1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/iopoll.h>
11#include <linux/platform_data/microchip-ksz.h>
12#include <linux/phy.h>
13#include <linux/if_bridge.h>
14#include <net/dsa.h>
15#include <net/switchdev.h>
16
17#include "ksz9477_reg.h"
18#include "ksz_common.h"
19
20/* Used with variable features to indicate capabilities. */
21#define GBIT_SUPPORT			BIT(0)
22#define NEW_XMII			BIT(1)
23#define IS_9893				BIT(2)
24
25static const struct {
26	int index;
27	char string[ETH_GSTRING_LEN];
28} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29	{ 0x00, "rx_hi" },
30	{ 0x01, "rx_undersize" },
31	{ 0x02, "rx_fragments" },
32	{ 0x03, "rx_oversize" },
33	{ 0x04, "rx_jabbers" },
34	{ 0x05, "rx_symbol_err" },
35	{ 0x06, "rx_crc_err" },
36	{ 0x07, "rx_align_err" },
37	{ 0x08, "rx_mac_ctrl" },
38	{ 0x09, "rx_pause" },
39	{ 0x0A, "rx_bcast" },
40	{ 0x0B, "rx_mcast" },
41	{ 0x0C, "rx_ucast" },
42	{ 0x0D, "rx_64_or_less" },
43	{ 0x0E, "rx_65_127" },
44	{ 0x0F, "rx_128_255" },
45	{ 0x10, "rx_256_511" },
46	{ 0x11, "rx_512_1023" },
47	{ 0x12, "rx_1024_1522" },
48	{ 0x13, "rx_1523_2000" },
49	{ 0x14, "rx_2001" },
50	{ 0x15, "tx_hi" },
51	{ 0x16, "tx_late_col" },
52	{ 0x17, "tx_pause" },
53	{ 0x18, "tx_bcast" },
54	{ 0x19, "tx_mcast" },
55	{ 0x1A, "tx_ucast" },
56	{ 0x1B, "tx_deferred" },
57	{ 0x1C, "tx_total_col" },
58	{ 0x1D, "tx_exc_col" },
59	{ 0x1E, "tx_single_col" },
60	{ 0x1F, "tx_mult_col" },
61	{ 0x80, "rx_total" },
62	{ 0x81, "tx_total" },
63	{ 0x82, "rx_discards" },
64	{ 0x83, "tx_discards" },
65};
66
67static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68{
69	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70}
71
72static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73			 bool set)
74{
75	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76			   bits, set ? bits : 0);
77}
78
79static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80{
81	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82}
83
84static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85			       u32 bits, bool set)
86{
87	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88			   bits, set ? bits : 0);
89}
90
91static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92{
93	unsigned int val;
94
95	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96					val, !(val & VLAN_START), 10, 1000);
97}
98
99static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100				  u32 *vlan_table)
101{
102	int ret;
103
104	mutex_lock(&dev->vlan_mutex);
105
106	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108
109	/* wait to be cleared */
110	ret = ksz9477_wait_vlan_ctrl_ready(dev);
111	if (ret) {
112		dev_dbg(dev->dev, "Failed to read vlan table\n");
113		goto exit;
114	}
115
116	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119
120	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121
122exit:
123	mutex_unlock(&dev->vlan_mutex);
124
125	return ret;
126}
127
128static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129				  u32 *vlan_table)
130{
131	int ret;
132
133	mutex_lock(&dev->vlan_mutex);
134
135	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138
139	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141
142	/* wait to be cleared */
143	ret = ksz9477_wait_vlan_ctrl_ready(dev);
144	if (ret) {
145		dev_dbg(dev->dev, "Failed to write vlan table\n");
146		goto exit;
147	}
148
149	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150
151	/* update vlan cache table */
152	dev->vlan_cache[vid].table[0] = vlan_table[0];
153	dev->vlan_cache[vid].table[1] = vlan_table[1];
154	dev->vlan_cache[vid].table[2] = vlan_table[2];
155
156exit:
157	mutex_unlock(&dev->vlan_mutex);
158
159	return ret;
160}
161
162static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163{
164	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168}
169
170static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171{
172	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176}
177
178static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179{
180	unsigned int val;
181
182	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183					val, !(val & ALU_START), 10, 1000);
184}
185
186static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187{
188	unsigned int val;
189
190	return regmap_read_poll_timeout(dev->regmap[2],
191					REG_SW_ALU_STAT_CTRL__4,
192					val, !(val & ALU_STAT_START),
193					10, 1000);
194}
195
196static int ksz9477_reset_switch(struct ksz_device *dev)
197{
198	u8 data8;
199	u32 data32;
200
201	/* reset switch */
202	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203
204	/* turn off SPI DO Edge select */
205	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206			   SPI_AUTO_EDGE_DETECTION, 0);
207
208	/* default configuration */
209	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213
214	/* disable interrupts */
215	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218
219	/* set broadcast storm protection 10% rate */
220	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221			   BROADCAST_STORM_RATE,
222			   (BROADCAST_STORM_VALUE *
223			   BROADCAST_STORM_PROT_RATE) / 100);
224
225	if (dev->synclko_125)
226		ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227			   SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228
229	return 0;
230}
231
232static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233			      u64 *cnt)
234{
235	struct ksz_port *p = &dev->ports[port];
236	unsigned int val;
237	u32 data;
238	int ret;
239
240	/* retain the flush/freeze bit */
241	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242	data |= MIB_COUNTER_READ;
243	data |= (addr << MIB_COUNTER_INDEX_S);
244	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245
246	ret = regmap_read_poll_timeout(dev->regmap[2],
247			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248			val, !(val & MIB_COUNTER_READ), 10, 1000);
249	/* failed to read MIB. get out of loop */
