xref: /kernel/linux/linux-5.10/drivers/net/can/usb/ucan.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2
3/* Driver for Theobroma Systems UCAN devices, Protocol Version 3
4 *
5 * Copyright (C) 2018 Theobroma Systems Design und Consulting GmbH
6 *
7 *
8 * General Description:
9 *
10 * The USB Device uses three Endpoints:
11 *
12 *   CONTROL Endpoint: Is used the setup the device (start, stop,
13 *   info, configure).
14 *
15 *   IN Endpoint: The device sends CAN Frame Messages and Device
16 *   Information using the IN endpoint.
17 *
18 *   OUT Endpoint: The driver sends configuration requests, and CAN
19 *   Frames on the out endpoint.
20 *
21 * Error Handling:
22 *
23 *   If error reporting is turned on the device encodes error into CAN
24 *   error frames (see uapi/linux/can/error.h) and sends it using the
25 *   IN Endpoint. The driver updates statistics and forward it.
26 */
27
28#include <linux/can.h>
29#include <linux/can/dev.h>
30#include <linux/can/error.h>
31#include <linux/module.h>
32#include <linux/netdevice.h>
33#include <linux/signal.h>
34#include <linux/skbuff.h>
35#include <linux/slab.h>
36#include <linux/usb.h>
37
38#define UCAN_DRIVER_NAME "ucan"
39#define UCAN_MAX_RX_URBS 8
40/* the CAN controller needs a while to enable/disable the bus */
41#define UCAN_USB_CTL_PIPE_TIMEOUT 1000
42/* this driver currently supports protocol version 3 only */
43#define UCAN_PROTOCOL_VERSION_MIN 3
44#define UCAN_PROTOCOL_VERSION_MAX 3
45
46/* UCAN Message Definitions
47 * ------------------------
48 *
49 *  ucan_message_out_t and ucan_message_in_t define the messages
50 *  transmitted on the OUT and IN endpoint.
51 *
52 *  Multibyte fields are transmitted with little endianness
53 *
54 *  INTR Endpoint: a single uint32_t storing the current space in the fifo
55 *
56 *  OUT Endpoint: single message of type ucan_message_out_t is
57 *    transmitted on the out endpoint
58 *
59 *  IN Endpoint: multiple messages ucan_message_in_t concateted in
60 *    the following way:
61 *
62 *	m[n].len <=> the length if message n(including the header in bytes)
63 *	m[n] is is aligned to a 4 byte boundary, hence
64 *	  offset(m[0])	 := 0;
65 *	  offset(m[n+1]) := offset(m[n]) + (m[n].len + 3) & 3
66 *
67 *	this implies that
68 *	  offset(m[n]) % 4 <=> 0
69 */
70
71/* Device Global Commands */
72enum {
73	UCAN_DEVICE_GET_FW_STRING = 0,
74};
75
76/* UCAN Commands */
77enum {
78	/* start the can transceiver - val defines the operation mode */
79	UCAN_COMMAND_START = 0,
80	/* cancel pending transmissions and stop the can transceiver */
81	UCAN_COMMAND_STOP = 1,
82	/* send can transceiver into low-power sleep mode */
83	UCAN_COMMAND_SLEEP = 2,
84	/* wake up can transceiver from low-power sleep mode */
85	UCAN_COMMAND_WAKEUP = 3,
86	/* reset the can transceiver */
87	UCAN_COMMAND_RESET = 4,
88	/* get piece of info from the can transceiver - subcmd defines what
89	 * piece
90	 */
91	UCAN_COMMAND_GET = 5,
92	/* clear or disable hardware filter - subcmd defines which of the two */
93	UCAN_COMMAND_FILTER = 6,
94	/* Setup bittiming */
95	UCAN_COMMAND_SET_BITTIMING = 7,
96	/* recover from bus-off state */
97	UCAN_COMMAND_RESTART = 8,
98};
99
100/* UCAN_COMMAND_START and UCAN_COMMAND_GET_INFO operation modes (bitmap).
101 * Undefined bits must be set to 0.
102 */
103enum {
104	UCAN_MODE_LOOPBACK = BIT(0),
105	UCAN_MODE_SILENT = BIT(1),
106	UCAN_MODE_3_SAMPLES = BIT(2),
107	UCAN_MODE_ONE_SHOT = BIT(3),
108	UCAN_MODE_BERR_REPORT = BIT(4),
109};
110
111/* UCAN_COMMAND_GET subcommands */
112enum {
113	UCAN_COMMAND_GET_INFO = 0,
114	UCAN_COMMAND_GET_PROTOCOL_VERSION = 1,
115};
116
117/* UCAN_COMMAND_FILTER subcommands */
118enum {
119	UCAN_FILTER_CLEAR = 0,
120	UCAN_FILTER_DISABLE = 1,
121	UCAN_FILTER_ENABLE = 2,
122};
123
124/* OUT endpoint message types */
125enum {
126	UCAN_OUT_TX = 2,     /* transmit a CAN frame */
127};
128
129/* IN endpoint message types */
130enum {
131	UCAN_IN_TX_COMPLETE = 1,  /* CAN frame transmission completed */
132	UCAN_IN_RX = 2,           /* CAN frame received */
133};
134
135struct ucan_ctl_cmd_start {
136	__le16 mode;         /* OR-ing any of UCAN_MODE_* */
137} __packed;
138
139struct ucan_ctl_cmd_set_bittiming {
140	__le32 tq;           /* Time quanta (TQ) in nanoseconds */
141	__le16 brp;          /* TQ Prescaler */
142	__le16 sample_point; /* Samplepoint on tenth percent */
143	u8 prop_seg;         /* Propagation segment in TQs */
144	u8 phase_seg1;       /* Phase buffer segment 1 in TQs */
145	u8 phase_seg2;       /* Phase buffer segment 2 in TQs */
146	u8 sjw;              /* Synchronisation jump width in TQs */
147} __packed;
148
149struct ucan_ctl_cmd_device_info {
150	__le32 freq;         /* Clock Frequency for tq generation */
151	u8 tx_fifo;          /* Size of the transmission fifo */
152	u8 sjw_max;          /* can_bittiming fields... */
153	u8 tseg1_min;
154	u8 tseg1_max;
155	u8 tseg2_min;
156	u8 tseg2_max;
157	__le16 brp_inc;
158	__le32 brp_min;
159	__le32 brp_max;      /* ...can_bittiming fields */
160	__le16 ctrlmodes;    /* supported control modes */
161	__le16 hwfilter;     /* Number of HW filter banks */
162	__le16 rxmboxes;     /* Number of receive Mailboxes */
163} __packed;
164
165struct ucan_ctl_cmd_get_protocol_version {
166	__le32 version;
167} __packed;
168
169union ucan_ctl_payload {
170	/* Setup Bittiming
171	 * bmRequest == UCAN_COMMAND_START
172	 */
173	struct ucan_ctl_cmd_start cmd_start;
174	/* Setup Bittiming
175	 * bmRequest == UCAN_COMMAND_SET_BITTIMING
176	 */
177	struct ucan_ctl_cmd_set_bittiming cmd_set_bittiming;
178	/* Get Device Information
179	 * bmRequest == UCAN_COMMAND_GET; wValue = UCAN_COMMAND_GET_INFO
180	 */
181	struct ucan_ctl_cmd_device_info cmd_get_device_info;
182	/* Get Protocol Version
183	 * bmRequest == UCAN_COMMAND_GET;
184	 * wValue = UCAN_COMMAND_GET_PROTOCOL_VERSION
185	 */
186	struct ucan_ctl_cmd_get_protocol_version cmd_get_protocol_version;
187
188	u8 raw[128];
189} __packed;
190
191enum {
192	UCAN_TX_COMPLETE_SUCCESS = BIT(0),
193};
194
195/* Transmission Complete within ucan_message_in */
196struct ucan_tx_complete_entry_t {
197	u8 echo_index;
198	u8 flags;
199} __packed __aligned(0x2);
200
201/* CAN Data message format within ucan_message_in/out */
202struct ucan_can_msg {
203	/* note DLC is computed by
204	 *    msg.len - sizeof (msg.len)
205	 *            - sizeof (msg.type)
206	 *            - sizeof (msg.can_msg.id)
207	 */
208	__le32 id;
209
210	union {
