1// SPDX-License-Identifier: GPL-2.0+
2/* Renesas R-Car CAN FD device driver
3 *
4 * Copyright (C) 2015 Renesas Electronics Corp.
5 */
6
7/* The R-Car CAN FD controller can operate in either one of the below two modes
8 *  - CAN FD only mode
9 *  - Classical CAN (CAN 2.0) only mode
10 *
11 * This driver puts the controller in CAN FD only mode by default. In this
12 * mode, the controller acts as a CAN FD node that can also interoperate with
13 * CAN 2.0 nodes.
14 *
15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17 * also required to switch modes.
18 *
19 * Note: The h/w manual register naming convention is clumsy and not acceptable
20 * to use as it is in the driver. However, those names are added as comments
21 * wherever it is modified to a readable name.
22 */
23
24#include <linux/module.h>
25#include <linux/moduleparam.h>
26#include <linux/kernel.h>
27#include <linux/types.h>
28#include <linux/interrupt.h>
29#include <linux/errno.h>
30#include <linux/netdevice.h>
31#include <linux/platform_device.h>
32#include <linux/can/led.h>
33#include <linux/can/dev.h>
34#include <linux/clk.h>
35#include <linux/of.h>
36#include <linux/of_device.h>
37#include <linux/bitmap.h>
38#include <linux/bitops.h>
39#include <linux/iopoll.h>
40
41#define RCANFD_DRV_NAME			"rcar_canfd"
42
43/* Global register bits */
44
45/* RSCFDnCFDGRMCFG */
46#define RCANFD_GRMCFG_RCMC		BIT(0)
47
48/* RSCFDnCFDGCFG / RSCFDnGCFG */
49#define RCANFD_GCFG_EEFE		BIT(6)
50#define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
51#define RCANFD_GCFG_DCS			BIT(4)
52#define RCANFD_GCFG_DCE			BIT(1)
53#define RCANFD_GCFG_TPRI		BIT(0)
54
55/* RSCFDnCFDGCTR / RSCFDnGCTR */
56#define RCANFD_GCTR_TSRST		BIT(16)
57#define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
58#define RCANFD_GCTR_THLEIE		BIT(10)
59#define RCANFD_GCTR_MEIE		BIT(9)
60#define RCANFD_GCTR_DEIE		BIT(8)
61#define RCANFD_GCTR_GSLPR		BIT(2)
62#define RCANFD_GCTR_GMDC_MASK		(0x3)
63#define RCANFD_GCTR_GMDC_GOPM		(0x0)
64#define RCANFD_GCTR_GMDC_GRESET		(0x1)
65#define RCANFD_GCTR_GMDC_GTEST		(0x2)
66
67/* RSCFDnCFDGSTS / RSCFDnGSTS */
68#define RCANFD_GSTS_GRAMINIT		BIT(3)
69#define RCANFD_GSTS_GSLPSTS		BIT(2)
70#define RCANFD_GSTS_GHLTSTS		BIT(1)
71#define RCANFD_GSTS_GRSTSTS		BIT(0)
72/* Non-operational status */
73#define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
74
75/* RSCFDnCFDGERFL / RSCFDnGERFL */
76#define RCANFD_GERFL_EEF1		BIT(17)
77#define RCANFD_GERFL_EEF0		BIT(16)
78#define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
79#define RCANFD_GERFL_THLES		BIT(2)
80#define RCANFD_GERFL_MES		BIT(1)
81#define RCANFD_GERFL_DEF		BIT(0)
82
83#define RCANFD_GERFL_ERR(gpriv, x)	((x) & (RCANFD_GERFL_EEF1 |\
84					RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\
85					(gpriv->fdmode ?\
86					 RCANFD_GERFL_CMPOF : 0)))
87
88/* AFL Rx rules registers */
89
90/* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
91#define RCANFD_GAFLCFG_SETRNC(n, x)	(((x) & 0xff) << (24 - n * 8))
92#define RCANFD_GAFLCFG_GETRNC(n, x)	(((x) >> (24 - n * 8)) & 0xff)
93
94/* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
95#define RCANFD_GAFLECTR_AFLDAE		BIT(8)
96#define RCANFD_GAFLECTR_AFLPN(x)	((x) & 0x1f)
97
98/* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
99#define RCANFD_GAFLID_GAFLLB		BIT(29)
100
101/* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
102#define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
103
104/* Channel register bits */
105
106/* RSCFDnCmCFG - Classical CAN only */
107#define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
108#define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
109#define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
110#define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
111
112/* RSCFDnCFDCmNCFG - CAN FD only */
113#define RCANFD_NCFG_NTSEG2(x)		(((x) & 0x1f) << 24)
114#define RCANFD_NCFG_NTSEG1(x)		(((x) & 0x7f) << 16)
115#define RCANFD_NCFG_NSJW(x)		(((x) & 0x1f) << 11)
116#define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
117
118/* RSCFDnCFDCmCTR / RSCFDnCmCTR */
119#define RCANFD_CCTR_CTME		BIT(24)
120#define RCANFD_CCTR_ERRD		BIT(23)
121#define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
122#define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
123#define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
124#define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
125#define RCANFD_CCTR_TDCVFIE		BIT(19)
126#define RCANFD_CCTR_SOCOIE		BIT(18)
127#define RCANFD_CCTR_EOCOIE		BIT(17)
128#define RCANFD_CCTR_TAIE		BIT(16)
129#define RCANFD_CCTR_ALIE		BIT(15)
130#define RCANFD_CCTR_BLIE		BIT(14)
131#define RCANFD_CCTR_OLIE		BIT(13)
132#define RCANFD_CCTR_BORIE		BIT(12)
133#define RCANFD_CCTR_BOEIE		BIT(11)
134#define RCANFD_CCTR_EPIE		BIT(10)
135#define RCANFD_CCTR_EWIE		BIT(9)
136#define RCANFD_CCTR_BEIE		BIT(8)
137#define RCANFD_CCTR_CSLPR		BIT(2)
138#define RCANFD_CCTR_CHMDC_MASK		(0x3)
139#define RCANFD_CCTR_CHDMC_COPM		(0x0)
140#define RCANFD_CCTR_CHDMC_CRESET	(0x1)
141#define RCANFD_CCTR_CHDMC_CHLT		(0x2)
142
143/* RSCFDnCFDCmSTS / RSCFDnCmSTS */
144#define RCANFD_CSTS_COMSTS		BIT(7)
145#define RCANFD_CSTS_RECSTS		BIT(6)
146#define RCANFD_CSTS_TRMSTS		BIT(5)
147#define RCANFD_CSTS_BOSTS		BIT(4)
148#define RCANFD_CSTS_EPSTS		BIT(3)
149#define RCANFD_CSTS_SLPSTS		BIT(2)
150#define RCANFD_CSTS_HLTSTS		BIT(1)
151#define RCANFD_CSTS_CRSTSTS		BIT(0)
152
153#define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
154#define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
155
156/* RSCFDnCFDCmERFL / RSCFDnCmERFL */
157#define RCANFD_CERFL_ADERR		BIT(14)
158#define RCANFD_CERFL_B0ERR		BIT(13)
159#define RCANFD_CERFL_B1ERR		BIT(12)
160#define RCANFD_CERFL_CERR		BIT(11)
161#define RCANFD_CERFL_AERR		BIT(10)
162#define RCANFD_CERFL_FERR		BIT(9)
163#define RCANFD_CERFL_SERR		BIT(8)
164#define RCANFD_CERFL_ALF		BIT(7)
165#define RCANFD_CERFL_BLF		BIT(6)
166#define RCANFD_CERFL_OVLF		BIT(5)
167#define RCANFD_CERFL_BORF		BIT(4)
168#define RCANFD_CERFL_BOEF		BIT(3)
169#define RCANFD_CERFL_EPF		BIT(2)
170#define RCANFD_CERFL_EWF		BIT(1)
171#define RCANFD_CERFL_BEF		BIT(0)
172
173#define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
174
175/* RSCFDnCFDCmDCFG */
176#define RCANFD_DCFG_DSJW(x)		(((x) & 0x7) << 24)
177#define RCANFD_DCFG_DTSEG2(x)		(((x) & 0x7) << 20)
178#define RCANFD_DCFG_DTSEG1(x)		(((x) & 0xf) << 16)
179#define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
180
181/* RSCFDnCFDCmFDCFG */
182#define RCANFD_FDCFG_TDCE		BIT(9)
183#define RCANFD_FDCFG_TDCOC		BIT(8)
184#define RCANFD_FDCFG_TDCO(x)		(((x) & 0x7f) >> 16)
185
186/* RSCFDnCFDRFCCx */
187#define RCANFD_RFCC_RFIM		BIT(12)
188#define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
189#define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
190#define RCANFD_RFCC_RFIE		BIT(1)
191#define RCANFD_RFCC_RFE			BIT(0)
192
193/* RSCFDnCFDRFSTSx */
194#define RCANFD_RFSTS_RFIF		BIT(3)
195#define RCANFD_RFSTS_RFMLT		BIT(2)
196#define RCANFD_RFSTS_RFFLL		BIT(1)
197#define RCANFD_RFSTS_RFEMP		BIT(0)
198
199/* RSCFDnCFDRFIDx */
200#define RCANFD_RFID_RFIDE		BIT(31)
201#define RCANFD_RFID_RFRTR		BIT(30)
202
203/* RSCFDnCFDRFPTRx */
204#define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
205#define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
206#define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
207
208/* RSCFDnCFDRFFDSTSx */
209#define RCANFD_RFFDSTS_RFFDF		BIT(2)
210#define RCANFD_RFFDSTS_RFBRS		BIT(1)
211#define RCANFD_RFFDSTS_RFESI		BIT(0)
212
213/* Common FIFO bits */
214
215/* RSCFDnCFDCFCCk */
216#define RCANFD_CFCC_CFTML(x)		(((x) & 0xf) << 20)
217#define RCANFD_CFCC_CFM(x)		(((x) & 0x3) << 16)
218#define RCANFD_CFCC_CFIM		BIT(12)
219#define RCANFD_CFCC_CFDC(x)		(((x) & 0x7) << 8)
220#define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
221#define RCANFD_CFCC_CFTXIE		BIT(2)
222#define RCANFD_CFCC_CFE			BIT(0)
223
224/* RSCFDnCFDCFSTSk */
225#define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
226#define RCANFD_CFSTS_CFTXIF		BIT(4)