250	if (ret) {
251		dev_dbg(dev->dev, "Failed to get MIB\n");
252		return;
253	}
254
255	/* count resets upon read */
256	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257	*cnt += data;
258}
259
260static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261			      u64 *dropped, u64 *cnt)
262{
263	addr = ksz9477_mib_names[addr].index;
264	ksz9477_r_mib_cnt(dev, port, addr, cnt);
265}
266
267static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268{
269	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270	struct ksz_port *p = &dev->ports[port];
271
272	/* enable/disable the port for flush/freeze function */
273	mutex_lock(&p->mib.cnt_mutex);
274	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275
276	/* used by MIB counter reading code to know freeze is enabled */
277	p->freeze = freeze;
278	mutex_unlock(&p->mib.cnt_mutex);
279}
280
281static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282{
283	struct ksz_port_mib *mib = &dev->ports[port].mib;
284
285	/* flush all enabled port MIB counters */
286	mutex_lock(&mib->cnt_mutex);
287	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288		     MIB_COUNTER_FLUSH_FREEZE);
289	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291	mutex_unlock(&mib->cnt_mutex);
292
293	mib->cnt_ptr = 0;
294	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295}
296
297static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298						      int port,
299						      enum dsa_tag_protocol mp)
300{
301	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302	struct ksz_device *dev = ds->priv;
303
304	if (dev->features & IS_9893)
305		proto = DSA_TAG_PROTO_KSZ9893;
306	return proto;
307}
308
309static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
310{
311	struct ksz_device *dev = ds->priv;
312	u16 val = 0xffff;
313
314	/* No real PHY after this. Simulate the PHY.
315	 * A fixed PHY can be setup in the device tree, but this function is
316	 * still called for that port during initialization.
317	 * For RGMII PHY there is no way to access it so the fixed PHY should
318	 * be used.  For SGMII PHY the supporting code will be added later.
319	 */
320	if (addr >= dev->phy_port_cnt) {
321		struct ksz_port *p = &dev->ports[addr];
322
323		switch (reg) {
324		case MII_BMCR:
325			val = 0x1140;
326			break;
327		case MII_BMSR:
328			val = 0x796d;
329			break;
330		case MII_PHYSID1:
331			val = 0x0022;
332			break;
333		case MII_PHYSID2:
334			val = 0x1631;
335			break;
336		case MII_ADVERTISE:
337			val = 0x05e1;
338			break;
339		case MII_LPA:
340			val = 0xc5e1;
341			break;
342		case MII_CTRL1000:
343			val = 0x0700;
344			break;
345		case MII_STAT1000:
346			if (p->phydev.speed == SPEED_1000)
347				val = 0x3800;
348			else
349				val = 0;
350			break;
351		}
352	} else {
353		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
354	}
355
356	return val;
357}
358
359static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360			       u16 val)
361{
362	struct ksz_device *dev = ds->priv;
363
364	/* No real PHY after this. */
365	if (addr >= dev->phy_port_cnt)
366		return 0;
367
368	/* No gigabit support.  Do not write to this register. */
369	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370		return 0;
371	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
372
373	return 0;
374}
375
376static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377				u32 stringset, uint8_t *buf)
378{
379	int i;
380
381	if (stringset != ETH_SS_STATS)
382		return;
383
384	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386		       ETH_GSTRING_LEN);
387	}
388}
389
390static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391				    u8 member)
392{
393	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394	dev->ports[port].member = member;
395}
396
397static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398				       u8 state)
399{
400	struct ksz_device *dev = ds->priv;
401	struct ksz_port *p = &dev->ports[port];
402	u8 data;
403	int member = -1;
404	int forward = dev->member;
405
406	ksz_pread8(dev, port, P_STP_CTRL, &data);
407	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408
409	switch (state) {
410	case BR_STATE_DISABLED:
411		data |= PORT_LEARN_DISABLE;
412		if (port != dev->cpu_port)
413			member = 0;
414		break;
415	case BR_STATE_LISTENING:
416		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417		if (port != dev->cpu_port &&
418		    p->stp_state == BR_STATE_DISABLED)
419			member = dev->host_mask | p->vid_member;
420		break;
421	case BR_STATE_LEARNING:
422		data |= PORT_RX_ENABLE;
423		break;
424	case BR_STATE_FORWARDING:
425		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
426
427		/* This function is also used internally. */
428		if (port == dev->cpu_port)
429			break;
430
431		member = dev->host_mask | p->vid_member;
432		mutex_lock(&dev->dev_mutex);
433
434		/* Port is a member of a bridge. */
435		if (dev->br_member & (1 << port)) {
436			dev->member |= (1 << port);
437			member = dev->member;
438		}
439		mutex_unlock(&dev->dev_mutex);
440		break;
441	case BR_STATE_BLOCKING:
442		data |= PORT_LEARN_DISABLE;
443		if (port != dev->cpu_port &&
444		    p->stp_state == BR_STATE_DISABLED)
445			member = dev->host_mask | p->vid_member;
446		break;
447	default:
448		dev_err(ds->dev, "invalid STP state: %d\n", state);
449		return;
450	}
451
452	ksz_pwrite8(dev, port, P_STP_CTRL, data);
453	p->stp_state = state;
454	mutex_lock(&dev->dev_mutex);
455	/* Port membership may share register with STP state. */
456	if (member >= 0 && member != p->member)
457		ksz9477_cfg_port_member(dev, port, (u8)member);
458
459	/* Check if forwarding needs to be updated. */
460	if (state != BR_STATE_FORWARDING) {
461		if (dev->br_member & (1 << port))
462			dev->member &= ~(1 << port);
463	}
464
465	/* When topology has changed the function ksz_update_port_member
466	 * should be called to modify port forwarding behavior.