211		u8 data[CAN_MAX_DLEN];  /* Data of CAN frames */
212		u8 dlc;                 /* RTR dlc */
213	};
214} __packed;
215
216/* OUT Endpoint, outbound messages */
217struct ucan_message_out {
218	__le16 len; /* Length of the content include header */
219	u8 type;    /* UCAN_OUT_TX and friends */
220	u8 subtype; /* command sub type */
221
222	union {
223		/* Transmit CAN frame
224		 * (type == UCAN_TX) && ((msg.can_msg.id & CAN_RTR_FLAG) == 0)
225		 * subtype stores the echo id
226		 */
227		struct ucan_can_msg can_msg;
228	} msg;
229} __packed __aligned(0x4);
230
231/* IN Endpoint, inbound messages */
232struct ucan_message_in {
233	__le16 len; /* Length of the content include header */
234	u8 type;    /* UCAN_IN_RX and friends */
235	u8 subtype; /* command sub type */
236
237	union {
238		/* CAN Frame received
239		 * (type == UCAN_IN_RX)
240		 * && ((msg.can_msg.id & CAN_RTR_FLAG) == 0)
241		 */
242		struct ucan_can_msg can_msg;
243
244		/* CAN transmission complete
245		 * (type == UCAN_IN_TX_COMPLETE)
246		 */
247		struct ucan_tx_complete_entry_t can_tx_complete_msg[0];
248	} __aligned(0x4) msg;
249} __packed;
250
251/* Macros to calculate message lengths */
252#define UCAN_OUT_HDR_SIZE offsetof(struct ucan_message_out, msg)
253
254#define UCAN_IN_HDR_SIZE offsetof(struct ucan_message_in, msg)
255#define UCAN_IN_LEN(member) (UCAN_OUT_HDR_SIZE + sizeof(member))
256
257struct ucan_priv;
258
259/* Context Information for transmission URBs */
260struct ucan_urb_context {
261	struct ucan_priv *up;
262	u8 dlc;
263	bool allocated;
264};
265
266/* Information reported by the USB device */
267struct ucan_device_info {
268	struct can_bittiming_const bittiming_const;
269	u8 tx_fifo;
270};
271
272/* Driver private data */
273struct ucan_priv {
274	/* must be the first member */
275	struct can_priv can;
276
277	/* linux USB device structures */
278	struct usb_device *udev;
279	struct usb_interface *intf;
280	struct net_device *netdev;
281
282	/* lock for can->echo_skb (used around
283	 * can_put/get/free_echo_skb
284	 */
285	spinlock_t echo_skb_lock;
286
287	/* usb device information information */
288	u8 intf_index;
289	u8 in_ep_addr;
290	u8 out_ep_addr;
291	u16 in_ep_size;
292
293	/* transmission and reception buffers */
294	struct usb_anchor rx_urbs;
295	struct usb_anchor tx_urbs;
296
297	union ucan_ctl_payload *ctl_msg_buffer;
298	struct ucan_device_info device_info;
299
300	/* transmission control information and locks */
301	spinlock_t context_lock;
302	unsigned int available_tx_urbs;
303	struct ucan_urb_context *context_array;
304};
305
306static u8 ucan_get_can_dlc(struct ucan_can_msg *msg, u16 len)
307{
308	if (le32_to_cpu(msg->id) & CAN_RTR_FLAG)
309		return get_can_dlc(msg->dlc);
310	else
311		return get_can_dlc(len - (UCAN_IN_HDR_SIZE + sizeof(msg->id)));
312}
313
314static void ucan_release_context_array(struct ucan_priv *up)
315{
316	if (!up->context_array)
317		return;
318
319	/* lock is not needed because, driver is currently opening or closing */
320	up->available_tx_urbs = 0;
321
322	kfree(up->context_array);
323	up->context_array = NULL;
324}
325
326static int ucan_alloc_context_array(struct ucan_priv *up)
327{
328	int i;
329
330	/* release contexts if any */
331	ucan_release_context_array(up);
332
333	up->context_array = kcalloc(up->device_info.tx_fifo,
334				    sizeof(*up->context_array),
335				    GFP_KERNEL);
336	if (!up->context_array) {
337		netdev_err(up->netdev,
338			   "Not enough memory to allocate tx contexts\n");
339		return -ENOMEM;
340	}
341
342	for (i = 0; i < up->device_info.tx_fifo; i++) {
343		up->context_array[i].allocated = false;
344		up->context_array[i].up = up;
345	}
346
347	/* lock is not needed because, driver is currently opening */
348	up->available_tx_urbs = up->device_info.tx_fifo;
349
350	return 0;
351}
352
353static struct ucan_urb_context *ucan_alloc_context(struct ucan_priv *up)
354{
355	int i;
356	unsigned long flags;
357	struct ucan_urb_context *ret = NULL;
358
359	if (WARN_ON_ONCE(!up->context_array))
360		return NULL;
361
362	/* execute context operation atomically */
363	spin_lock_irqsave(&up->context_lock, flags);
364
365	for (i = 0; i < up->device_info.tx_fifo; i++) {
366		if (!up->context_array[i].allocated) {
367			/* update context */
368			ret = &up->context_array[i];
369			up->context_array[i].allocated = true;
370
371			/* stop queue if necessary */
372			up->available_tx_urbs--;
373			if (!up->available_tx_urbs)
374				netif_stop_queue(up->netdev);
375
376			break;
377		}
378	}
379
380	spin_unlock_irqrestore(&up->context_lock, flags);
381	return ret;
382}
383
384static bool ucan_release_context(struct ucan_priv *up,
385				 struct ucan_urb_context *ctx)
386{
387	unsigned long flags;
388	bool ret = false;
389
390	if (WARN_ON_ONCE(!up->context_array))
391		return false;
392
393	/* execute context operation atomically */
394	spin_lock_irqsave(&up->context_lock, flags);
395
396	/* context was not allocated, maybe the device sent garbage */
397	if (ctx->allocated) {
398		ctx->allocated = false;
399
400		/* check if the queue needs to be woken */
401		if (!up->available_tx_urbs)
402			netif_wake_queue(up->netdev);
403		up->available_tx_urbs++;
404
405		ret = true;
406	}
407
408	spin_unlock_irqrestore(&up->context_lock, flags);
409	return ret;
410}
411
412static int ucan_ctrl_command_out(struct ucan_priv *up,
413				 u8 cmd, u16 subcmd, u16 datalen)
414{
415	return usb_control_msg(up->udev,
416			       usb_sndctrlpipe(up->udev, 0),
417			       cmd,
418			       USB_DIR_OUT | USB_TYPE_VENDOR |
419						USB_RECIP_INTERFACE,
420			       subcmd,
421			       up->intf_index,
422			       up->ctl_msg_buffer,
423			       datalen,
424			       UCAN_USB_CTL_PIPE_TIMEOUT);
425}
426
427static int ucan_device_request_in(struct ucan_priv *up,
428				  u8 cmd, u16 subcmd, u16 datalen)
429{
430	return usb_control_msg(up->udev,
431			       usb_rcvctrlpipe(up->udev, 0),
432			       cmd,
433			       USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
434			       subcmd,
435			       0,
436			       up->ctl_msg_buffer,
437			       datalen,
438			       UCAN_USB_CTL_PIPE_TIMEOUT);
439}
440
441/* Parse the device information structure reported by the device and
442 * setup private variables accordingly
443 */
444static void ucan_parse_device_info(struct ucan_priv *up,
445				   struct ucan_ctl_cmd_device_info *device_info)
446{
447	struct can_bittiming_const *bittiming =
448		&up->device_info.bittiming_const;