227#define RCANFD_CFSTS_CFMLT		BIT(2)
228#define RCANFD_CFSTS_CFFLL		BIT(1)
229#define RCANFD_CFSTS_CFEMP		BIT(0)
230
231/* RSCFDnCFDCFIDk */
232#define RCANFD_CFID_CFIDE		BIT(31)
233#define RCANFD_CFID_CFRTR		BIT(30)
234#define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
235
236/* RSCFDnCFDCFPTRk */
237#define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
238#define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
239#define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
240
241/* RSCFDnCFDCFFDCSTSk */
242#define RCANFD_CFFDCSTS_CFFDF		BIT(2)
243#define RCANFD_CFFDCSTS_CFBRS		BIT(1)
244#define RCANFD_CFFDCSTS_CFESI		BIT(0)
245
246/* This controller supports either Classical CAN only mode or CAN FD only mode.
247 * These modes are supported in two separate set of register maps & names.
248 * However, some of the register offsets are common for both modes. Those
249 * offsets are listed below as Common registers.
250 *
251 * The CAN FD only mode specific registers & Classical CAN only mode specific
252 * registers are listed separately. Their register names starts with
253 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
254 */
255
256/* Common registers */
257
258/* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
259#define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
260/* RSCFDnCFDCmCTR / RSCFDnCmCTR */
261#define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
262/* RSCFDnCFDCmSTS / RSCFDnCmSTS */
263#define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
264/* RSCFDnCFDCmERFL / RSCFDnCmERFL */
265#define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
266
267/* RSCFDnCFDGCFG / RSCFDnGCFG */
268#define RCANFD_GCFG			(0x0084)
269/* RSCFDnCFDGCTR / RSCFDnGCTR */
270#define RCANFD_GCTR			(0x0088)
271/* RSCFDnCFDGCTS / RSCFDnGCTS */
272#define RCANFD_GSTS			(0x008c)
273/* RSCFDnCFDGERFL / RSCFDnGERFL */
274#define RCANFD_GERFL			(0x0090)
275/* RSCFDnCFDGTSC / RSCFDnGTSC */
276#define RCANFD_GTSC			(0x0094)
277/* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
278#define RCANFD_GAFLECTR			(0x0098)
279/* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
280#define RCANFD_GAFLCFG0			(0x009c)
281/* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */
282#define RCANFD_GAFLCFG1			(0x00a0)
283/* RSCFDnCFDRMNB / RSCFDnRMNB */
284#define RCANFD_RMNB			(0x00a4)
285/* RSCFDnCFDRMND / RSCFDnRMND */
286#define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
287
288/* RSCFDnCFDRFCCx / RSCFDnRFCCx */
289#define RCANFD_RFCC(x)			(0x00b8 + (0x04 * (x)))
290/* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
291#define RCANFD_RFSTS(x)			(0x00d8 + (0x04 * (x)))
292/* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
293#define RCANFD_RFPCTR(x)		(0x00f8 + (0x04 * (x)))
294
295/* Common FIFO Control registers */
296
297/* RSCFDnCFDCFCCx / RSCFDnCFCCx */
298#define RCANFD_CFCC(ch, idx)		(0x0118 + (0x0c * (ch)) + \
299					 (0x04 * (idx)))
300/* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
301#define RCANFD_CFSTS(ch, idx)		(0x0178 + (0x0c * (ch)) + \
302					 (0x04 * (idx)))
303/* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
304#define RCANFD_CFPCTR(ch, idx)		(0x01d8 + (0x0c * (ch)) + \
305					 (0x04 * (idx)))
306
307/* RSCFDnCFDFESTS / RSCFDnFESTS */
308#define RCANFD_FESTS			(0x0238)
309/* RSCFDnCFDFFSTS / RSCFDnFFSTS */
310#define RCANFD_FFSTS			(0x023c)
311/* RSCFDnCFDFMSTS / RSCFDnFMSTS */
312#define RCANFD_FMSTS			(0x0240)
313/* RSCFDnCFDRFISTS / RSCFDnRFISTS */
314#define RCANFD_RFISTS			(0x0244)
315/* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
316#define RCANFD_CFRISTS			(0x0248)
317/* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
318#define RCANFD_CFTISTS			(0x024c)
319
320/* RSCFDnCFDTMCp / RSCFDnTMCp */
321#define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
322/* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
323#define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
324
325/* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
326#define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
327/* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
328#define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
329/* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
330#define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
331/* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
332#define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
333/* RSCFDnCFDTMIECy / RSCFDnTMIECy */
334#define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
335
336/* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
337#define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
338/* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
339#define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
340/* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
341#define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
342
343/* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
344#define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
345/* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
346#define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
347/* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
348#define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
349
350/* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
351#define RCANFD_GTINTSTS0		(0x0460)
352/* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
353#define RCANFD_GTINTSTS1		(0x0464)
354/* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
355#define RCANFD_GTSTCFG			(0x0468)
356/* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
357#define RCANFD_GTSTCTR			(0x046c)
358/* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
359#define RCANFD_GLOCKK			(0x047c)
360/* RSCFDnCFDGRMCFG */
361#define RCANFD_GRMCFG			(0x04fc)
362
363/* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
364#define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
365/* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
366#define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
367/* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
368#define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
369/* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
370#define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
371
372/* Classical CAN only mode register map */
373
374/* RSCFDnGAFLXXXj offset */
375#define RCANFD_C_GAFL_OFFSET		(0x0500)
376
377/* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
378#define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
379#define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
380#define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
381#define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
382
383/* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
384#define RCANFD_C_RFOFFSET		(0x0e00)
385#define RCANFD_C_RFID(x)		(RCANFD_C_RFOFFSET + (0x10 * (x)))
386#define RCANFD_C_RFPTR(x)		(RCANFD_C_RFOFFSET + 0x04 + \
387					 (0x10 * (x)))
388#define RCANFD_C_RFDF(x, df)		(RCANFD_C_RFOFFSET + 0x08 + \
389					 (0x10 * (x)) + (0x04 * (df)))
390
391/* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
392#define RCANFD_C_CFOFFSET		(0x0e80)
393#define RCANFD_C_CFID(ch, idx)		(RCANFD_C_CFOFFSET + (0x30 * (ch)) + \
394					 (0x10 * (idx)))
395#define RCANFD_C_CFPTR(ch, idx)		(RCANFD_C_CFOFFSET + 0x04 + \
396					 (0x30 * (ch)) + (0x10 * (idx)))
397#define RCANFD_C_CFDF(ch, idx, df)	(RCANFD_C_CFOFFSET + 0x08 + \
398					 (0x30 * (ch)) + (0x10 * (idx)) + \
399					 (0x04 * (df)))
400
401/* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
402#define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
403#define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
404#define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
405#define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
406
407/* RSCFDnTHLACCm */
408#define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
409/* RSCFDnRPGACCr */
410#define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
411
