1// SPDX-License-Identifier: GPL-2.0
2// CAN bus driver for Bosch M_CAN controller
3// Copyright (C) 2014 Freescale Semiconductor, Inc.
4//      Dong Aisheng <b29396@freescale.com>
5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7/* Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
10 */
11
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/netdevice.h>
17#include <linux/of.h>
18#include <linux/of_device.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/iopoll.h>
22#include <linux/can/dev.h>
23#include <linux/pinctrl/consumer.h>
24
25#include "m_can.h"
26
27/* registers definition */
28enum m_can_reg {
29	M_CAN_CREL	= 0x0,
30	M_CAN_ENDN	= 0x4,
31	M_CAN_CUST	= 0x8,
32	M_CAN_DBTP	= 0xc,
33	M_CAN_TEST	= 0x10,
34	M_CAN_RWD	= 0x14,
35	M_CAN_CCCR	= 0x18,
36	M_CAN_NBTP	= 0x1c,
37	M_CAN_TSCC	= 0x20,
38	M_CAN_TSCV	= 0x24,
39	M_CAN_TOCC	= 0x28,
40	M_CAN_TOCV	= 0x2c,
41	M_CAN_ECR	= 0x40,
42	M_CAN_PSR	= 0x44,
43/* TDCR Register only available for version >=3.1.x */
44	M_CAN_TDCR	= 0x48,
45	M_CAN_IR	= 0x50,
46	M_CAN_IE	= 0x54,
47	M_CAN_ILS	= 0x58,
48	M_CAN_ILE	= 0x5c,
49	M_CAN_GFC	= 0x80,
50	M_CAN_SIDFC	= 0x84,
51	M_CAN_XIDFC	= 0x88,
52	M_CAN_XIDAM	= 0x90,
53	M_CAN_HPMS	= 0x94,
54	M_CAN_NDAT1	= 0x98,
55	M_CAN_NDAT2	= 0x9c,
56	M_CAN_RXF0C	= 0xa0,
57	M_CAN_RXF0S	= 0xa4,
58	M_CAN_RXF0A	= 0xa8,
59	M_CAN_RXBC	= 0xac,
60	M_CAN_RXF1C	= 0xb0,
61	M_CAN_RXF1S	= 0xb4,
62	M_CAN_RXF1A	= 0xb8,
63	M_CAN_RXESC	= 0xbc,
64	M_CAN_TXBC	= 0xc0,
65	M_CAN_TXFQS	= 0xc4,
66	M_CAN_TXESC	= 0xc8,
67	M_CAN_TXBRP	= 0xcc,
68	M_CAN_TXBAR	= 0xd0,
69	M_CAN_TXBCR	= 0xd4,
70	M_CAN_TXBTO	= 0xd8,
71	M_CAN_TXBCF	= 0xdc,
72	M_CAN_TXBTIE	= 0xe0,
73	M_CAN_TXBCIE	= 0xe4,
74	M_CAN_TXEFC	= 0xf0,
75	M_CAN_TXEFS	= 0xf4,
76	M_CAN_TXEFA	= 0xf8,
77};
78
79/* napi related */
80#define M_CAN_NAPI_WEIGHT	64
81
82/* message ram configuration data length */
83#define MRAM_CFG_LEN	8
84
85/* Core Release Register (CREL) */
86#define CREL_REL_SHIFT		28
87#define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
88#define CREL_STEP_SHIFT		24
89#define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
90#define CREL_SUBSTEP_SHIFT	20
91#define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
92
93/* Data Bit Timing & Prescaler Register (DBTP) */
94#define DBTP_TDC		BIT(23)
95#define DBTP_DBRP_SHIFT		16
96#define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
97#define DBTP_DTSEG1_SHIFT	8
98#define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
99#define DBTP_DTSEG2_SHIFT	4
100#define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
101#define DBTP_DSJW_SHIFT		0
102#define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
103
104/* Transmitter Delay Compensation Register (TDCR) */
105#define TDCR_TDCO_SHIFT		8
106#define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
107#define TDCR_TDCF_SHIFT		0
108#define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
109
110/* Test Register (TEST) */
111#define TEST_LBCK		BIT(4)
112
113/* CC Control Register(CCCR) */
114#define CCCR_CMR_MASK		0x3
115#define CCCR_CMR_SHIFT		10
116#define CCCR_CMR_CANFD		0x1
117#define CCCR_CMR_CANFD_BRS	0x2
118#define CCCR_CMR_CAN		0x3
119#define CCCR_CME_MASK		0x3
120#define CCCR_CME_SHIFT		8
121#define CCCR_CME_CAN		0
122#define CCCR_CME_CANFD		0x1
123#define CCCR_CME_CANFD_BRS	0x2
124#define CCCR_TXP		BIT(14)
125#define CCCR_TEST		BIT(7)
126#define CCCR_DAR		BIT(6)
127#define CCCR_MON		BIT(5)
128#define CCCR_CSR		BIT(4)
129#define CCCR_CSA		BIT(3)
130#define CCCR_ASM		BIT(2)
131#define CCCR_CCE		BIT(1)
132#define CCCR_INIT		BIT(0)
133#define CCCR_CANFD		0x10
134/* for version >=3.1.x */