449	u16 ctrlmodes;
450
451	/* store the data */
452	up->can.clock.freq = le32_to_cpu(device_info->freq);
453	up->device_info.tx_fifo = device_info->tx_fifo;
454	strcpy(bittiming->name, "ucan");
455	bittiming->tseg1_min = device_info->tseg1_min;
456	bittiming->tseg1_max = device_info->tseg1_max;
457	bittiming->tseg2_min = device_info->tseg2_min;
458	bittiming->tseg2_max = device_info->tseg2_max;
459	bittiming->sjw_max = device_info->sjw_max;
460	bittiming->brp_min = le32_to_cpu(device_info->brp_min);
461	bittiming->brp_max = le32_to_cpu(device_info->brp_max);
462	bittiming->brp_inc = le16_to_cpu(device_info->brp_inc);
463
464	ctrlmodes = le16_to_cpu(device_info->ctrlmodes);
465
466	up->can.ctrlmode_supported = 0;
467
468	if (ctrlmodes & UCAN_MODE_LOOPBACK)
469		up->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
470	if (ctrlmodes & UCAN_MODE_SILENT)
471		up->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
472	if (ctrlmodes & UCAN_MODE_3_SAMPLES)
473		up->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
474	if (ctrlmodes & UCAN_MODE_ONE_SHOT)
475		up->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
476	if (ctrlmodes & UCAN_MODE_BERR_REPORT)
477		up->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
478}
479
480/* Handle a CAN error frame that we have received from the device.
481 * Returns true if the can state has changed.
482 */
483static bool ucan_handle_error_frame(struct ucan_priv *up,
484				    struct ucan_message_in *m,
485				    canid_t canid)
486{
487	enum can_state new_state = up->can.state;
488	struct net_device_stats *net_stats = &up->netdev->stats;
489	struct can_device_stats *can_stats = &up->can.can_stats;
490
491	if (canid & CAN_ERR_LOSTARB)
492		can_stats->arbitration_lost++;
493
494	if (canid & CAN_ERR_BUSERROR)
495		can_stats->bus_error++;
496
497	if (canid & CAN_ERR_ACK)
498		net_stats->tx_errors++;
499
500	if (canid & CAN_ERR_BUSOFF)
501		new_state = CAN_STATE_BUS_OFF;
502
503	/* controller problems, details in data[1] */
504	if (canid & CAN_ERR_CRTL) {
505		u8 d1 = m->msg.can_msg.data[1];
506
507		if (d1 & CAN_ERR_CRTL_RX_OVERFLOW)
508			net_stats->rx_over_errors++;
509
510		/* controller state bits: if multiple are set the worst wins */
511		if (d1 & CAN_ERR_CRTL_ACTIVE)
512			new_state = CAN_STATE_ERROR_ACTIVE;
513
514		if (d1 & (CAN_ERR_CRTL_RX_WARNING | CAN_ERR_CRTL_TX_WARNING))
515			new_state = CAN_STATE_ERROR_WARNING;
516
517		if (d1 & (CAN_ERR_CRTL_RX_PASSIVE | CAN_ERR_CRTL_TX_PASSIVE))
518			new_state = CAN_STATE_ERROR_PASSIVE;
519	}
520
521	/* protocol error, details in data[2] */
522	if (canid & CAN_ERR_PROT) {
523		u8 d2 = m->msg.can_msg.data[2];
524
525		if (d2 & CAN_ERR_PROT_TX)
526			net_stats->tx_errors++;
527		else
528			net_stats->rx_errors++;
529	}
530
531	/* no state change - we are done */
532	if (up->can.state == new_state)
533		return false;
534
535	/* we switched into a better state */
536	if (up->can.state > new_state) {
537		up->can.state = new_state;
538		return true;
539	}
540
541	/* we switched into a worse state */
542	up->can.state = new_state;
543	switch (new_state) {
544	case CAN_STATE_BUS_OFF:
545		can_stats->bus_off++;
546		can_bus_off(up->netdev);
547		break;
548	case CAN_STATE_ERROR_PASSIVE:
549		can_stats->error_passive++;
550		break;
551	case CAN_STATE_ERROR_WARNING:
552		can_stats->error_warning++;
553		break;
554	default:
555		break;
556	}
557	return true;
558}
559
560/* Callback on reception of a can frame via the IN endpoint
561 *
562 * This function allocates an skb and transferres it to the Linux
563 * network stack
564 */
565static void ucan_rx_can_msg(struct ucan_priv *up, struct ucan_message_in *m)
566{
567	int len;
568	canid_t canid;
569	struct can_frame *cf;
570	struct sk_buff *skb;
571	struct net_device_stats *stats = &up->netdev->stats;
572
573	/* get the contents of the length field */
574	len = le16_to_cpu(m->len);
575
576	/* check sanity */
577	if (len < UCAN_IN_HDR_SIZE + sizeof(m->msg.can_msg.id)) {
578		netdev_warn(up->netdev, "invalid input message len: %d\n", len);
579		return;
580	}
581
582	/* handle error frames */
583	canid = le32_to_cpu(m->msg.can_msg.id);
584	if (canid & CAN_ERR_FLAG) {
585		bool busstate_changed = ucan_handle_error_frame(up, m, canid);
586
587		/* if berr-reporting is off only state changes get through */
588		if (!(up->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
589		    !busstate_changed)
590			return;
591	} else {
592		canid_t canid_mask;
593		/* compute the mask for canid */
594		canid_mask = CAN_RTR_FLAG;
595		if (canid & CAN_EFF_FLAG)
596			canid_mask |= CAN_EFF_MASK | CAN_EFF_FLAG;
597		else
598			canid_mask |= CAN_SFF_MASK;
599
600		if (canid & ~canid_mask)
601			netdev_warn(up->netdev,
602				    "unexpected bits set (canid %x, mask %x)",
603				    canid, canid_mask);
604
605		canid &= canid_mask;
606	}
607
608	/* allocate skb */
609	skb = alloc_can_skb(up->netdev, &cf);
610	if (!skb)
611		return;
612
613	/* fill the can frame */
614	cf->can_id = canid;
615
616	/* compute DLC taking RTR_FLAG into account */
617	cf->can_dlc = ucan_get_can_dlc(&m->msg.can_msg, len);
618
619	/* copy the payload of non RTR frames */
620	if (!(cf->can_id & CAN_RTR_FLAG) || (cf->can_id & CAN_ERR_FLAG))
621		memcpy(cf->data, m->msg.can_msg.data, cf->can_dlc);
622
623	/* don't count error frames as real packets */
624	stats->rx_packets++;
625	stats->rx_bytes += cf->can_dlc;
626
627	/* pass it to Linux */
628	netif_rx(skb);
629}
630
631/* callback indicating completed transmission */
632static void ucan_tx_complete_msg(struct ucan_priv *up,
633				 struct ucan_message_in *m)
634{
635	unsigned long flags;
636	u16 count, i;
637	u8 echo_index, dlc;
638	u16 len = le16_to_cpu(m->len);
639
640	struct ucan_urb_context *context;
641
642	if (len < UCAN_IN_HDR_SIZE || (len % 2 != 0)) {
643		netdev_err(up->netdev, "invalid tx complete length\n");
644		return;
645	}
646
647	count = (len - UCAN_IN_HDR_SIZE) / 2;
648	for (i = 0; i < count; i++) {
649		/* we did not submit such echo ids */
650		echo_index = m->msg.can_tx_complete_msg[i].echo_index;
651		if (echo_index >= up->device_info.tx_fifo) {
652			up->netdev->stats.tx_errors++;
653			netdev_err(up->netdev,
654				   "invalid echo_index %d received\n",
655				   echo_index);
656			continue;
657		}
658
659		/* gather information from the context */
660		context = &up->context_array[echo_index];
661		dlc = READ_ONCE(context->dlc);
662
663		/* Release context and restart queue if necessary.
