1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
4 *           and other Tigon based cards.
5 *
6 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 *
8 * Thanks to Alteon and 3Com for providing hardware and documentation
9 * enabling me to write this driver.
10 *
11 * A mailing list for discussing the use of this driver has been
12 * setup, please subscribe to the lists if you have any questions
13 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
14 * see how to subscribe.
15 *
16 * Additional credits:
17 *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
18 *       dump support. The trace dump support has not been
19 *       integrated yet however.
20 *   Troy Benjegerdes: Big Endian (PPC) patches.
21 *   Nate Stahl: Better out of memory handling and stats support.
22 *   Aman Singla: Nasty race between interrupt handler and tx code dealing
23 *                with 'testing the tx_ret_csm and setting tx_full'
24 *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
25 *                                       infrastructure and Sparc support
26 *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
27 *                              driver under Linux/Sparc64
28 *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
29 *                                       ETHTOOL_GDRVINFO support
30 *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
31 *                                       handler and close() cleanup.
32 *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
33 *                                       memory mapped IO is enabled to
34 *                                       make the driver work on RS/6000.
35 *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
36 *                                       where the driver would disable
37 *                                       bus master mode if it had to disable
38 *                                       write and invalidate.
39 *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
40 *                                       endian systems.
41 *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and
42 *                                       rx producer index when
43 *                                       flushing the Jumbo ring.
44 *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the
45 *                                       driver init path.
46 *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
47 */
48
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/types.h>
52#include <linux/errno.h>
53#include <linux/ioport.h>
54#include <linux/pci.h>
55#include <linux/dma-mapping.h>
56#include <linux/kernel.h>
57#include <linux/netdevice.h>
58#include <linux/etherdevice.h>
59#include <linux/skbuff.h>
60#include <linux/delay.h>
61#include <linux/mm.h>
62#include <linux/highmem.h>
63#include <linux/sockios.h>
64#include <linux/firmware.h>
65#include <linux/slab.h>
66#include <linux/prefetch.h>
67#include <linux/if_vlan.h>
68
69#ifdef SIOCETHTOOL
70#include <linux/ethtool.h>
71#endif
72
73#include <net/sock.h>
74#include <net/ip.h>
75
76#include <asm/io.h>
77#include <asm/irq.h>
78#include <asm/byteorder.h>
79#include <linux/uaccess.h>
80
81
82#define DRV_NAME "acenic"
83
84#undef INDEX_DEBUG
85
86#ifdef CONFIG_ACENIC_OMIT_TIGON_I
87#define ACE_IS_TIGON_I(ap)	0
88#define ACE_TX_RING_ENTRIES(ap)	MAX_TX_RING_ENTRIES
89#else
90#define ACE_IS_TIGON_I(ap)	(ap->version == 1)
91#define ACE_TX_RING_ENTRIES(ap)	ap->tx_ring_entries
92#endif
93
94#ifndef PCI_VENDOR_ID_ALTEON
95#define PCI_VENDOR_ID_ALTEON		0x12ae
96#endif
97#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
98#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001
99#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
100#endif
101#ifndef PCI_DEVICE_ID_3COM_3C985
102#define PCI_DEVICE_ID_3COM_3C985	0x0001
103#endif
104#ifndef PCI_VENDOR_ID_NETGEAR
105#define PCI_VENDOR_ID_NETGEAR		0x1385
106#define PCI_DEVICE_ID_NETGEAR_GA620	0x620a
107#endif
108#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
109#define PCI_DEVICE_ID_NETGEAR_GA620T	0x630a
110#endif
111
112
113/*
114 * Farallon used the DEC vendor ID by mistake and they seem not
115 * to care - stinky!
116 */
117#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
118#define PCI_DEVICE_ID_FARALLON_PN9000SX	0x1a
119#endif
120#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
121#define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa
122#endif
123#ifndef PCI_VENDOR_ID_SGI
124#define PCI_VENDOR_ID_SGI		0x10a9
125#endif
126#ifndef PCI_DEVICE_ID_SGI_ACENIC
127#define PCI_DEVICE_ID_SGI_ACENIC	0x0009
128#endif
129
130static const struct pci_device_id acenic_pci_tbl[] = {
131	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
132	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
133	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
134	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
135	{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
136	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
137	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
138	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
139	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
140	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
141	/*
142	 * Farallon used the DEC vendor ID on their cards incorrectly,
143	 * then later Alteon's ID.
144	 */
145	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
146	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
147	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
148	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
149	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
150	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
151	{ }
152};
153MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
154
155#define ace_sync_irq(irq)	synchronize_irq(irq)
156
157#ifndef offset_in_page
158#define offset_in_page(ptr)	((unsigned long)(ptr) & ~PAGE_MASK)
159#endif
160
161#define ACE_MAX_MOD_PARMS	8
162#define BOARD_IDX_STATIC	0
163#define BOARD_IDX_OVERFLOW	-1
164
165#include "acenic.h"
166
167/*
168 * These must be defined before the firmware is included.
169 */
170#define MAX_TEXT_LEN	96*1024
171#define MAX_RODATA_LEN	8*1024
172#define MAX_DATA_LEN	2*1024
173
174#ifndef tigon2FwReleaseLocal
175#define tigon2FwReleaseLocal 0
176#endif
177
178/*
179 * This driver currently supports Tigon I and Tigon II based cards
180 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
181 * GA620. The driver should also work on the SGI, DEC and Farallon
182 * versions of the card, however I have not been able to test that
183 * myself.
184 *
185 * This card is really neat, it supports receive hardware checksumming
186 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
187 * firmware. Also the programming interface is quite neat, except for
188 * the parts dealing with the i2c eeprom on the card ;-)
189 *
190 * Using jumbo frames:
191 *
192 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
193 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
194 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
195 * interface number and <MTU> being the MTU value.
196 *
197 * Module parameters:
198 *
199 * When compiled as a loadable module, the driver allows for a number
200 * of module parameters to be specified. The driver supports the
201 * following module parameters:
202 *
203 *  trace=<val> - Firmware trace level. This requires special traced
204 *                firmware to replace the firmware supplied with
205 *                the driver - for debugging purposes only.
206 *
207 *  link=<val>  - Link state. Normally you want to use the default link
208 *                parameters set by the driver. This can be used to
209 *                override these in case your switch doesn't negotiate
210 *                the link properly. Valid values are:
211 *         0x0001 - Force half duplex link.
212 *         0x0002 - Do not negotiate line speed with the other end.
213 *         0x0010 - 10Mbit/sec link.
214 *         0x0020 - 100Mbit/sec link.
215 *         0x0040 - 1000Mbit/sec link.
216 *         0x0100 - Do not negotiate flow control.
217 *         0x0200 - Enable RX flow control Y
218 *         0x0400 - Enable TX flow control Y (Tigon II NICs only).
219 *                Default value is 0x0270, ie. enable link+flow
220 *                control negotiation. Negotiating the highest
221 *                possible link speed with RX flow control enabled.
222 *
223 *                When disabling link speed negotiation, only one link
224 *                speed is allowed to be specified!
225 *
226 *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
227 *                to wait for more packets to arive before
228 *                interrupting the host, from the time the first
229 *                packet arrives.
230 *
231 *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
232 *                to wait for more packets to arive in the transmit ring,
233 *                before interrupting the host, after transmitting the
234 *                first packet in the ring.
235 *
236 *  max_tx_desc=<val> - maximum number of transmit descriptors
237 *                (packets) transmitted before interrupting the host.
238 *
239 *  max_rx_desc=<val> - maximum number of receive descriptors
240 *                (packets) received before interrupting the host.
241 *
242 *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
243 *                increments of the NIC's on board memory to be used for
244 *                transmit and receive buffers. For the 1MB NIC app. 800KB
245 *                is available, on the 1/2MB NIC app. 300KB is available.
246 *                68KB will always be available as a minimum for both
247 *                directions. The default value is a 50/50 split.
248 *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
249 *                operations, default (1) is to always disable this as
250 *                that is what Alteon does on NT. I have not been able
251 *                to measure any real performance differences with
252 *                this on my systems. Set <val>=0 if you want to
253 *                enable these operations.
254 *
255 * If you use more than one NIC, specify the parameters for the
256 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
257 * run tracing on NIC #2 but not on NIC #1 and #3.
258 *
259 * TODO:
260 *
261 * - Proper multicast support.
262 * - NIC dump support.
263 * - More tuning parameters.
264 *
265 * The mini ring is not used under Linux and I am not sure it makes sense
266 * to actually use it.
267 *
268 * New interrupt handler strategy:
269 *
270 * The old interrupt handler worked using the traditional method of
271 * replacing an skbuff with a new one when a packet arrives. However
272 * the rx rings do not need to contain a static number of buffer
273 * descriptors, thus it makes sense to move the memory allocation out
274 * of the main interrupt handler and do it in a bottom half handler
275 * and only allocate new buffers when the number of buffers in the
276 * ring is below a certain threshold. In order to avoid starving the
277 * NIC under heavy load it is however necessary to force allocation
278 * when hitting a minimum threshold. The strategy for alloction is as
279 * follows:
280 *
281 *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
282 *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
283 *                           the buffers in the interrupt handler
284 *     RX_RING_THRES       - maximum number of buffers in the rx ring
285 *     RX_MINI_THRES       - maximum number of buffers in the mini ring
286 *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring
287 *
288 * One advantagous side effect of this allocation approach is that the
289 * entire rx processing can be done without holding any spin lock
290 * since the rx rings and registers are totally independent of the tx
291 * ring and its registers.  This of course includes the kmalloc's of
292 * new skb's. Thus start_xmit can run in parallel with rx processing
293 * and the memory allocation on SMP systems.
294 *
295 * Note that running the skb reallocation in a bottom half opens up
296 * another can of races which needs to be handled properly. In
297 * particular it can happen that the interrupt handler tries to run
298 * the reallocation while the bottom half is either running on another
299 * CPU or was interrupted on the same CPU. To get around this the
300 * driver uses bitops to prevent the reallocation routines from being
301 * reentered.
302 *
303 * TX handling can also be done without holding any spin lock, wheee
304 * this is fun! since tx_ret_csm is only written to by the interrupt
305 * handler. The case to be aware of is when shutting down the device
306 * and cleaning up where it is necessary to make sure that
307 * start_xmit() is not running while this is happening. Well DaveM
308 * informs me that this case is already protected against ... bye bye
309 * Mr. Spin Lock, it was nice to know you.
310 *
311 * TX interrupts are now partly disabled so the NIC will only generate
312 * TX interrupts for the number of coal ticks, not for the number of
313 * TX packets in the queue. This should reduce the number of TX only,
314 * ie. when no RX processing is done, interrupts seen.
315 */
316
317/*
318 * Threshold values for RX buffer allocation - the low water marks for
319 * when to start refilling the rings are set to 75% of the ring
320 * sizes. It seems to make sense to refill the rings entirely from the
321 * intrrupt handler once it gets below the panic threshold, that way
322 * we don't risk that the refilling is moved to another CPU when the
323 * one running the interrupt handler just got the slab code hot in its
324 * cache.
325 */
326#define RX_RING_SIZE		72
327#define RX_MINI_SIZE		64
328#define RX_JUMBO_SIZE		48
329
330#define RX_PANIC_STD_THRES	16
331#define RX_PANIC_STD_REFILL	(3*RX_PANIC_STD_THRES)/2
332#define RX_LOW_STD_THRES	(3*RX_RING_SIZE)/4
333#define RX_PANIC_MINI_THRES	12
334#define RX_PANIC_MINI_REFILL	(3*RX_PANIC_MINI_THRES)/2
335#define RX_LOW_MINI_THRES	(3*RX_MINI_SIZE)/4
336#define RX_PANIC_JUMBO_THRES	6
337#define RX_PANIC_JUMBO_REFILL	(3*RX_PANIC_JUMBO_THRES)/2
338#define RX_LOW_JUMBO_THRES	(3*RX_JUMBO_SIZE)/4
339
340
341/*
342 * Size of the mini ring entries, basically these just should be big
343 * enough to take TCP ACKs
344 */
345#define ACE_MINI_SIZE		100
346
347#define ACE_MINI_BUFSIZE	ACE_MINI_SIZE
348#define ACE_STD_BUFSIZE		(ACE_STD_MTU + ETH_HLEN + 4)
349#define ACE_JUMBO_BUFSIZE	(ACE_JUMBO_MTU + ETH_HLEN + 4)
350
351/*
352 * There seems to be a magic difference in the effect between 995 and 996
353 * but little difference between 900 and 995 ... no idea why.
354 *
355 * There is now a default set of tuning parameters which is set, depending
356 * on whether or not the user enables Jumbo frames. It's assumed that if
357 * Jumbo frames are enabled, the user wants optimal tuning for that case.
358 */
359#define DEF_TX_COAL		400 /* 996 */
360#define DEF_TX_MAX_DESC		60  /* was 40 */
361#define DEF_RX_COAL		120 /* 1000 */
362#define DEF_RX_MAX_DESC		25
363#define DEF_TX_RATIO		21 /* 24 */
364
365#define DEF_JUMBO_TX_COAL	20
366#define DEF_JUMBO_TX_MAX_DESC	60
367#define DEF_JUMBO_RX_COAL	30
368#define DEF_JUMBO_RX_MAX_DESC	6
369#define DEF_JUMBO_TX_RATIO	21
370
371#if tigon2FwReleaseLocal < 20001118
372/*
373 * Standard firmware and early modifications duplicate
374 * IRQ load without this flag (coal timer is never reset).