135#define CCCR_EFBI		BIT(13)
136#define CCCR_PXHD		BIT(12)
137#define CCCR_BRSE		BIT(9)
138#define CCCR_FDOE		BIT(8)
139/* only for version >=3.2.x */
140#define CCCR_NISO		BIT(15)
141
142/* Nominal Bit Timing & Prescaler Register (NBTP) */
143#define NBTP_NSJW_SHIFT		25
144#define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
145#define NBTP_NBRP_SHIFT		16
146#define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
147#define NBTP_NTSEG1_SHIFT	8
148#define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
149#define NBTP_NTSEG2_SHIFT	0
150#define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
151
152/* Error Counter Register(ECR) */
153#define ECR_RP			BIT(15)
154#define ECR_REC_SHIFT		8
155#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
156#define ECR_TEC_SHIFT		0
157#define ECR_TEC_MASK		0xff
158
159/* Protocol Status Register(PSR) */
160#define PSR_BO		BIT(7)
161#define PSR_EW		BIT(6)
162#define PSR_EP		BIT(5)
163#define PSR_LEC_MASK	0x7
164
165/* Interrupt Register(IR) */
166#define IR_ALL_INT	0xffffffff
167
168/* Renamed bits for versions > 3.1.x */
169#define IR_ARA		BIT(29)
170#define IR_PED		BIT(28)
171#define IR_PEA		BIT(27)
172
173/* Bits for version 3.0.x */
174#define IR_STE		BIT(31)
175#define IR_FOE		BIT(30)
176#define IR_ACKE		BIT(29)
177#define IR_BE		BIT(28)
178#define IR_CRCE		BIT(27)
179#define IR_WDI		BIT(26)
180#define IR_BO		BIT(25)
181#define IR_EW		BIT(24)
182#define IR_EP		BIT(23)
183#define IR_ELO		BIT(22)
184#define IR_BEU		BIT(21)
185#define IR_BEC		BIT(20)
186#define IR_DRX		BIT(19)
187#define IR_TOO		BIT(18)
188#define IR_MRAF		BIT(17)
189#define IR_TSW		BIT(16)
190#define IR_TEFL		BIT(15)
191#define IR_TEFF		BIT(14)
192#define IR_TEFW		BIT(13)
193#define IR_TEFN		BIT(12)
194#define IR_TFE		BIT(11)
195#define IR_TCF		BIT(10)
196#define IR_TC		BIT(9)
197#define IR_HPM		BIT(8)
198#define IR_RF1L		BIT(7)
199#define IR_RF1F		BIT(6)
200#define IR_RF1W		BIT(5)
201#define IR_RF1N		BIT(4)
202#define IR_RF0L		BIT(3)
203#define IR_RF0F		BIT(2)
204#define IR_RF0W		BIT(1)
205#define IR_RF0N		BIT(0)
206#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
207
208/* Interrupts for version 3.0.x */
209#define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
210#define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
211			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
212			 IR_RF0L)
213#define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
214/* Interrupts for version >= 3.1.x */
215#define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
216#define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
217			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
218			 IR_RF0L)
219#define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
220
221/* Interrupt Line Select (ILS) */
222#define ILS_ALL_INT0	0x0
223#define ILS_ALL_INT1	0xFFFFFFFF
224
225/* Interrupt Line Enable (ILE) */
226#define ILE_EINT1	BIT(1)
227#define ILE_EINT0	BIT(0)
228
229/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
230#define RXFC_FWM_SHIFT	24
231#define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
232#define RXFC_FS_SHIFT	16
233#define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
234
235/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
236#define RXFS_RFL	BIT(25)
237#define RXFS_FF		BIT(24)
238#define RXFS_FPI_SHIFT	16
239#define RXFS_FPI_MASK	0x3f0000
240#define RXFS_FGI_SHIFT	8
241#define RXFS_FGI_MASK	0x3f00
242#define RXFS_FFL_MASK	0x7f
243
244/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
245#define M_CAN_RXESC_8BYTES	0x0
246#define M_CAN_RXESC_64BYTES	0x777