664		 * Also check if the context was allocated
665		 */
666		if (!ucan_release_context(up, context))
667			continue;
668
669		spin_lock_irqsave(&up->echo_skb_lock, flags);
670		if (m->msg.can_tx_complete_msg[i].flags &
671		    UCAN_TX_COMPLETE_SUCCESS) {
672			/* update statistics */
673			up->netdev->stats.tx_packets++;
674			up->netdev->stats.tx_bytes += dlc;
675			can_get_echo_skb(up->netdev, echo_index);
676		} else {
677			up->netdev->stats.tx_dropped++;
678			can_free_echo_skb(up->netdev, echo_index);
679		}
680		spin_unlock_irqrestore(&up->echo_skb_lock, flags);
681	}
682}
683
684/* callback on reception of a USB message */
685static void ucan_read_bulk_callback(struct urb *urb)
686{
687	int ret;
688	int pos;
689	struct ucan_priv *up = urb->context;
690	struct net_device *netdev = up->netdev;
691	struct ucan_message_in *m;
692
693	/* the device is not up and the driver should not receive any
694	 * data on the bulk in pipe
695	 */
696	if (WARN_ON(!up->context_array)) {
697		usb_free_coherent(up->udev,
698				  up->in_ep_size,
699				  urb->transfer_buffer,
700				  urb->transfer_dma);
701		return;
702	}
703
704	/* check URB status */
705	switch (urb->status) {
706	case 0:
707		break;
708	case -ENOENT:
709	case -EPIPE:
710	case -EPROTO:
711	case -ESHUTDOWN:
712	case -ETIME:
713		/* urb is not resubmitted -> free dma data */
714		usb_free_coherent(up->udev,
715				  up->in_ep_size,
716				  urb->transfer_buffer,
717				  urb->transfer_dma);
718		netdev_dbg(up->netdev, "not resubmitting urb; status: %d\n",
719			   urb->status);
720		return;
721	default:
722		goto resubmit;
723	}
724
725	/* sanity check */
726	if (!netif_device_present(netdev))
727		return;
728
729	/* iterate over input */
730	pos = 0;
731	while (pos < urb->actual_length) {
732		int len;
733
734		/* check sanity (length of header) */
735		if ((urb->actual_length - pos) < UCAN_IN_HDR_SIZE) {
736			netdev_warn(up->netdev,
737				    "invalid message (short; no hdr; l:%d)\n",
738				    urb->actual_length);
739			goto resubmit;
740		}
741
742		/* setup the message address */
743		m = (struct ucan_message_in *)
744			((u8 *)urb->transfer_buffer + pos);
745		len = le16_to_cpu(m->len);
746
747		/* check sanity (length of content) */
748		if (urb->actual_length - pos < len) {
749			netdev_warn(up->netdev,
750				    "invalid message (short; no data; l:%d)\n",
751				    urb->actual_length);
752			print_hex_dump(KERN_WARNING,
753				       "raw data: ",
754				       DUMP_PREFIX_ADDRESS,
755				       16,
756				       1,
757				       urb->transfer_buffer,
758				       urb->actual_length,
759				       true);
760
761			goto resubmit;
762		}
763
764		switch (m->type) {
765		case UCAN_IN_RX:
766			ucan_rx_can_msg(up, m);
767			break;
768		case UCAN_IN_TX_COMPLETE:
769			ucan_tx_complete_msg(up, m);
770			break;
771		default:
772			netdev_warn(up->netdev,
773				    "invalid message (type; t:%d)\n",
774				    m->type);
775			break;
776		}
777
778		/* proceed to next message */
779		pos += len;
780		/* align to 4 byte boundary */
781		pos = round_up(pos, 4);
782	}
783
784resubmit:
785	/* resubmit urb when done */
786	usb_fill_bulk_urb(urb, up->udev,
787			  usb_rcvbulkpipe(up->udev,
788					  up->in_ep_addr),
789			  urb->transfer_buffer,
790			  up->in_ep_size,
791			  ucan_read_bulk_callback,
792			  up);
793
794	usb_anchor_urb(urb, &up->rx_urbs);
795	ret = usb_submit_urb(urb, GFP_ATOMIC);
796
797	if (ret < 0) {
798		netdev_err(up->netdev,
799			   "failed resubmitting read bulk urb: %d\n",
800			   ret);
801
802		usb_unanchor_urb(urb);
803		usb_free_coherent(up->udev,
804				  up->in_ep_size,
805				  urb->transfer_buffer,
806				  urb->transfer_dma);
807
808		if (ret == -ENODEV)
809			netif_device_detach(netdev);
810	}
811}
812
813/* callback after transmission of a USB message */
814static void ucan_write_bulk_callback(struct urb *urb)
815{
816	unsigned long flags;
817	struct ucan_priv *up;
818	struct ucan_urb_context *context = urb->context;
819
820	/* get the urb context */
821	if (WARN_ON_ONCE(!context))
822		return;
823
824	/* free up our allocated buffer */
825	usb_free_coherent(urb->dev,
826			  sizeof(struct ucan_message_out),
827			  urb->transfer_buffer,
828			  urb->transfer_dma);
829
830	up = context->up;
831	if (WARN_ON_ONCE(!up))
832		return;
833
834	/* sanity check */
835	if (!netif_device_present(up->netdev))
836		return;
837
838	/* transmission failed (USB - the device will not send a TX complete) */
839	if (urb->status) {
840		netdev_warn(up->netdev,
841			    "failed to transmit USB message to device: %d\n",
842			     urb->status);
843
844		/* update counters an cleanup */
845		spin_lock_irqsave(&up->echo_skb_lock, flags);
846		can_free_echo_skb(up->netdev, context - up->context_array);
847		spin_unlock_irqrestore(&up->echo_skb_lock, flags);
848
849		up->netdev->stats.tx_dropped++;
850
851		/* release context and restart the queue if necessary */
852		if (!ucan_release_context(up, context))
853			netdev_err(up->netdev,
854				   "urb failed, failed to release context\n");
855	}
856}
857
858static void ucan_cleanup_rx_urbs(struct ucan_priv *up, struct urb **urbs)
859{
860	int i;
861
862	for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
863		if (urbs[i]) {
864			usb_unanchor_urb(urbs[i]);
865			usb_free_coherent(up->udev,
866					  up->in_ep_size,
867					  urbs[i]->transfer_buffer,
868					  urbs[i]->transfer_dma);
869			usb_free_urb(urbs[i]);
870		}
871	}
872
873	memset(urbs, 0, sizeof(*urbs) * UCAN_MAX_RX_URBS);
874}
875
