1// SPDX-License-Identifier: GPL-2.0-only
2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 *   Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 */
21
22#include <linux/bitfield.h>
23#include <linux/can/core.h>
24#include <linux/can/dev.h>
25#include <linux/can/led.h>
26#include <linux/clk.h>
27#include <linux/completion.h>
28#include <linux/delay.h>
29#include <linux/device.h>
30#include <linux/freezer.h>
31#include <linux/gpio.h>
32#include <linux/gpio/driver.h>
33#include <linux/interrupt.h>
34#include <linux/io.h>
35#include <linux/iopoll.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/netdevice.h>
39#include <linux/platform_device.h>
40#include <linux/property.h>
41#include <linux/regulator/consumer.h>
42#include <linux/slab.h>
43#include <linux/spi/spi.h>
44#include <linux/uaccess.h>
45
46/* SPI interface instruction set */
47#define INSTRUCTION_WRITE	0x02
48#define INSTRUCTION_READ	0x03
49#define INSTRUCTION_BIT_MODIFY	0x05
50#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
51#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
52#define INSTRUCTION_RESET	0xC0
53#define RTS_TXB0		0x01
54#define RTS_TXB1		0x02
55#define RTS_TXB2		0x04
56#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
57
58/* MPC251x registers */
59#define BFPCTRL			0x0c
60#  define BFPCTRL_B0BFM		BIT(0)
61#  define BFPCTRL_B1BFM		BIT(1)
62#  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
63#  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
64#  define BFPCTRL_B0BFE		BIT(2)
65#  define BFPCTRL_B1BFE		BIT(3)
66#  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
67#  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
68#  define BFPCTRL_B0BFS		BIT(4)
69#  define BFPCTRL_B1BFS		BIT(5)
70#  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
71#  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
72#define TXRTSCTRL		0x0d
73#  define TXRTSCTRL_B0RTSM	BIT(0)
74#  define TXRTSCTRL_B1RTSM	BIT(1)
75#  define TXRTSCTRL_B2RTSM	BIT(2)
76#  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
77#  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
78#  define TXRTSCTRL_B0RTS	BIT(3)
79#  define TXRTSCTRL_B1RTS	BIT(4)
80#  define TXRTSCTRL_B2RTS	BIT(5)
81#  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
82#  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
83#define CANSTAT	      0x0e
84#define CANCTRL	      0x0f
85#  define CANCTRL_REQOP_MASK	    0xe0
86#  define CANCTRL_REQOP_CONF	    0x80
87#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
88#  define CANCTRL_REQOP_LOOPBACK    0x40
89#  define CANCTRL_REQOP_SLEEP	    0x20
90#  define CANCTRL_REQOP_NORMAL	    0x00
91#  define CANCTRL_OSM		    0x08
92#  define CANCTRL_ABAT		    0x10
93#define TEC	      0x1c
94#define REC	      0x1d
95#define CNF1	      0x2a
96#  define CNF1_SJW_SHIFT   6
97#define CNF2	      0x29
98#  define CNF2_BTLMODE	   0x80
99#  define CNF2_SAM         0x40
100#  define CNF2_PS1_SHIFT   3
101#define CNF3	      0x28
102#  define CNF3_SOF	   0x08
103#  define CNF3_WAKFIL	   0x04
104#  define CNF3_PHSEG2_MASK 0x07
105#define CANINTE	      0x2b
106#  define CANINTE_MERRE 0x80
107#  define CANINTE_WAKIE 0x40
108#  define CANINTE_ERRIE 0x20
109#  define CANINTE_TX2IE 0x10
110#  define CANINTE_TX1IE 0x08
111#  define CANINTE_TX0IE 0x04
112#  define CANINTE_RX1IE 0x02
113#  define CANINTE_RX0IE 0x01
114#define CANINTF	      0x2c
115#  define CANINTF_MERRF 0x80
116#  define CANINTF_WAKIF 0x40
117#  define CANINTF_ERRIF 0x20
118#  define CANINTF_TX2IF 0x10
119#  define CANINTF_TX1IF 0x08
120#  define CANINTF_TX0IF 0x04
121#  define CANINTF_RX1IF 0x02
122#  define CANINTF_RX0IF 0x01
123#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
124#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
125#  define CANINTF_ERR (CANINTF_ERRIF)
126#define EFLG	      0x2d
127#  define EFLG_EWARN	0x01
128#  define EFLG_RXWAR	0x02
129#  define EFLG_TXWAR	0x04
130#  define EFLG_RXEP	0x08
131#  define EFLG_TXEP	0x10
132#  define EFLG_TXBO	0x20
133#  define EFLG_RX0OVR	0x40
134#  define EFLG_RX1OVR	0x80
135#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
136#  define TXBCTRL_ABTF	0x40
137#  define TXBCTRL_MLOA	0x20
138#  define TXBCTRL_TXERR 0x10
139#  define TXBCTRL_TXREQ 0x08
140#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
141#  define SIDH_SHIFT    3
142#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
143#  define SIDL_SID_MASK    7
144#  define SIDL_SID_SHIFT   5
145#  define SIDL_EXIDE_SHIFT 3
146#  define SIDL_EID_SHIFT   16
147#  define SIDL_EID_MASK    3
148#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