247
248/* Tx Buffer Configuration(TXBC) */
249#define TXBC_NDTB_SHIFT		16
250#define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
251#define TXBC_TFQS_SHIFT		24
252#define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
253
254/* Tx FIFO/Queue Status (TXFQS) */
255#define TXFQS_TFQF		BIT(21)
256#define TXFQS_TFQPI_SHIFT	16
257#define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
258#define TXFQS_TFGI_SHIFT	8
259#define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
260#define TXFQS_TFFL_SHIFT	0
261#define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
262
263/* Tx Buffer Element Size Configuration(TXESC) */
264#define TXESC_TBDS_8BYTES	0x0
265#define TXESC_TBDS_64BYTES	0x7
266
267/* Tx Event FIFO Configuration (TXEFC) */
268#define TXEFC_EFS_SHIFT		16
269#define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
270
271/* Tx Event FIFO Status (TXEFS) */
272#define TXEFS_TEFL		BIT(25)
273#define TXEFS_EFF		BIT(24)
274#define TXEFS_EFGI_SHIFT	8
275#define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
276#define TXEFS_EFFL_SHIFT	0
277#define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
278
279/* Tx Event FIFO Acknowledge (TXEFA) */
280#define TXEFA_EFAI_SHIFT	0
281#define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
282
283/* Message RAM Configuration (in bytes) */
284#define SIDF_ELEMENT_SIZE	4
285#define XIDF_ELEMENT_SIZE	8
286#define RXF0_ELEMENT_SIZE	72
287#define RXF1_ELEMENT_SIZE	72
288#define RXB_ELEMENT_SIZE	72
289#define TXE_ELEMENT_SIZE	8
290#define TXB_ELEMENT_SIZE	72
291
292/* Message RAM Elements */
293#define M_CAN_FIFO_ID		0x0
294#define M_CAN_FIFO_DLC		0x4
295#define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
296
297/* Rx Buffer Element */
298/* R0 */
299#define RX_BUF_ESI		BIT(31)
300#define RX_BUF_XTD		BIT(30)
301#define RX_BUF_RTR		BIT(29)
302/* R1 */
303#define RX_BUF_ANMF		BIT(31)
304#define RX_BUF_FDF		BIT(21)
305#define RX_BUF_BRS		BIT(20)
306
307/* Tx Buffer Element */
308/* T0 */
309#define TX_BUF_ESI		BIT(31)
310#define TX_BUF_XTD		BIT(30)
311#define TX_BUF_RTR		BIT(29)
312/* T1 */
313#define TX_BUF_EFC		BIT(23)
314#define TX_BUF_FDF		BIT(21)
315#define TX_BUF_BRS		BIT(20)
316#define TX_BUF_MM_SHIFT		24
317#define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
318
319/* Tx event FIFO Element */
320/* E1 */
321#define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
322#define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
323
324static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
325{
326	return cdev->ops->read_reg(cdev, reg);
327}
328
329static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
330			       u32 val)
331{
332	cdev->ops->write_reg(cdev, reg, val);
333}
334
335static u32 m_can_fifo_read(struct m_can_classdev *cdev,
336			   u32 fgi, unsigned int offset)
337{
338	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
339			  offset;
340
341	return cdev->ops->read_fifo(cdev, addr_offset);
342}
343
344static void m_can_fifo_write(struct m_can_classdev *cdev,
345			     u32 fpi, unsigned int offset, u32 val)
346{
347	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
348			  offset;
349
350	cdev->ops->write_fifo(cdev, addr_offset, val);
351}
352
353static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
354					   u32 fpi, u32 val)
355{
356	cdev->ops->write_fifo(cdev, fpi, val);
357}
358
359static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
360{
361	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
362			  offset;
363
364	return cdev->ops->read_fifo(cdev, addr_offset);
365}
366