412/* CAN FD mode specific register map */
413
414/* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
415#define RCANFD_F_DCFG(m)		(0x0500 + (0x20 * (m)))
416#define RCANFD_F_CFDCFG(m)		(0x0504 + (0x20 * (m)))
417#define RCANFD_F_CFDCTR(m)		(0x0508 + (0x20 * (m)))
418#define RCANFD_F_CFDSTS(m)		(0x050c + (0x20 * (m)))
419#define RCANFD_F_CFDCRC(m)		(0x0510 + (0x20 * (m)))
420
421/* RSCFDnCFDGAFLXXXj offset */
422#define RCANFD_F_GAFL_OFFSET		(0x1000)
423
424/* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
425#define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
426#define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
427#define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
428#define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
429
430/* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
431#define RCANFD_F_RFOFFSET		(0x3000)
432#define RCANFD_F_RFID(x)		(RCANFD_F_RFOFFSET + (0x80 * (x)))
433#define RCANFD_F_RFPTR(x)		(RCANFD_F_RFOFFSET + 0x04 + \
434					 (0x80 * (x)))
435#define RCANFD_F_RFFDSTS(x)		(RCANFD_F_RFOFFSET + 0x08 + \
436					 (0x80 * (x)))
437#define RCANFD_F_RFDF(x, df)		(RCANFD_F_RFOFFSET + 0x0c + \
438					 (0x80 * (x)) + (0x04 * (df)))
439
440/* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
441#define RCANFD_F_CFOFFSET		(0x3400)
442#define RCANFD_F_CFID(ch, idx)		(RCANFD_F_CFOFFSET + (0x180 * (ch)) + \
443					 (0x80 * (idx)))
444#define RCANFD_F_CFPTR(ch, idx)		(RCANFD_F_CFOFFSET + 0x04 + \
445					 (0x180 * (ch)) + (0x80 * (idx)))
446#define RCANFD_F_CFFDCSTS(ch, idx)	(RCANFD_F_CFOFFSET + 0x08 + \
447					 (0x180 * (ch)) + (0x80 * (idx)))
448#define RCANFD_F_CFDF(ch, idx, df)	(RCANFD_F_CFOFFSET + 0x0c + \
449					 (0x180 * (ch)) + (0x80 * (idx)) + \
450					 (0x04 * (df)))
451
452/* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
453#define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
454#define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
455#define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
456#define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
457
458/* RSCFDnCFDTHLACCm */
459#define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
460/* RSCFDnCFDRPGACCr */
461#define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
462
463/* Constants */
464#define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
465#define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
466
467#define RCANFD_NUM_CHANNELS		2	/* Two channels max */
468#define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
469
470#define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
471#define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
472
473/* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
474 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
475 * number is added to RFFIFO index.
476 */
477#define RCANFD_RFFIFO_IDX		0
478
479/* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
480 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
481 */
482#define RCANFD_CFFIFO_IDX		0
483
484/* fCAN clock select register settings */
485enum rcar_canfd_fcanclk {
486	RCANFD_CANFDCLK = 0,		/* CANFD clock */
487	RCANFD_EXTCLK,			/* Externally input clock */
488};
489
490struct rcar_canfd_global;
491
492/* Channel priv data */
493struct rcar_canfd_channel {
494	struct can_priv can;			/* Must be the first member */
495	struct net_device *ndev;
496	struct rcar_canfd_global *gpriv;	/* Controller reference */
497	void __iomem *base;			/* Register base address */
498	struct napi_struct napi;
499	u8  tx_len[RCANFD_FIFO_DEPTH];		/* For net stats */
500	u32 tx_head;				/* Incremented on xmit */
501	u32 tx_tail;				/* Incremented on xmit done */
502	u32 channel;				/* Channel number */
503	spinlock_t tx_lock;			/* To protect tx path */
504};
505
506/* Global priv data */
507struct rcar_canfd_global {
508	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
509	void __iomem *base;		/* Register base address */
510	struct platform_device *pdev;	/* Respective platform device */
511	struct clk *clkp;		/* Peripheral clock */
512	struct clk *can_clk;		/* fCAN clock */
513	enum rcar_canfd_fcanclk fcan;	/* CANFD or Ext clock */
514	unsigned long channels_mask;	/* Enabled channels mask */
515	bool fdmode;			/* CAN FD or Classical CAN only mode */
516};
517
518/* CAN FD mode nominal rate constants */
519static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
520	.name = RCANFD_DRV_NAME,
521	.tseg1_min = 2,
522	.tseg1_max = 128,
523	.tseg2_min = 2,
524	.tseg2_max = 32,
525	.sjw_max = 32,
526	.brp_min = 1,
527	.brp_max = 1024,
528	.brp_inc = 1,
529};
530
531/* CAN FD mode data rate constants */
532static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
533	.name = RCANFD_DRV_NAME,
534	.tseg1_min = 2,
535	.tseg1_max = 16,
536	.tseg2_min = 2,
537	.tseg2_max = 8,
538	.sjw_max = 8,
539	.brp_min = 1,
540	.brp_max = 256,
541	.brp_inc = 1,
542};
543
544/* Classical CAN mode bitrate constants */
545static const struct can_bittiming_const rcar_canfd_bittiming_const = {
546	.name = RCANFD_DRV_NAME,
547	.tseg1_min = 4,
548	.tseg1_max = 16,
549	.tseg2_min = 2,
550	.tseg2_max = 8,
551	.sjw_max = 4,
552	.brp_min = 1,
553	.brp_max = 1024,
554	.brp_inc = 1,
555};
556
557/* Helper functions */
558static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
559{
560	u32 data = readl(reg);
561
562	data &= ~mask;
563	data |= (val & mask);
564	writel(data, reg);
565}
566
567static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
568{
569	return readl(base + (offset));
570}
571
572static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
573{
574	writel(val, base + (offset));
575}
576
577static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
578{
579	rcar_canfd_update(val, val, base + (reg));
580}
581
582static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
583{
584	rcar_canfd_update(val, 0, base + (reg));
585}
586
587static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
588				  u32 mask, u32 val)
589{
590	rcar_canfd_update(mask, val, base + (reg));
591}
592
593static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
594				struct canfd_frame *cf, u32 off)
595{
596	u32 i, lwords;
597
598	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
599	for (i = 0; i < lwords; i++)
600		*((u32 *)cf->data + i) =
601			rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
602}
603
604static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
605				struct canfd_frame *cf, u32 off)
606{
607	u32 i, lwords;
608
609	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
610	for (i = 0; i < lwords; i++)
611		rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
612				 *((u32 *)cf->data + i));
613}
614
615static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
616{
617	u32 i;
618
619	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
620		can_free_echo_skb(ndev, i);
621}
622
623static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
624{
625	u32 sts, ch;
626	int err;
627
628	/* Check RAMINIT flag as CAN RAM initialization takes place
629	 * after the MCU reset
630	 */
631	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
632				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
633	if (err) {
634		dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
635		return err;
636	}
637
638	/* Transition to Global Reset mode */
639	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
640	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
641			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
642
643	/* Ensure Global reset mode */
644	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
645				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
646	if (err) {
647		dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
648		return err;
649	}
650
651	/* Reset Global error flags */
652	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
653
654	/* Set the controller into appropriate mode */
655	if (gpriv->fdmode)
656		rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
657				   RCANFD_GRMCFG_RCMC);
658	else