467	 */
468	if (forward != dev->member)
469		ksz_update_port_member(dev, port);
470	mutex_unlock(&dev->dev_mutex);
471}
472
473static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
474{
475	u8 data;
476
477	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
478			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
479			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
480
481	if (port < dev->mib_port_cnt) {
482		/* flush individual port */
483		ksz_pread8(dev, port, P_STP_CTRL, &data);
484		if (!(data & PORT_LEARN_DISABLE))
485			ksz_pwrite8(dev, port, P_STP_CTRL,
486				    data | PORT_LEARN_DISABLE);
487		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
488		ksz_pwrite8(dev, port, P_STP_CTRL, data);
489	} else {
490		/* flush all */
491		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
492	}
493}
494
495static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
496				       bool flag,
497				       struct switchdev_trans *trans)
498{
499	struct ksz_device *dev = ds->priv;
500
501	if (switchdev_trans_ph_prepare(trans))
502		return 0;
503
504	if (flag) {
505		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
506			     PORT_VLAN_LOOKUP_VID_0, true);
507		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
508	} else {
509		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
510		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
511			     PORT_VLAN_LOOKUP_VID_0, false);
512	}
513
514	return 0;
515}
516
517static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
518				  const struct switchdev_obj_port_vlan *vlan)
519{
520	struct ksz_device *dev = ds->priv;
521	u32 vlan_table[3];
522	u16 vid;
523	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
524
525	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
526		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
527			dev_dbg(dev->dev, "Failed to get vlan table\n");
528			return;
529		}
530
531		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
532		if (untagged)
533			vlan_table[1] |= BIT(port);
534		else
535			vlan_table[1] &= ~BIT(port);
536		vlan_table[1] &= ~(BIT(dev->cpu_port));
537
538		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
539
540		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
541			dev_dbg(dev->dev, "Failed to set vlan table\n");
542			return;
543		}
544
545		/* change PVID */
546		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
547			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
548	}
549}
550
551static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
552				 const struct switchdev_obj_port_vlan *vlan)
553{
554	struct ksz_device *dev = ds->priv;
555	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
556	u32 vlan_table[3];
557	u16 vid;
558	u16 pvid;
559
560	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
561	pvid = pvid & 0xFFF;
562
563	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
564		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
565			dev_dbg(dev->dev, "Failed to get vlan table\n");
566			return -ETIMEDOUT;
567		}
568
569		vlan_table[2] &= ~BIT(port);
570
571		if (pvid == vid)
572			pvid = 1;
573
574		if (untagged)
575			vlan_table[1] &= ~BIT(port);
576
577		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
578			dev_dbg(dev->dev, "Failed to set vlan table\n");
579			return -ETIMEDOUT;
580		}
581	}
582
583	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
584
585	return 0;
586}
587
588static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
589				const unsigned char *addr, u16 vid)
590{
591	struct ksz_device *dev = ds->priv;
592	u32 alu_table[4];
593	u32 data;
594	int ret = 0;
595
596	mutex_lock(&dev->alu_mutex);
597
598	/* find any entry with mac & vid */
599	data = vid << ALU_FID_INDEX_S;
600	data |= ((addr[0] << 8) | addr[1]);
601	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
602
603	data = ((addr[2] << 24) | (addr[3] << 16));
604	data |= ((addr[4] << 8) | addr[5]);
605	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
606
607	/* start read operation */
608	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
609
610	/* wait to be finished */
611	ret = ksz9477_wait_alu_ready(dev);
612	if (ret) {
613		dev_dbg(dev->dev, "Failed to read ALU\n");
614		goto exit;
615	}
616
617	/* read ALU entry */
618	ksz9477_read_table(dev, alu_table);
619
620	/* update ALU entry */
621	alu_table[0] = ALU_V_STATIC_VALID;
622	alu_table[1] |= BIT(port);
623	if (vid)
624		alu_table[1] |= ALU_V_USE_FID;
625	alu_table[2] = (vid << ALU_V_FID_S);
626	alu_table[2] |= ((addr[0] << 8) | addr[1]);
627	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
628	alu_table[3] |= ((addr[4] << 8) | addr[5]);
629
630	ksz9477_write_table(dev, alu_table);
631
632	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
633
634	/* wait to be finished */
635	ret = ksz9477_wait_alu_ready(dev);
636	if (ret)
637		dev_dbg(dev->dev, "Failed to write ALU\n");
638
639exit:
640	mutex_unlock(&dev->alu_mutex);
641
642	return ret;
643}
644
645static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
646				const unsigned char *addr, u16 vid)
647{
648	struct ksz_device *dev = ds->priv;
649	u32 alu_table[4];
650	u32 data;
651	int ret = 0;
652
653	mutex_lock(&dev->alu_mutex);
654
655	/* read any entry with mac & vid */
656	data = vid << ALU_FID_INDEX_S;
657	data |= ((addr[0] << 8) | addr[1]);
658	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
659
660	data = ((addr[2] << 24) | (addr[3] << 16));
661	data |= ((addr[4] << 8) | addr[5]);
662	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
663
664	/* start read operation */
665	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
666
667	/* wait to be finished */
668	ret = ksz9477_wait_alu_ready(dev);
669	if (ret) {
670		dev_dbg(dev->dev, "Failed to read ALU\n");
671		goto exit;
672	}
673
674	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
675	if (alu_table[0] & ALU_V_STATIC_VALID) {
676		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
677		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
678		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
679
680		/* clear forwarding port */
681		alu_table[1] &= ~BIT(port);
682
683		/* if there is no port to forward, clear table */
684		if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