375 * Note that with this flag tx_coal should be less than
376 * time to xmit full tx ring.
377 * 400usec is not so bad for tx ring size of 128.
378 */
379#define TX_COAL_INTS_ONLY	1	/* worth it */
380#else
381/*
382 * With modified firmware, this is not necessary, but still useful.
383 */
384#define TX_COAL_INTS_ONLY	1
385#endif
386
387#define DEF_TRACE		0
388#define DEF_STAT		(2 * TICKS_PER_SEC)
389
390
391static int link_state[ACE_MAX_MOD_PARMS];
392static int trace[ACE_MAX_MOD_PARMS];
393static int tx_coal_tick[ACE_MAX_MOD_PARMS];
394static int rx_coal_tick[ACE_MAX_MOD_PARMS];
395static int max_tx_desc[ACE_MAX_MOD_PARMS];
396static int max_rx_desc[ACE_MAX_MOD_PARMS];
397static int tx_ratio[ACE_MAX_MOD_PARMS];
398static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
399
400MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
401MODULE_LICENSE("GPL");
402MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
403#ifndef CONFIG_ACENIC_OMIT_TIGON_I
404MODULE_FIRMWARE("acenic/tg1.bin");
405#endif
406MODULE_FIRMWARE("acenic/tg2.bin");
407
408module_param_array_named(link, link_state, int, NULL, 0);
409module_param_array(trace, int, NULL, 0);
410module_param_array(tx_coal_tick, int, NULL, 0);
411module_param_array(max_tx_desc, int, NULL, 0);
412module_param_array(rx_coal_tick, int, NULL, 0);
413module_param_array(max_rx_desc, int, NULL, 0);
414module_param_array(tx_ratio, int, NULL, 0);
415MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
416MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
417MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
418MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
419MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
420MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
421MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
422
423
424static const char version[] =
425  "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n"
426  "                            http://home.cern.ch/~jes/gige/acenic.html\n";
427
428static int ace_get_link_ksettings(struct net_device *,
429				  struct ethtool_link_ksettings *);
430static int ace_set_link_ksettings(struct net_device *,
431				  const struct ethtool_link_ksettings *);
432static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
433
434static const struct ethtool_ops ace_ethtool_ops = {
435	.get_drvinfo = ace_get_drvinfo,
436	.get_link_ksettings = ace_get_link_ksettings,
437	.set_link_ksettings = ace_set_link_ksettings,
438};
439
440static void ace_watchdog(struct net_device *dev, unsigned int txqueue);
441
442static const struct net_device_ops ace_netdev_ops = {
443	.ndo_open		= ace_open,
444	.ndo_stop		= ace_close,
445	.ndo_tx_timeout		= ace_watchdog,
446	.ndo_get_stats		= ace_get_stats,
447	.ndo_start_xmit		= ace_start_xmit,
448	.ndo_set_rx_mode	= ace_set_multicast_list,
449	.ndo_validate_addr	= eth_validate_addr,
450	.ndo_set_mac_address	= ace_set_mac_addr,
451	.ndo_change_mtu		= ace_change_mtu,
452};
453
454static int acenic_probe_one(struct pci_dev *pdev,
455			    const struct pci_device_id *id)
456{
457	struct net_device *dev;
458	struct ace_private *ap;
459	static int boards_found;
460
461	dev = alloc_etherdev(sizeof(struct ace_private));
462	if (dev == NULL)
463		return -ENOMEM;
464
465	SET_NETDEV_DEV(dev, &pdev->dev);
466
467	ap = netdev_priv(dev);
468	ap->ndev = dev;
469	ap->pdev = pdev;
470	ap->name = pci_name(pdev);
471
472	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
473	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
474
475	dev->watchdog_timeo = 5*HZ;
476	dev->min_mtu = 0;
477	dev->max_mtu = ACE_JUMBO_MTU;
478
479	dev->netdev_ops = &ace_netdev_ops;
480	dev->ethtool_ops = &ace_ethtool_ops;
481
482	/* we only display this string ONCE */
483	if (!boards_found)
484		printk(version);
485
486	if (pci_enable_device(pdev))
487		goto fail_free_netdev;
488
489	/*
490	 * Enable master mode before we start playing with the
491	 * pci_command word since pci_set_master() will modify
492	 * it.
493	 */
494	pci_set_master(pdev);
495
496	pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
497
498	/* OpenFirmware on Mac's does not set this - DOH.. */
499	if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
500		printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
501		       "access - was not enabled by BIOS/Firmware\n",
502		       ap->name);
503		ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
504		pci_write_config_word(ap->pdev, PCI_COMMAND,
505				      ap->pci_command);
506		wmb();
507	}
508
509	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
510	if (ap->pci_latency <= 0x40) {
511		ap->pci_latency = 0x40;
512		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
513	}
514
515	/*
516	 * Remap the regs into kernel space - this is abuse of
517	 * dev->base_addr since it was means for I/O port
518	 * addresses but who gives a damn.
519	 */
520	dev->base_addr = pci_resource_start(pdev, 0);
521	ap->regs = ioremap(dev->base_addr, 0x4000);
522	if (!ap->regs) {
523		printk(KERN_ERR "%s:  Unable to map I/O register, "
524		       "AceNIC %i will be disabled.\n",
525		       ap->name, boards_found);
526		goto fail_free_netdev;
527	}
528
529	switch(pdev->vendor) {
530	case PCI_VENDOR_ID_ALTEON:
531		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
532			printk(KERN_INFO "%s: Farallon PN9100-T ",
533			       ap->name);
534		} else {
535			printk(KERN_INFO "%s: Alteon AceNIC ",
536			       ap->name);
537		}
538		break;
539	case PCI_VENDOR_ID_3COM:
540		printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
541		break;
542	case PCI_VENDOR_ID_NETGEAR:
543		printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
544		break;
545	case PCI_VENDOR_ID_DEC:
546		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
547			printk(KERN_INFO "%s: Farallon PN9000-SX ",
548			       ap->name);
549			break;
550		}
551		fallthrough;
552	case PCI_VENDOR_ID_SGI:
553		printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
554		break;
555	default:
556		printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
557		break;
558	}
559
560	printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
561	printk("irq %d\n", pdev->irq);
562
563#ifdef CONFIG_ACENIC_OMIT_TIGON_I
564	if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
565		printk(KERN_ERR "%s: Driver compiled without Tigon I"
566		       " support - NIC disabled\n", dev->name);
567		goto fail_uninit;
568	}
569#endif
570
571	if (ace_allocate_descriptors(dev))
572		goto fail_free_netdev;
573
574#ifdef MODULE
575	if (boards_found >= ACE_MAX_MOD_PARMS)
576		ap->board_idx = BOARD_IDX_OVERFLOW;
577	else
578		ap->board_idx = boards_found;
579#else
580	ap->board_idx = BOARD_IDX_STATIC;
581#endif
582
583	if (ace_init(dev))
584		goto fail_free_netdev;
585
586	if (register_netdev(dev)) {
587		printk(KERN_ERR "acenic: device registration failed\n");
588		goto fail_uninit;
589	}
590	ap->name = dev->name;
591
592	if (ap->pci_using_dac)
593		dev->features |= NETIF_F_HIGHDMA;
594
595	pci_set_drvdata(pdev, dev);
596
597	boards_found++;
598	return 0;
599
600 fail_uninit:
601	ace_init_cleanup(dev);
602 fail_free_netdev:
603	free_netdev(dev);
604	return -ENODEV;
605}
606
607static void acenic_remove_one(struct pci_dev *pdev)
608{
609	struct net_device *dev = pci_get_drvdata(pdev);
610	struct ace_private *ap = netdev_priv(dev);
611	struct ace_regs __iomem *regs = ap->regs;
612	short i;
613
614	unregister_netdev(dev);
615
616	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
617	if (ap->version >= 2)
618		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
619
620	/*
621	 * This clears any pending interrupts
622	 */
623	writel(1, &regs->Mb0Lo);
624	readl(&regs->CpuCtrl);	/* flush */
625
626	/*
627	 * Make sure no other CPUs are processing interrupts
628	 * on the card before the buffers are being released.
629	 * Otherwise one might experience some `interesting'
630	 * effects.
631	 *
632	 * Then release the RX buffers - jumbo buffers were
633	 * already released in ace_close().
634	 */
635	ace_sync_irq(dev->irq);
636
637	for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
638		struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
639
640		if (skb) {
641			struct ring_info *ringp;
642			dma_addr_t mapping;
643
644			ringp = &ap->skb->rx_std_skbuff[i];
645			mapping = dma_unmap_addr(ringp, mapping);
646			dma_unmap_page(&ap->pdev->dev, mapping,
647				       ACE_STD_BUFSIZE, DMA_FROM_DEVICE);
648
649			ap->rx_std_ring[i].size = 0;
650			ap->skb->rx_std_skbuff[i].skb = NULL;
651			dev_kfree_skb(skb);
652		}
653	}
654
655	if (ap->version >= 2) {
656		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
657			struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
658
659			if (skb) {
660				struct ring_info *ringp;
661				dma_addr_t mapping;
662
663				ringp = &ap->skb->rx_mini_skbuff[i];
664				mapping = dma_unmap_addr(ringp,mapping);
665				dma_unmap_page(&ap->pdev->dev, mapping,
666					       ACE_MINI_BUFSIZE,
667					       DMA_FROM_DEVICE);
668
669				ap->rx_mini_ring[i].size = 0;
670				ap->skb->rx_mini_skbuff[i].skb = NULL;
671				dev_kfree_skb(skb);
672			}
673		}
674	}
675
676	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
677		struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
678		if (skb) {
679			struct ring_info *ringp;
680			dma_addr_t mapping;
681
682			ringp = &ap->skb->rx_jumbo_skbuff[i];
683			mapping = dma_unmap_addr(ringp, mapping);
684			dma_unmap_page(&ap->pdev->dev, mapping,
685				       ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE);
686
687			ap->rx_jumbo_ring[i].size = 0;
688			ap->skb->rx_jumbo_skbuff[i].skb = NULL;
689			dev_kfree_skb(skb);
690		}
691	}
692
693	ace_init_cleanup(dev);
694	free_netdev(dev);
695}
696
697static struct pci_driver acenic_pci_driver = {
698	.name		= "acenic",
699	.id_table	= acenic_pci_tbl,
700	.probe		= acenic_probe_one,
701	.remove		= acenic_remove_one,
702};
703
704static void ace_free_descriptors(struct net_device *dev)
705{
706	struct ace_private *ap = netdev_priv(dev);
707	int size;
708
709	if (ap->rx_std_ring != NULL) {
710		size = (sizeof(struct rx_desc) *
711			(RX_STD_RING_ENTRIES +
712			 RX_JUMBO_RING_ENTRIES +
713			 RX_MINI_RING_ENTRIES +
714			 RX_RETURN_RING_ENTRIES));
715		dma_free_coherent(&ap->pdev->dev, size, ap->rx_std_ring,
716				  ap->rx_ring_base_dma);
717		ap->rx_std_ring = NULL;
718		ap->rx_jumbo_ring = NULL;
719		ap->rx_mini_ring = NULL;
720		ap->rx_return_ring = NULL;
721	}
722	if (ap->evt_ring != NULL) {
723		size = (sizeof(struct event) * EVT_RING_ENTRIES);
724		dma_free_coherent(&ap->pdev->dev, size, ap->evt_ring,
725				  ap->evt_ring_dma);
726		ap->evt_ring = NULL;
727	}
728	if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
729		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
730		dma_free_coherent(&ap->pdev->dev, size, ap->tx_ring,
731				  ap->tx_ring_dma);
732	}
733	ap->tx_ring = NULL;
734
735	if (ap->evt_prd != NULL) {
736		dma_free_coherent(&ap->pdev->dev, sizeof(u32),
737				  (void *)ap->evt_prd, ap->evt_prd_dma);
738		ap->evt_prd = NULL;
739	}
740	if (ap->rx_ret_prd != NULL) {
741		dma_free_coherent(&ap->pdev->dev, sizeof(u32),
742				  (void *)ap->rx_ret_prd, ap->rx_ret_prd_dma);
743		ap->rx_ret_prd = NULL;
744	}
745	if (ap->tx_csm != NULL) {
746		dma_free_coherent(&ap->pdev->dev, sizeof(u32),
747				  (void *)ap->tx_csm, ap->tx_csm_dma);
748		ap->tx_csm = NULL;
749	}
750}
751
752
753static int ace_allocate_descriptors(struct net_device *dev)
754{
755	struct ace_private *ap = netdev_priv(dev);
756	int size;
757
758	size = (sizeof(struct rx_desc) *
759		(RX_STD_RING_ENTRIES +
760		 RX_JUMBO_RING_ENTRIES +
761		 RX_MINI_RING_ENTRIES +
762		 RX_RETURN_RING_ENTRIES));
763
764	ap->rx_std_ring = dma_alloc_coherent(&ap->pdev->dev, size,
765					     &ap->rx_ring_base_dma, GFP_KERNEL);
766	if (ap->rx_std_ring == NULL)
767		goto fail;
768
769	ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
770	ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
771	ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
772
773	size = (sizeof(struct event) * EVT_RING_ENTRIES);
774
775	ap->evt_ring = dma_alloc_coherent(&ap->pdev->dev, size,
776					  &ap->evt_ring_dma, GFP_KERNEL);
777
778	if (ap->evt_ring == NULL)
779		goto fail;
780
781	/*
782	 * Only allocate a host TX ring for the Tigon II, the Tigon I
783	 * has to use PCI registers for this ;-(
784	 */
785	if (!ACE_IS_TIGON_I(ap)) {
786		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
787
788		ap->tx_ring = dma_alloc_coherent(&ap->pdev->dev, size,
789						 &ap->tx_ring_dma, GFP_KERNEL);
790
791		if (ap->tx_ring == NULL)
792			goto fail;
793	}
794
795	ap->evt_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
796					 &ap->evt_prd_dma, GFP_KERNEL);
797	if (ap->evt_prd == NULL)
798		goto fail;
799
800	ap->rx_ret_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
801					    &ap->rx_ret_prd_dma, GFP_KERNEL);
802	if (ap->rx_ret_prd == NULL)
803		goto fail;
804
805	ap->tx_csm = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
806					&ap->tx_csm_dma, GFP_KERNEL);
807	if (ap->tx_csm == NULL)
808		goto fail;
809
810	return 0;
811
812fail:
813	/* Clean up. */
814	ace_init_cleanup(dev);
815	return 1;
816}
817
818
819/*
820 * Generic cleanup handling data allocated during init. Used when the
821 * module is unloaded or if an error occurs during initialization
822 */
823static void ace_init_cleanup(struct net_device *dev)
824{
825	struct ace_private *ap;
826
827	ap = netdev_priv(dev);
828
829	ace_free_descriptors(dev);
830
831	if (ap->info)
832		dma_free_coherent(&ap->pdev->dev, sizeof(struct ace_info),
833				  ap->info, ap->info_dma);
834	kfree(ap->skb);
835	kfree(ap->trace_buf);
836
837	if (dev->irq)
838		free_irq(dev->irq, dev);
839
840	iounmap(ap->regs);
841}
842
843
844/*
845 * Commands are considered to be slow.