149#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
150#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
151#  define DLC_RTR_SHIFT    6
152#define TXBCTRL_OFF 0
153#define TXBSIDH_OFF 1
154#define TXBSIDL_OFF 2
155#define TXBEID8_OFF 3
156#define TXBEID0_OFF 4
157#define TXBDLC_OFF  5
158#define TXBDAT_OFF  6
159#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
160#  define RXBCTRL_BUKT	0x04
161#  define RXBCTRL_RXM0	0x20
162#  define RXBCTRL_RXM1	0x40
163#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
164#  define RXBSIDH_SHIFT 3
165#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
166#  define RXBSIDL_IDE   0x08
167#  define RXBSIDL_SRR   0x10
168#  define RXBSIDL_EID   3
169#  define RXBSIDL_SHIFT 5
170#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
171#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
172#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
173#  define RXBDLC_LEN_MASK  0x0f
174#  define RXBDLC_RTR       0x40
175#define RXBCTRL_OFF 0
176#define RXBSIDH_OFF 1
177#define RXBSIDL_OFF 2
178#define RXBEID8_OFF 3
179#define RXBEID0_OFF 4
180#define RXBDLC_OFF  5
181#define RXBDAT_OFF  6
182#define RXFSID(n) ((n < 3) ? 0 : 4)
183#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
184#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
185#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
186#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
187#define RXMSIDH(n) ((n) * 4 + 0x20)
188#define RXMSIDL(n) ((n) * 4 + 0x21)
189#define RXMEID8(n) ((n) * 4 + 0x22)
190#define RXMEID0(n) ((n) * 4 + 0x23)
191
192#define GET_BYTE(val, byte)			\
193	(((val) >> ((byte) * 8)) & 0xff)
194#define SET_BYTE(val, byte)			\
195	(((val) & 0xff) << ((byte) * 8))
196
197/* Buffer size required for the largest SPI transfer (i.e., reading a
198 * frame)
199 */
200#define CAN_FRAME_MAX_DATA_LEN	8
201#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
202#define CAN_FRAME_MAX_BITS	128
203
204#define TX_ECHO_SKB_MAX	1
205
206#define MCP251X_OST_DELAY_MS	(5)
207
208#define DEVICE_NAME "mcp251x"
209
210static const struct can_bittiming_const mcp251x_bittiming_const = {
211	.name = DEVICE_NAME,
212	.tseg1_min = 3,
213	.tseg1_max = 16,
214	.tseg2_min = 2,
215	.tseg2_max = 8,
216	.sjw_max = 4,
217	.brp_min = 1,
218	.brp_max = 64,
219	.brp_inc = 1,
220};
221
222enum mcp251x_model {
223	CAN_MCP251X_MCP2510	= 0x2510,
224	CAN_MCP251X_MCP2515	= 0x2515,
225	CAN_MCP251X_MCP25625	= 0x25625,
226};
227
228struct mcp251x_priv {
229	struct can_priv	   can;
230	struct net_device *net;
231	struct spi_device *spi;
232	enum mcp251x_model model;
233
234	struct mutex mcp_lock; /* SPI device lock */
235
236	u8 *spi_tx_buf;
237	u8 *spi_rx_buf;
238
239	struct sk_buff *tx_skb;
240	int tx_len;
241
242	struct workqueue_struct *wq;
243	struct work_struct tx_work;
244	struct work_struct restart_work;
245
246	int force_quit;
247	int after_suspend;
248#define AFTER_SUSPEND_UP 1
249#define AFTER_SUSPEND_DOWN 2
250#define AFTER_SUSPEND_POWER 4
251#define AFTER_SUSPEND_RESTART 8
252	int restart_tx;
253	struct regulator *power;
254	struct regulator *transceiver;
255	struct clk *clk;
256#ifdef CONFIG_GPIOLIB
257	struct gpio_chip gpio;
258	u8 reg_bfpctrl;
259#endif
260};
261
262#define MCP251X_IS(_model) \
263static inline int mcp251x_is_##_model(struct spi_device *spi) \
264{ \
265	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
266	return priv->model == CAN_MCP251X_MCP##_model; \
267}
268
269MCP251X_IS(2510);
270
271static void mcp251x_clean(struct net_device *net)
272{
273	struct mcp251x_priv *priv = netdev_priv(net);
274
275	if (priv->tx_skb || priv->tx_len)
276		net->stats.tx_errors++;
277	dev_kfree_skb(priv->tx_skb);
278	if (priv->tx_len)
279		can_free_echo_skb(priv->net, 0);
280	priv->tx_skb = NULL;
281	priv->tx_len = 0;
282}
283
284/* Note about handling of error return of mcp251x_spi_trans: accessing
285 * registers via SPI is not really different conceptually than using
286 * normal I/O assembler instructions, although it's much more
287 * complicated from a practical POV. So it's not advisable to always
288 * check the return value of this function. Imagine that every
289 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
290 * error();", it would be a great mess (well there are some situation
291 * when exception handling C++ like could be useful after all). So we
292 * just check that transfers are OK at the beginning of our
293 * conversation with the chip and to avoid doing really nasty things
294 * (like injecting bogus packets in the network stack).