685			alu_table[0] = 0;
686			alu_table[1] = 0;
687			alu_table[2] = 0;
688			alu_table[3] = 0;
689		}
690	} else {
691		alu_table[0] = 0;
692		alu_table[1] = 0;
693		alu_table[2] = 0;
694		alu_table[3] = 0;
695	}
696
697	ksz9477_write_table(dev, alu_table);
698
699	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
700
701	/* wait to be finished */
702	ret = ksz9477_wait_alu_ready(dev);
703	if (ret)
704		dev_dbg(dev->dev, "Failed to write ALU\n");
705
706exit:
707	mutex_unlock(&dev->alu_mutex);
708
709	return ret;
710}
711
712static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
713{
714	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
715	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
716	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
717	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
718			ALU_V_PRIO_AGE_CNT_M;
719	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
720
721	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
722	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
723	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
724
725	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
726
727	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
728	alu->mac[1] = alu_table[2] & 0xFF;
729	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
730	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
731	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
732	alu->mac[5] = alu_table[3] & 0xFF;
733}
734
735static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
736				 dsa_fdb_dump_cb_t *cb, void *data)
737{
738	struct ksz_device *dev = ds->priv;
739	int ret = 0;
740	u32 ksz_data;
741	u32 alu_table[4];
742	struct alu_struct alu;
743	int timeout;
744
745	mutex_lock(&dev->alu_mutex);
746
747	/* start ALU search */
748	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
749
750	do {
751		timeout = 1000;
752		do {
753			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
754			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
755				break;
756			usleep_range(1, 10);
757		} while (timeout-- > 0);
758
759		if (!timeout) {
760			dev_dbg(dev->dev, "Failed to search ALU\n");
761			ret = -ETIMEDOUT;
762			goto exit;
763		}
764
765		if (!(ksz_data & ALU_VALID))
766			continue;
767
768		/* read ALU table */
769		ksz9477_read_table(dev, alu_table);
770
771		ksz9477_convert_alu(&alu, alu_table);
772
773		if (alu.port_forward & BIT(port)) {
774			ret = cb(alu.mac, alu.fid, alu.is_static, data);
775			if (ret)
776				goto exit;
777		}
778	} while (ksz_data & ALU_START);
779
780exit:
781
782	/* stop ALU search */
783	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
784
785	mutex_unlock(&dev->alu_mutex);
786
787	return ret;
788}
789
790static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
791				 const struct switchdev_obj_port_mdb *mdb)
792{
793	struct ksz_device *dev = ds->priv;
794	u32 static_table[4];
795	u32 data;
796	int index;
797	u32 mac_hi, mac_lo;
798
799	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
800	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
801	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
802
803	mutex_lock(&dev->alu_mutex);
804
805	for (index = 0; index < dev->num_statics; index++) {
806		/* find empty slot first */
807		data = (index << ALU_STAT_INDEX_S) |
808			ALU_STAT_READ | ALU_STAT_START;
809		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
810
811		/* wait to be finished */
812		if (ksz9477_wait_alu_sta_ready(dev)) {
813			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
814			goto exit;
815		}
816
817		/* read ALU static table */
818		ksz9477_read_table(dev, static_table);
819
820		if (static_table[0] & ALU_V_STATIC_VALID) {
821			/* check this has same vid & mac address */
822			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
823			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
824			    static_table[3] == mac_lo) {
825				/* found matching one */
826				break;
827			}
828		} else {
829			/* found empty one */
830			break;
831		}
832	}
833
834	/* no available entry */
835	if (index == dev->num_statics)
836		goto exit;
837
838	/* add entry */
839	static_table[0] = ALU_V_STATIC_VALID;
840	static_table[1] |= BIT(port);
841	if (mdb->vid)
842		static_table[1] |= ALU_V_USE_FID;
843	static_table[2] = (mdb->vid << ALU_V_FID_S);
844	static_table[2] |= mac_hi;
845	static_table[3] = mac_lo;
846
847	ksz9477_write_table(dev, static_table);
848
849	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
850	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
851
852	/* wait to be finished */
853	if (ksz9477_wait_alu_sta_ready(dev))
854		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
855
856exit:
857	mutex_unlock(&dev->alu_mutex);
858}
859
860static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
861				const struct switchdev_obj_port_mdb *mdb)
862{
863	struct ksz_device *dev = ds->priv;
864	u32 static_table[4];
865	u32 data;
866	int index;
867	int ret = 0;
868	u32 mac_hi, mac_lo;
869
870	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
871	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
872	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
873
874	mutex_lock(&dev->alu_mutex);
875
876	for (index = 0; index < dev->num_statics; index++) {
877		/* find empty slot first */
878		data = (index << ALU_STAT_INDEX_S) |
879			ALU_STAT_READ | ALU_STAT_START;
880		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
881
882		/* wait to be finished */
883		ret = ksz9477_wait_alu_sta_ready(dev);
884		if (ret) {
885			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
886			goto exit;
887		}
888
889		/* read ALU static table */
890		ksz9477_read_table(dev, static_table);
891
892		if (static_table[0] & ALU_V_STATIC_VALID) {
893			/* check this has same vid & mac address */
894
895			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
896			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
897			    static_table[3] == mac_lo) {
898				/* found matching one */
899				break;
900			}
901		}
902	}
903
904	/* no available entry */
905	if (index == dev->num_statics)
906		goto exit;
907
908	/* clear port */
909	static_table[1] &= ~BIT(port);
910