846 */
847static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
848{
849	u32 idx;
850
851	idx = readl(&regs->CmdPrd);
852
853	writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
854	idx = (idx + 1) % CMD_RING_ENTRIES;
855
856	writel(idx, &regs->CmdPrd);
857}
858
859
860static int ace_init(struct net_device *dev)
861{
862	struct ace_private *ap;
863	struct ace_regs __iomem *regs;
864	struct ace_info *info = NULL;
865	struct pci_dev *pdev;
866	unsigned long myjif;
867	u64 tmp_ptr;
868	u32 tig_ver, mac1, mac2, tmp, pci_state;
869	int board_idx, ecode = 0;
870	short i;
871	unsigned char cache_size;
872
873	ap = netdev_priv(dev);
874	regs = ap->regs;
875
876	board_idx = ap->board_idx;
877
878	/*
879	 * aman@sgi.com - its useful to do a NIC reset here to
880	 * address the `Firmware not running' problem subsequent
881	 * to any crashes involving the NIC
882	 */
883	writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
884	readl(&regs->HostCtrl);		/* PCI write posting */
885	udelay(5);
886
887	/*
888	 * Don't access any other registers before this point!
889	 */
890#ifdef __BIG_ENDIAN
891	/*
892	 * This will most likely need BYTE_SWAP once we switch
893	 * to using __raw_writel()
894	 */
895	writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
896	       &regs->HostCtrl);
897#else
898	writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
899	       &regs->HostCtrl);
900#endif
901	readl(&regs->HostCtrl);		/* PCI write posting */
902
903	/*
904	 * Stop the NIC CPU and clear pending interrupts
905	 */
906	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
907	readl(&regs->CpuCtrl);		/* PCI write posting */
908	writel(0, &regs->Mb0Lo);
909
910	tig_ver = readl(&regs->HostCtrl) >> 28;
911
912	switch(tig_ver){
913#ifndef CONFIG_ACENIC_OMIT_TIGON_I
914	case 4:
915	case 5:
916		printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ",
917		       tig_ver, ap->firmware_major, ap->firmware_minor,
918		       ap->firmware_fix);
919		writel(0, &regs->LocalCtrl);
920		ap->version = 1;
921		ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
922		break;
923#endif
924	case 6:
925		printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
926		       tig_ver, ap->firmware_major, ap->firmware_minor,
927		       ap->firmware_fix);
928		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
929		readl(&regs->CpuBCtrl);		/* PCI write posting */
930		/*
931		 * The SRAM bank size does _not_ indicate the amount
932		 * of memory on the card, it controls the _bank_ size!
933		 * Ie. a 1MB AceNIC will have two banks of 512KB.
934		 */
935		writel(SRAM_BANK_512K, &regs->LocalCtrl);
936		writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
937		ap->version = 2;
938		ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
939		break;
940	default:
941		printk(KERN_WARNING "  Unsupported Tigon version detected "
942		       "(%i)\n", tig_ver);
943		ecode = -ENODEV;
944		goto init_error;
945	}
946
947	/*
948	 * ModeStat _must_ be set after the SRAM settings as this change
949	 * seems to corrupt the ModeStat and possible other registers.
950	 * The SRAM settings survive resets and setting it to the same
951	 * value a second time works as well. This is what caused the
952	 * `Firmware not running' problem on the Tigon II.
953	 */
954#ifdef __BIG_ENDIAN
955	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
956	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
957#else
958	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
959	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
960#endif
961	readl(&regs->ModeStat);		/* PCI write posting */
962
963	mac1 = 0;
964	for(i = 0; i < 4; i++) {
965		int t;
966
967		mac1 = mac1 << 8;
968		t = read_eeprom_byte(dev, 0x8c+i);
969		if (t < 0) {
970			ecode = -EIO;
971			goto init_error;
972		} else
973			mac1 |= (t & 0xff);
974	}
975	mac2 = 0;
976	for(i = 4; i < 8; i++) {
977		int t;
978
979		mac2 = mac2 << 8;
980		t = read_eeprom_byte(dev, 0x8c+i);
981		if (t < 0) {
982			ecode = -EIO;
983			goto init_error;
984		} else
985			mac2 |= (t & 0xff);
986	}
987
988	writel(mac1, &regs->MacAddrHi);
989	writel(mac2, &regs->MacAddrLo);
990
991	dev->dev_addr[0] = (mac1 >> 8) & 0xff;
992	dev->dev_addr[1] = mac1 & 0xff;
993	dev->dev_addr[2] = (mac2 >> 24) & 0xff;
994	dev->dev_addr[3] = (mac2 >> 16) & 0xff;
995	dev->dev_addr[4] = (mac2 >> 8) & 0xff;
996	dev->dev_addr[5] = mac2 & 0xff;
997
998	printk("MAC: %pM\n", dev->dev_addr);
999
1000	/*
1001	 * Looks like this is necessary to deal with on all architectures,
1002	 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1003	 * Ie. having two NICs in the machine, one will have the cache
1004	 * line set at boot time, the other will not.
1005	 */
1006	pdev = ap->pdev;
1007	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1008	cache_size <<= 2;
1009	if (cache_size != SMP_CACHE_BYTES) {
1010		printk(KERN_INFO "  PCI cache line size set incorrectly "
1011		       "(%i bytes) by BIOS/FW, ", cache_size);
1012		if (cache_size > SMP_CACHE_BYTES)
1013			printk("expecting %i\n", SMP_CACHE_BYTES);
1014		else {
1015			printk("correcting to %i\n", SMP_CACHE_BYTES);
1016			pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1017					      SMP_CACHE_BYTES >> 2);
1018		}
1019	}
1020
1021	pci_state = readl(&regs->PciState);
1022	printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, "
1023	       "latency: %i clks\n",
1024	       	(pci_state & PCI_32BIT) ? 32 : 64,
1025		(pci_state & PCI_66MHZ) ? 66 : 33,
1026		ap->pci_latency);
1027
1028	/*
1029	 * Set the max DMA transfer size. Seems that for most systems
1030	 * the performance is better when no MAX parameter is
1031	 * set. However for systems enabling PCI write and invalidate,
1032	 * DMA writes must be set to the L1 cache line size to get
1033	 * optimal performance.
1034	 *
1035	 * The default is now to turn the PCI write and invalidate off
1036	 * - that is what Alteon does for NT.
1037	 */
1038	tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1039	if (ap->version >= 2) {
1040		tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1041		/*
1042		 * Tuning parameters only supported for 8 cards
1043		 */
1044		if (board_idx == BOARD_IDX_OVERFLOW ||
1045		    dis_pci_mem_inval[board_idx]) {
1046			if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1047				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1048				pci_write_config_word(pdev, PCI_COMMAND,
1049						      ap->pci_command);
1050				printk(KERN_INFO "  Disabling PCI memory "
1051				       "write and invalidate\n");
1052			}
1053		} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1054			printk(KERN_INFO "  PCI memory write & invalidate "
1055			       "enabled by BIOS, enabling counter measures\n");
1056
1057			switch(SMP_CACHE_BYTES) {
1058			case 16:
1059				tmp |= DMA_WRITE_MAX_16;
1060				break;
1061			case 32:
1062				tmp |= DMA_WRITE_MAX_32;
1063				break;
1064			case 64:
1065				tmp |= DMA_WRITE_MAX_64;
1066				break;
1067			case 128:
1068				tmp |= DMA_WRITE_MAX_128;
1069				break;
1070			default:
1071				printk(KERN_INFO "  Cache line size %i not "
1072				       "supported, PCI write and invalidate "
1073				       "disabled\n", SMP_CACHE_BYTES);
1074				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1075				pci_write_config_word(pdev, PCI_COMMAND,
1076						      ap->pci_command);
1077			}
1078		}
1079	}
1080
1081#ifdef __sparc__
1082	/*
1083	 * On this platform, we know what the best dma settings
1084	 * are.  We use 64-byte maximum bursts, because if we
1085	 * burst larger than the cache line size (or even cross
1086	 * a 64byte boundary in a single burst) the UltraSparc
1087	 * PCI controller will disconnect at 64-byte multiples.
1088	 *
1089	 * Read-multiple will be properly enabled above, and when
1090	 * set will give the PCI controller proper hints about
1091	 * prefetching.
1092	 */
1093	tmp &= ~DMA_READ_WRITE_MASK;
1094	tmp |= DMA_READ_MAX_64;
1095	tmp |= DMA_WRITE_MAX_64;
1096#endif
1097#ifdef __alpha__
1098	tmp &= ~DMA_READ_WRITE_MASK;
1099	tmp |= DMA_READ_MAX_128;
1100	/*
1101	 * All the docs say MUST NOT. Well, I did.
1102	 * Nothing terrible happens, if we load wrong size.
1103	 * Bit w&i still works better!
1104	 */
1105	tmp |= DMA_WRITE_MAX_128;
1106#endif
1107	writel(tmp, &regs->PciState);
1108
1109#if 0
1110	/*
1111	 * The Host PCI bus controller driver has to set FBB.
1112	 * If all devices on that PCI bus support FBB, then the controller
1113	 * can enable FBB support in the Host PCI Bus controller (or on
1114	 * the PCI-PCI bridge if that applies).
1115	 * -ggg
1116	 */
1117	/*
1118	 * I have received reports from people having problems when this
1119	 * bit is enabled.
1120	 */
1121	if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1122		printk(KERN_INFO "  Enabling PCI Fast Back to Back\n");
1123		ap->pci_command |= PCI_COMMAND_FAST_BACK;
1124		pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1125	}
1126#endif
1127
1128	/*
1129	 * Configure DMA attributes.
1130	 */
1131	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1132		ap->pci_using_dac = 1;
1133	} else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
1134		ap->pci_using_dac = 0;
1135	} else {
1136		ecode = -ENODEV;
1137		goto init_error;
1138	}
1139
1140	/*
1141	 * Initialize the generic info block and the command+event rings
1142	 * and the control blocks for the transmit and receive rings
1143	 * as they need to be setup once and for all.
1144	 */
1145	if (!(info = dma_alloc_coherent(&ap->pdev->dev, sizeof(struct ace_info),
1146					&ap->info_dma, GFP_KERNEL))) {
1147		ecode = -EAGAIN;
1148		goto init_error;
1149	}
1150	ap->info = info;
1151
1152	/*
1153	 * Get the memory for the skb rings.