659		rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
660				     RCANFD_GRMCFG_RCMC);
661
662	/* Transition all Channels to reset mode */
663	for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
664		rcar_canfd_clear_bit(gpriv->base,
665				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
666
667		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
668				      RCANFD_CCTR_CHMDC_MASK,
669				      RCANFD_CCTR_CHDMC_CRESET);
670
671		/* Ensure Channel reset mode */
672		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
673					 (sts & RCANFD_CSTS_CRSTSTS),
674					 2, 500000);
675		if (err) {
676			dev_dbg(&gpriv->pdev->dev,
677				"channel %u reset failed\n", ch);
678			return err;
679		}
680	}
681	return 0;
682}
683
684static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
685{
686	u32 cfg, ch;
687
688	/* Global configuration settings */
689
690	/* ECC Error flag Enable */
691	cfg = RCANFD_GCFG_EEFE;
692
693	if (gpriv->fdmode)
694		/* Truncate payload to configured message size RFPLS */
695		cfg |= RCANFD_GCFG_CMPOC;
696
697	/* Set External Clock if selected */
698	if (gpriv->fcan != RCANFD_CANFDCLK)
699		cfg |= RCANFD_GCFG_DCS;
700
701	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
702
703	/* Channel configuration settings */
704	for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
705		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
706				   RCANFD_CCTR_ERRD);
707		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
708				      RCANFD_CCTR_BOM_MASK,
709				      RCANFD_CCTR_BOM_BENTRY);
710	}
711}
712
713static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
714					   u32 ch)
715{
716	u32 cfg;
717	int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
718	u32 ridx = ch + RCANFD_RFFIFO_IDX;
719
720	if (ch == 0) {
721		start = 0; /* Channel 0 always starts from 0th rule */
722	} else {
723		/* Get number of Channel 0 rules and adjust */
724		cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0);
725		start = RCANFD_GAFLCFG_GETRNC(0, cfg);
726	}
727
728	/* Enable write access to entry */
729	page = RCANFD_GAFL_PAGENUM(start);
730	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
731			   (RCANFD_GAFLECTR_AFLPN(page) |
732			    RCANFD_GAFLECTR_AFLDAE));
733
734	/* Write number of rules for channel */
735	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0,
736			   RCANFD_GAFLCFG_SETRNC(ch, num_rules));
737	if (gpriv->fdmode)
738		offset = RCANFD_F_GAFL_OFFSET;
739	else
740		offset = RCANFD_C_GAFL_OFFSET;
741
742	/* Accept all IDs */
743	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
744	/* IDE or RTR is not considered for matching */
745	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
746	/* Any data length accepted */
747	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
748	/* Place the msg in corresponding Rx FIFO entry */
749	rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start),
750			 RCANFD_GAFLP1_GAFLFDP(ridx));
751
752	/* Disable write access to page */
753	rcar_canfd_clear_bit(gpriv->base,
754			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
755}
756
757static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
758{
759	/* Rx FIFO is used for reception */
760	u32 cfg;
761	u16 rfdc, rfpls;
762
763	/* Select Rx FIFO based on channel */
764	u32 ridx = ch + RCANFD_RFFIFO_IDX;
765
766	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
767	if (gpriv->fdmode)
768		rfpls = 7;	/* b111 - Max 64 bytes payload */
769	else
770		rfpls = 0;	/* b000 - Max 8 bytes payload */
771
772	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
773		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
774	rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg);
775}
776
777static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
778{
779	/* Tx/Rx(Common) FIFO configured in Tx mode is
780	 * used for transmission
781	 *
782	 * Each channel has 3 Common FIFO dedicated to them.
783	 * Use the 1st (index 0) out of 3
784	 */
785	u32 cfg;
786	u16 cftml, cfm, cfdc, cfpls;
787
788	cftml = 0;		/* 0th buffer */
789	cfm = 1;		/* b01 - Transmit mode */
790	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
791	if (gpriv->fdmode)
792		cfpls = 7;	/* b111 - Max 64 bytes payload */
793	else
794		cfpls = 0;	/* b000 - Max 8 bytes payload */
795
796	cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) |
797		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) |
798		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
799	rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg);
800
801	if (gpriv->fdmode)
802		/* Clear FD mode specific control/status register */
803		rcar_canfd_write(gpriv->base,
804				 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0);
805}
806
807static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
808{
809	u32 ctr;
810
811	/* Clear any stray error interrupt flags */
812	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
813
814	/* Global interrupts setup */
815	ctr = RCANFD_GCTR_MEIE;
816	if (gpriv->fdmode)
817		ctr |= RCANFD_GCTR_CFMPOFIE;
818
819	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
820}
821
822static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
823						 *gpriv)
824{
825	/* Disable all interrupts */
826	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
827
828	/* Clear any stray error interrupt flags */
829	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
830}
831
832static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
833						 *priv)
834{
835	u32 ctr, ch = priv->channel;
836
837	/* Clear any stray error flags */
838	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
839
840	/* Channel interrupts setup */
841	ctr = (RCANFD_CCTR_TAIE |
842	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
843	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
844	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
845	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
846	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
847}
848
849static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
850						  *priv)
851{
852	u32 ctr, ch = priv->channel;
853
854	ctr = (RCANFD_CCTR_TAIE |
855	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
856	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
857	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
858	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
859	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
860
861	/* Clear any stray error flags */
862	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
863}
864
865static void rcar_canfd_global_error(struct net_device *ndev)
866{
867	struct rcar_canfd_channel *priv = netdev_priv(ndev);
868	struct rcar_canfd_global *gpriv = priv->gpriv;
869	struct net_device_stats *stats = &ndev->stats;
870	u32 ch = priv->channel;
871	u32 gerfl, sts;
872	u32 ridx = ch + RCANFD_RFFIFO_IDX;
873
874	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
875	if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
876		netdev_dbg(ndev, "Ch0: ECC Error flag\n");
877		stats->tx_dropped++;
878	}
879	if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
880		netdev_dbg(ndev, "Ch1: ECC Error flag\n");
881		stats->tx_dropped++;
882	}
883	if (gerfl & RCANFD_GERFL_MES) {
884		sts = rcar_canfd_read(priv->base,
885				      RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
886		if (sts & RCANFD_CFSTS_CFMLT) {
887			netdev_dbg(ndev, "Tx Message Lost flag\n");
888			stats->tx_dropped++;
889			rcar_canfd_write(priv->base,
890					 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
891					 sts & ~RCANFD_CFSTS_CFMLT);
892		}
893
894		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
895		if (sts & RCANFD_RFSTS_RFMLT) {
896			netdev_dbg(ndev, "Rx Message Lost flag\n");
897			stats->rx_dropped++;
898			rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
899					 sts & ~RCANFD_RFSTS_RFMLT);
900		}
901	}
902	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
903		/* Message Lost flag will be set for respective channel
904		 * when this condition happens with counters and flags
905		 * already updated.