367static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
368{
369		return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
370}
371
372void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
373{
374	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
375	u32 timeout = 10;
376	u32 val = 0;
377
378	/* Clear the Clock stop request if it was set */
379	if (cccr & CCCR_CSR)
380		cccr &= ~CCCR_CSR;
381
382	if (enable) {
383		/* enable m_can configuration */
384		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
385		udelay(5);
386		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
387		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
388	} else {
389		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
390	}
391
392	/* there's a delay for module initialization */
393	if (enable)
394		val = CCCR_INIT | CCCR_CCE;
395
396	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
397		if (timeout == 0) {
398			netdev_warn(cdev->net, "Failed to init module\n");
399			return;
400		}
401		timeout--;
402		udelay(1);
403	}
404}
405
406static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
407{
408	/* Only interrupt line 0 is used in this driver */
409	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
410}
411
412static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
413{
414	m_can_write(cdev, M_CAN_ILE, 0x0);
415}
416
417static void m_can_clean(struct net_device *net)
418{
419	struct m_can_classdev *cdev = netdev_priv(net);
420
421	if (cdev->tx_skb) {
422		int putidx = 0;
423
424		net->stats.tx_errors++;
425		if (cdev->version > 30)
426			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
427				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
428
429		can_free_echo_skb(cdev->net, putidx);
430		cdev->tx_skb = NULL;
431	}
432}
433
434static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
435{
436	struct net_device_stats *stats = &dev->stats;
437	struct m_can_classdev *cdev = netdev_priv(dev);
438	struct canfd_frame *cf;
439	struct sk_buff *skb;
440	u32 id, fgi, dlc;
441	int i;
442
443	/* calculate the fifo get index for where to read data */
444	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
445	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
446	if (dlc & RX_BUF_FDF)
447		skb = alloc_canfd_skb(dev, &cf);
448	else
449		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
450	if (!skb) {
451		stats->rx_dropped++;
452		return;
453	}
454
455	if (dlc & RX_BUF_FDF)
456		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
457	else
458		cf->len = get_can_dlc((dlc >> 16) & 0x0F);
459
460	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
461	if (id & RX_BUF_XTD)
462		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
463	else
464		cf->can_id = (id >> 18) & CAN_SFF_MASK;
465
466	if (id & RX_BUF_ESI) {
467		cf->flags |= CANFD_ESI;
468		netdev_dbg(dev, "ESI Error\n");
469	}
470
471	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
472		cf->can_id |= CAN_RTR_FLAG;
473	} else {
474		if (dlc & RX_BUF_BRS)
475			cf->flags |= CANFD_BRS;
476
477		for (i = 0; i < cf->len; i += 4)
478			*(u32 *)(cf->data + i) =
479				m_can_fifo_read(cdev, fgi,
480						M_CAN_FIFO_DATA(i / 4));
481	}
482
483	/* acknowledge rx fifo 0 */
484	m_can_write(cdev, M_CAN_RXF0A, fgi);
485
486	stats->rx_packets++;
487	stats->rx_bytes += cf->len;
488
489	netif_receive_skb(skb);
490}
491
492static int m_can_do_rx_poll(struct net_device *dev, int quota)
493{
494	struct m_can_classdev *cdev = netdev_priv(dev);
495	u32 pkts = 0;
496	u32 rxfs;
497
498	rxfs = m_can_read(cdev, M_CAN_RXF0S);
499	if (!(rxfs & RXFS_FFL_MASK)) {