876static int ucan_prepare_and_anchor_rx_urbs(struct ucan_priv *up,
877					   struct urb **urbs)
878{
879	int i;
880
881	memset(urbs, 0, sizeof(*urbs) * UCAN_MAX_RX_URBS);
882
883	for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
884		void *buf;
885
886		urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
887		if (!urbs[i])
888			goto err;
889
890		buf = usb_alloc_coherent(up->udev,
891					 up->in_ep_size,
892					 GFP_KERNEL, &urbs[i]->transfer_dma);
893		if (!buf) {
894			/* cleanup this urb */
895			usb_free_urb(urbs[i]);
896			urbs[i] = NULL;
897			goto err;
898		}
899
900		usb_fill_bulk_urb(urbs[i], up->udev,
901				  usb_rcvbulkpipe(up->udev,
902						  up->in_ep_addr),
903				  buf,
904				  up->in_ep_size,
905				  ucan_read_bulk_callback,
906				  up);
907
908		urbs[i]->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
909
910		usb_anchor_urb(urbs[i], &up->rx_urbs);
911	}
912	return 0;
913
914err:
915	/* cleanup other unsubmitted urbs */
916	ucan_cleanup_rx_urbs(up, urbs);
917	return -ENOMEM;
918}
919
920/* Submits rx urbs with the semantic: Either submit all, or cleanup
921 * everything. I case of errors submitted urbs are killed and all urbs in
922 * the array are freed. I case of no errors every entry in the urb
923 * array is set to NULL.
924 */
925static int ucan_submit_rx_urbs(struct ucan_priv *up, struct urb **urbs)
926{
927	int i, ret;
928
929	/* Iterate over all urbs to submit. On success remove the urb
930	 * from the list.
931	 */
932	for (i = 0; i < UCAN_MAX_RX_URBS; i++) {
933		ret = usb_submit_urb(urbs[i], GFP_KERNEL);
934		if (ret) {
935			netdev_err(up->netdev,
936				   "could not submit urb; code: %d\n",
937				   ret);
938			goto err;
939		}
940
941		/* Anchor URB and drop reference, USB core will take
942		 * care of freeing it
943		 */
944		usb_free_urb(urbs[i]);
945		urbs[i] = NULL;
946	}
947	return 0;
948
949err:
950	/* Cleanup unsubmitted urbs */
951	ucan_cleanup_rx_urbs(up, urbs);
952
953	/* Kill urbs that are already submitted */
954	usb_kill_anchored_urbs(&up->rx_urbs);
955
956	return ret;
957}
958
959/* Open the network device */
960static int ucan_open(struct net_device *netdev)
961{
962	int ret, ret_cleanup;
963	u16 ctrlmode;
964	struct urb *urbs[UCAN_MAX_RX_URBS];
965	struct ucan_priv *up = netdev_priv(netdev);
966
967	ret = ucan_alloc_context_array(up);
968	if (ret)
969		return ret;
970
971	/* Allocate and prepare IN URBS - allocated and anchored
972	 * urbs are stored in urbs[] for clean
973	 */
974	ret = ucan_prepare_and_anchor_rx_urbs(up, urbs);
975	if (ret)
976		goto err_contexts;
977
978	/* Check the control mode */
979	ctrlmode = 0;
980	if (up->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
981		ctrlmode |= UCAN_MODE_LOOPBACK;
982	if (up->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
983		ctrlmode |= UCAN_MODE_SILENT;
984	if (up->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
985		ctrlmode |= UCAN_MODE_3_SAMPLES;
986	if (up->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
987		ctrlmode |= UCAN_MODE_ONE_SHOT;
988
989	/* Enable this in any case - filtering is down within the
990	 * receive path
991	 */
992	ctrlmode |= UCAN_MODE_BERR_REPORT;
993	up->ctl_msg_buffer->cmd_start.mode = cpu_to_le16(ctrlmode);
994
995	/* Driver is ready to receive data - start the USB device */
996	ret = ucan_ctrl_command_out(up, UCAN_COMMAND_START, 0, 2);
997	if (ret < 0) {
998		netdev_err(up->netdev,
999			   "could not start device, code: %d\n",
1000			   ret);
1001		goto err_reset;
1002	}
1003
1004	/* Call CAN layer open */
1005	ret = open_candev(netdev);
1006	if (ret)
1007		goto err_stop;
1008
1009	/* Driver is ready to receive data. Submit RX URBS */
1010	ret = ucan_submit_rx_urbs(up, urbs);
1011	if (ret)
1012		goto err_stop;
1013
1014	up->can.state = CAN_STATE_ERROR_ACTIVE;
1015
1016	/* Start the network queue */
1017	netif_start_queue(netdev);
1018
1019	return 0;
1020
1021err_stop:
1022	/* The device have started already stop it */
1023	ret_cleanup = ucan_ctrl_command_out(up, UCAN_COMMAND_STOP, 0, 0);
1024	if (ret_cleanup < 0)
1025		netdev_err(up->netdev,
1026			   "could not stop device, code: %d\n",
1027			   ret_cleanup);
1028
1029err_reset:
1030	/* The device might have received data, reset it for
1031	 * consistent state
1032	 */
1033	ret_cleanup = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1034	if (ret_cleanup < 0)
1035		netdev_err(up->netdev,
1036			   "could not reset device, code: %d\n",
1037			   ret_cleanup);
1038
1039	/* clean up unsubmitted urbs */
1040	ucan_cleanup_rx_urbs(up, urbs);
1041
1042err_contexts:
1043	ucan_release_context_array(up);
1044	return ret;
1045}
1046
1047static struct urb *ucan_prepare_tx_urb(struct ucan_priv *up,
1048				       struct ucan_urb_context *context,
1049				       struct can_frame *cf,
1050				       u8 echo_index)
1051{
1052	int mlen;
1053	struct urb *urb;
1054	struct ucan_message_out *m;
1055
1056	/* create a URB, and a buffer for it, and copy the data to the URB */
1057	urb = usb_alloc_urb(0, GFP_ATOMIC);
1058	if (!urb) {
1059		netdev_err(up->netdev, "no memory left for URBs\n");
1060		return NULL;
1061	}
1062
1063	m = usb_alloc_coherent(up->udev,
1064			       sizeof(struct ucan_message_out),
1065			       GFP_ATOMIC,
1066			       &urb->transfer_dma);
1067	if (!m) {
1068		netdev_err(up->netdev, "no memory left for USB buffer\n");
1069		usb_free_urb(urb);
1070		return NULL;
1071	}
1072
1073	/* build the USB message */
1074	m->type = UCAN_OUT_TX;
1075	m->msg.can_msg.id = cpu_to_le32(cf->can_id);
1076
1077	if (cf->can_id & CAN_RTR_FLAG) {