295 */
296static int mcp251x_spi_trans(struct spi_device *spi, int len)
297{
298	struct mcp251x_priv *priv = spi_get_drvdata(spi);
299	struct spi_transfer t = {
300		.tx_buf = priv->spi_tx_buf,
301		.rx_buf = priv->spi_rx_buf,
302		.len = len,
303		.cs_change = 0,
304	};
305	struct spi_message m;
306	int ret;
307
308	spi_message_init(&m);
309	spi_message_add_tail(&t, &m);
310
311	ret = spi_sync(spi, &m);
312	if (ret)
313		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
314	return ret;
315}
316
317static int mcp251x_spi_write(struct spi_device *spi, int len)
318{
319	struct mcp251x_priv *priv = spi_get_drvdata(spi);
320	int ret;
321
322	ret = spi_write(spi, priv->spi_tx_buf, len);
323	if (ret)
324		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
325
326	return ret;
327}
328
329static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
330{
331	struct mcp251x_priv *priv = spi_get_drvdata(spi);
332	u8 val = 0;
333
334	priv->spi_tx_buf[0] = INSTRUCTION_READ;
335	priv->spi_tx_buf[1] = reg;
336
337	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
338		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
339	} else {
340		mcp251x_spi_trans(spi, 3);
341		val = priv->spi_rx_buf[2];
342	}
343
344	return val;
345}
346
347static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
348{
349	struct mcp251x_priv *priv = spi_get_drvdata(spi);
350
351	priv->spi_tx_buf[0] = INSTRUCTION_READ;
352	priv->spi_tx_buf[1] = reg;
353
354	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
355		u8 val[2] = { 0 };
356
357		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
358		*v1 = val[0];
359		*v2 = val[1];
360	} else {
361		mcp251x_spi_trans(spi, 4);
362
363		*v1 = priv->spi_rx_buf[2];
364		*v2 = priv->spi_rx_buf[3];
365	}
366}
367
368static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
369{
370	struct mcp251x_priv *priv = spi_get_drvdata(spi);
371
372	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
373	priv->spi_tx_buf[1] = reg;
374	priv->spi_tx_buf[2] = val;
375
376	mcp251x_spi_write(spi, 3);
377}
378
379static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
380{
381	struct mcp251x_priv *priv = spi_get_drvdata(spi);
382
383	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
384	priv->spi_tx_buf[1] = reg;
385	priv->spi_tx_buf[2] = v1;
386	priv->spi_tx_buf[3] = v2;
387
388	mcp251x_spi_write(spi, 4);
389}
390
391static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
392			       u8 mask, u8 val)
393{
394	struct mcp251x_priv *priv = spi_get_drvdata(spi);
395
396	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
397	priv->spi_tx_buf[1] = reg;
398	priv->spi_tx_buf[2] = mask;
399	priv->spi_tx_buf[3] = val;
400
401	mcp251x_spi_write(spi, 4);
402}
403
404static u8 mcp251x_read_stat(struct spi_device *spi)
405{
406	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
407}
408
409#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
410	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
411			   delay_us, timeout_us)
412
413#ifdef CONFIG_GPIOLIB
414enum {
415	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
416	MCP251X_GPIO_TX1RTS,
417	MCP251X_GPIO_TX2RTS,
418	MCP251X_GPIO_RX0BF,			/* outputs */
419	MCP251X_GPIO_RX1BF,
420};
421
422#define MCP251X_GPIO_INPUT_MASK \
423	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
424#define MCP251X_GPIO_OUTPUT_MASK \
425	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
426
427static const char * const mcp251x_gpio_names[] = {
428	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
429	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
430	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
431	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
432	[MCP251X_GPIO_RX1BF] = "RX1BF",
433};
434
435static inline bool mcp251x_gpio_is_input(unsigned int offset)
436{
437	return offset <= MCP251X_GPIO_TX2RTS;
438}
439
440static int mcp251x_gpio_request(struct gpio_chip *chip,
441				unsigned int offset)
442{
443	struct mcp251x_priv *priv = gpiochip_get_data(chip);
444	u8 val;
445
446	/* nothing to be done for inputs */
447	if (mcp251x_gpio_is_input(offset))
448		return 0;
449
450	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
451
452	mutex_lock(&priv->mcp_lock);
453	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
454	mutex_unlock(&priv->mcp_lock);
455
456	priv->reg_bfpctrl |= val;
457
458	return 0;
459}
460
461static void mcp251x_gpio_free(struct gpio_chip *chip,
462			      unsigned int offset)
463{
464	struct mcp251x_priv *priv = gpiochip_get_data(chip);
465	u8 val;
466
467	/* nothing to be done for inputs */
468	if (mcp251x_gpio_is_input(offset))
469		return;
470
471	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
472
473	mutex_lock(&priv->mcp_lock);
474	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
475	mutex_unlock(&priv->mcp_lock);
476
477	priv->reg_bfpctrl &= ~val;
478}
479
480static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
481				      unsigned int offset)
482{
483	if (mcp251x_gpio_is_input(offset))
484		return GPIOF_DIR_IN;
485
486	return GPIOF_DIR_OUT;
487}
488
489static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
490{
491	struct mcp251x_priv *priv = gpiochip_get_data(chip);
492	u8 reg, mask, val;
493
494	if (mcp251x_gpio_is_input(offset)) {
495		reg = TXRTSCTRL;
496		mask = TXRTSCTRL_RTS(offset);
497	} else {
498		reg = BFPCTRL;
499		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
500	}
501
502	mutex_lock(&priv->mcp_lock);
503	val = mcp251x_read_reg(priv->spi, reg);
504	mutex_unlock(&priv->mcp_lock);
505
506	return !!(val & mask);
507}
508
509static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
510				     unsigned long *maskp, unsigned long *bitsp)
511{
512	struct mcp251x_priv *priv = gpiochip_get_data(chip);
513	unsigned long bits = 0;
514	u8 val;
515
516	mutex_lock(&priv->mcp_lock);