906		 */
907		netdev_dbg(ndev, "global payload overflow interrupt\n");
908	}
909
910	/* Clear all global error interrupts. Only affected channels bits
911	 * get cleared
912	 */
913	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
914}
915
916static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
917			     u16 txerr, u16 rxerr)
918{
919	struct rcar_canfd_channel *priv = netdev_priv(ndev);
920	struct net_device_stats *stats = &ndev->stats;
921	struct can_frame *cf;
922	struct sk_buff *skb;
923	u32 ch = priv->channel;
924
925	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
926
927	/* Propagate the error condition to the CAN stack */
928	skb = alloc_can_err_skb(ndev, &cf);
929	if (!skb) {
930		stats->rx_dropped++;
931		return;
932	}
933
934	/* Channel error interrupts */
935	if (cerfl & RCANFD_CERFL_BEF) {
936		netdev_dbg(ndev, "Bus error\n");
937		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
938		cf->data[2] = CAN_ERR_PROT_UNSPEC;
939		priv->can.can_stats.bus_error++;
940	}
941	if (cerfl & RCANFD_CERFL_ADERR) {
942		netdev_dbg(ndev, "ACK Delimiter Error\n");
943		stats->tx_errors++;
944		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
945	}
946	if (cerfl & RCANFD_CERFL_B0ERR) {
947		netdev_dbg(ndev, "Bit Error (dominant)\n");
948		stats->tx_errors++;
949		cf->data[2] |= CAN_ERR_PROT_BIT0;
950	}
951	if (cerfl & RCANFD_CERFL_B1ERR) {
952		netdev_dbg(ndev, "Bit Error (recessive)\n");
953		stats->tx_errors++;
954		cf->data[2] |= CAN_ERR_PROT_BIT1;
955	}
956	if (cerfl & RCANFD_CERFL_CERR) {
957		netdev_dbg(ndev, "CRC Error\n");
958		stats->rx_errors++;
959		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
960	}
961	if (cerfl & RCANFD_CERFL_AERR) {
962		netdev_dbg(ndev, "ACK Error\n");
963		stats->tx_errors++;
964		cf->can_id |= CAN_ERR_ACK;
965		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
966	}
967	if (cerfl & RCANFD_CERFL_FERR) {
968		netdev_dbg(ndev, "Form Error\n");
969		stats->rx_errors++;
970		cf->data[2] |= CAN_ERR_PROT_FORM;
971	}
972	if (cerfl & RCANFD_CERFL_SERR) {
973		netdev_dbg(ndev, "Stuff Error\n");
974		stats->rx_errors++;
975		cf->data[2] |= CAN_ERR_PROT_STUFF;
976	}
977	if (cerfl & RCANFD_CERFL_ALF) {
978		netdev_dbg(ndev, "Arbitration lost Error\n");
979		priv->can.can_stats.arbitration_lost++;
980		cf->can_id |= CAN_ERR_LOSTARB;
981		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
982	}
983	if (cerfl & RCANFD_CERFL_BLF) {
984		netdev_dbg(ndev, "Bus Lock Error\n");
985		stats->rx_errors++;
986		cf->can_id |= CAN_ERR_BUSERROR;
987	}
988	if (cerfl & RCANFD_CERFL_EWF) {
989		netdev_dbg(ndev, "Error warning interrupt\n");
990		priv->can.state = CAN_STATE_ERROR_WARNING;
991		priv->can.can_stats.error_warning++;
992		cf->can_id |= CAN_ERR_CRTL;
993		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
994			CAN_ERR_CRTL_RX_WARNING;
995		cf->data[6] = txerr;
996		cf->data[7] = rxerr;
997	}
998	if (cerfl & RCANFD_CERFL_EPF) {
999		netdev_dbg(ndev, "Error passive interrupt\n");
1000		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1001		priv->can.can_stats.error_passive++;
1002		cf->can_id |= CAN_ERR_CRTL;
1003		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1004			CAN_ERR_CRTL_RX_PASSIVE;
1005		cf->data[6] = txerr;
1006		cf->data[7] = rxerr;
1007	}
1008	if (cerfl & RCANFD_CERFL_BOEF) {
1009		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1010		rcar_canfd_tx_failure_cleanup(ndev);
1011		priv->can.state = CAN_STATE_BUS_OFF;
1012		priv->can.can_stats.bus_off++;
1013		can_bus_off(ndev);
1014		cf->can_id |= CAN_ERR_BUSOFF;
1015	}
1016	if (cerfl & RCANFD_CERFL_OVLF) {
1017		netdev_dbg(ndev,
1018			   "Overload Frame Transmission error interrupt\n");
1019		stats->tx_errors++;
1020		cf->can_id |= CAN_ERR_PROT;
1021		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1022	}
1023
1024	/* Clear channel error interrupts that are handled */
1025	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1026			 RCANFD_CERFL_ERR(~cerfl));
1027	stats->rx_packets++;
1028	stats->rx_bytes += cf->can_dlc;
1029	netif_rx(skb);
1030}
1031
1032static void rcar_canfd_tx_done(struct net_device *ndev)
1033{
1034	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1035	struct net_device_stats *stats = &ndev->stats;
1036	u32 sts;
1037	unsigned long flags;
1038	u32 ch = priv->channel;
1039
1040	do {
1041		u8 unsent, sent;
1042
1043		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1044		stats->tx_packets++;
1045		stats->tx_bytes += priv->tx_len[sent];
1046		priv->tx_len[sent] = 0;
1047		can_get_echo_skb(ndev, sent);
1048
1049		spin_lock_irqsave(&priv->tx_lock, flags);
1050		priv->tx_tail++;
1051		sts = rcar_canfd_read(priv->base,
1052				      RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
1053		unsent = RCANFD_CFSTS_CFMC(sts);
1054
1055		/* Wake producer only when there is room */
1056		if (unsent != RCANFD_FIFO_DEPTH)
1057			netif_wake_queue(ndev);
1058
1059		if (priv->tx_head - priv->tx_tail <= unsent) {
1060			spin_unlock_irqrestore(&priv->tx_lock, flags);
1061			break;
1062		}
1063		spin_unlock_irqrestore(&priv->tx_lock, flags);
1064
1065	} while (1);
1066
1067	/* Clear interrupt */
1068	rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
1069			 sts & ~RCANFD_CFSTS_CFTXIF);
1070	can_led_event(ndev, CAN_LED_EVENT_TX);
1071}
1072
1073static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1074{
1075	struct rcar_canfd_global *gpriv = dev_id;
1076	struct net_device *ndev;
1077	struct rcar_canfd_channel *priv;
1078	u32 sts, cc, gerfl;
1079	u32 ch, ridx;
1080
1081	/* Global error interrupts still indicate a condition specific
1082	 * to a channel. RxFIFO interrupt is a global interrupt.