1078		mlen = UCAN_OUT_HDR_SIZE +
1079			offsetof(struct ucan_can_msg, dlc) +
1080			sizeof(m->msg.can_msg.dlc);
1081		m->msg.can_msg.dlc = cf->can_dlc;
1082	} else {
1083		mlen = UCAN_OUT_HDR_SIZE +
1084			sizeof(m->msg.can_msg.id) + cf->can_dlc;
1085		memcpy(m->msg.can_msg.data, cf->data, cf->can_dlc);
1086	}
1087	m->len = cpu_to_le16(mlen);
1088
1089	context->dlc = cf->can_dlc;
1090
1091	m->subtype = echo_index;
1092
1093	/* build the urb */
1094	usb_fill_bulk_urb(urb, up->udev,
1095			  usb_sndbulkpipe(up->udev,
1096					  up->out_ep_addr),
1097			  m, mlen, ucan_write_bulk_callback, context);
1098	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1099
1100	return urb;
1101}
1102
1103static void ucan_clean_up_tx_urb(struct ucan_priv *up, struct urb *urb)
1104{
1105	usb_free_coherent(up->udev, sizeof(struct ucan_message_out),
1106			  urb->transfer_buffer, urb->transfer_dma);
1107	usb_free_urb(urb);
1108}
1109
1110/* callback when Linux needs to send a can frame */
1111static netdev_tx_t ucan_start_xmit(struct sk_buff *skb,
1112				   struct net_device *netdev)
1113{
1114	unsigned long flags;
1115	int ret;
1116	u8 echo_index;
1117	struct urb *urb;
1118	struct ucan_urb_context *context;
1119	struct ucan_priv *up = netdev_priv(netdev);
1120	struct can_frame *cf = (struct can_frame *)skb->data;
1121
1122	/* check skb */
1123	if (can_dropped_invalid_skb(netdev, skb))
1124		return NETDEV_TX_OK;
1125
1126	/* allocate a context and slow down tx path, if fifo state is low */
1127	context = ucan_alloc_context(up);
1128	echo_index = context - up->context_array;
1129
1130	if (WARN_ON_ONCE(!context))
1131		return NETDEV_TX_BUSY;
1132
1133	/* prepare urb for transmission */
1134	urb = ucan_prepare_tx_urb(up, context, cf, echo_index);
1135	if (!urb)
1136		goto drop;
1137
1138	/* put the skb on can loopback stack */
1139	spin_lock_irqsave(&up->echo_skb_lock, flags);
1140	can_put_echo_skb(skb, up->netdev, echo_index);
1141	spin_unlock_irqrestore(&up->echo_skb_lock, flags);
1142
1143	/* transmit it */
1144	usb_anchor_urb(urb, &up->tx_urbs);
1145	ret = usb_submit_urb(urb, GFP_ATOMIC);
1146
1147	/* cleanup urb */
1148	if (ret) {
1149		/* on error, clean up */
1150		usb_unanchor_urb(urb);
1151		ucan_clean_up_tx_urb(up, urb);
1152		if (!ucan_release_context(up, context))
1153			netdev_err(up->netdev,
1154				   "xmit err: failed to release context\n");
1155
1156		/* remove the skb from the echo stack - this also
1157		 * frees the skb
1158		 */
1159		spin_lock_irqsave(&up->echo_skb_lock, flags);
1160		can_free_echo_skb(up->netdev, echo_index);
1161		spin_unlock_irqrestore(&up->echo_skb_lock, flags);
1162
1163		if (ret == -ENODEV) {
1164			netif_device_detach(up->netdev);
1165		} else {
1166			netdev_warn(up->netdev,
1167				    "xmit err: failed to submit urb %d\n",
1168				    ret);
1169			up->netdev->stats.tx_dropped++;
1170		}
1171		return NETDEV_TX_OK;
1172	}
1173
1174	netif_trans_update(netdev);
1175
1176	/* release ref, as we do not need the urb anymore */
1177	usb_free_urb(urb);
1178
1179	return NETDEV_TX_OK;
1180
1181drop:
1182	if (!ucan_release_context(up, context))
1183		netdev_err(up->netdev,
1184			   "xmit drop: failed to release context\n");
1185	dev_kfree_skb(skb);
1186	up->netdev->stats.tx_dropped++;
1187
1188	return NETDEV_TX_OK;
1189}
1190
1191/* Device goes down
1192 *
1193 * Clean up used resources
1194 */
1195static int ucan_close(struct net_device *netdev)
1196{
1197	int ret;
1198	struct ucan_priv *up = netdev_priv(netdev);
1199
1200	up->can.state = CAN_STATE_STOPPED;
1201
1202	/* stop sending data */
1203	usb_kill_anchored_urbs(&up->tx_urbs);
1204
1205	/* stop receiving data */
1206	usb_kill_anchored_urbs(&up->rx_urbs);
1207
1208	/* stop and reset can device */
1209	ret = ucan_ctrl_command_out(up, UCAN_COMMAND_STOP, 0, 0);
1210	if (ret < 0)
1211		netdev_err(up->netdev,
1212			   "could not stop device, code: %d\n",
1213			   ret);
1214
1215	ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1216	if (ret < 0)
1217		netdev_err(up->netdev,
1218			   "could not reset device, code: %d\n",
1219			   ret);
1220
1221	netif_stop_queue(netdev);
1222
1223	ucan_release_context_array(up);
1224
1225	close_candev(up->netdev);
1226	return 0;
1227}
1228
1229/* CAN driver callbacks */
1230static const struct net_device_ops ucan_netdev_ops = {
1231	.ndo_open = ucan_open,
1232	.ndo_stop = ucan_close,
1233	.ndo_start_xmit = ucan_start_xmit,
1234	.ndo_change_mtu = can_change_mtu,
1235};
1236
1237/* Request to set bittiming
1238 *
1239 * This function generates an USB set bittiming message and transmits
1240 * it to the device
1241 */
1242static int ucan_set_bittiming(struct net_device *netdev)
1243{
1244	int ret;
1245	struct ucan_priv *up = netdev_priv(netdev);
1246	struct ucan_ctl_cmd_set_bittiming *cmd_set_bittiming;
1247
1248	cmd_set_bittiming = &up->ctl_msg_buffer->cmd_set_bittiming;
1249	cmd_set_bittiming->tq = cpu_to_le32(up->can.bittiming.tq);
1250	cmd_set_bittiming->brp = cpu_to_le16(up->can.bittiming.brp);
1251	cmd_set_bittiming->sample_point =
1252	    cpu_to_le16(up->can.bittiming.sample_point);
1253	cmd_set_bittiming->prop_seg = up->can.bittiming.prop_seg;
1254	cmd_set_bittiming->phase_seg1 = up->can.bittiming.phase_seg1;
1255	cmd_set_bittiming->phase_seg2 = up->can.bittiming.phase_seg2;
1256	cmd_set_bittiming->sjw = up->can.bittiming.sjw;
1257
1258	ret = ucan_ctrl_command_out(up, UCAN_COMMAND_SET_BITTIMING, 0,
1259				    sizeof(*cmd_set_bittiming));
1260	return (ret < 0) ? ret : 0;
1261}
1262
1263/* Restart the device to get it out of BUS-OFF state.