517	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
518		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
519		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
520		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
521	}
522	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
523		val = mcp251x_read_reg(priv->spi, BFPCTRL);
524		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
525		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
526	}
527	mutex_unlock(&priv->mcp_lock);
528
529	bitsp[0] = bits;
530	return 0;
531}
532
533static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
534			     int value)
535{
536	struct mcp251x_priv *priv = gpiochip_get_data(chip);
537	u8 mask, val;
538
539	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
540	val = value ? mask : 0;
541
542	mutex_lock(&priv->mcp_lock);
543	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
544	mutex_unlock(&priv->mcp_lock);
545
546	priv->reg_bfpctrl &= ~mask;
547	priv->reg_bfpctrl |= val;
548}
549
550static void
551mcp251x_gpio_set_multiple(struct gpio_chip *chip,
552			  unsigned long *maskp, unsigned long *bitsp)
553{
554	struct mcp251x_priv *priv = gpiochip_get_data(chip);
555	u8 mask, val;
556
557	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
558	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
559
560	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
561	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
562
563	if (!mask)
564		return;
565
566	mutex_lock(&priv->mcp_lock);
567	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
568	mutex_unlock(&priv->mcp_lock);
569
570	priv->reg_bfpctrl &= ~mask;
571	priv->reg_bfpctrl |= val;
572}
573
574static void mcp251x_gpio_restore(struct spi_device *spi)
575{
576	struct mcp251x_priv *priv = spi_get_drvdata(spi);
577
578	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
579}
580
581static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
582{
583	struct gpio_chip *gpio = &priv->gpio;
584
585	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
586		return 0;
587
588	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
589	gpio->label = priv->spi->modalias;
590	gpio->parent = &priv->spi->dev;
591	gpio->owner = THIS_MODULE;
592	gpio->request = mcp251x_gpio_request;
593	gpio->free = mcp251x_gpio_free;
594	gpio->get_direction = mcp251x_gpio_get_direction;
595	gpio->get = mcp251x_gpio_get;
596	gpio->get_multiple = mcp251x_gpio_get_multiple;
597	gpio->set = mcp251x_gpio_set;
598	gpio->set_multiple = mcp251x_gpio_set_multiple;
599	gpio->base = -1;
600	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
601	gpio->names = mcp251x_gpio_names;
602	gpio->can_sleep = true;
603#ifdef CONFIG_OF_GPIO
604	gpio->of_node = priv->spi->dev.of_node;
605#endif
606
607	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
608}
609#else
610static inline void mcp251x_gpio_restore(struct spi_device *spi)
611{
612}
613
614static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
615{
616	return 0;
617}
618#endif
619
620static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
621				int len, int tx_buf_idx)
622{
623	struct mcp251x_priv *priv = spi_get_drvdata(spi);
624
625	if (mcp251x_is_2510(spi)) {
626		int i;
627
628		for (i = 1; i < TXBDAT_OFF + len; i++)
629			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
630					  buf[i]);
631	} else {
632		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
633		mcp251x_spi_write(spi, TXBDAT_OFF + len);
634	}
635}
636
637static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
638			  int tx_buf_idx)
639{
640	struct mcp251x_priv *priv = spi_get_drvdata(spi);
641	u32 sid, eid, exide, rtr;
642	u8 buf[SPI_TRANSFER_BUF_LEN];
643
644	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
645	if (exide)
646		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
647	else
648		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
649	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
650	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
651
652	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
653	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
654	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
655		(exide << SIDL_EXIDE_SHIFT) |
656		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
657	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
658	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
659	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
660	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
661	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
662
663	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
664	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
665	mcp251x_spi_write(priv->spi, 1);
666}
667
668static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
669				int buf_idx)
670{
671	struct mcp251x_priv *priv = spi_get_drvdata(spi);
672
673	if (mcp251x_is_2510(spi)) {
674		int i, len;
675
676		for (i = 1; i < RXBDAT_OFF; i++)
677			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
678
679		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
680		for (; i < (RXBDAT_OFF + len); i++)
681			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
682	} else {
683		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
684		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
685			spi_write_then_read(spi, priv->spi_tx_buf, 1,
686					    priv->spi_rx_buf,
687					    SPI_TRANSFER_BUF_LEN);
688			memcpy(buf + 1, priv->spi_rx_buf,
689			       SPI_TRANSFER_BUF_LEN - 1);
690		} else {
691			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
692			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
693		}
694	}
695}
696
697static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
698{
699	struct mcp251x_priv *priv = spi_get_drvdata(spi);
700	struct sk_buff *skb;
701	struct can_frame *frame;