1083	 */
1084	for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1085		priv = gpriv->ch[ch];
1086		ndev = priv->ndev;
1087		ridx = ch + RCANFD_RFFIFO_IDX;
1088
1089		/* Global error interrupts */
1090		gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1091		if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1092			rcar_canfd_global_error(ndev);
1093
1094		/* Handle Rx interrupts */
1095		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
1096		cc = rcar_canfd_read(priv->base, RCANFD_RFCC(ridx));
1097		if (likely(sts & RCANFD_RFSTS_RFIF &&
1098			   cc & RCANFD_RFCC_RFIE)) {
1099			if (napi_schedule_prep(&priv->napi)) {
1100				/* Disable Rx FIFO interrupts */
1101				rcar_canfd_clear_bit(priv->base,
1102						     RCANFD_RFCC(ridx),
1103						     RCANFD_RFCC_RFIE);
1104				__napi_schedule(&priv->napi);
1105			}
1106		}
1107	}
1108	return IRQ_HANDLED;
1109}
1110
1111static void rcar_canfd_state_change(struct net_device *ndev,
1112				    u16 txerr, u16 rxerr)
1113{
1114	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1115	struct net_device_stats *stats = &ndev->stats;
1116	enum can_state rx_state, tx_state, state = priv->can.state;
1117	struct can_frame *cf;
1118	struct sk_buff *skb;
1119
1120	/* Handle transition from error to normal states */
1121	if (txerr < 96 && rxerr < 96)
1122		state = CAN_STATE_ERROR_ACTIVE;
1123	else if (txerr < 128 && rxerr < 128)
1124		state = CAN_STATE_ERROR_WARNING;
1125
1126	if (state != priv->can.state) {
1127		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1128			   state, priv->can.state, txerr, rxerr);
1129		skb = alloc_can_err_skb(ndev, &cf);
1130		if (!skb) {
1131			stats->rx_dropped++;
1132			return;
1133		}
1134		tx_state = txerr >= rxerr ? state : 0;
1135		rx_state = txerr <= rxerr ? state : 0;
1136
1137		can_change_state(ndev, cf, tx_state, rx_state);
1138		stats->rx_packets++;
1139		stats->rx_bytes += cf->can_dlc;
1140		netif_rx(skb);
1141	}
1142}
1143
1144static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1145{
1146	struct rcar_canfd_global *gpriv = dev_id;
1147	struct net_device *ndev;
1148	struct rcar_canfd_channel *priv;
1149	u32 sts, ch, cerfl;
1150	u16 txerr, rxerr;
1151
1152	/* Common FIFO is a per channel resource */
1153	for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1154		priv = gpriv->ch[ch];
1155		ndev = priv->ndev;
1156
1157		/* Channel error interrupts */
1158		cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1159		sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1160		txerr = RCANFD_CSTS_TECCNT(sts);
1161		rxerr = RCANFD_CSTS_RECCNT(sts);
1162		if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1163			rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1164
1165		/* Handle state change to lower states */
1166		if (unlikely((priv->can.state != CAN_STATE_ERROR_ACTIVE) &&
1167			     (priv->can.state != CAN_STATE_BUS_OFF)))
1168			rcar_canfd_state_change(ndev, txerr, rxerr);
1169
1170		/* Handle Tx interrupts */
1171		sts = rcar_canfd_read(priv->base,
1172				      RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
1173		if (likely(sts & RCANFD_CFSTS_CFTXIF))
1174			rcar_canfd_tx_done(ndev);
1175	}
1176	return IRQ_HANDLED;
1177}
1178
1179static void rcar_canfd_set_bittiming(struct net_device *dev)
1180{
1181	struct rcar_canfd_channel *priv = netdev_priv(dev);
1182	const struct can_bittiming *bt = &priv->can.bittiming;
1183	const struct can_bittiming *dbt = &priv->can.data_bittiming;
1184	u16 brp, sjw, tseg1, tseg2;
1185	u32 cfg;
1186	u32 ch = priv->channel;
1187
1188	/* Nominal bit timing settings */
1189	brp = bt->brp - 1;
1190	sjw = bt->sjw - 1;
1191	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1192	tseg2 = bt->phase_seg2 - 1;
1193
1194	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1195		/* CAN FD only mode */
1196		cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) |
1197		       RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2));
1198
1199		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1200		netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1201			   brp, sjw, tseg1, tseg2);
1202
1203		/* Data bit timing settings */
1204		brp = dbt->brp - 1;
1205		sjw = dbt->sjw - 1;
1206		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1207		tseg2 = dbt->phase_seg2 - 1;
1208
1209		cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) |
1210		       RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2));
1211
1212		rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1213		netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1214			   brp, sjw, tseg1, tseg2);
1215	} else {
1216		/* Classical CAN only mode */
1217		cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) |
1218			RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2));
1219
1220		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1221		netdev_dbg(priv->ndev,
1222			   "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1223			   brp, sjw, tseg1, tseg2);
1224	}
1225}
1226
1227static int rcar_canfd_start(struct net_device *ndev)
1228{
1229	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1230	int err = -EOPNOTSUPP;
1231	u32 sts, ch = priv->channel;
1232	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1233
1234	rcar_canfd_set_bittiming(ndev);
1235
1236	rcar_canfd_enable_channel_interrupts(priv);
1237
1238	/* Set channel to Operational mode */
1239	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1240			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1241
1242	/* Verify channel mode change */
1243	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1244				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1245	if (err) {
1246		netdev_err(ndev, "channel %u communication state failed\n", ch);
1247		goto fail_mode_change;
1248	}
1249
1250	/* Enable Common & Rx FIFO */
1251	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
1252			   RCANFD_CFCC_CFE);
1253	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
1254
1255	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1256	return 0;
1257
1258fail_mode_change:
1259	rcar_canfd_disable_channel_interrupts(priv);
1260	return err;
1261}
1262
1263static int rcar_canfd_open(struct net_device *ndev)
1264{
1265	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1266	struct rcar_canfd_global *gpriv = priv->gpriv;
1267	int err;
1268
1269	/* Peripheral clock is already enabled in probe */
1270	err = clk_prepare_enable(gpriv->can_clk);
1271	if (err) {
1272		netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1273		goto out_clock;
1274	}
1275
1276	err = open_candev(ndev);
1277	if (err) {
1278		netdev_err(ndev, "open_candev() failed, error %d\n", err);
1279		goto out_can_clock;
1280	}
1281
1282	napi_enable(&priv->napi);
1283	err = rcar_canfd_start(ndev);
1284	if (err)
1285		goto out_close;
1286	netif_start_queue(ndev);
1287	can_led_event(ndev, CAN_LED_EVENT_OPEN);
1288	return 0;
1289out_close:
1290	napi_disable(&priv->napi);
1291	close_candev(ndev);
1292out_can_clock:
1293	clk_disable_unprepare(gpriv->can_clk);
1294out_clock:
1295	return err;
1296}
1297
1298static void rcar_canfd_stop(struct net_device *ndev)
1299{
1300	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1301	int err;
1302	u32 sts, ch = priv->channel;
1303	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1304
1305	/* Transition to channel reset mode  */
1306	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1307			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1308
1309	/* Check Channel reset mode */
1310	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1311				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1312	if (err)
1313		netdev_err(ndev, "channel %u reset failed\n", ch);
1314
1315	rcar_canfd_disable_channel_interrupts(priv);
1316
1317	/* Disable Common & Rx FIFO */
1318	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
1319			     RCANFD_CFCC_CFE);
1320	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
1321
1322	/* Set the state as STOPPED */
1323	priv->can.state = CAN_STATE_STOPPED;
1324}
1325