1154	 */
1155	if (!(ap->skb = kzalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1156		ecode = -EAGAIN;
1157		goto init_error;
1158	}
1159
1160	ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1161			    DRV_NAME, dev);
1162	if (ecode) {
1163		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1164		       DRV_NAME, pdev->irq);
1165		goto init_error;
1166	} else
1167		dev->irq = pdev->irq;
1168
1169#ifdef INDEX_DEBUG
1170	spin_lock_init(&ap->debug_lock);
1171	ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1172	ap->last_std_rx = 0;
1173	ap->last_mini_rx = 0;
1174#endif
1175
1176	ecode = ace_load_firmware(dev);
1177	if (ecode)
1178		goto init_error;
1179
1180	ap->fw_running = 0;
1181
1182	tmp_ptr = ap->info_dma;
1183	writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1184	writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1185
1186	memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1187
1188	set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1189	info->evt_ctrl.flags = 0;
1190
1191	*(ap->evt_prd) = 0;
1192	wmb();
1193	set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1194	writel(0, &regs->EvtCsm);
1195
1196	set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1197	info->cmd_ctrl.flags = 0;
1198	info->cmd_ctrl.max_len = 0;
1199
1200	for (i = 0; i < CMD_RING_ENTRIES; i++)
1201		writel(0, &regs->CmdRng[i]);
1202
1203	writel(0, &regs->CmdPrd);
1204	writel(0, &regs->CmdCsm);
1205
1206	tmp_ptr = ap->info_dma;
1207	tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1208	set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1209
1210	set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1211	info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1212	info->rx_std_ctrl.flags =
1213	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1214
1215	memset(ap->rx_std_ring, 0,
1216	       RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1217
1218	for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1219		ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1220
1221	ap->rx_std_skbprd = 0;
1222	atomic_set(&ap->cur_rx_bufs, 0);
1223
1224	set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1225		    (ap->rx_ring_base_dma +
1226		     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1227	info->rx_jumbo_ctrl.max_len = 0;
1228	info->rx_jumbo_ctrl.flags =
1229	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1230
1231	memset(ap->rx_jumbo_ring, 0,
1232	       RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1233
1234	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1235		ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1236
1237	ap->rx_jumbo_skbprd = 0;
1238	atomic_set(&ap->cur_jumbo_bufs, 0);
1239
1240	memset(ap->rx_mini_ring, 0,
1241	       RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1242
1243	if (ap->version >= 2) {
1244		set_aceaddr(&info->rx_mini_ctrl.rngptr,
1245			    (ap->rx_ring_base_dma +
1246			     (sizeof(struct rx_desc) *
1247			      (RX_STD_RING_ENTRIES +
1248			       RX_JUMBO_RING_ENTRIES))));
1249		info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1250		info->rx_mini_ctrl.flags =
1251		  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1252
1253		for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1254			ap->rx_mini_ring[i].flags =
1255				BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1256	} else {
1257		set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1258		info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1259		info->rx_mini_ctrl.max_len = 0;
1260	}
1261
1262	ap->rx_mini_skbprd = 0;
1263	atomic_set(&ap->cur_mini_bufs, 0);
1264
1265	set_aceaddr(&info->rx_return_ctrl.rngptr,
1266		    (ap->rx_ring_base_dma +
1267		     (sizeof(struct rx_desc) *
1268		      (RX_STD_RING_ENTRIES +
1269		       RX_JUMBO_RING_ENTRIES +
1270		       RX_MINI_RING_ENTRIES))));
1271	info->rx_return_ctrl.flags = 0;
1272	info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1273
1274	memset(ap->rx_return_ring, 0,
1275	       RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1276
1277	set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1278	*(ap->rx_ret_prd) = 0;
1279
1280	writel(TX_RING_BASE, &regs->WinBase);
1281
1282	if (ACE_IS_TIGON_I(ap)) {
1283		ap->tx_ring = (__force struct tx_desc *) regs->Window;
1284		for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1285				 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1286			writel(0, (__force void __iomem *)ap->tx_ring  + i * 4);
1287
1288		set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1289	} else {
1290		memset(ap->tx_ring, 0,
1291		       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1292
1293		set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1294	}
1295
1296	info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1297	tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1298
1299	/*
1300	 * The Tigon I does not like having the TX ring in host memory ;-(
1301	 */
1302	if (!ACE_IS_TIGON_I(ap))
1303		tmp |= RCB_FLG_TX_HOST_RING;
1304#if TX_COAL_INTS_ONLY
1305	tmp |= RCB_FLG_COAL_INT_ONLY;
1306#endif
1307	info->tx_ctrl.flags = tmp;
1308
1309	set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1310
1311	/*
1312	 * Potential item for tuning parameter
1313	 */
1314#if 0 /* NO */
1315	writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1316	writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1317#else
1318	writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1319	writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1320#endif
1321
1322	writel(0, &regs->MaskInt);
1323	writel(1, &regs->IfIdx);
1324#if 0
1325	/*
1326	 * McKinley boxes do not like us fiddling with AssistState
1327	 * this early
1328	 */
1329	writel(1, &regs->AssistState);
1330#endif
1331
1332	writel(DEF_STAT, &regs->TuneStatTicks);
1333	writel(DEF_TRACE, &regs->TuneTrace);
1334
1335	ace_set_rxtx_parms(dev, 0);
1336
1337	if (board_idx == BOARD_IDX_OVERFLOW) {
1338		printk(KERN_WARNING "%s: more than %i NICs detected, "
1339		       "ignoring module parameters!\n",
1340		       ap->name, ACE_MAX_MOD_PARMS);
1341	} else if (board_idx >= 0) {
1342		if (tx_coal_tick[board_idx])
1343			writel(tx_coal_tick[board_idx],
1344			       &regs->TuneTxCoalTicks);
1345		if (max_tx_desc[board_idx])
1346			writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1347
1348		if (rx_coal_tick[board_idx])
1349			writel(rx_coal_tick[board_idx],
1350			       &regs->TuneRxCoalTicks);
1351		if (max_rx_desc[board_idx])
1352			writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1353
1354		if (trace[board_idx])
1355			writel(trace[board_idx], &regs->TuneTrace);
1356
1357		if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1358			writel(tx_ratio[board_idx], &regs->TxBufRat);
1359	}
1360
1361	/*
1362	 * Default link parameters
1363	 */
1364	tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1365		LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1366	if(ap->version >= 2)
1367		tmp |= LNK_TX_FLOW_CTL_Y;
1368
1369	/*
1370	 * Override link default parameters
1371	 */
1372	if ((board_idx >= 0) && link_state[board_idx]) {
1373		int option = link_state[board_idx];
1374
1375		tmp = LNK_ENABLE;
1376
1377		if (option & 0x01) {
1378			printk(KERN_INFO "%s: Setting half duplex link\n",
1379			       ap->name);
1380			tmp &= ~LNK_FULL_DUPLEX;
1381		}
1382		if (option & 0x02)
1383			tmp &= ~LNK_NEGOTIATE;
1384		if (option & 0x10)
1385			tmp |= LNK_10MB;
1386		if (option & 0x20)
1387			tmp |= LNK_100MB;
1388		if (option & 0x40)
1389			tmp |= LNK_1000MB;
1390		if ((option & 0x70) == 0) {
1391			printk(KERN_WARNING "%s: No media speed specified, "
1392			       "forcing auto negotiation\n", ap->name);
1393			tmp |= LNK_NEGOTIATE | LNK_1000MB |
1394				LNK_100MB | LNK_10MB;
1395		}
1396		if ((option & 0x100) == 0)
1397			tmp |= LNK_NEG_FCTL;
1398		else
1399			printk(KERN_INFO "%s: Disabling flow control "
1400			       "negotiation\n", ap->name);
1401		if (option & 0x200)
1402			tmp |= LNK_RX_FLOW_CTL_Y;
1403		if ((option & 0x400) && (ap->version >= 2)) {
1404			printk(KERN_INFO "%s: Enabling TX flow control\n",
1405			       ap->name);
1406			tmp |= LNK_TX_FLOW_CTL_Y;
1407		}
1408	}
1409
1410	ap->link = tmp;
1411	writel(tmp, &regs->TuneLink);
1412	if (ap->version >= 2)
1413		writel(tmp, &regs->TuneFastLink);
1414
1415	writel(ap->firmware_start, &regs->Pc);
1416
1417	writel(0, &regs->Mb0Lo);
1418
1419	/*
1420	 * Set tx_csm before we start receiving interrupts, otherwise
1421	 * the interrupt handler might think it is supposed to process
1422	 * tx ints before we are up and running, which may cause a null
1423	 * pointer access in the int handler.
1424	 */
1425	ap->cur_rx = 0;
1426	ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1427
1428	wmb();
1429	ace_set_txprd(regs, ap, 0);
1430	writel(0, &regs->RxRetCsm);
1431
1432	/*
1433	 * Enable DMA engine now.
1434	 * If we do this sooner, Mckinley box pukes.
1435	 * I assume it's because Tigon II DMA engine wants to check
1436	 * *something* even before the CPU is started.
1437	 */
1438	writel(1, &regs->AssistState);  /* enable DMA */
1439
1440	/*
1441	 * Start the NIC CPU
1442	 */
1443	writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1444	readl(&regs->CpuCtrl);
1445
1446	/*
1447	 * Wait for the firmware to spin up - max 3 seconds.
1448	 */
1449	myjif = jiffies + 3 * HZ;
1450	while (time_before(jiffies, myjif) && !ap->fw_running)
1451		cpu_relax();
1452
1453	if (!ap->fw_running) {
1454		printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1455
1456		ace_dump_trace(ap);
1457		writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1458		readl(&regs->CpuCtrl);
1459
1460		/* aman@sgi.com - account for badly behaving firmware/NIC:
1461		 * - have observed that the NIC may continue to generate
1462		 *   interrupts for some reason; attempt to stop it - halt
1463		 *   second CPU for Tigon II cards, and also clear Mb0
1464		 * - if we're a module, we'll fail to load if this was
1465		 *   the only GbE card in the system => if the kernel does
1466		 *   see an interrupt from the NIC, code to handle it is
1467		 *   gone and OOps! - so free_irq also
1468		 */
1469		if (ap->version >= 2)
1470			writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1471			       &regs->CpuBCtrl);
1472		writel(0, &regs->Mb0Lo);
1473		readl(&regs->Mb0Lo);
1474
1475		ecode = -EBUSY;
1476		goto init_error;
1477	}
1478
1479	/*
1480	 * We load the ring here as there seem to be no way to tell the
1481	 * firmware to wipe the ring without re-initializing it.
1482	 */
1483	if (!test_and_set_bit(0, &ap->std_refill_busy))
1484		ace_load_std_rx_ring(dev, RX_RING_SIZE);
1485	else
1486		printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1487		       ap->name);
1488	if (ap->version >= 2) {
1489		if (!test_and_set_bit(0, &ap->mini_refill_busy))
1490			ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1491		else
1492			printk(KERN_ERR "%s: Someone is busy refilling "
1493			       "the RX mini ring\n", ap->name);
1494	}
1495	return 0;
1496
1497 init_error:
1498	ace_init_cleanup(dev);
1499	return ecode;
1500}
1501
1502
1503static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1504{
1505	struct ace_private *ap = netdev_priv(dev);
1506	struct ace_regs __iomem *regs = ap->regs;
1507	int board_idx = ap->board_idx;
1508
1509	if (board_idx >= 0) {
1510		if (!jumbo) {
1511			if (!tx_coal_tick[board_idx])
1512				writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1513			if (!max_tx_desc[board_idx])
1514				writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1515			if (!rx_coal_tick[board_idx])
1516				writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1517			if (!max_rx_desc[board_idx])
1518				writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1519			if (!tx_ratio[board_idx])
1520				writel(DEF_TX_RATIO, &regs->TxBufRat);
1521		} else {
1522			if (!tx_coal_tick[board_idx])
1523				writel(DEF_JUMBO_TX_COAL,
1524				       &regs->TuneTxCoalTicks);
1525			if (!max_tx_desc[board_idx])
1526				writel(DEF_JUMBO_TX_MAX_DESC,
1527				       &regs->TuneMaxTxDesc);
1528			if (!rx_coal_tick[board_idx])
1529				writel(DEF_JUMBO_RX_COAL,
1530				       &regs->TuneRxCoalTicks);
1531			if (!max_rx_desc[board_idx])
1532				writel(DEF_JUMBO_RX_MAX_DESC,
1533				       &regs->TuneMaxRxDesc);
1534			if (!tx_ratio[board_idx])
1535				writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1536		}
1537	}
1538}
1539
1540
1541static void ace_watchdog(struct net_device *data, unsigned int txqueue)
1542{
1543	struct net_device *dev = data;
1544	struct ace_private *ap = netdev_priv(dev);
1545	struct ace_regs __iomem *regs = ap->regs;
1546
1547	/*
1548	 * We haven't received a stats update event for more than 2.5
1549	 * seconds and there is data in the transmit queue, thus we
1550	 * assume the card is stuck.
1551	 */
1552	if (*ap->tx_csm != ap->tx_ret_csm) {
1553		printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1554		       dev->name, (unsigned int)readl(&regs->HostCtrl));
1555		/* This can happen due to ieee flow control. */
1556	} else {
1557		printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1558		       dev->name);
1559#if 0
1560		netif_wake_queue(dev);
1561#endif
1562	}
1563}
1564
1565
1566static void ace_tasklet(struct tasklet_struct *t)
1567{
1568	struct ace_private *ap = from_tasklet(ap, t, ace_tasklet);
1569	struct net_device *dev = ap->ndev;
1570	int cur_size;
1571
1572	cur_size = atomic_read(&ap->cur_rx_bufs);
1573	if ((cur_size < RX_LOW_STD_THRES) &&
1574	    !test_and_set_bit(0, &ap->std_refill_busy)) {
1575#ifdef DEBUG
1576		printk("refilling buffers (current %i)\n", cur_size);
1577#endif
1578		ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1579	}
1580
1581	if (ap->version >= 2) {
1582		cur_size = atomic_read(&ap->cur_mini_bufs);
1583		if ((cur_size < RX_LOW_MINI_THRES) &&
1584		    !test_and_set_bit(0, &ap->mini_refill_busy)) {
1585#ifdef DEBUG
1586			printk("refilling mini buffers (current %i)\n",
1587			       cur_size);
1588#endif
1589			ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1590		}
1591	}
1592
1593	cur_size = atomic_read(&ap->cur_jumbo_bufs);
1594	if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1595	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1596#ifdef DEBUG
1597		printk("refilling jumbo buffers (current %i)\n", cur_size);
1598#endif
1599		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1600	}
1601	ap->tasklet_pending = 0;
1602}
1603
1604
1605/*
1606 * Copy the contents of the NIC's trace buffer to kernel memory.