500		netdev_dbg(dev, "no messages in fifo0\n");
501		return 0;
502	}
503
504	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
505		m_can_read_fifo(dev, rxfs);
506
507		quota--;
508		pkts++;
509		rxfs = m_can_read(cdev, M_CAN_RXF0S);
510	}
511
512	if (pkts)
513		can_led_event(dev, CAN_LED_EVENT_RX);
514
515	return pkts;
516}
517
518static int m_can_handle_lost_msg(struct net_device *dev)
519{
520	struct net_device_stats *stats = &dev->stats;
521	struct sk_buff *skb;
522	struct can_frame *frame;
523
524	netdev_err(dev, "msg lost in rxf0\n");
525
526	stats->rx_errors++;
527	stats->rx_over_errors++;
528
529	skb = alloc_can_err_skb(dev, &frame);
530	if (unlikely(!skb))
531		return 0;
532
533	frame->can_id |= CAN_ERR_CRTL;
534	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
535
536	netif_receive_skb(skb);
537
538	return 1;
539}
540
541static int m_can_handle_lec_err(struct net_device *dev,
542				enum m_can_lec_type lec_type)
543{
544	struct m_can_classdev *cdev = netdev_priv(dev);
545	struct net_device_stats *stats = &dev->stats;
546	struct can_frame *cf;
547	struct sk_buff *skb;
548
549	cdev->can.can_stats.bus_error++;
550	stats->rx_errors++;
551
552	/* propagate the error condition to the CAN stack */
553	skb = alloc_can_err_skb(dev, &cf);
554	if (unlikely(!skb))
555		return 0;
556
557	/* check for 'last error code' which tells us the
558	 * type of the last error to occur on the CAN bus
559	 */
560	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
561
562	switch (lec_type) {
563	case LEC_STUFF_ERROR:
564		netdev_dbg(dev, "stuff error\n");
565		cf->data[2] |= CAN_ERR_PROT_STUFF;
566		break;
567	case LEC_FORM_ERROR:
568		netdev_dbg(dev, "form error\n");
569		cf->data[2] |= CAN_ERR_PROT_FORM;
570		break;
571	case LEC_ACK_ERROR:
572		netdev_dbg(dev, "ack error\n");
573		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
574		break;
575	case LEC_BIT1_ERROR:
576		netdev_dbg(dev, "bit1 error\n");
577		cf->data[2] |= CAN_ERR_PROT_BIT1;
578		break;
579	case LEC_BIT0_ERROR:
580		netdev_dbg(dev, "bit0 error\n");
581		cf->data[2] |= CAN_ERR_PROT_BIT0;
582		break;
583	case LEC_CRC_ERROR:
584		netdev_dbg(dev, "CRC error\n");
585		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
586		break;
587	default:
588		break;
589	}
590
591	stats->rx_packets++;
592	stats->rx_bytes += cf->can_dlc;
593	netif_receive_skb(skb);
594
595	return 1;
596}
597
598static int __m_can_get_berr_counter(const struct net_device *dev,
599				    struct can_berr_counter *bec)
600{
601	struct m_can_classdev *cdev = netdev_priv(dev);
602	unsigned int ecr;
603
604	ecr = m_can_read(cdev, M_CAN_ECR);
605	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
606	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
607
608	return 0;
609}
610
611static int m_can_clk_start(struct m_can_classdev *cdev)
612{
613	int err;
614
615	if (cdev->pm_clock_support == 0)
616		return 0;
617
618	err = pm_runtime_get_sync(cdev->dev);
619	if (err < 0) {
620		pm_runtime_put_noidle(cdev->dev);
621		return err;
622	}
623
624	return 0;
625}
626
627static void m_can_clk_stop(struct m_can_classdev *cdev)
628{
629	if (cdev->pm_clock_support)
630		pm_runtime_put_sync(cdev->dev);
631}
632
633static int m_can_get_berr_counter(const struct net_device *dev,
634				  struct can_berr_counter *bec)
635{
636	struct m_can_classdev *cdev = netdev_priv(dev);
637	int err;
638
639	err = m_can_clk_start(cdev);
640	if (err)
641		return err;
642
643	__m_can_get_berr_counter(dev, bec);
644
645	m_can_clk_stop(cdev);
646
647	return 0;
648}
649
650static int m_can_handle_state_change(struct net_device *dev,