1326static int rcar_canfd_close(struct net_device *ndev)
1327{
1328	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1329	struct rcar_canfd_global *gpriv = priv->gpriv;
1330
1331	netif_stop_queue(ndev);
1332	rcar_canfd_stop(ndev);
1333	napi_disable(&priv->napi);
1334	clk_disable_unprepare(gpriv->can_clk);
1335	close_candev(ndev);
1336	can_led_event(ndev, CAN_LED_EVENT_STOP);
1337	return 0;
1338}
1339
1340static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1341					 struct net_device *ndev)
1342{
1343	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1344	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1345	u32 sts = 0, id, dlc;
1346	unsigned long flags;
1347	u32 ch = priv->channel;
1348
1349	if (can_dropped_invalid_skb(ndev, skb))
1350		return NETDEV_TX_OK;
1351
1352	if (cf->can_id & CAN_EFF_FLAG) {
1353		id = cf->can_id & CAN_EFF_MASK;
1354		id |= RCANFD_CFID_CFIDE;
1355	} else {
1356		id = cf->can_id & CAN_SFF_MASK;
1357	}
1358
1359	if (cf->can_id & CAN_RTR_FLAG)
1360		id |= RCANFD_CFID_CFRTR;
1361
1362	dlc = RCANFD_CFPTR_CFDLC(can_len2dlc(cf->len));
1363
1364	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1365		rcar_canfd_write(priv->base,
1366				 RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id);
1367		rcar_canfd_write(priv->base,
1368				 RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1369
1370		if (can_is_canfd_skb(skb)) {
1371			/* CAN FD frame format */
1372			sts |= RCANFD_CFFDCSTS_CFFDF;
1373			if (cf->flags & CANFD_BRS)
1374				sts |= RCANFD_CFFDCSTS_CFBRS;
1375
1376			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1377				sts |= RCANFD_CFFDCSTS_CFESI;
1378		}
1379
1380		rcar_canfd_write(priv->base,
1381				 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts);
1382
1383		rcar_canfd_put_data(priv, cf,
1384				    RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1385	} else {
1386		rcar_canfd_write(priv->base,
1387				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1388		rcar_canfd_write(priv->base,
1389				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1390		rcar_canfd_put_data(priv, cf,
1391				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1392	}
1393
1394	priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len;
1395	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH);
1396
1397	spin_lock_irqsave(&priv->tx_lock, flags);
1398	priv->tx_head++;
1399
1400	/* Stop the queue if we've filled all FIFO entries */
1401	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1402		netif_stop_queue(ndev);
1403
1404	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1405	 * pointer for the Common FIFO
1406	 */
1407	rcar_canfd_write(priv->base,
1408			 RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff);
1409
1410	spin_unlock_irqrestore(&priv->tx_lock, flags);
1411	return NETDEV_TX_OK;
1412}
1413
1414static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1415{
1416	struct net_device_stats *stats = &priv->ndev->stats;
1417	struct canfd_frame *cf;
1418	struct sk_buff *skb;
1419	u32 sts = 0, id, dlc;
1420	u32 ch = priv->channel;
1421	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1422
1423	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1424		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx));
1425		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx));
1426
1427		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx));
1428		if (sts & RCANFD_RFFDSTS_RFFDF)
1429			skb = alloc_canfd_skb(priv->ndev, &cf);
1430		else
1431			skb = alloc_can_skb(priv->ndev,
1432					    (struct can_frame **)&cf);
1433	} else {
1434		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1435		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1436		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1437	}
1438
1439	if (!skb) {
1440		stats->rx_dropped++;
1441		return;
1442	}
1443
1444	if (id & RCANFD_RFID_RFIDE)
1445		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1446	else
1447		cf->can_id = id & CAN_SFF_MASK;
1448
1449	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1450		if (sts & RCANFD_RFFDSTS_RFFDF)
1451			cf->len = can_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1452		else
1453			cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
1454
1455		if (sts & RCANFD_RFFDSTS_RFESI) {
1456			cf->flags |= CANFD_ESI;
1457			netdev_dbg(priv->ndev, "ESI Error\n");
1458		}
1459
1460		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1461			cf->can_id |= CAN_RTR_FLAG;
1462		} else {
1463			if (sts & RCANFD_RFFDSTS_RFBRS)
1464				cf->flags |= CANFD_BRS;
1465
1466			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0));
1467		}
1468	} else {
1469		cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
1470		if (id & RCANFD_RFID_RFRTR)
1471			cf->can_id |= CAN_RTR_FLAG;
1472		else
1473			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1474	}
1475
1476	/* Write 0xff to RFPC to increment the CPU-side
1477	 * pointer of the Rx FIFO
1478	 */
1479	rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff);
1480
1481	can_led_event(priv->ndev, CAN_LED_EVENT_RX);
1482
1483	stats->rx_bytes += cf->len;
1484	stats->rx_packets++;
1485	netif_receive_skb(skb);
1486}
1487
1488static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1489{
1490	struct rcar_canfd_channel *priv =
1491		container_of(napi, struct rcar_canfd_channel, napi);
1492	int num_pkts;
1493	u32 sts;
1494	u32 ch = priv->channel;
1495	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1496
1497	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1498		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
1499		/* Check FIFO empty condition */
1500		if (sts & RCANFD_RFSTS_RFEMP)
1501			break;
1502
1503		rcar_canfd_rx_pkt(priv);
1504
1505		/* Clear interrupt bit */
1506		if (sts & RCANFD_RFSTS_RFIF)
1507			rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
1508					 sts & ~RCANFD_RFSTS_RFIF);
1509	}
1510
1511	/* All packets processed */
1512	if (num_pkts < quota) {
1513		if (napi_complete_done(napi, num_pkts)) {
1514			/* Enable Rx FIFO interrupts */
1515			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx),
1516					   RCANFD_RFCC_RFIE);
1517		}
1518	}
1519	return num_pkts;
1520}
1521
1522static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1523{
1524	int err;
1525
1526	switch (mode) {
1527	case CAN_MODE_START:
1528		err = rcar_canfd_start(ndev);
1529		if (err)
1530			return err;
1531		netif_wake_queue(ndev);
1532		return 0;
1533	default:
1534		return -EOPNOTSUPP;
1535	}
1536}
1537
1538static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1539				       struct can_berr_counter *bec)
1540{
1541	struct rcar_canfd_channel *priv = netdev_priv(dev);
1542	u32 val, ch = priv->channel;
1543
1544	/* Peripheral clock is already enabled in probe */
1545	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1546	bec->txerr = RCANFD_CSTS_TECCNT(val);
1547	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1548	return 0;
1549}
1550
1551static const struct net_device_ops rcar_canfd_netdev_ops = {
1552	.ndo_open = rcar_canfd_open,
1553	.ndo_stop = rcar_canfd_close,
1554	.ndo_start_xmit = rcar_canfd_start_xmit,
1555	.ndo_change_mtu = can_change_mtu,
1556};
1557
1558static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1559				    u32 fcan_freq)
1560{
1561	struct platform_device *pdev = gpriv->pdev;
1562	struct rcar_canfd_channel *priv;
1563	struct net_device *ndev;
1564	int err = -ENODEV;
1565
1566	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1567	if (!ndev) {
1568		dev_err(&pdev->dev, "alloc_candev() failed\n");
1569		err = -ENOMEM;
1570		goto fail;
1571	}
1572	priv = netdev_priv(ndev);
1573
1574	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1575	ndev->flags |= IFF_ECHO;
1576	priv->ndev = ndev;
1577	priv->base = gpriv->base;
1578	priv->channel = ch;
1579	priv->can.clock.freq = fcan_freq;
1580	dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1581
1582	if (gpriv->fdmode) {
1583		priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1584		priv->can.data_bittiming_const =
1585			&rcar_canfd_data_bittiming_const;