1607 */
1608static void ace_dump_trace(struct ace_private *ap)
1609{
1610#if 0
1611	if (!ap->trace_buf)
1612		if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1613		    return;
1614#endif
1615}
1616
1617
1618/*
1619 * Load the standard rx ring.
1620 *
1621 * Loading rings is safe without holding the spin lock since this is
1622 * done only before the device is enabled, thus no interrupts are
1623 * generated and by the interrupt handler/tasklet handler.
1624 */
1625static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1626{
1627	struct ace_private *ap = netdev_priv(dev);
1628	struct ace_regs __iomem *regs = ap->regs;
1629	short i, idx;
1630
1631
1632	prefetchw(&ap->cur_rx_bufs);
1633
1634	idx = ap->rx_std_skbprd;
1635
1636	for (i = 0; i < nr_bufs; i++) {
1637		struct sk_buff *skb;
1638		struct rx_desc *rd;
1639		dma_addr_t mapping;
1640
1641		skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1642		if (!skb)
1643			break;
1644
1645		mapping = dma_map_page(&ap->pdev->dev,
1646				       virt_to_page(skb->data),
1647				       offset_in_page(skb->data),
1648				       ACE_STD_BUFSIZE, DMA_FROM_DEVICE);
1649		ap->skb->rx_std_skbuff[idx].skb = skb;
1650		dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1651				   mapping, mapping);
1652
1653		rd = &ap->rx_std_ring[idx];
1654		set_aceaddr(&rd->addr, mapping);
1655		rd->size = ACE_STD_BUFSIZE;
1656		rd->idx = idx;
1657		idx = (idx + 1) % RX_STD_RING_ENTRIES;
1658	}
1659
1660	if (!i)
1661		goto error_out;
1662
1663	atomic_add(i, &ap->cur_rx_bufs);
1664	ap->rx_std_skbprd = idx;
1665
1666	if (ACE_IS_TIGON_I(ap)) {
1667		struct cmd cmd;
1668		cmd.evt = C_SET_RX_PRD_IDX;
1669		cmd.code = 0;
1670		cmd.idx = ap->rx_std_skbprd;
1671		ace_issue_cmd(regs, &cmd);
1672	} else {
1673		writel(idx, &regs->RxStdPrd);
1674		wmb();
1675	}
1676
1677 out:
1678	clear_bit(0, &ap->std_refill_busy);
1679	return;
1680
1681 error_out:
1682	printk(KERN_INFO "Out of memory when allocating "
1683	       "standard receive buffers\n");
1684	goto out;
1685}
1686
1687
1688static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1689{
1690	struct ace_private *ap = netdev_priv(dev);
1691	struct ace_regs __iomem *regs = ap->regs;
1692	short i, idx;
1693
1694	prefetchw(&ap->cur_mini_bufs);
1695
1696	idx = ap->rx_mini_skbprd;
1697	for (i = 0; i < nr_bufs; i++) {
1698		struct sk_buff *skb;
1699		struct rx_desc *rd;
1700		dma_addr_t mapping;
1701
1702		skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1703		if (!skb)
1704			break;
1705
1706		mapping = dma_map_page(&ap->pdev->dev,
1707				       virt_to_page(skb->data),
1708				       offset_in_page(skb->data),
1709				       ACE_MINI_BUFSIZE, DMA_FROM_DEVICE);
1710		ap->skb->rx_mini_skbuff[idx].skb = skb;
1711		dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1712				   mapping, mapping);
1713
1714		rd = &ap->rx_mini_ring[idx];
1715		set_aceaddr(&rd->addr, mapping);
1716		rd->size = ACE_MINI_BUFSIZE;
1717		rd->idx = idx;
1718		idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1719	}
1720
1721	if (!i)
1722		goto error_out;
1723
1724	atomic_add(i, &ap->cur_mini_bufs);
1725
1726	ap->rx_mini_skbprd = idx;
1727
1728	writel(idx, &regs->RxMiniPrd);
1729	wmb();
1730
1731 out:
1732	clear_bit(0, &ap->mini_refill_busy);
1733	return;
1734 error_out:
1735	printk(KERN_INFO "Out of memory when allocating "
1736	       "mini receive buffers\n");
1737	goto out;
1738}
1739
1740
1741/*
1742 * Load the jumbo rx ring, this may happen at any time if the MTU
1743 * is changed to a value > 1500.
1744 */
1745static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1746{
1747	struct ace_private *ap = netdev_priv(dev);
1748	struct ace_regs __iomem *regs = ap->regs;
1749	short i, idx;
1750
1751	idx = ap->rx_jumbo_skbprd;
1752
1753	for (i = 0; i < nr_bufs; i++) {
1754		struct sk_buff *skb;
1755		struct rx_desc *rd;
1756		dma_addr_t mapping;
1757
1758		skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1759		if (!skb)
1760			break;
1761
1762		mapping = dma_map_page(&ap->pdev->dev,
1763				       virt_to_page(skb->data),
1764				       offset_in_page(skb->data),
1765				       ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE);
1766		ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1767		dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1768				   mapping, mapping);
1769
1770		rd = &ap->rx_jumbo_ring[idx];
1771		set_aceaddr(&rd->addr, mapping);
1772		rd->size = ACE_JUMBO_BUFSIZE;
1773		rd->idx = idx;
1774		idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1775	}
1776
1777	if (!i)
1778		goto error_out;
1779
1780	atomic_add(i, &ap->cur_jumbo_bufs);
1781	ap->rx_jumbo_skbprd = idx;
1782
1783	if (ACE_IS_TIGON_I(ap)) {
1784		struct cmd cmd;
1785		cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1786		cmd.code = 0;
1787		cmd.idx = ap->rx_jumbo_skbprd;
1788		ace_issue_cmd(regs, &cmd);
1789	} else {
1790		writel(idx, &regs->RxJumboPrd);
1791		wmb();
1792	}
1793
1794 out:
1795	clear_bit(0, &ap->jumbo_refill_busy);
1796	return;
1797 error_out:
1798	if (net_ratelimit())
1799		printk(KERN_INFO "Out of memory when allocating "
1800		       "jumbo receive buffers\n");
1801	goto out;
1802}
1803
1804
1805/*
1806 * All events are considered to be slow (RX/TX ints do not generate
1807 * events) and are handled here, outside the main interrupt handler,
1808 * to reduce the size of the handler.
1809 */
1810static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1811{
1812	struct ace_private *ap;
1813
1814	ap = netdev_priv(dev);
1815
1816	while (evtcsm != evtprd) {
1817		switch (ap->evt_ring[evtcsm].evt) {
1818		case E_FW_RUNNING:
1819			printk(KERN_INFO "%s: Firmware up and running\n",
1820			       ap->name);
1821			ap->fw_running = 1;
1822			wmb();
1823			break;
1824		case E_STATS_UPDATED:
1825			break;
1826		case E_LNK_STATE:
1827		{
1828			u16 code = ap->evt_ring[evtcsm].code;
1829			switch (code) {
1830			case E_C_LINK_UP:
1831			{
1832				u32 state = readl(&ap->regs->GigLnkState);
1833				printk(KERN_WARNING "%s: Optical link UP "
1834				       "(%s Duplex, Flow Control: %s%s)\n",
1835				       ap->name,
1836				       state & LNK_FULL_DUPLEX ? "Full":"Half",
1837				       state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1838				       state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1839				break;
1840			}
1841			case E_C_LINK_DOWN:
1842				printk(KERN_WARNING "%s: Optical link DOWN\n",
1843				       ap->name);
1844				break;
1845			case E_C_LINK_10_100:
1846				printk(KERN_WARNING "%s: 10/100BaseT link "
1847				       "UP\n", ap->name);
1848				break;
1849			default:
1850				printk(KERN_ERR "%s: Unknown optical link "
1851				       "state %02x\n", ap->name, code);
1852			}
1853			break;
1854		}
1855		case E_ERROR:
1856			switch(ap->evt_ring[evtcsm].code) {
1857			case E_C_ERR_INVAL_CMD:
1858				printk(KERN_ERR "%s: invalid command error\n",
1859				       ap->name);
1860				break;
1861			case E_C_ERR_UNIMP_CMD:
1862				printk(KERN_ERR "%s: unimplemented command "
1863				       "error\n", ap->name);
1864				break;
1865			case E_C_ERR_BAD_CFG:
1866				printk(KERN_ERR "%s: bad config error\n",
1867				       ap->name);
1868				break;
1869			default:
1870				printk(KERN_ERR "%s: unknown error %02x\n",
1871				       ap->name, ap->evt_ring[evtcsm].code);
1872			}
1873			break;
1874		case E_RESET_JUMBO_RNG:
1875		{
1876			int i;
1877			for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1878				if (ap->skb->rx_jumbo_skbuff[i].skb) {
1879					ap->rx_jumbo_ring[i].size = 0;
1880					set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1881					dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1882					ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1883				}
1884			}
1885
1886 			if (ACE_IS_TIGON_I(ap)) {
1887 				struct cmd cmd;
1888 				cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1889 				cmd.code = 0;
1890 				cmd.idx = 0;
1891 				ace_issue_cmd(ap->regs, &cmd);
1892 			} else {
1893 				writel(0, &((ap->regs)->RxJumboPrd));
1894 				wmb();
1895 			}
1896
1897			ap->jumbo = 0;
1898			ap->rx_jumbo_skbprd = 0;
1899			printk(KERN_INFO "%s: Jumbo ring flushed\n",
1900			       ap->name);
1901			clear_bit(0, &ap->jumbo_refill_busy);
1902			break;
1903		}
1904		default:
1905			printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1906			       ap->name, ap->evt_ring[evtcsm].evt);
1907		}
1908		evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1909	}
1910
1911	return evtcsm;
1912}
1913
1914
1915static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1916{
1917	struct ace_private *ap = netdev_priv(dev);
1918	u32 idx;
1919	int mini_count = 0, std_count = 0;
1920
1921	idx = rxretcsm;
1922
1923	prefetchw(&ap->cur_rx_bufs);
1924	prefetchw(&ap->cur_mini_bufs);
1925
1926	while (idx != rxretprd) {
1927		struct ring_info *rip;
1928		struct sk_buff *skb;
1929		struct rx_desc *retdesc;
1930		u32 skbidx;
1931		int bd_flags, desc_type, mapsize;
1932		u16 csum;
1933
1934
1935		/* make sure the rx descriptor isn't read before rxretprd */
1936		if (idx == rxretcsm)
1937			rmb();
1938
1939		retdesc = &ap->rx_return_ring[idx];
1940		skbidx = retdesc->idx;
1941		bd_flags = retdesc->flags;
1942		desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1943
1944		switch(desc_type) {
1945			/*
1946			 * Normal frames do not have any flags set
1947			 *
1948			 * Mini and normal frames arrive frequently,
1949			 * so use a local counter to avoid doing
1950			 * atomic operations for each packet arriving.
1951			 */
1952		case 0:
1953			rip = &ap->skb->rx_std_skbuff[skbidx];
1954			mapsize = ACE_STD_BUFSIZE;
1955			std_count++;
1956			break;
1957		case BD_FLG_JUMBO:
1958			rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1959			mapsize = ACE_JUMBO_BUFSIZE;
1960			atomic_dec(&ap->cur_jumbo_bufs);
1961			break;
1962		case BD_FLG_MINI:
1963			rip = &ap->skb->rx_mini_skbuff[skbidx];
1964			mapsize = ACE_MINI_BUFSIZE;
1965			mini_count++;
1966			break;
1967		default:
1968			printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1969			       "returned by NIC\n", dev->name,
1970			       retdesc->flags);
1971			goto error;
1972		}
1973
1974		skb = rip->skb;
1975		rip->skb = NULL;
1976		dma_unmap_page(&ap->pdev->dev, dma_unmap_addr(rip, mapping),
1977			       mapsize, DMA_FROM_DEVICE);
1978		skb_put(skb, retdesc->size);
1979
1980		/*
1981		 * Fly baby, fly!
1982		 */
1983		csum = retdesc->tcp_udp_csum;
1984
1985		skb->protocol = eth_type_trans(skb, dev);
1986
1987		/*
1988		 * Instead of forcing the poor tigon mips cpu to calculate
1989		 * pseudo hdr checksum, we do this ourselves.