911	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
912		/* delete entry */
913		static_table[0] = 0;
914		static_table[1] = 0;
915		static_table[2] = 0;
916		static_table[3] = 0;
917	}
918
919	ksz9477_write_table(dev, static_table);
920
921	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
922	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
923
924	/* wait to be finished */
925	ret = ksz9477_wait_alu_sta_ready(dev);
926	if (ret)
927		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
928
929exit:
930	mutex_unlock(&dev->alu_mutex);
931
932	return ret;
933}
934
935static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
936				   struct dsa_mall_mirror_tc_entry *mirror,
937				   bool ingress)
938{
939	struct ksz_device *dev = ds->priv;
940
941	if (ingress)
942		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
943	else
944		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
945
946	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
947
948	/* configure mirror port */
949	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
950		     PORT_MIRROR_SNIFFER, true);
951
952	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
953
954	return 0;
955}
956
957static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
958				    struct dsa_mall_mirror_tc_entry *mirror)
959{
960	struct ksz_device *dev = ds->priv;
961	u8 data;
962
963	if (mirror->ingress)
964		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
965	else
966		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
967
968	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
969
970	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
971		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
972			     PORT_MIRROR_SNIFFER, false);
973}
974
975static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
976{
977	bool gbit;
978
979	if (dev->features & NEW_XMII)
980		gbit = !(data & PORT_MII_NOT_1GBIT);
981	else
982		gbit = !!(data & PORT_MII_1000MBIT_S1);
983	return gbit;
984}
985
986static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
987{
988	if (dev->features & NEW_XMII) {
989		if (gbit)
990			*data &= ~PORT_MII_NOT_1GBIT;
991		else
992			*data |= PORT_MII_NOT_1GBIT;
993	} else {
994		if (gbit)
995			*data |= PORT_MII_1000MBIT_S1;
996		else
997			*data &= ~PORT_MII_1000MBIT_S1;
998	}
999}
1000
1001static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1002{
1003	int mode;
1004
1005	if (dev->features & NEW_XMII) {
1006		switch (data & PORT_MII_SEL_M) {
1007		case PORT_MII_SEL:
1008			mode = 0;
1009			break;
1010		case PORT_RMII_SEL:
1011			mode = 1;
1012			break;
1013		case PORT_GMII_SEL:
1014			mode = 2;
1015			break;
1016		default:
1017			mode = 3;
1018		}
1019	} else {
1020		switch (data & PORT_MII_SEL_M) {
1021		case PORT_MII_SEL_S1:
1022			mode = 0;
1023			break;
1024		case PORT_RMII_SEL_S1:
1025			mode = 1;
1026			break;
1027		case PORT_GMII_SEL_S1:
1028			mode = 2;
1029			break;
1030		default:
1031			mode = 3;
1032		}
1033	}
1034	return mode;
1035}
1036
1037static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1038{
1039	u8 xmii;
1040
1041	if (dev->features & NEW_XMII) {
1042		switch (mode) {
1043		case 0:
1044			xmii = PORT_MII_SEL;
1045			break;
1046		case 1:
1047			xmii = PORT_RMII_SEL;
1048			break;
1049		case 2:
1050			xmii = PORT_GMII_SEL;
1051			break;
1052		default:
1053			xmii = PORT_RGMII_SEL;
1054			break;
1055		}
1056	} else {
1057		switch (mode) {
1058		case 0:
1059			xmii = PORT_MII_SEL_S1;
1060			break;
1061		case 1:
1062			xmii = PORT_RMII_SEL_S1;
1063			break;
1064		case 2:
1065			xmii = PORT_GMII_SEL_S1;
1066			break;
1067		default:
1068			xmii = PORT_RGMII_SEL_S1;
1069			break;
1070		}
1071	}
1072	*data &= ~PORT_MII_SEL_M;
1073	*data |= xmii;
1074}
1075
1076static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1077{
1078	phy_interface_t interface;
1079	bool gbit;
1080	int mode;
1081	u8 data8;
1082
1083	if (port < dev->phy_port_cnt)
1084		return PHY_INTERFACE_MODE_NA;
1085	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1086	gbit = ksz9477_get_gbit(dev, data8);
1087	mode = ksz9477_get_xmii(dev, data8);
1088	switch (mode) {
1089	case 2:
1090		interface = PHY_INTERFACE_MODE_GMII;
1091		if (gbit)
1092			break;
1093		fallthrough;
1094	case 0:
1095		interface = PHY_INTERFACE_MODE_MII;
1096		break;
1097	case 1:
1098		interface = PHY_INTERFACE_MODE_RMII;
1099		break;
1100	default:
1101		interface = PHY_INTERFACE_MODE_RGMII;
1102		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1103			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1104		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1105			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1106			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1107				interface = PHY_INTERFACE_MODE_RGMII_ID;
1108		}
1109		break;
1110	}
1111	return interface;
1112}
1113
1114static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1115				   u8 dev_addr, u16 reg_addr, u16 val)
1116{
1117	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1118		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1119	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1120	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1121		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1122	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1123}
1124
1125static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1126{
1127	/* Apply PHY settings to address errata listed in
1128	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1129	 * Silicon Errata and Data Sheet Clarification documents:
1130	 *
1131	 * Register settings are needed to improve PHY receive performance
1132	 */
1133	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1134	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1135	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1136	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1137	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1138	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1139	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1140
1141	/* Transmit waveform amplitude can be improved
1142	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1143	 */
1144	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1145