1586
1587		/* Controller starts in CAN FD only mode */
1588		can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1589		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1590	} else {
1591		/* Controller starts in Classical CAN only mode */
1592		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1593		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1594	}
1595
1596	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1597	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1598	priv->gpriv = gpriv;
1599	SET_NETDEV_DEV(ndev, &pdev->dev);
1600
1601	netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll,
1602		       RCANFD_NAPI_WEIGHT);
1603	spin_lock_init(&priv->tx_lock);
1604	devm_can_led_init(ndev);
1605	gpriv->ch[priv->channel] = priv;
1606	err = register_candev(ndev);
1607	if (err) {
1608		dev_err(&pdev->dev,
1609			"register_candev() failed, error %d\n", err);
1610		goto fail_candev;
1611	}
1612	dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1613	return 0;
1614
1615fail_candev:
1616	netif_napi_del(&priv->napi);
1617	free_candev(ndev);
1618fail:
1619	return err;
1620}
1621
1622static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1623{
1624	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1625
1626	if (priv) {
1627		unregister_candev(priv->ndev);
1628		netif_napi_del(&priv->napi);
1629		free_candev(priv->ndev);
1630	}
1631}
1632
1633static int rcar_canfd_probe(struct platform_device *pdev)
1634{
1635	void __iomem *addr;
1636	u32 sts, ch, fcan_freq;
1637	struct rcar_canfd_global *gpriv;
1638	struct device_node *of_child;
1639	unsigned long channels_mask = 0;
1640	int err, ch_irq, g_irq;
1641	bool fdmode = true;			/* CAN FD only mode - default */
1642
1643	if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1644		fdmode = false;			/* Classical CAN only mode */
1645
1646	of_child = of_get_child_by_name(pdev->dev.of_node, "channel0");
1647	if (of_child && of_device_is_available(of_child))
1648		channels_mask |= BIT(0);	/* Channel 0 */
1649
1650	of_child = of_get_child_by_name(pdev->dev.of_node, "channel1");
1651	if (of_child && of_device_is_available(of_child))
1652		channels_mask |= BIT(1);	/* Channel 1 */
1653
1654	ch_irq = platform_get_irq(pdev, 0);
1655	if (ch_irq < 0) {
1656		err = ch_irq;
1657		goto fail_dev;
1658	}
1659
1660	g_irq = platform_get_irq(pdev, 1);
1661	if (g_irq < 0) {
1662		err = g_irq;
1663		goto fail_dev;
1664	}
1665
1666	/* Global controller context */
1667	gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1668	if (!gpriv) {
1669		err = -ENOMEM;
1670		goto fail_dev;
1671	}
1672	gpriv->pdev = pdev;
1673	gpriv->channels_mask = channels_mask;
1674	gpriv->fdmode = fdmode;
1675
1676	/* Peripheral clock */
1677	gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1678	if (IS_ERR(gpriv->clkp)) {
1679		err = PTR_ERR(gpriv->clkp);
1680		dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
1681			err);
1682		goto fail_dev;
1683	}
1684
1685	/* fCAN clock: Pick External clock. If not available fallback to
1686	 * CANFD clock
1687	 */
1688	gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1689	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1690		gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1691		if (IS_ERR(gpriv->can_clk)) {
1692			err = PTR_ERR(gpriv->can_clk);
1693			dev_err(&pdev->dev,
1694				"cannot get canfd clock, error %d\n", err);
1695			goto fail_dev;
1696		}
1697		gpriv->fcan = RCANFD_CANFDCLK;
1698
1699	} else {
1700		gpriv->fcan = RCANFD_EXTCLK;
1701	}
1702	fcan_freq = clk_get_rate(gpriv->can_clk);
1703
1704	if (gpriv->fcan == RCANFD_CANFDCLK)
1705		/* CANFD clock is further divided by (1/2) within the IP */
1706		fcan_freq /= 2;
1707
1708	addr = devm_platform_ioremap_resource(pdev, 0);
1709	if (IS_ERR(addr)) {
1710		err = PTR_ERR(addr);
1711		goto fail_dev;
1712	}
1713	gpriv->base = addr;
1714
1715	/* Request IRQ that's common for both channels */
1716	err = devm_request_irq(&pdev->dev, ch_irq,
1717			       rcar_canfd_channel_interrupt, 0,
1718			       "canfd.chn", gpriv);
1719	if (err) {
1720		dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1721			ch_irq, err);
1722		goto fail_dev;
1723	}
1724	err = devm_request_irq(&pdev->dev, g_irq,
1725			       rcar_canfd_global_interrupt, 0,
1726			       "canfd.gbl", gpriv);
1727	if (err) {
1728		dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1729			g_irq, err);
1730		goto fail_dev;
1731	}
1732
1733	/* Enable peripheral clock for register access */
1734	err = clk_prepare_enable(gpriv->clkp);
1735	if (err) {
1736		dev_err(&pdev->dev,
1737			"failed to enable peripheral clock, error %d\n", err);
1738		goto fail_dev;
1739	}
1740
1741	err = rcar_canfd_reset_controller(gpriv);
1742	if (err) {
1743		dev_err(&pdev->dev, "reset controller failed\n");
1744		goto fail_clk;
1745	}
1746
1747	/* Controller in Global reset & Channel reset mode */
1748	rcar_canfd_configure_controller(gpriv);
1749
1750	/* Configure per channel attributes */
1751	for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1752		/* Configure Channel's Rx fifo */
1753		rcar_canfd_configure_rx(gpriv, ch);
1754
1755		/* Configure Channel's Tx (Common) fifo */
1756		rcar_canfd_configure_tx(gpriv, ch);
1757
1758		/* Configure receive rules */
1759		rcar_canfd_configure_afl_rules(gpriv, ch);
1760	}
1761
1762	/* Configure common interrupts */
1763	rcar_canfd_enable_global_interrupts(gpriv);
1764
1765	/* Start Global operation mode */
1766	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
1767			      RCANFD_GCTR_GMDC_GOPM);
1768
1769	/* Verify mode change */
1770	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
1771				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
1772	if (err) {
1773		dev_err(&pdev->dev, "global operational mode failed\n");
1774		goto fail_mode;
1775	}
1776
1777	for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1778		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
1779		if (err)
1780			goto fail_channel;
1781	}
1782
1783	platform_set_drvdata(pdev, gpriv);
1784	dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
1785		 gpriv->fcan, gpriv->fdmode);
1786	return 0;
1787
1788fail_channel:
1789	for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
1790		rcar_canfd_channel_remove(gpriv, ch);
1791fail_mode:
1792	rcar_canfd_disable_global_interrupts(gpriv);
1793fail_clk:
1794	clk_disable_unprepare(gpriv->clkp);
1795fail_dev:
1796	return err;
1797}
1798
1799static int rcar_canfd_remove(struct platform_device *pdev)
1800{
1801	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
1802	u32 ch;
1803
1804	rcar_canfd_reset_controller(gpriv);
1805	rcar_canfd_disable_global_interrupts(gpriv);
1806
1807	for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1808		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
1809		rcar_canfd_channel_remove(gpriv, ch);
1810	}
1811
1812	/* Enter global sleep mode */
1813	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
1814	clk_disable_unprepare(gpriv->clkp);
1815	return 0;
1816}
1817
1818static int __maybe_unused rcar_canfd_suspend(struct device *dev)
1819{
1820	return 0;
1821}
1822
1823static int __maybe_unused rcar_canfd_resume(struct device *dev)
1824{
1825	return 0;
1826}
1827
1828static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
1829			 rcar_canfd_resume);
1830
1831static const struct of_device_id rcar_canfd_of_table[] = {
1832	{ .compatible = "renesas,rcar-gen3-canfd" },
1833	{ }
1834};
1835
1836MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
1837
1838static struct platform_driver rcar_canfd_driver = {
1839	.driver = {
1840		.name = RCANFD_DRV_NAME,
1841		.of_match_table = of_match_ptr(rcar_canfd_of_table),
1842		.pm = &rcar_canfd_pm_ops,
1843	},
1844	.probe = rcar_canfd_probe,
1845	.remove = rcar_canfd_remove,
1846};
1847
1848module_platform_driver(rcar_canfd_driver);
1849
1850MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
1851MODULE_LICENSE("GPL");
1852MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
1853MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
1854