1990		 */
1991		if (bd_flags & BD_FLG_TCP_UDP_SUM) {
1992			skb->csum = htons(csum);
1993			skb->ip_summed = CHECKSUM_COMPLETE;
1994		} else {
1995			skb_checksum_none_assert(skb);
1996		}
1997
1998		/* send it up */
1999		if ((bd_flags & BD_FLG_VLAN_TAG))
2000			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan);
2001		netif_rx(skb);
2002
2003		dev->stats.rx_packets++;
2004		dev->stats.rx_bytes += retdesc->size;
2005
2006		idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2007	}
2008
2009	atomic_sub(std_count, &ap->cur_rx_bufs);
2010	if (!ACE_IS_TIGON_I(ap))
2011		atomic_sub(mini_count, &ap->cur_mini_bufs);
2012
2013 out:
2014	/*
2015	 * According to the documentation RxRetCsm is obsolete with
2016	 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2017	 */
2018	if (ACE_IS_TIGON_I(ap)) {
2019		writel(idx, &ap->regs->RxRetCsm);
2020	}
2021	ap->cur_rx = idx;
2022
2023	return;
2024 error:
2025	idx = rxretprd;
2026	goto out;
2027}
2028
2029
2030static inline void ace_tx_int(struct net_device *dev,
2031			      u32 txcsm, u32 idx)
2032{
2033	struct ace_private *ap = netdev_priv(dev);
2034
2035	do {
2036		struct sk_buff *skb;
2037		struct tx_ring_info *info;
2038
2039		info = ap->skb->tx_skbuff + idx;
2040		skb = info->skb;
2041
2042		if (dma_unmap_len(info, maplen)) {
2043			dma_unmap_page(&ap->pdev->dev,
2044				       dma_unmap_addr(info, mapping),
2045				       dma_unmap_len(info, maplen),
2046				       DMA_TO_DEVICE);
2047			dma_unmap_len_set(info, maplen, 0);
2048		}
2049
2050		if (skb) {
2051			dev->stats.tx_packets++;
2052			dev->stats.tx_bytes += skb->len;
2053			dev_consume_skb_irq(skb);
2054			info->skb = NULL;
2055		}
2056
2057		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2058	} while (idx != txcsm);
2059
2060	if (netif_queue_stopped(dev))
2061		netif_wake_queue(dev);
2062
2063	wmb();
2064	ap->tx_ret_csm = txcsm;
2065
2066	/* So... tx_ret_csm is advanced _after_ check for device wakeup.
2067	 *
2068	 * We could try to make it before. In this case we would get
2069	 * the following race condition: hard_start_xmit on other cpu
2070	 * enters after we advanced tx_ret_csm and fills space,
2071	 * which we have just freed, so that we make illegal device wakeup.
2072	 * There is no good way to workaround this (at entry
2073	 * to ace_start_xmit detects this condition and prevents
2074	 * ring corruption, but it is not a good workaround.)
2075	 *
2076	 * When tx_ret_csm is advanced after, we wake up device _only_
2077	 * if we really have some space in ring (though the core doing
2078	 * hard_start_xmit can see full ring for some period and has to
2079	 * synchronize.) Superb.
2080	 * BUT! We get another subtle race condition. hard_start_xmit
2081	 * may think that ring is full between wakeup and advancing
2082	 * tx_ret_csm and will stop device instantly! It is not so bad.
2083	 * We are guaranteed that there is something in ring, so that
2084	 * the next irq will resume transmission. To speedup this we could
2085	 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2086	 * (see ace_start_xmit).
2087	 *
2088	 * Well, this dilemma exists in all lock-free devices.
2089	 * We, following scheme used in drivers by Donald Becker,
2090	 * select the least dangerous.
2091	 *							--ANK
2092	 */
2093}
2094
2095
2096static irqreturn_t ace_interrupt(int irq, void *dev_id)
2097{
2098	struct net_device *dev = (struct net_device *)dev_id;
2099	struct ace_private *ap = netdev_priv(dev);
2100	struct ace_regs __iomem *regs = ap->regs;
2101	u32 idx;
2102	u32 txcsm, rxretcsm, rxretprd;
2103	u32 evtcsm, evtprd;
2104
2105	/*
2106	 * In case of PCI shared interrupts or spurious interrupts,
2107	 * we want to make sure it is actually our interrupt before
2108	 * spending any time in here.
2109	 */
2110	if (!(readl(&regs->HostCtrl) & IN_INT))
2111		return IRQ_NONE;
2112
2113	/*
2114	 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2115	 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2116	 * writel(0, &regs->Mb0Lo).
2117	 *
2118	 * "IRQ avoidance" recommended in docs applies to IRQs served
2119	 * threads and it is wrong even for that case.
2120	 */
2121	writel(0, &regs->Mb0Lo);
2122	readl(&regs->Mb0Lo);
2123
2124	/*
2125	 * There is no conflict between transmit handling in
2126	 * start_xmit and receive processing, thus there is no reason
2127	 * to take a spin lock for RX handling. Wait until we start
2128	 * working on the other stuff - hey we don't need a spin lock
2129	 * anymore.
2130	 */
2131	rxretprd = *ap->rx_ret_prd;
2132	rxretcsm = ap->cur_rx;
2133
2134	if (rxretprd != rxretcsm)
2135		ace_rx_int(dev, rxretprd, rxretcsm);
2136
2137	txcsm = *ap->tx_csm;
2138	idx = ap->tx_ret_csm;
2139
2140	if (txcsm != idx) {
2141		/*
2142		 * If each skb takes only one descriptor this check degenerates
2143		 * to identity, because new space has just been opened.
2144		 * But if skbs are fragmented we must check that this index
2145		 * update releases enough of space, otherwise we just
2146		 * wait for device to make more work.
2147		 */
2148		if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2149			ace_tx_int(dev, txcsm, idx);
2150	}
2151
2152	evtcsm = readl(&regs->EvtCsm);
2153	evtprd = *ap->evt_prd;
2154
2155	if (evtcsm != evtprd) {
2156		evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2157		writel(evtcsm, &regs->EvtCsm);
2158	}
2159
2160	/*
2161	 * This has to go last in the interrupt handler and run with
2162	 * the spin lock released ... what lock?
2163	 */
2164	if (netif_running(dev)) {
2165		int cur_size;
2166		int run_tasklet = 0;
2167
2168		cur_size = atomic_read(&ap->cur_rx_bufs);
2169		if (cur_size < RX_LOW_STD_THRES) {
2170			if ((cur_size < RX_PANIC_STD_THRES) &&
2171			    !test_and_set_bit(0, &ap->std_refill_busy)) {
2172#ifdef DEBUG
2173				printk("low on std buffers %i\n", cur_size);
2174#endif
2175				ace_load_std_rx_ring(dev,
2176						     RX_RING_SIZE - cur_size);
2177			} else
2178				run_tasklet = 1;
2179		}
2180
2181		if (!ACE_IS_TIGON_I(ap)) {
2182			cur_size = atomic_read(&ap->cur_mini_bufs);
2183			if (cur_size < RX_LOW_MINI_THRES) {
2184				if ((cur_size < RX_PANIC_MINI_THRES) &&
2185				    !test_and_set_bit(0,
2186						      &ap->mini_refill_busy)) {
2187#ifdef DEBUG
2188					printk("low on mini buffers %i\n",
2189					       cur_size);
2190#endif
2191					ace_load_mini_rx_ring(dev,
2192							      RX_MINI_SIZE - cur_size);
2193				} else
2194					run_tasklet = 1;
2195			}
2196		}
2197
2198		if (ap->jumbo) {
2199			cur_size = atomic_read(&ap->cur_jumbo_bufs);
2200			if (cur_size < RX_LOW_JUMBO_THRES) {
2201				if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2202				    !test_and_set_bit(0,
2203						      &ap->jumbo_refill_busy)){
2204#ifdef DEBUG
2205					printk("low on jumbo buffers %i\n",
2206					       cur_size);
2207#endif
2208					ace_load_jumbo_rx_ring(dev,
2209							       RX_JUMBO_SIZE - cur_size);
2210				} else
2211					run_tasklet = 1;
2212			}
2213		}
2214		if (run_tasklet && !ap->tasklet_pending) {
2215			ap->tasklet_pending = 1;
2216			tasklet_schedule(&ap->ace_tasklet);
2217		}
2218	}
2219
2220	return IRQ_HANDLED;
2221}
2222
2223static int ace_open(struct net_device *dev)
2224{
2225	struct ace_private *ap = netdev_priv(dev);
2226	struct ace_regs __iomem *regs = ap->regs;
2227	struct cmd cmd;
2228
2229	if (!(ap->fw_running)) {
2230		printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2231		return -EBUSY;
2232	}
2233
2234	writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2235
2236	cmd.evt = C_CLEAR_STATS;
2237	cmd.code = 0;
2238	cmd.idx = 0;
2239	ace_issue_cmd(regs, &cmd);
2240
2241	cmd.evt = C_HOST_STATE;
2242	cmd.code = C_C_STACK_UP;
2243	cmd.idx = 0;
2244	ace_issue_cmd(regs, &cmd);
2245
2246	if (ap->jumbo &&
2247	    !test_and_set_bit(0, &ap->jumbo_refill_busy))
2248		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2249
2250	if (dev->flags & IFF_PROMISC) {
2251		cmd.evt = C_SET_PROMISC_MODE;
2252		cmd.code = C_C_PROMISC_ENABLE;
2253		cmd.idx = 0;
2254		ace_issue_cmd(regs, &cmd);
2255
2256		ap->promisc = 1;
2257	}else
2258		ap->promisc = 0;
2259	ap->mcast_all = 0;
2260
2261#if 0
2262	cmd.evt = C_LNK_NEGOTIATION;
2263	cmd.code = 0;
2264	cmd.idx = 0;
2265	ace_issue_cmd(regs, &cmd);
2266#endif
2267
2268	netif_start_queue(dev);
2269
2270	/*
2271	 * Setup the bottom half rx ring refill handler
2272	 */
2273	tasklet_setup(&ap->ace_tasklet, ace_tasklet);
2274	return 0;
2275}
2276
2277
2278static int ace_close(struct net_device *dev)
2279{
2280	struct ace_private *ap = netdev_priv(dev);
2281	struct ace_regs __iomem *regs = ap->regs;
2282	struct cmd cmd;
2283	unsigned long flags;
2284	short i;
2285
2286	/*
2287	 * Without (or before) releasing irq and stopping hardware, this
2288	 * is an absolute non-sense, by the way. It will be reset instantly
2289	 * by the first irq.
2290	 */
2291	netif_stop_queue(dev);
2292
2293
2294	if (ap->promisc) {
2295		cmd.evt = C_SET_PROMISC_MODE;
2296		cmd.code = C_C_PROMISC_DISABLE;
2297		cmd.idx = 0;
2298		ace_issue_cmd(regs, &cmd);
2299		ap->promisc = 0;
2300	}
2301
2302	cmd.evt = C_HOST_STATE;
2303	cmd.code = C_C_STACK_DOWN;
2304	cmd.idx = 0;
2305	ace_issue_cmd(regs, &cmd);
2306
2307	tasklet_kill(&ap->ace_tasklet);
2308
2309	/*
2310	 * Make sure one CPU is not processing packets while
2311	 * buffers are being released by another.