1146	/* Energy Efficient Ethernet (EEE) feature select must
1147	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1148	 */
1149	if (dev->features & GBIT_SUPPORT)
1150		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1151
1152	/* Register settings are required to meet data sheet
1153	 * supply current specifications
1154	 */
1155	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1156	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1157	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1158	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1159	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1160	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1161	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1162	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1163	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1164	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1165	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1166	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1167	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1168}
1169
1170static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1171{
1172	u8 data8;
1173	u8 member;
1174	u16 data16;
1175	struct ksz_port *p = &dev->ports[port];
1176
1177	/* enable tag tail for host port */
1178	if (cpu_port)
1179		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1180			     true);
1181
1182	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1183
1184	/* set back pressure */
1185	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1186
1187	/* enable broadcast storm limit */
1188	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1189
1190	/* disable DiffServ priority */
1191	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1192
1193	/* replace priority */
1194	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1195		     false);
1196	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1197			   MTI_PVID_REPLACE, false);
1198
1199	/* enable 802.1p priority */
1200	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1201
1202	if (port < dev->phy_port_cnt) {
1203		/* do not force flow control */
1204		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1205			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1206			     false);
1207
1208		if (dev->phy_errata_9477)
1209			ksz9477_phy_errata_setup(dev, port);
1210	} else {
1211		/* force flow control */
1212		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1213			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1214			     true);
1215
1216		/* configure MAC to 1G & RGMII mode */
1217		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1218		switch (p->interface) {
1219		case PHY_INTERFACE_MODE_MII:
1220			ksz9477_set_xmii(dev, 0, &data8);
1221			ksz9477_set_gbit(dev, false, &data8);
1222			p->phydev.speed = SPEED_100;
1223			break;
1224		case PHY_INTERFACE_MODE_RMII:
1225			ksz9477_set_xmii(dev, 1, &data8);
1226			ksz9477_set_gbit(dev, false, &data8);
1227			p->phydev.speed = SPEED_100;
1228			break;
1229		case PHY_INTERFACE_MODE_GMII:
1230			ksz9477_set_xmii(dev, 2, &data8);
1231			ksz9477_set_gbit(dev, true, &data8);
1232			p->phydev.speed = SPEED_1000;
1233			break;
1234		default:
1235			ksz9477_set_xmii(dev, 3, &data8);
1236			ksz9477_set_gbit(dev, true, &data8);
1237			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1238			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1239			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1240			    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1241				data8 |= PORT_RGMII_ID_IG_ENABLE;
1242			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1243			    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1244				data8 |= PORT_RGMII_ID_EG_ENABLE;
1245			/* On KSZ9893, disable RGMII in-band status support */
1246			if (dev->features & IS_9893)
1247				data8 &= ~PORT_MII_MAC_MODE;
1248			p->phydev.speed = SPEED_1000;
1249			break;
1250		}
1251		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1252		p->phydev.duplex = 1;
1253	}
1254	mutex_lock(&dev->dev_mutex);
1255	if (cpu_port)
1256		member = dev->port_mask;
1257	else
1258		member = dev->host_mask | p->vid_member;
1259	mutex_unlock(&dev->dev_mutex);
1260	ksz9477_cfg_port_member(dev, port, member);
1261
1262	/* clear pending interrupts */
1263	if (port < dev->phy_port_cnt)
1264		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1265}
1266
1267static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1268{
1269	struct ksz_device *dev = ds->priv;
1270	struct ksz_port *p;
1271	int i;
1272
1273	ds->num_ports = dev->port_cnt;
1274
1275	for (i = 0; i < dev->port_cnt; i++) {
1276		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1277			phy_interface_t interface;
1278			const char *prev_msg;
1279			const char *prev_mode;
1280
1281			dev->cpu_port = i;
1282			dev->host_mask = (1 << dev->cpu_port);
1283			dev->port_mask |= dev->host_mask;
1284			p = &dev->ports[i];
1285
1286			/* Read from XMII register to determine host port
1287			 * interface.  If set specifically in device tree
1288			 * note the difference to help debugging.
1289			 */
1290			interface = ksz9477_get_interface(dev, i);
1291			if (!p->interface) {
1292				if (dev->compat_interface) {
1293					dev_warn(dev->dev,
1294						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1295						 "Please update your device tree.\n",
1296						 i);
1297					p->interface = dev->compat_interface;
1298				} else {
1299					p->interface = interface;
1300				}
1301			}
1302			if (interface && interface != p->interface) {
1303				prev_msg = " instead of ";
1304				prev_mode = phy_modes(interface);
1305			} else {
1306				prev_msg = "";
1307				prev_mode = "";
1308			}
1309			dev_info(dev->dev,
1310				 "Port%d: using phy mode %s%s%s\n",
1311				 i,
1312				 phy_modes(p->interface),
1313				 prev_msg,
1314				 prev_mode);
1315
1316			/* enable cpu port */
1317			ksz9477_port_setup(dev, i, true);
1318			p->vid_member = dev->port_mask;
1319			p->on = 1;
1320		}
1321	}
1322
1323	dev->member = dev->host_mask;
1324
1325	for (i = 0; i < dev->mib_port_cnt; i++) {
1326		if (i == dev->cpu_port)
1327			continue;
1328		p = &dev->ports[i];
1329
1330		/* Initialize to non-zero so that ksz_cfg_port_member() will
1331		 * be called.