702	u8 buf[SPI_TRANSFER_BUF_LEN];
703
704	skb = alloc_can_skb(priv->net, &frame);
705	if (!skb) {
706		dev_err(&spi->dev, "cannot allocate RX skb\n");
707		priv->net->stats.rx_dropped++;
708		return;
709	}
710
711	mcp251x_hw_rx_frame(spi, buf, buf_idx);
712	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
713		/* Extended ID format */
714		frame->can_id = CAN_EFF_FLAG;
715		frame->can_id |=
716			/* Extended ID part */
717			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
718			SET_BYTE(buf[RXBEID8_OFF], 1) |
719			SET_BYTE(buf[RXBEID0_OFF], 0) |
720			/* Standard ID part */
721			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
722			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
723		/* Remote transmission request */
724		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
725			frame->can_id |= CAN_RTR_FLAG;
726	} else {
727		/* Standard ID format */
728		frame->can_id =
729			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
730			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
731		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
732			frame->can_id |= CAN_RTR_FLAG;
733	}
734	/* Data length */
735	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
736	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
737
738	priv->net->stats.rx_packets++;
739	priv->net->stats.rx_bytes += frame->can_dlc;
740
741	can_led_event(priv->net, CAN_LED_EVENT_RX);
742
743	netif_rx_ni(skb);
744}
745
746static void mcp251x_hw_sleep(struct spi_device *spi)
747{
748	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
749}
750
751/* May only be called when device is sleeping! */
752static int mcp251x_hw_wake(struct spi_device *spi)
753{
754	u8 value;
755	int ret;
756
757	/* Force wakeup interrupt to wake device, but don't execute IST */
758	disable_irq_nosync(spi->irq);
759	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
760
761	/* Wait for oscillator startup timer after wake up */
762	mdelay(MCP251X_OST_DELAY_MS);
763
764	/* Put device into config mode */
765	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
766
767	/* Wait for the device to enter config mode */
768	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
769					     MCP251X_OST_DELAY_MS * 1000,
770					     USEC_PER_SEC);
771	if (ret) {
772		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
773		return ret;
774	}
775
776	/* Disable and clear pending interrupts */
777	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
778	enable_irq(spi->irq);
779
780	return 0;
781}
782
783static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
784					   struct net_device *net)
785{
786	struct mcp251x_priv *priv = netdev_priv(net);
787	struct spi_device *spi = priv->spi;
788
789	if (priv->tx_skb || priv->tx_len) {
790		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
791		return NETDEV_TX_BUSY;
792	}
793
794	if (can_dropped_invalid_skb(net, skb))
795		return NETDEV_TX_OK;
796
797	netif_stop_queue(net);
798	priv->tx_skb = skb;
799	queue_work(priv->wq, &priv->tx_work);
800
801	return NETDEV_TX_OK;
802}
803
804static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
805{
806	struct mcp251x_priv *priv = netdev_priv(net);
807
808	switch (mode) {
809	case CAN_MODE_START:
810		mcp251x_clean(net);
811		/* We have to delay work since SPI I/O may sleep */
812		priv->can.state = CAN_STATE_ERROR_ACTIVE;
813		priv->restart_tx = 1;
814		if (priv->can.restart_ms == 0)
815			priv->after_suspend = AFTER_SUSPEND_RESTART;
816		queue_work(priv->wq, &priv->restart_work);
817		break;
818	default:
819		return -EOPNOTSUPP;
820	}
821
822	return 0;
823}
824
825static int mcp251x_set_normal_mode(struct spi_device *spi)
826{
827	struct mcp251x_priv *priv = spi_get_drvdata(spi);
828	u8 value;
829	int ret;
830
831	/* Enable interrupts */
832	mcp251x_write_reg(spi, CANINTE,
833			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
834			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
835
836	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
837		/* Put device into loopback mode */
838		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
839	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
840		/* Put device into listen-only mode */
841		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
842	} else {
843		/* Put device into normal mode */
844		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
845
846		/* Wait for the device to enter normal mode */
847		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
848						     MCP251X_OST_DELAY_MS * 1000,
849						     USEC_PER_SEC);
850		if (ret) {
851			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
852			return ret;
853		}
854	}
855	priv->can.state = CAN_STATE_ERROR_ACTIVE;
856	return 0;
857}
858
859static int mcp251x_do_set_bittiming(struct net_device *net)
860{
861	struct mcp251x_priv *priv = netdev_priv(net);
862	struct can_bittiming *bt = &priv->can.bittiming;
863	struct spi_device *spi = priv->spi;
864
865	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
866			  (bt->brp - 1));
867	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
868			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
869			   CNF2_SAM : 0) |
870			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
871			  (bt->prop_seg - 1));
872	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
873			   (bt->phase_seg2 - 1));
874	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
875		mcp251x_read_reg(spi, CNF1),
876		mcp251x_read_reg(spi, CNF2),
877		mcp251x_read_reg(spi, CNF3));
878
879	return 0;
880}
881
882static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
883{
884	mcp251x_do_set_bittiming(net);
885
886	mcp251x_write_reg(spi, RXBCTRL(0),
887			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
888	mcp251x_write_reg(spi, RXBCTRL(1),
889			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
890	return 0;