2312	 */
2313
2314	local_irq_save(flags);
2315	ace_mask_irq(dev);
2316
2317	for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2318		struct sk_buff *skb;
2319		struct tx_ring_info *info;
2320
2321		info = ap->skb->tx_skbuff + i;
2322		skb = info->skb;
2323
2324		if (dma_unmap_len(info, maplen)) {
2325			if (ACE_IS_TIGON_I(ap)) {
2326				/* NB: TIGON_1 is special, tx_ring is in io space */
2327				struct tx_desc __iomem *tx;
2328				tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2329				writel(0, &tx->addr.addrhi);
2330				writel(0, &tx->addr.addrlo);
2331				writel(0, &tx->flagsize);
2332			} else
2333				memset(ap->tx_ring + i, 0,
2334				       sizeof(struct tx_desc));
2335			dma_unmap_page(&ap->pdev->dev,
2336				       dma_unmap_addr(info, mapping),
2337				       dma_unmap_len(info, maplen),
2338				       DMA_TO_DEVICE);
2339			dma_unmap_len_set(info, maplen, 0);
2340		}
2341		if (skb) {
2342			dev_kfree_skb(skb);
2343			info->skb = NULL;
2344		}
2345	}
2346
2347	if (ap->jumbo) {
2348		cmd.evt = C_RESET_JUMBO_RNG;
2349		cmd.code = 0;
2350		cmd.idx = 0;
2351		ace_issue_cmd(regs, &cmd);
2352	}
2353
2354	ace_unmask_irq(dev);
2355	local_irq_restore(flags);
2356
2357	return 0;
2358}
2359
2360
2361static inline dma_addr_t
2362ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2363	       struct sk_buff *tail, u32 idx)
2364{
2365	dma_addr_t mapping;
2366	struct tx_ring_info *info;
2367
2368	mapping = dma_map_page(&ap->pdev->dev, virt_to_page(skb->data),
2369			       offset_in_page(skb->data), skb->len,
2370			       DMA_TO_DEVICE);
2371
2372	info = ap->skb->tx_skbuff + idx;
2373	info->skb = tail;
2374	dma_unmap_addr_set(info, mapping, mapping);
2375	dma_unmap_len_set(info, maplen, skb->len);
2376	return mapping;
2377}
2378
2379
2380static inline void
2381ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2382	       u32 flagsize, u32 vlan_tag)
2383{
2384#if !USE_TX_COAL_NOW
2385	flagsize &= ~BD_FLG_COAL_NOW;
2386#endif
2387
2388	if (ACE_IS_TIGON_I(ap)) {
2389		struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2390		writel(addr >> 32, &io->addr.addrhi);
2391		writel(addr & 0xffffffff, &io->addr.addrlo);
2392		writel(flagsize, &io->flagsize);
2393		writel(vlan_tag, &io->vlanres);
2394	} else {
2395		desc->addr.addrhi = addr >> 32;
2396		desc->addr.addrlo = addr;
2397		desc->flagsize = flagsize;
2398		desc->vlanres = vlan_tag;
2399	}
2400}
2401
2402
2403static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2404				  struct net_device *dev)
2405{
2406	struct ace_private *ap = netdev_priv(dev);
2407	struct ace_regs __iomem *regs = ap->regs;
2408	struct tx_desc *desc;
2409	u32 idx, flagsize;
2410	unsigned long maxjiff = jiffies + 3*HZ;
2411
2412restart:
2413	idx = ap->tx_prd;
2414
2415	if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2416		goto overflow;
2417
2418	if (!skb_shinfo(skb)->nr_frags)	{
2419		dma_addr_t mapping;
2420		u32 vlan_tag = 0;
2421
2422		mapping = ace_map_tx_skb(ap, skb, skb, idx);
2423		flagsize = (skb->len << 16) | (BD_FLG_END);
2424		if (skb->ip_summed == CHECKSUM_PARTIAL)
2425			flagsize |= BD_FLG_TCP_UDP_SUM;
2426		if (skb_vlan_tag_present(skb)) {
2427			flagsize |= BD_FLG_VLAN_TAG;
2428			vlan_tag = skb_vlan_tag_get(skb);
2429		}
2430		desc = ap->tx_ring + idx;
2431		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2432
2433		/* Look at ace_tx_int for explanations. */
2434		if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2435			flagsize |= BD_FLG_COAL_NOW;
2436
2437		ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2438	} else {
2439		dma_addr_t mapping;
2440		u32 vlan_tag = 0;
2441		int i, len = 0;
2442
2443		mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2444		flagsize = (skb_headlen(skb) << 16);
2445		if (skb->ip_summed == CHECKSUM_PARTIAL)
2446			flagsize |= BD_FLG_TCP_UDP_SUM;
2447		if (skb_vlan_tag_present(skb)) {
2448			flagsize |= BD_FLG_VLAN_TAG;
2449			vlan_tag = skb_vlan_tag_get(skb);
2450		}
2451
2452		ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2453
2454		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2455
2456		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2457			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2458			struct tx_ring_info *info;
2459
2460			len += skb_frag_size(frag);
2461			info = ap->skb->tx_skbuff + idx;
2462			desc = ap->tx_ring + idx;
2463
2464			mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2465						   skb_frag_size(frag),
2466						   DMA_TO_DEVICE);
2467
2468			flagsize = skb_frag_size(frag) << 16;
2469			if (skb->ip_summed == CHECKSUM_PARTIAL)
2470				flagsize |= BD_FLG_TCP_UDP_SUM;
2471			idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2472
2473			if (i == skb_shinfo(skb)->nr_frags - 1) {
2474				flagsize |= BD_FLG_END;
2475				if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2476					flagsize |= BD_FLG_COAL_NOW;
2477
2478				/*
2479				 * Only the last fragment frees
2480				 * the skb!
2481				 */
2482				info->skb = skb;
2483			} else {
2484				info->skb = NULL;
2485			}
2486			dma_unmap_addr_set(info, mapping, mapping);
2487			dma_unmap_len_set(info, maplen, skb_frag_size(frag));
2488			ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2489		}
2490	}
2491
2492 	wmb();
2493 	ap->tx_prd = idx;
2494 	ace_set_txprd(regs, ap, idx);
2495
2496	if (flagsize & BD_FLG_COAL_NOW) {
2497		netif_stop_queue(dev);
2498
2499		/*
2500		 * A TX-descriptor producer (an IRQ) might have gotten
2501		 * between, making the ring free again. Since xmit is
2502		 * serialized, this is the only situation we have to
2503		 * re-test.
2504		 */
2505		if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2506			netif_wake_queue(dev);
2507	}
2508
2509	return NETDEV_TX_OK;
2510
2511overflow:
2512	/*
2513	 * This race condition is unavoidable with lock-free drivers.
2514	 * We wake up the queue _before_ tx_prd is advanced, so that we can
2515	 * enter hard_start_xmit too early, while tx ring still looks closed.
2516	 * This happens ~1-4 times per 100000 packets, so that we can allow
2517	 * to loop syncing to other CPU. Probably, we need an additional
2518	 * wmb() in ace_tx_intr as well.
2519	 *
2520	 * Note that this race is relieved by reserving one more entry
2521	 * in tx ring than it is necessary (see original non-SG driver).
2522	 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2523	 * is already overkill.
2524	 *
2525	 * Alternative is to return with 1 not throttling queue. In this
2526	 * case loop becomes longer, no more useful effects.
2527	 */
2528	if (time_before(jiffies, maxjiff)) {
2529		barrier();
2530		cpu_relax();
2531		goto restart;
2532	}
2533
2534	/* The ring is stuck full. */
2535	printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2536	return NETDEV_TX_BUSY;
2537}
2538
2539
2540static int ace_change_mtu(struct net_device *dev, int new_mtu)
2541{
2542	struct ace_private *ap = netdev_priv(dev);
2543	struct ace_regs __iomem *regs = ap->regs;
2544
2545	writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2546	dev->mtu = new_mtu;
2547
2548	if (new_mtu > ACE_STD_MTU) {
2549		if (!(ap->jumbo)) {
2550			printk(KERN_INFO "%s: Enabling Jumbo frame "
2551			       "support\n", dev->name);
2552			ap->jumbo = 1;
2553			if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2554				ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2555			ace_set_rxtx_parms(dev, 1);
2556		}
2557	} else {
2558		while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2559		ace_sync_irq(dev->irq);
2560		ace_set_rxtx_parms(dev, 0);
2561		if (ap->jumbo) {
2562			struct cmd cmd;
2563
2564			cmd.evt = C_RESET_JUMBO_RNG;
2565			cmd.code = 0;
2566			cmd.idx = 0;
2567			ace_issue_cmd(regs, &cmd);
2568		}
2569	}
2570
2571	return 0;
2572}
2573
2574static int ace_get_link_ksettings(struct net_device *dev,
2575				  struct ethtool_link_ksettings *cmd)
2576{
2577	struct ace_private *ap = netdev_priv(dev);
2578	struct ace_regs __iomem *regs = ap->regs;
2579	u32 link;
2580	u32 supported;
2581
2582	memset(cmd, 0, sizeof(struct ethtool_link_ksettings));
2583
2584	supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2585		     SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2586		     SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2587		     SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2588
2589	cmd->base.port = PORT_FIBRE;
2590
2591	link = readl(&regs->GigLnkState);
2592	if (link & LNK_1000MB) {
2593		cmd->base.speed = SPEED_1000;
2594	} else {
2595		link = readl(&regs->FastLnkState);
2596		if (link & LNK_100MB)
2597			cmd->base.speed = SPEED_100;
2598		else if (link & LNK_10MB)
2599			cmd->base.speed = SPEED_10;
2600		else
2601			cmd->base.speed = 0;
2602	}
2603	if (link & LNK_FULL_DUPLEX)
2604		cmd->base.duplex = DUPLEX_FULL;
2605	else
2606		cmd->base.duplex = DUPLEX_HALF;
2607
2608	if (link & LNK_NEGOTIATE)
2609		cmd->base.autoneg = AUTONEG_ENABLE;
2610	else
2611		cmd->base.autoneg = AUTONEG_DISABLE;
2612
2613#if 0
2614	/*
2615	 * Current struct ethtool_cmd is insufficient
2616	 */
2617	ecmd->trace = readl(&regs->TuneTrace);
2618
2619	ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2620	ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2621#endif
2622
2623	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2624						supported);
2625
2626	return 0;
2627}
2628
2629static int ace_set_link_ksettings(struct net_device *dev,
2630				  const struct ethtool_link_ksettings *cmd)
2631{
2632	struct ace_private *ap = netdev_priv(dev);
2633	struct ace_regs __iomem *regs = ap->regs;
2634	u32 link, speed;
2635
2636	link = readl(&regs->GigLnkState);
2637	if (link & LNK_1000MB)
2638		speed = SPEED_1000;
2639	else {
2640		link = readl(&regs->FastLnkState);
2641		if (link & LNK_100MB)
2642			speed = SPEED_100;
2643		else if (link & LNK_10MB)
2644			speed = SPEED_10;
2645		else
2646			speed = SPEED_100;
2647	}
2648
2649	link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2650		LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2651	if (!ACE_IS_TIGON_I(ap))
2652		link |= LNK_TX_FLOW_CTL_Y;
2653	if (cmd->base.autoneg == AUTONEG_ENABLE)
2654		link |= LNK_NEGOTIATE;
2655	if (cmd->base.speed != speed) {
2656		link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2657		switch (cmd->base.speed) {
2658		case SPEED_1000:
2659			link |= LNK_1000MB;
2660			break;
2661		case SPEED_100:
2662			link |= LNK_100MB;
2663			break;
2664		case SPEED_10:
2665			link |= LNK_10MB;
2666			break;
2667		}
2668	}
2669
2670	if (cmd->base.duplex == DUPLEX_FULL)
2671		link |= LNK_FULL_DUPLEX;
2672
2673	if (link != ap->link) {
2674		struct cmd cmd;
2675		printk(KERN_INFO "%s: Renegotiating link state\n",
2676		       dev->name);
2677
2678		ap->link = link;
2679		writel(link, &regs->TuneLink);
2680		if (!ACE_IS_TIGON_I(ap))
2681			writel(link, &regs->TuneFastLink);
2682		wmb();
2683
2684		cmd.evt = C_LNK_NEGOTIATION;
2685		cmd.code = 0;
2686		cmd.idx = 0;
2687		ace_issue_cmd(regs, &cmd);
2688	}
2689	return 0;
2690}
2691
2692static void ace_get_drvinfo(struct net_device *dev,
2693			    struct ethtool_drvinfo *info)
2694{
2695	struct ace_private *ap = netdev_priv(dev);
2696
2697	strlcpy(info->driver, "acenic", sizeof(info->driver));
2698	snprintf(info->fw_version, sizeof(info->version), "%i.%i.%i",
2699		 ap->firmware_major, ap->firmware_minor, ap->firmware_fix);
2700
2701	if (ap->pdev)
2702		strlcpy(info->bus_info, pci_name(ap->pdev),
2703			sizeof(info->bus_info));
2704
2705}
2706
2707/*
2708 * Set the hardware MAC address.
2709 */
2710static int ace_set_mac_addr(struct net_device *dev, void *p)
2711{
2712	struct ace_private *ap = netdev_priv(dev);
2713	struct ace_regs __iomem *regs = ap->regs;
2714	struct sockaddr *addr=p;
2715	u8 *da;
2716	struct cmd cmd;
2717
2718	if(netif_running(dev))
2719		return -EBUSY;
2720
2721	memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2722
2723	da = (u8 *)dev->dev_addr;
2724
2725	writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2726	writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2727	       &regs->MacAddrLo);
2728
2729	cmd.evt = C_SET_MAC_ADDR;
2730	cmd.code = 0;
2731	cmd.idx = 0;
2732	ace_issue_cmd(regs, &cmd);
2733
2734	return 0;
2735}
2736
2737
2738static void ace_set_multicast_list(struct net_device *dev)
2739{
2740	struct ace_private *ap = netdev_priv(dev);
2741	struct ace_regs __iomem *regs = ap->regs;
2742	struct cmd cmd;
2743
2744	if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2745		cmd.evt = C_SET_MULTICAST_MODE;
2746		cmd.code = C_C_MCAST_ENABLE;
2747		cmd.idx = 0;
2748		ace_issue_cmd(regs, &cmd);
2749		ap->mcast_all = 1;
2750	} else if (ap->mcast_all) {
2751		cmd.evt = C_SET_MULTICAST_MODE;
2752		cmd.code = C_C_MCAST_DISABLE;
2753		cmd.idx = 0;
2754		ace_issue_cmd(regs, &cmd);
2755		ap->mcast_all = 0;
2756	}
2757
2758	if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2759		cmd.evt = C_SET_PROMISC_MODE;
2760		cmd.code = C_C_PROMISC_ENABLE;
2761		cmd.idx = 0;
2762		ace_issue_cmd(regs, &cmd);
2763		ap->promisc = 1;
2764	}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2765		cmd.evt = C_SET_PROMISC_MODE;
2766		cmd.code = C_C_PROMISC_DISABLE;
2767		cmd.idx = 0;
2768		ace_issue_cmd(regs, &cmd);
2769		ap->promisc = 0;
2770	}
2771
2772	/*
2773	 * For the time being multicast relies on the upper layers
2774	 * filtering it properly. The Firmware does not allow one to
2775	 * set the entire multicast list at a time and keeping track of
2776	 * it here is going to be messy.