1264 * Called when the user runs "ip link set can1 type can restart".
1265 */
1266static int ucan_set_mode(struct net_device *netdev, enum can_mode mode)
1267{
1268	int ret;
1269	unsigned long flags;
1270	struct ucan_priv *up = netdev_priv(netdev);
1271
1272	switch (mode) {
1273	case CAN_MODE_START:
1274		netdev_dbg(up->netdev, "restarting device\n");
1275
1276		ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESTART, 0, 0);
1277		up->can.state = CAN_STATE_ERROR_ACTIVE;
1278
1279		/* check if queue can be restarted,
1280		 * up->available_tx_urbs must be protected by the
1281		 * lock
1282		 */
1283		spin_lock_irqsave(&up->context_lock, flags);
1284
1285		if (up->available_tx_urbs > 0)
1286			netif_wake_queue(up->netdev);
1287
1288		spin_unlock_irqrestore(&up->context_lock, flags);
1289
1290		return ret;
1291	default:
1292		return -EOPNOTSUPP;
1293	}
1294}
1295
1296/* Probe the device, reset it and gather general device information */
1297static int ucan_probe(struct usb_interface *intf,
1298		      const struct usb_device_id *id)
1299{
1300	int ret;
1301	int i;
1302	u32 protocol_version;
1303	struct usb_device *udev;
1304	struct net_device *netdev;
1305	struct usb_host_interface *iface_desc;
1306	struct ucan_priv *up;
1307	struct usb_endpoint_descriptor *ep;
1308	u16 in_ep_size;
1309	u16 out_ep_size;
1310	u8 in_ep_addr;
1311	u8 out_ep_addr;
1312	union ucan_ctl_payload *ctl_msg_buffer;
1313	char firmware_str[sizeof(union ucan_ctl_payload) + 1];
1314
1315	udev = interface_to_usbdev(intf);
1316
1317	/* Stage 1 - Interface Parsing
1318	 * ---------------------------
1319	 *
1320	 * Identifie the device USB interface descriptor and its
1321	 * endpoints. Probing is aborted on errors.
1322	 */
1323
1324	/* check if the interface is sane */
1325	iface_desc = intf->cur_altsetting;
1326	if (!iface_desc)
1327		return -ENODEV;
1328
1329	dev_info(&udev->dev,
1330		 "%s: probing device on interface #%d\n",
1331		 UCAN_DRIVER_NAME,
1332		 iface_desc->desc.bInterfaceNumber);
1333
1334	/* interface sanity check */
1335	if (iface_desc->desc.bNumEndpoints != 2) {
1336		dev_err(&udev->dev,
1337			"%s: invalid EP count (%d)",
1338			UCAN_DRIVER_NAME, iface_desc->desc.bNumEndpoints);
1339		goto err_firmware_needs_update;
1340	}
1341
1342	/* check interface endpoints */
1343	in_ep_addr = 0;
1344	out_ep_addr = 0;
1345	in_ep_size = 0;
1346	out_ep_size = 0;
1347	for (i = 0; i < iface_desc->desc.bNumEndpoints; i++) {
1348		ep = &iface_desc->endpoint[i].desc;
1349
1350		if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != 0) &&
1351		    ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
1352		     USB_ENDPOINT_XFER_BULK)) {
1353			/* In Endpoint */
1354			in_ep_addr = ep->bEndpointAddress;
1355			in_ep_addr &= USB_ENDPOINT_NUMBER_MASK;
1356			in_ep_size = le16_to_cpu(ep->wMaxPacketSize);
1357		} else if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ==
1358			    0) &&
1359			   ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
1360			    USB_ENDPOINT_XFER_BULK)) {
1361			/* Out Endpoint */
1362			out_ep_addr = ep->bEndpointAddress;
1363			out_ep_addr &= USB_ENDPOINT_NUMBER_MASK;
1364			out_ep_size = le16_to_cpu(ep->wMaxPacketSize);
1365		}
1366	}
1367
1368	/* check if interface is sane */
1369	if (!in_ep_addr || !out_ep_addr) {
1370		dev_err(&udev->dev, "%s: invalid endpoint configuration\n",
1371			UCAN_DRIVER_NAME);
1372		goto err_firmware_needs_update;
1373	}
1374	if (in_ep_size < sizeof(struct ucan_message_in)) {
1375		dev_err(&udev->dev, "%s: invalid in_ep MaxPacketSize\n",
1376			UCAN_DRIVER_NAME);
1377		goto err_firmware_needs_update;
1378	}
1379	if (out_ep_size < sizeof(struct ucan_message_out)) {
1380		dev_err(&udev->dev, "%s: invalid out_ep MaxPacketSize\n",
1381			UCAN_DRIVER_NAME);
1382		goto err_firmware_needs_update;
1383	}
1384
1385	/* Stage 2 - Device Identification
1386	 * -------------------------------
1387	 *
1388	 * The device interface seems to be a ucan device. Do further
1389	 * compatibility checks. On error probing is aborted, on
1390	 * success this stage leaves the ctl_msg_buffer with the
1391	 * reported contents of a GET_INFO command (supported
1392	 * bittimings, tx_fifo depth). This information is used in
1393	 * Stage 3 for the final driver initialisation.