1332		 */
1333		p->vid_member = (1 << i);
1334		p->member = dev->port_mask;
1335		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1336		p->on = 1;
1337		if (i < dev->phy_port_cnt)
1338			p->phy = 1;
1339		if (dev->chip_id == 0x00947700 && i == 6) {
1340			p->sgmii = 1;
1341
1342			/* SGMII PHY detection code is not implemented yet. */
1343			p->phy = 0;
1344		}
1345	}
1346}
1347
1348static int ksz9477_setup(struct dsa_switch *ds)
1349{
1350	struct ksz_device *dev = ds->priv;
1351	int ret = 0;
1352
1353	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1354				       dev->num_vlans, GFP_KERNEL);
1355	if (!dev->vlan_cache)
1356		return -ENOMEM;
1357
1358	ret = ksz9477_reset_switch(dev);
1359	if (ret) {
1360		dev_err(ds->dev, "failed to reset switch\n");
1361		return ret;
1362	}
1363
1364	/* Required for port partitioning. */
1365	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1366		      true);
1367
1368	/* Do not work correctly with tail tagging. */
1369	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1370
1371	/* accept packet up to 2000bytes */
1372	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1373
1374	ksz9477_config_cpu_port(ds);
1375
1376	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1377
1378	/* queue based egress rate limit */
1379	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1380
1381	/* enable global MIB counter freeze function */
1382	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1383
1384	/* start switch */
1385	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1386
1387	ksz_init_mib_timer(dev);
1388
1389	return 0;
1390}
1391
1392static const struct dsa_switch_ops ksz9477_switch_ops = {
1393	.get_tag_protocol	= ksz9477_get_tag_protocol,
1394	.setup			= ksz9477_setup,
1395	.phy_read		= ksz9477_phy_read16,
1396	.phy_write		= ksz9477_phy_write16,
1397	.phylink_mac_link_down	= ksz_mac_link_down,
1398	.port_enable		= ksz_enable_port,
1399	.get_strings		= ksz9477_get_strings,
1400	.get_ethtool_stats	= ksz_get_ethtool_stats,
1401	.get_sset_count		= ksz_sset_count,
1402	.port_bridge_join	= ksz_port_bridge_join,
1403	.port_bridge_leave	= ksz_port_bridge_leave,
1404	.port_stp_state_set	= ksz9477_port_stp_state_set,
1405	.port_fast_age		= ksz_port_fast_age,
1406	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1407	.port_vlan_prepare	= ksz_port_vlan_prepare,
1408	.port_vlan_add		= ksz9477_port_vlan_add,
1409	.port_vlan_del		= ksz9477_port_vlan_del,
1410	.port_fdb_dump		= ksz9477_port_fdb_dump,
1411	.port_fdb_add		= ksz9477_port_fdb_add,
1412	.port_fdb_del		= ksz9477_port_fdb_del,
1413	.port_mdb_prepare       = ksz_port_mdb_prepare,
1414	.port_mdb_add           = ksz9477_port_mdb_add,
1415	.port_mdb_del           = ksz9477_port_mdb_del,
1416	.port_mirror_add	= ksz9477_port_mirror_add,
1417	.port_mirror_del	= ksz9477_port_mirror_del,
1418};
1419
1420static u32 ksz9477_get_port_addr(int port, int offset)
1421{
1422	return PORT_CTRL_ADDR(port, offset);
1423}
1424
1425static int ksz9477_switch_detect(struct ksz_device *dev)
1426{
1427	u8 data8;
1428	u8 id_hi;
1429	u8 id_lo;
1430	u32 id32;
1431	int ret;
1432
1433	/* turn off SPI DO Edge select */
1434	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1435	if (ret)
1436		return ret;
1437
1438	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1439	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1440	if (ret)
1441		return ret;
1442
1443	/* read chip id */
1444	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1445	if (ret)
1446		return ret;
1447	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1448	if (ret)
1449		return ret;
1450
1451	/* Number of ports can be reduced depending on chip. */
1452	dev->mib_port_cnt = TOTAL_PORT_NUM;
1453	dev->phy_port_cnt = 5;
1454
1455	/* Default capability is gigabit capable. */
1456	dev->features = GBIT_SUPPORT;
1457
1458	dev_dbg(dev->dev, "Switch detect: ID=%08x%02x\n", id32, data8);
1459	id_hi = (u8)(id32 >> 16);
1460	id_lo = (u8)(id32 >> 8);
1461	if ((id_lo & 0xf) == 3) {
1462		/* Chip is from KSZ9893 design. */
1463		dev_info(dev->dev, "Found KSZ9893\n");
1464		dev->features |= IS_9893;
1465
1466		/* Chip does not support gigabit. */
1467		if (data8 & SW_QW_ABLE)
1468			dev->features &= ~GBIT_SUPPORT;
1469		dev->mib_port_cnt = 3;
1470		dev->phy_port_cnt = 2;
1471	} else {
1472		dev_info(dev->dev, "Found KSZ9477 or compatible\n");
1473		/* Chip uses new XMII register definitions. */
1474		dev->features |= NEW_XMII;
1475
1476		/* Chip does not support gigabit. */
1477		if (!(data8 & SW_GIGABIT_ABLE))
1478			dev->features &= ~GBIT_SUPPORT;
1479	}
1480
1481	/* Change chip id to known ones so it can be matched against them. */