891}
892
893static int mcp251x_hw_reset(struct spi_device *spi)
894{
895	struct mcp251x_priv *priv = spi_get_drvdata(spi);
896	u8 value;
897	int ret;
898
899	/* Wait for oscillator startup timer after power up */
900	mdelay(MCP251X_OST_DELAY_MS);
901
902	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
903	ret = mcp251x_spi_write(spi, 1);
904	if (ret)
905		return ret;
906
907	/* Wait for oscillator startup timer after reset */
908	mdelay(MCP251X_OST_DELAY_MS);
909
910	/* Wait for reset to finish */
911	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
912					     MCP251X_OST_DELAY_MS * 1000,
913					     USEC_PER_SEC);
914	if (ret)
915		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
916	return ret;
917}
918
919static int mcp251x_hw_probe(struct spi_device *spi)
920{
921	u8 ctrl;
922	int ret;
923
924	ret = mcp251x_hw_reset(spi);
925	if (ret)
926		return ret;
927
928	ctrl = mcp251x_read_reg(spi, CANCTRL);
929
930	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
931
932	/* Check for power up default value */
933	if ((ctrl & 0x17) != 0x07)
934		return -ENODEV;
935
936	return 0;
937}
938
939static int mcp251x_power_enable(struct regulator *reg, int enable)
940{
941	if (IS_ERR_OR_NULL(reg))
942		return 0;
943
944	if (enable)
945		return regulator_enable(reg);
946	else
947		return regulator_disable(reg);
948}
949
950static int mcp251x_stop(struct net_device *net)
951{
952	struct mcp251x_priv *priv = netdev_priv(net);
953	struct spi_device *spi = priv->spi;
954
955	close_candev(net);
956
957	priv->force_quit = 1;
958	free_irq(spi->irq, priv);
959
960	mutex_lock(&priv->mcp_lock);
961
962	/* Disable and clear pending interrupts */
963	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
964
965	mcp251x_write_reg(spi, TXBCTRL(0), 0);
966	mcp251x_clean(net);
967
968	mcp251x_hw_sleep(spi);
969
970	mcp251x_power_enable(priv->transceiver, 0);
971
972	priv->can.state = CAN_STATE_STOPPED;
973
974	mutex_unlock(&priv->mcp_lock);
975
976	can_led_event(net, CAN_LED_EVENT_STOP);
977
978	return 0;
979}
980
981static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
982{
983	struct sk_buff *skb;
984	struct can_frame *frame;
985
986	skb = alloc_can_err_skb(net, &frame);
987	if (skb) {
988		frame->can_id |= can_id;
989		frame->data[1] = data1;
990		netif_rx_ni(skb);
991	} else {
992		netdev_err(net, "cannot allocate error skb\n");
993	}
994}
995
996static void mcp251x_tx_work_handler(struct work_struct *ws)
997{
998	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
999						 tx_work);
1000	struct spi_device *spi = priv->spi;
1001	struct net_device *net = priv->net;
1002	struct can_frame *frame;
1003
1004	mutex_lock(&priv->mcp_lock);
1005	if (priv->tx_skb) {
1006		if (priv->can.state == CAN_STATE_BUS_OFF) {
1007			mcp251x_clean(net);
1008		} else {
1009			frame = (struct can_frame *)priv->tx_skb->data;
1010
1011			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
1012				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
1013			mcp251x_hw_tx(spi, frame, 0);
1014			priv->tx_len = 1 + frame->can_dlc;
1015			can_put_echo_skb(priv->tx_skb, net, 0);
1016			priv->tx_skb = NULL;
1017		}
1018	}
1019	mutex_unlock(&priv->mcp_lock);
1020}
1021
1022static void mcp251x_restart_work_handler(struct work_struct *ws)
1023{
1024	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1025						 restart_work);
1026	struct spi_device *spi = priv->spi;
1027	struct net_device *net = priv->net;
1028
1029	mutex_lock(&priv->mcp_lock);
1030	if (priv->after_suspend) {
1031		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1032			mcp251x_hw_reset(spi);
1033			mcp251x_setup(net, spi);
1034			mcp251x_gpio_restore(spi);
1035		} else {
1036			mcp251x_hw_wake(spi);
1037		}
1038		priv->force_quit = 0;
1039		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1040			mcp251x_set_normal_mode(spi);
1041		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1042			netif_device_attach(net);
1043			mcp251x_clean(net);
1044			mcp251x_set_normal_mode(spi);
1045			netif_wake_queue(net);
1046		} else {
1047			mcp251x_hw_sleep(spi);
1048		}
1049		priv->after_suspend = 0;
1050	}
1051
1052	if (priv->restart_tx) {
1053		priv->restart_tx = 0;
1054		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1055		mcp251x_clean(net);
1056		netif_wake_queue(net);
1057		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1058	}
1059	mutex_unlock(&priv->mcp_lock);
1060}
1061
1062static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1063{
1064	struct mcp251x_priv *priv = dev_id;
1065	struct spi_device *spi = priv->spi;
1066	struct net_device *net = priv->net;
1067
1068	mutex_lock(&priv->mcp_lock);
1069	while (!priv->force_quit) {
1070		enum can_state new_state;
1071		u8 intf, eflag;
1072		u8 clear_intf = 0;
1073		int can_id = 0, data1 = 0;
1074
1075		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1076
1077		/* receive buffer 0 */
1078		if (intf & CANINTF_RX0IF) {
1079			mcp251x_hw_rx(spi, 0);
1080			/* Free one buffer ASAP
1081			 * (The MCP2515/25625 does this automatically.)
1082			 */
1083			if (mcp251x_is_2510(spi))
1084				mcp251x_write_bits(spi, CANINTF,
1085						   CANINTF_RX0IF, 0x00);
1086
1087			/* check if buffer 1 is already known to be full, no need to re-read */
1088			if (!(intf & CANINTF_RX1IF)) {
1089				u8 intf1, eflag1;
1090
1091				/* intf needs to be read again to avoid a race condition */
1092				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1093
1094				/* combine flags from both operations for error handling */
1095				intf |= intf1;
1096				eflag |= eflag1;
1097			}
1098		}
1099
1100		/* receive buffer 1 */
1101		if (intf & CANINTF_RX1IF) {
1102			mcp251x_hw_rx(spi, 1);
1103			/* The MCP2515/25625 does this automatically. */
1104			if (mcp251x_is_2510(spi))
1105				clear_intf |= CANINTF_RX1IF;
1106		}
1107
1108		/* mask out flags we don't care about */