2777	 */
2778	if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2779		cmd.evt = C_SET_MULTICAST_MODE;
2780		cmd.code = C_C_MCAST_ENABLE;
2781		cmd.idx = 0;
2782		ace_issue_cmd(regs, &cmd);
2783	}else if (!ap->mcast_all) {
2784		cmd.evt = C_SET_MULTICAST_MODE;
2785		cmd.code = C_C_MCAST_DISABLE;
2786		cmd.idx = 0;
2787		ace_issue_cmd(regs, &cmd);
2788	}
2789}
2790
2791
2792static struct net_device_stats *ace_get_stats(struct net_device *dev)
2793{
2794	struct ace_private *ap = netdev_priv(dev);
2795	struct ace_mac_stats __iomem *mac_stats =
2796		(struct ace_mac_stats __iomem *)ap->regs->Stats;
2797
2798	dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2799	dev->stats.multicast = readl(&mac_stats->kept_mc);
2800	dev->stats.collisions = readl(&mac_stats->coll);
2801
2802	return &dev->stats;
2803}
2804
2805
2806static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2807		     u32 dest, int size)
2808{
2809	void __iomem *tdest;
2810	short tsize, i;
2811
2812	if (size <= 0)
2813		return;
2814
2815	while (size > 0) {
2816		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2817			    min_t(u32, size, ACE_WINDOW_SIZE));
2818		tdest = (void __iomem *) &regs->Window +
2819			(dest & (ACE_WINDOW_SIZE - 1));
2820		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2821		for (i = 0; i < (tsize / 4); i++) {
2822			/* Firmware is big-endian */
2823			writel(be32_to_cpup(src), tdest);
2824			src++;
2825			tdest += 4;
2826			dest += 4;
2827			size -= 4;
2828		}
2829	}
2830}
2831
2832
2833static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2834{
2835	void __iomem *tdest;
2836	short tsize = 0, i;
2837
2838	if (size <= 0)
2839		return;
2840
2841	while (size > 0) {
2842		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2843				min_t(u32, size, ACE_WINDOW_SIZE));
2844		tdest = (void __iomem *) &regs->Window +
2845			(dest & (ACE_WINDOW_SIZE - 1));
2846		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2847
2848		for (i = 0; i < (tsize / 4); i++) {
2849			writel(0, tdest + i*4);
2850		}
2851
2852		dest += tsize;
2853		size -= tsize;
2854	}
2855}
2856
2857
2858/*
2859 * Download the firmware into the SRAM on the NIC
2860 *
2861 * This operation requires the NIC to be halted and is performed with
2862 * interrupts disabled and with the spinlock hold.
2863 */
2864static int ace_load_firmware(struct net_device *dev)
2865{
2866	const struct firmware *fw;
2867	const char *fw_name = "acenic/tg2.bin";
2868	struct ace_private *ap = netdev_priv(dev);
2869	struct ace_regs __iomem *regs = ap->regs;
2870	const __be32 *fw_data;
2871	u32 load_addr;
2872	int ret;
2873
2874	if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2875		printk(KERN_ERR "%s: trying to download firmware while the "
2876		       "CPU is running!\n", ap->name);
2877		return -EFAULT;
2878	}
2879
2880	if (ACE_IS_TIGON_I(ap))
2881		fw_name = "acenic/tg1.bin";
2882
2883	ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2884	if (ret) {
2885		printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2886		       ap->name, fw_name);
2887		return ret;
2888	}
2889
2890	fw_data = (void *)fw->data;
2891
2892	/* Firmware blob starts with version numbers, followed by
2893	   load and start address. Remainder is the blob to be loaded
2894	   contiguously from load address. We don't bother to represent
2895	   the BSS/SBSS sections any more, since we were clearing the
2896	   whole thing anyway. */
2897	ap->firmware_major = fw->data[0];
2898	ap->firmware_minor = fw->data[1];
2899	ap->firmware_fix = fw->data[2];
2900
2901	ap->firmware_start = be32_to_cpu(fw_data[1]);
2902	if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2903		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2904		       ap->name, ap->firmware_start, fw_name);
2905		ret = -EINVAL;
2906		goto out;
2907	}
2908
2909	load_addr = be32_to_cpu(fw_data[2]);
2910	if (load_addr < 0x4000 || load_addr >= 0x80000) {
2911		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2912		       ap->name, load_addr, fw_name);
2913		ret = -EINVAL;
2914		goto out;
2915	}
2916
2917	/*
2918	 * Do not try to clear more than 512KiB or we end up seeing
2919	 * funny things on NICs with only 512KiB SRAM
2920	 */
2921	ace_clear(regs, 0x2000, 0x80000-0x2000);
2922	ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2923 out:
2924	release_firmware(fw);
2925	return ret;
2926}
2927
2928
2929/*
2930 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2931 *
2932 * Accessing the EEPROM is `interesting' to say the least - don't read
2933 * this code right after dinner.
2934 *
2935 * This is all about black magic and bit-banging the device .... I
2936 * wonder in what hospital they have put the guy who designed the i2c
2937 * specs.
2938 *
2939 * Oh yes, this is only the beginning!
2940 *
2941 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2942 * code i2c readout code by beta testing all my hacks.
2943 */
2944static void eeprom_start(struct ace_regs __iomem *regs)
2945{
2946	u32 local;
2947
2948	readl(&regs->LocalCtrl);
2949	udelay(ACE_SHORT_DELAY);
2950	local = readl(&regs->LocalCtrl);
2951	local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2952	writel(local, &regs->LocalCtrl);
2953	readl(&regs->LocalCtrl);
2954	mb();
2955	udelay(ACE_SHORT_DELAY);
2956	local |= EEPROM_CLK_OUT;
2957	writel(local, &regs->LocalCtrl);
2958	readl(&regs->LocalCtrl);
2959	mb();
2960	udelay(ACE_SHORT_DELAY);
2961	local &= ~EEPROM_DATA_OUT;
2962	writel(local, &regs->LocalCtrl);
2963	readl(&regs->LocalCtrl);
2964	mb();
2965	udelay(ACE_SHORT_DELAY);
2966	local &= ~EEPROM_CLK_OUT;
2967	writel(local, &regs->LocalCtrl);
2968	readl(&regs->LocalCtrl);
2969	mb();
2970}
2971
2972
2973static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2974{
2975	short i;
2976	u32 local;
2977
2978	udelay(ACE_SHORT_DELAY);
2979	local = readl(&regs->LocalCtrl);
2980	local &= ~EEPROM_DATA_OUT;
2981	local |= EEPROM_WRITE_ENABLE;
2982	writel(local, &regs->LocalCtrl);
2983	readl(&regs->LocalCtrl);
2984	mb();
2985
2986	for (i = 0; i < 8; i++, magic <<= 1) {
2987		udelay(ACE_SHORT_DELAY);
2988		if (magic & 0x80)
2989			local |= EEPROM_DATA_OUT;
2990		else
2991			local &= ~EEPROM_DATA_OUT;
2992		writel(local, &regs->LocalCtrl);
2993		readl(&regs->LocalCtrl);
2994		mb();
2995
2996		udelay(ACE_SHORT_DELAY);
2997		local |= EEPROM_CLK_OUT;
2998		writel(local, &regs->LocalCtrl);
2999		readl(&regs->LocalCtrl);
3000		mb();
3001		udelay(ACE_SHORT_DELAY);
3002		local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3003		writel(local, &regs->LocalCtrl);
3004		readl(&regs->LocalCtrl);
3005		mb();
3006	}
3007}
3008
3009
3010static int eeprom_check_ack(struct ace_regs __iomem *regs)
3011{
3012	int state;
3013	u32 local;
3014
3015	local = readl(&regs->LocalCtrl);
3016	local &= ~EEPROM_WRITE_ENABLE;
3017	writel(local, &regs->LocalCtrl);
3018	readl(&regs->LocalCtrl);
3019	mb();
3020	udelay(ACE_LONG_DELAY);
3021	local |= EEPROM_CLK_OUT;
3022	writel(local, &regs->LocalCtrl);
3023	readl(&regs->LocalCtrl);
3024	mb();
3025	udelay(ACE_SHORT_DELAY);
3026	/* sample data in middle of high clk */
3027	state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3028	udelay(ACE_SHORT_DELAY);
3029	mb();
3030	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3031	readl(&regs->LocalCtrl);
3032	mb();
3033
3034	return state;
3035}
3036
3037
3038static void eeprom_stop(struct ace_regs __iomem *regs)
3039{
3040	u32 local;
3041
3042	udelay(ACE_SHORT_DELAY);
3043	local = readl(&regs->LocalCtrl);
3044	local |= EEPROM_WRITE_ENABLE;
3045	writel(local, &regs->LocalCtrl);
3046	readl(&regs->LocalCtrl);
3047	mb();
3048	udelay(ACE_SHORT_DELAY);
3049	local &= ~EEPROM_DATA_OUT;
3050	writel(local, &regs->LocalCtrl);
3051	readl(&regs->LocalCtrl);
3052	mb();
3053	udelay(ACE_SHORT_DELAY);
3054	local |= EEPROM_CLK_OUT;
3055	writel(local, &regs->LocalCtrl);
3056	readl(&regs->LocalCtrl);
3057	mb();
3058	udelay(ACE_SHORT_DELAY);
3059	local |= EEPROM_DATA_OUT;
3060	writel(local, &regs->LocalCtrl);
3061	readl(&regs->LocalCtrl);
3062	mb();
3063	udelay(ACE_LONG_DELAY);
3064	local &= ~EEPROM_CLK_OUT;
3065	writel(local, &regs->LocalCtrl);
3066	mb();
3067}
3068
3069
3070/*
3071 * Read a whole byte from the EEPROM.
3072 */
3073static int read_eeprom_byte(struct net_device *dev, unsigned long offset)
3074{
3075	struct ace_private *ap = netdev_priv(dev);
3076	struct ace_regs __iomem *regs = ap->regs;
3077	unsigned long flags;
3078	u32 local;
3079	int result = 0;
3080	short i;
3081
3082	/*
3083	 * Don't take interrupts on this CPU will bit banging
3084	 * the %#%#@$ I2C device
3085	 */
3086	local_irq_save(flags);
3087
3088	eeprom_start(regs);
3089
3090	eeprom_prep(regs, EEPROM_WRITE_SELECT);
3091	if (eeprom_check_ack(regs)) {
3092		local_irq_restore(flags);
3093		printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3094		result = -EIO;
3095		goto eeprom_read_error;
3096	}
3097
3098	eeprom_prep(regs, (offset >> 8) & 0xff);
3099	if (eeprom_check_ack(regs)) {
3100		local_irq_restore(flags);
3101		printk(KERN_ERR "%s: Unable to set address byte 0\n",
3102		       ap->name);
3103		result = -EIO;
3104		goto eeprom_read_error;
3105	}
3106
3107	eeprom_prep(regs, offset & 0xff);
3108	if (eeprom_check_ack(regs)) {
3109		local_irq_restore(flags);
3110		printk(KERN_ERR "%s: Unable to set address byte 1\n",
3111		       ap->name);
3112		result = -EIO;
3113		goto eeprom_read_error;
3114	}
3115
3116	eeprom_start(regs);
3117	eeprom_prep(regs, EEPROM_READ_SELECT);
3118	if (eeprom_check_ack(regs)) {
3119		local_irq_restore(flags);
3120		printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3121		       ap->name);
3122		result = -EIO;
3123		goto eeprom_read_error;
3124	}
3125
3126	for (i = 0; i < 8; i++) {
3127		local = readl(&regs->LocalCtrl);
3128		local &= ~EEPROM_WRITE_ENABLE;
3129		writel(local, &regs->LocalCtrl);
3130		readl(&regs->LocalCtrl);
3131		udelay(ACE_LONG_DELAY);
3132		mb();
3133		local |= EEPROM_CLK_OUT;
3134		writel(local, &regs->LocalCtrl);
3135		readl(&regs->LocalCtrl);
3136		mb();
3137		udelay(ACE_SHORT_DELAY);
3138		/* sample data mid high clk */
3139		result = (result << 1) |
3140			((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3141		udelay(ACE_SHORT_DELAY);
3142		mb();
3143		local = readl(&regs->LocalCtrl);
3144		local &= ~EEPROM_CLK_OUT;
3145		writel(local, &regs->LocalCtrl);
3146		readl(&regs->LocalCtrl);
3147		udelay(ACE_SHORT_DELAY);
3148		mb();
3149		if (i == 7) {
3150			local |= EEPROM_WRITE_ENABLE;
3151			writel(local, &regs->LocalCtrl);
3152			readl(&regs->LocalCtrl);
3153			mb();
3154			udelay(ACE_SHORT_DELAY);
3155		}
3156	}
3157
3158	local |= EEPROM_DATA_OUT;
3159	writel(local, &regs->LocalCtrl);
3160	readl(&regs->LocalCtrl);
3161	mb();
3162	udelay(ACE_SHORT_DELAY);
3163	writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3164	readl(&regs->LocalCtrl);
3165	udelay(ACE_LONG_DELAY);
3166	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3167	readl(&regs->LocalCtrl);
3168	mb();
3169	udelay(ACE_SHORT_DELAY);
3170	eeprom_stop(regs);
3171
3172	local_irq_restore(flags);
3173 out:
3174	return result;
3175
3176 eeprom_read_error:
3177	printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3178	       ap->name, offset);
3179	goto out;
3180}
3181
3182module_pci_driver(acenic_pci_driver);
3183