1394	 */
1395
1396	/* Prepare Memory for control transferes */
1397	ctl_msg_buffer = devm_kzalloc(&udev->dev,
1398				      sizeof(union ucan_ctl_payload),
1399				      GFP_KERNEL);
1400	if (!ctl_msg_buffer) {
1401		dev_err(&udev->dev,
1402			"%s: failed to allocate control pipe memory\n",
1403			UCAN_DRIVER_NAME);
1404		return -ENOMEM;
1405	}
1406
1407	/* get protocol version
1408	 *
1409	 * note: ucan_ctrl_command_* wrappers cannot be used yet
1410	 * because `up` is initialised in Stage 3
1411	 */
1412	ret = usb_control_msg(udev,
1413			      usb_rcvctrlpipe(udev, 0),
1414			      UCAN_COMMAND_GET,
1415			      USB_DIR_IN | USB_TYPE_VENDOR |
1416					USB_RECIP_INTERFACE,
1417			      UCAN_COMMAND_GET_PROTOCOL_VERSION,
1418			      iface_desc->desc.bInterfaceNumber,
1419			      ctl_msg_buffer,
1420			      sizeof(union ucan_ctl_payload),
1421			      UCAN_USB_CTL_PIPE_TIMEOUT);
1422
1423	/* older firmware version do not support this command - those
1424	 * are not supported by this drive
1425	 */
1426	if (ret != 4) {
1427		dev_err(&udev->dev,
1428			"%s: could not read protocol version, ret=%d\n",
1429			UCAN_DRIVER_NAME, ret);
1430		if (ret >= 0)
1431			ret = -EINVAL;
1432		goto err_firmware_needs_update;
1433	}
1434
1435	/* this driver currently supports protocol version 3 only */
1436	protocol_version =
1437		le32_to_cpu(ctl_msg_buffer->cmd_get_protocol_version.version);
1438	if (protocol_version < UCAN_PROTOCOL_VERSION_MIN ||
1439	    protocol_version > UCAN_PROTOCOL_VERSION_MAX) {
1440		dev_err(&udev->dev,
1441			"%s: device protocol version %d is not supported\n",
1442			UCAN_DRIVER_NAME, protocol_version);
1443		goto err_firmware_needs_update;
1444	}
1445
1446	/* request the device information and store it in ctl_msg_buffer
1447	 *
1448	 * note: ucan_ctrl_command_* wrappers cannot be used yet
1449	 * because `up` is initialised in Stage 3
1450	 */
1451	ret = usb_control_msg(udev,
1452			      usb_rcvctrlpipe(udev, 0),
1453			      UCAN_COMMAND_GET,
1454			      USB_DIR_IN | USB_TYPE_VENDOR |
1455					USB_RECIP_INTERFACE,
1456			      UCAN_COMMAND_GET_INFO,
1457			      iface_desc->desc.bInterfaceNumber,
1458			      ctl_msg_buffer,
1459			      sizeof(ctl_msg_buffer->cmd_get_device_info),
1460			      UCAN_USB_CTL_PIPE_TIMEOUT);
1461
1462	if (ret < 0) {
1463		dev_err(&udev->dev, "%s: failed to retrieve device info\n",
1464			UCAN_DRIVER_NAME);
1465		goto err_firmware_needs_update;
1466	}
1467	if (ret < sizeof(ctl_msg_buffer->cmd_get_device_info)) {
1468		dev_err(&udev->dev, "%s: device reported invalid device info\n",
1469			UCAN_DRIVER_NAME);
1470		goto err_firmware_needs_update;
1471	}
1472	if (ctl_msg_buffer->cmd_get_device_info.tx_fifo == 0) {
1473		dev_err(&udev->dev,
1474			"%s: device reported invalid tx-fifo size\n",
1475			UCAN_DRIVER_NAME);
1476		goto err_firmware_needs_update;
1477	}
1478
1479	/* Stage 3 - Driver Initialisation
1480	 * -------------------------------
1481	 *
1482	 * Register device to Linux, prepare private structures and
1483	 * reset the device.
1484	 */
1485
1486	/* allocate driver resources */
1487	netdev = alloc_candev(sizeof(struct ucan_priv),
1488			      ctl_msg_buffer->cmd_get_device_info.tx_fifo);
1489	if (!netdev) {
1490		dev_err(&udev->dev,
1491			"%s: cannot allocate candev\n", UCAN_DRIVER_NAME);
1492		return -ENOMEM;
1493	}
1494
1495	up = netdev_priv(netdev);
1496
1497	/* initialize data */
1498	up->udev = udev;
1499	up->intf = intf;
1500	up->netdev = netdev;
1501	up->intf_index = iface_desc->desc.bInterfaceNumber;
1502	up->in_ep_addr = in_ep_addr;
1503	up->out_ep_addr = out_ep_addr;
1504	up->in_ep_size = in_ep_size;
1505	up->ctl_msg_buffer = ctl_msg_buffer;
1506	up->context_array = NULL;
1507	up->available_tx_urbs = 0;
1508
1509	up->can.state = CAN_STATE_STOPPED;
1510	up->can.bittiming_const = &up->device_info.bittiming_const;
1511	up->can.do_set_bittiming = ucan_set_bittiming;
1512	up->can.do_set_mode = &ucan_set_mode;
1513	spin_lock_init(&up->context_lock);
1514	spin_lock_init(&up->echo_skb_lock);
1515	netdev->netdev_ops = &ucan_netdev_ops;
1516
1517	usb_set_intfdata(intf, up);
1518	SET_NETDEV_DEV(netdev, &intf->dev);
1519
1520	/* parse device information
1521	 * the data retrieved in Stage 2 is still available in
1522	 * up->ctl_msg_buffer
1523	 */
1524	ucan_parse_device_info(up, &ctl_msg_buffer->cmd_get_device_info);
1525
1526	/* just print some device information - if available */
1527	ret = ucan_device_request_in(up, UCAN_DEVICE_GET_FW_STRING, 0,
1528				     sizeof(union ucan_ctl_payload));
1529	if (ret > 0) {
1530		/* copy string while ensuring zero terminiation */
1531		strncpy(firmware_str, up->ctl_msg_buffer->raw,
1532			sizeof(union ucan_ctl_payload));
1533		firmware_str[sizeof(union ucan_ctl_payload)] = '\0';
1534	} else {
1535		strcpy(firmware_str, "unknown");
1536	}
1537
1538	/* device is compatible, reset it */
1539	ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0);
1540	if (ret < 0)
1541		goto err_free_candev;
1542
1543	init_usb_anchor(&up->rx_urbs);
1544	init_usb_anchor(&up->tx_urbs);
1545
1546	up->can.state = CAN_STATE_STOPPED;
1547
1548	/* register the device */
1549	ret = register_candev(netdev);
1550	if (ret)
1551		goto err_free_candev;
1552
1553	/* initialisation complete, log device info */
1554	netdev_info(up->netdev, "registered device\n");
1555	netdev_info(up->netdev, "firmware string: %s\n", firmware_str);
1556
1557	/* success */
1558	return 0;
1559
1560err_free_candev:
1561	free_candev(netdev);
1562	return ret;
1563
1564err_firmware_needs_update:
1565	dev_err(&udev->dev,
1566		"%s: probe failed; try to update the device firmware\n",
1567		UCAN_DRIVER_NAME);
1568	return -ENODEV;
1569}
1570
1571/* disconnect the device */
1572static void ucan_disconnect(struct usb_interface *intf)
1573{
1574	struct ucan_priv *up = usb_get_intfdata(intf);
1575
1576	usb_set_intfdata(intf, NULL);
1577
1578	if (up) {
1579		unregister_netdev(up->netdev);
1580		free_candev(up->netdev);
1581	}
1582}
1583
1584static struct usb_device_id ucan_table[] = {
1585	/* Mule (soldered onto compute modules) */
1586	{USB_DEVICE_INTERFACE_NUMBER(0x2294, 0x425a, 0)},
1587	/* Seal (standalone USB stick) */
1588	{USB_DEVICE_INTERFACE_NUMBER(0x2294, 0x425b, 0)},
1589	{} /* Terminating entry */
1590};
1591
1592MODULE_DEVICE_TABLE(usb, ucan_table);
1593/* driver callbacks */
1594static struct usb_driver ucan_driver = {
1595	.name = UCAN_DRIVER_NAME,
1596	.probe = ucan_probe,
1597	.disconnect = ucan_disconnect,
1598	.id_table = ucan_table,
1599};
1600
1601module_usb_driver(ucan_driver);
1602
1603MODULE_LICENSE("GPL v2");
1604MODULE_AUTHOR("Martin Elshuber <martin.elshuber@theobroma-systems.com>");
1605MODULE_AUTHOR("Jakob Unterwurzacher <jakob.unterwurzacher@theobroma-systems.com>");
1606MODULE_DESCRIPTION("Driver for Theobroma Systems UCAN devices");
1607