1109		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1110
1111		/* any error or tx interrupt we need to clear? */
1112		if (intf & (CANINTF_ERR | CANINTF_TX))
1113			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1114		if (clear_intf)
1115			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1116
1117		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1118			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1119
1120		/* Update can state */
1121		if (eflag & EFLG_TXBO) {
1122			new_state = CAN_STATE_BUS_OFF;
1123			can_id |= CAN_ERR_BUSOFF;
1124		} else if (eflag & EFLG_TXEP) {
1125			new_state = CAN_STATE_ERROR_PASSIVE;
1126			can_id |= CAN_ERR_CRTL;
1127			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1128		} else if (eflag & EFLG_RXEP) {
1129			new_state = CAN_STATE_ERROR_PASSIVE;
1130			can_id |= CAN_ERR_CRTL;
1131			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1132		} else if (eflag & EFLG_TXWAR) {
1133			new_state = CAN_STATE_ERROR_WARNING;
1134			can_id |= CAN_ERR_CRTL;
1135			data1 |= CAN_ERR_CRTL_TX_WARNING;
1136		} else if (eflag & EFLG_RXWAR) {
1137			new_state = CAN_STATE_ERROR_WARNING;
1138			can_id |= CAN_ERR_CRTL;
1139			data1 |= CAN_ERR_CRTL_RX_WARNING;
1140		} else {
1141			new_state = CAN_STATE_ERROR_ACTIVE;
1142		}
1143
1144		/* Update can state statistics */
1145		switch (priv->can.state) {
1146		case CAN_STATE_ERROR_ACTIVE:
1147			if (new_state >= CAN_STATE_ERROR_WARNING &&
1148			    new_state <= CAN_STATE_BUS_OFF)
1149				priv->can.can_stats.error_warning++;
1150			fallthrough;
1151		case CAN_STATE_ERROR_WARNING:
1152			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1153			    new_state <= CAN_STATE_BUS_OFF)
1154				priv->can.can_stats.error_passive++;
1155			break;
1156		default:
1157			break;
1158		}
1159		priv->can.state = new_state;
1160
1161		if (intf & CANINTF_ERRIF) {
1162			/* Handle overflow counters */
1163			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1164				if (eflag & EFLG_RX0OVR) {
1165					net->stats.rx_over_errors++;
1166					net->stats.rx_errors++;
1167				}
1168				if (eflag & EFLG_RX1OVR) {
1169					net->stats.rx_over_errors++;
1170					net->stats.rx_errors++;
1171				}
1172				can_id |= CAN_ERR_CRTL;
1173				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1174			}
1175			mcp251x_error_skb(net, can_id, data1);
1176		}
1177
1178		if (priv->can.state == CAN_STATE_BUS_OFF) {
1179			if (priv->can.restart_ms == 0) {
1180				priv->force_quit = 1;
1181				priv->can.can_stats.bus_off++;
1182				can_bus_off(net);
1183				mcp251x_hw_sleep(spi);
1184				break;
1185			}
1186		}
1187
1188		if (intf == 0)
1189			break;
1190
1191		if (intf & CANINTF_TX) {
1192			net->stats.tx_packets++;
1193			net->stats.tx_bytes += priv->tx_len - 1;
1194			can_led_event(net, CAN_LED_EVENT_TX);
1195			if (priv->tx_len) {
1196				can_get_echo_skb(net, 0);
1197				priv->tx_len = 0;
1198			}
1199			netif_wake_queue(net);
1200		}
1201	}
1202	mutex_unlock(&priv->mcp_lock);
1203	return IRQ_HANDLED;
1204}
1205
1206static int mcp251x_open(struct net_device *net)
1207{
1208	struct mcp251x_priv *priv = netdev_priv(net);
1209	struct spi_device *spi = priv->spi;
1210	unsigned long flags = 0;
1211	int ret;
1212
1213	ret = open_candev(net);
1214	if (ret) {
1215		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1216		return ret;
1217	}
1218
1219	mutex_lock(&priv->mcp_lock);
1220	mcp251x_power_enable(priv->transceiver, 1);
1221
1222	priv->force_quit = 0;
1223	priv->tx_skb = NULL;
1224	priv->tx_len = 0;
1225
1226	if (!dev_fwnode(&spi->dev))
1227		flags = IRQF_TRIGGER_FALLING;
1228
1229	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1230				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1231				   priv);
1232	if (ret) {
1233		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1234		goto out_close;
1235	}
1236
1237	ret = mcp251x_hw_wake(spi);
1238	if (ret)
1239		goto out_free_irq;
1240	ret = mcp251x_setup(net, spi);
1241	if (ret)
1242		goto out_free_irq;
1243	ret = mcp251x_set_normal_mode(spi);
1244	if (ret)
1245		goto out_free_irq;
1246
1247	can_led_event(net, CAN_LED_EVENT_OPEN);
1248
1249	netif_wake_queue(net);
1250	mutex_unlock(&priv->mcp_lock);
1251
1252	return 0;
1253
1254out_free_irq:
1255	free_irq(spi->irq, priv);
1256	mcp251x_hw_sleep(spi);
1257out_close:
1258	mcp251x_power_enable(priv->transceiver, 0);
1259	close_candev(net);
1260	mutex_unlock(&priv->mcp_lock);
1261	return ret;
1262}
1263
1264static const struct net_device_ops mcp251x_netdev_ops = {
1265	.ndo_open = mcp251x_open,
1266	.ndo_stop = mcp251x_stop,
1267	.ndo_start_xmit = mcp251x_hard_start_xmit,
1268	.ndo_change_mtu = can_change_mtu,
1269};
1270
1271static const struct of_device_id mcp251x_of_match[] = {
1272	{
1273		.compatible	= "microchip,mcp2510",
1274		.data		= (void *)CAN_MCP251X_MCP2510,
1275	},
1276	{
1277		.compatible	= "microchip,mcp2515",
1278		.data		= (void *)CAN_MCP251X_MCP2515,
1279	},
1280	{
1281		.compatible	= "microchip,mcp25625",
1282		.data		= (void *)CAN_MCP251X_MCP25625,
1283	},
1284	{ }
1285};
1286MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1287
1288static const struct spi_device_id mcp251x_id_table[] = {
1289	{
1290		.name		= "mcp2510",
1291		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1292	},
1293	{
1294		.name		= "mcp2515",
1295		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1296	},
1297	{
1298		.name		= "mcp25625",
1299		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1300	},
1301	{ }
1302};
1303MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1304
1305static int mcp251x_can_probe(struct spi_device *spi)
1306{
1307	const void *match = device_get_match_data(&spi->dev);
1308	struct net_device *net;
1309	struct mcp251x_priv *priv;
1310	struct clk *clk;
1311	u32 freq;
1312	int ret;
1313
1314	clk = devm_clk_get_optional(&spi->dev, NULL);