1482	id32 = (id_hi << 16) | (id_lo << 8);
1483
1484	dev->chip_id = id32;
1485
1486	return 0;
1487}
1488
1489struct ksz_chip_data {
1490	u32 chip_id;
1491	const char *dev_name;
1492	int num_vlans;
1493	int num_alus;
1494	int num_statics;
1495	int cpu_ports;
1496	int port_cnt;
1497	bool phy_errata_9477;
1498};
1499
1500static const struct ksz_chip_data ksz9477_switch_chips[] = {
1501	{
1502		.chip_id = 0x00947700,
1503		.dev_name = "KSZ9477",
1504		.num_vlans = 4096,
1505		.num_alus = 4096,
1506		.num_statics = 16,
1507		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1508		.port_cnt = 7,		/* total physical port count */
1509		.phy_errata_9477 = true,
1510	},
1511	{
1512		.chip_id = 0x00989700,
1513		.dev_name = "KSZ9897",
1514		.num_vlans = 4096,
1515		.num_alus = 4096,
1516		.num_statics = 16,
1517		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1518		.port_cnt = 7,		/* total physical port count */
1519		.phy_errata_9477 = true,
1520	},
1521	{
1522		.chip_id = 0x00989300,
1523		.dev_name = "KSZ9893",
1524		.num_vlans = 4096,
1525		.num_alus = 4096,
1526		.num_statics = 16,
1527		.cpu_ports = 0x07,	/* can be configured as cpu port */
1528		.port_cnt = 3,		/* total port count */
1529	},
1530	{
1531		.chip_id = 0x00956700,
1532		.dev_name = "KSZ9567",
1533		.num_vlans = 4096,
1534		.num_alus = 4096,
1535		.num_statics = 16,
1536		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1537		.port_cnt = 7,		/* total physical port count */
1538		.phy_errata_9477 = true,
1539	},
1540};
1541
1542static int ksz9477_switch_init(struct ksz_device *dev)
1543{
1544	int i;
1545
1546	dev->ds->ops = &ksz9477_switch_ops;
1547
1548	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1549		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1550
1551		if (dev->chip_id == chip->chip_id) {
1552			dev->name = chip->dev_name;
1553			dev->num_vlans = chip->num_vlans;
1554			dev->num_alus = chip->num_alus;
1555			dev->num_statics = chip->num_statics;
1556			dev->port_cnt = chip->port_cnt;
1557			dev->cpu_ports = chip->cpu_ports;
1558			dev->phy_errata_9477 = chip->phy_errata_9477;
1559
1560			break;
1561		}
1562	}
1563
1564	/* no switch found */
1565	if (!dev->port_cnt)
1566		return -ENODEV;
1567
1568	dev->port_mask = (1 << dev->port_cnt) - 1;
1569
1570	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1571	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1572
1573	i = dev->mib_port_cnt;
1574	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1575				  GFP_KERNEL);
1576	if (!dev->ports)
1577		return -ENOMEM;
1578	for (i = 0; i < dev->mib_port_cnt; i++) {
1579		mutex_init(&dev->ports[i].mib.cnt_mutex);
1580		dev->ports[i].mib.counters =
1581			devm_kzalloc(dev->dev,
1582				     sizeof(u64) *
1583				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1584				     GFP_KERNEL);
1585		if (!dev->ports[i].mib.counters)
1586			return -ENOMEM;
1587	}
1588
1589	/* set the real number of ports */
1590	dev->ds->num_ports = dev->port_cnt;
1591
1592	return 0;
1593}
1594
1595static void ksz9477_switch_exit(struct ksz_device *dev)
1596{
1597	ksz9477_reset_switch(dev);
1598}
1599
1600static const struct ksz_dev_ops ksz9477_dev_ops = {
1601	.get_port_addr = ksz9477_get_port_addr,
1602	.cfg_port_member = ksz9477_cfg_port_member,
1603	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1604	.port_setup = ksz9477_port_setup,
1605	.r_mib_cnt = ksz9477_r_mib_cnt,
1606	.r_mib_pkt = ksz9477_r_mib_pkt,
1607	.freeze_mib = ksz9477_freeze_mib,
1608	.port_init_cnt = ksz9477_port_init_cnt,
1609	.shutdown = ksz9477_reset_switch,
1610	.detect = ksz9477_switch_detect,
1611	.init = ksz9477_switch_init,
1612	.exit = ksz9477_switch_exit,
1613};
1614
1615int ksz9477_switch_register(struct ksz_device *dev)
1616{
1617	int ret, i;
1618	struct phy_device *phydev;
1619
1620	ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1621	if (ret)
1622		return ret;
1623
1624	for (i = 0; i < dev->phy_port_cnt; ++i) {
1625		if (!dsa_is_user_port(dev->ds, i))
1626			continue;
1627
1628		phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1629
1630		/* The MAC actually cannot run in 1000 half-duplex mode. */
1631		phy_remove_link_mode(phydev,
1632				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1633
1634		/* PHY does not support gigabit. */
1635		if (!(dev->features & GBIT_SUPPORT))
1636			phy_remove_link_mode(phydev,
1637					     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1638	}
1639	return ret;
1640}
1641EXPORT_SYMBOL(ksz9477_switch_register);
1642
1643MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1644MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1645MODULE_LICENSE("GPL");
1646