized here */
3592	hw_if->tx_desc_init = xgbe_tx_desc_init;
3593	hw_if->rx_desc_init = xgbe_rx_desc_init;
3594	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3595	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3596	hw_if->is_last_desc = xgbe_is_last_desc;
3597	hw_if->is_context_desc = xgbe_is_context_desc;
3598	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3599
3600	/* For FLOW ctrl */
3601	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3602	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3603
3604	/* For RX coalescing */
3605	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3606	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3607	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3608	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3609
3610	/* For RX and TX threshold config */
3611	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3612	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3613
3614	/* For RX and TX Store and Forward Mode config */
3615	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3616	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3617
3618	/* For TX DMA Operating on Second Frame config */
3619	hw_if->config_osp_mode = xgbe_config_osp_mode;
3620
3621	/* For MMC statistics support */
3622	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3623	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3624	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3625
3626	/* For PTP config */
3627	hw_if->config_tstamp = xgbe_config_tstamp;
3628	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3629	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3630	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3631	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3632
3633	/* For Data Center Bridging config */
3634	hw_if->config_tc = xgbe_config_tc;
3635	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3636	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3637
3638	/* For Receive Side Scaling */
3639	hw_if->enable_rss = xgbe_enable_rss;
3640	hw_if->disable_rss = xgbe_disable_rss;
3641	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3642	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3643
3644	/* For ECC */
3645	hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3646	hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3647
3648	/* For VXLAN */
3649	hw_if->enable_vxlan = xgbe_enable_vxlan;
3650	hw_if->disable_vxlan = xgbe_disable_vxlan;
3651	hw_if->set_vxlan_id = xgbe_set_vxlan_id;
3652
3653	DBGPR("<--xgbe_init_function_ptrs\n");
3654}
3655