1315	if (IS_ERR(clk))
1316		return PTR_ERR(clk);
1317
1318	freq = clk_get_rate(clk);
1319	if (freq == 0)
1320		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1321
1322	/* Sanity check */
1323	if (freq < 1000000 || freq > 25000000)
1324		return -ERANGE;
1325
1326	/* Allocate can/net device */
1327	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1328	if (!net)
1329		return -ENOMEM;
1330
1331	ret = clk_prepare_enable(clk);
1332	if (ret)
1333		goto out_free;
1334
1335	net->netdev_ops = &mcp251x_netdev_ops;
1336	net->flags |= IFF_ECHO;
1337
1338	priv = netdev_priv(net);
1339	priv->can.bittiming_const = &mcp251x_bittiming_const;
1340	priv->can.do_set_mode = mcp251x_do_set_mode;
1341	priv->can.clock.freq = freq / 2;
1342	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1343		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1344	if (match)
1345		priv->model = (enum mcp251x_model)match;
1346	else
1347		priv->model = spi_get_device_id(spi)->driver_data;
1348	priv->net = net;
1349	priv->clk = clk;
1350
1351	spi_set_drvdata(spi, priv);
1352
1353	/* Configure the SPI bus */
1354	spi->bits_per_word = 8;
1355	if (mcp251x_is_2510(spi))
1356		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1357	else
1358		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1359	ret = spi_setup(spi);
1360	if (ret)
1361		goto out_clk;
1362
1363	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1364	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1365	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1366	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1367		ret = -EPROBE_DEFER;
1368		goto out_clk;
1369	}
1370
1371	ret = mcp251x_power_enable(priv->power, 1);
1372	if (ret)
1373		goto out_clk;
1374
1375	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1376				   0);
1377	if (!priv->wq) {
1378		ret = -ENOMEM;
1379		goto out_clk;
1380	}
1381	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1382	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1383
1384	priv->spi = spi;
1385	mutex_init(&priv->mcp_lock);
1386
1387	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1388					GFP_KERNEL);
1389	if (!priv->spi_tx_buf) {
1390		ret = -ENOMEM;
1391		goto error_probe;
1392	}
1393
1394	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1395					GFP_KERNEL);
1396	if (!priv->spi_rx_buf) {
1397		ret = -ENOMEM;
1398		goto error_probe;
1399	}
1400
1401	SET_NETDEV_DEV(net, &spi->dev);
1402
1403	/* Here is OK to not lock the MCP, no one knows about it yet */
1404	ret = mcp251x_hw_probe(spi);
1405	if (ret) {
1406		if (ret == -ENODEV)
1407			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1408				priv->model);
1409		goto error_probe;
1410	}
1411
1412	mcp251x_hw_sleep(spi);
1413
1414	ret = register_candev(net);
1415	if (ret)
1416		goto error_probe;
1417
1418	devm_can_led_init(net);
1419
1420	ret = mcp251x_gpio_setup(priv);
1421	if (ret)
1422		goto out_unregister_candev;
1423
1424	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1425	return 0;
1426
1427out_unregister_candev:
1428	unregister_candev(net);
1429
1430error_probe:
1431	destroy_workqueue(priv->wq);
1432	priv->wq = NULL;
1433	mcp251x_power_enable(priv->power, 0);
1434
1435out_clk:
1436	clk_disable_unprepare(clk);
1437
1438out_free:
1439	free_candev(net);
1440
1441	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1442	return ret;
1443}
1444
1445static int mcp251x_can_remove(struct spi_device *spi)
1446{
1447	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1448	struct net_device *net = priv->net;
1449
1450	unregister_candev(net);
1451
1452	mcp251x_power_enable(priv->power, 0);
1453
1454	destroy_workqueue(priv->wq);
1455	priv->wq = NULL;
1456
1457	clk_disable_unprepare(priv->clk);
1458
1459	free_candev(net);
1460
1461	return 0;
1462}
1463
1464static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1465{
1466	struct spi_device *spi = to_spi_device(dev);
1467	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1468	struct net_device *net = priv->net;
1469
1470	priv->force_quit = 1;
1471	disable_irq(spi->irq);
1472	/* Note: at this point neither IST nor workqueues are running.
1473	 * open/stop cannot be called anyway so locking is not needed
1474	 */
1475	if (netif_running(net)) {
1476		netif_device_detach(net);
1477
1478		mcp251x_hw_sleep(spi);
1479		mcp251x_power_enable(priv->transceiver, 0);
1480		priv->after_suspend = AFTER_SUSPEND_UP;
1481	} else {
1482		priv->after_suspend = AFTER_SUSPEND_DOWN;
1483	}
1484
1485	mcp251x_power_enable(priv->power, 0);
1486	priv->after_suspend |= AFTER_SUSPEND_POWER;
1487
1488	return 0;
1489}
1490
1491static int __maybe_unused mcp251x_can_resume(struct device *dev)
1492{
1493	struct spi_device *spi = to_spi_device(dev);
1494	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1495
1496	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1497		mcp251x_power_enable(priv->power, 1);
1498	if (priv->after_suspend & AFTER_SUSPEND_UP)
1499		mcp251x_power_enable(priv->transceiver, 1);
1500
1501	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1502		queue_work(priv->wq, &priv->restart_work);
1503	else
1504		priv->after_suspend = 0;
1505
1506	priv->force_quit = 0;
1507	enable_irq(spi->irq);
1508	return 0;
1509}
1510
1511static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1512	mcp251x_can_resume);
1513
1514static struct spi_driver mcp251x_can_driver = {
1515	.driver = {
1516		.name = DEVICE_NAME,
1517		.of_match_table = mcp251x_of_match,
1518		.pm = &mcp251x_can_pm_ops,
1519	},
1520	.id_table = mcp251x_id_table,
1521	.probe = mcp251x_can_probe,
1522	.remove = mcp251x_can_remove,
1523};
1524module_spi_driver(mcp251x_can_driver);
1525
1526MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1527	      "Christian Pellegrin <chripell@evolware.org>");
1528MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1529MODULE_LICENSE("GPL v2");
1530