651				     enum can_state new_state)
652{
653	struct m_can_classdev *cdev = netdev_priv(dev);
654	struct net_device_stats *stats = &dev->stats;
655	struct can_frame *cf;
656	struct sk_buff *skb;
657	struct can_berr_counter bec;
658	unsigned int ecr;
659
660	switch (new_state) {
661	case CAN_STATE_ERROR_WARNING:
662		/* error warning state */
663		cdev->can.can_stats.error_warning++;
664		cdev->can.state = CAN_STATE_ERROR_WARNING;
665		break;
666	case CAN_STATE_ERROR_PASSIVE:
667		/* error passive state */
668		cdev->can.can_stats.error_passive++;
669		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
670		break;
671	case CAN_STATE_BUS_OFF:
672		/* bus-off state */
673		cdev->can.state = CAN_STATE_BUS_OFF;
674		m_can_disable_all_interrupts(cdev);
675		cdev->can.can_stats.bus_off++;
676		can_bus_off(dev);
677		break;
678	default:
679		break;
680	}
681
682	/* propagate the error condition to the CAN stack */
683	skb = alloc_can_err_skb(dev, &cf);
684	if (unlikely(!skb))
685		return 0;
686
687	__m_can_get_berr_counter(dev, &bec);
688
689	switch (new_state) {
690	case CAN_STATE_ERROR_WARNING:
691		/* error warning state */
692		cf->can_id |= CAN_ERR_CRTL;
693		cf->data[1] = (bec.txerr > bec.rxerr) ?
694			CAN_ERR_CRTL_TX_WARNING :
695			CAN_ERR_CRTL_RX_WARNING;
696		cf->data[6] = bec.txerr;
697		cf->data[7] = bec.rxerr;
698		break;
699	case CAN_STATE_ERROR_PASSIVE:
700		/* error passive state */
701		cf->can_id |= CAN_ERR_CRTL;
702		ecr = m_can_read(cdev, M_CAN_ECR);
703		if (ecr & ECR_RP)
704			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
705		if (bec.txerr > 127)
706			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
707		cf->data[6] = bec.txerr;
708		cf->data[7] = bec.rxerr;
709		break;
710	case CAN_STATE_BUS_OFF:
711		/* bus-off state */
712		cf->can_id |= CAN_ERR_BUSOFF;
713		break;
714	default:
715		break;
716	}
717
718	stats->rx_packets++;
719	stats->rx_bytes += cf->can_dlc;
720	netif_receive_skb(skb);
721
722	return 1;
723}
724
725static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
726{
727	struct m_can_classdev *cdev = netdev_priv(dev);
728	int work_done = 0;
729
730	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
731		netdev_dbg(dev, "entered error warning state\n");
732		work_done += m_can_handle_state_change(dev,
733						       CAN_STATE_ERROR_WARNING);
734	}
735
736	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
737		netdev_dbg(dev, "entered error passive state\n");
738		work_done += m_can_handle_state_change(dev,
739						       CAN_STATE_ERROR_PASSIVE);
740	}
741
742	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
743		netdev_dbg(dev, "entered error bus off state\n");
744		work_done += m_can_handle_state_change(dev,
745						       CAN_STATE_BUS_OFF);
746	}
747
748	return work_done;
749}
750
751static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
752{
753	if (irqstatus & IR_WDI)
754		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
755	if (irqstatus & IR_BEU)
756		netdev_err(dev, "Bit Error Uncorrected\n");
757	if (irqstatus & IR_BEC)
758		netdev_err(dev, "Bit Error Corrected\n");
759	if (irqstatus & IR_TOO)
760		netdev_err(dev, "Timeout reached\n");
761	if (irqstatus & IR_MRAF)
762		netdev_err(dev, "Message RAM access failure occurred\n");
763}
764
765static inline bool is_lec_err(u32 psr)
766{
767	psr &= LEC_UNUSED;
768
769	return psr && (psr != LEC_UNUSED);
770}
771
772static inline bool m_can_is_protocol_err(u32 irqstatus)
773{
774	return irqstatus & IR_ERR_LEC_31X;
775}
776
777static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
778{
779	struct net_device_stats *stats = &dev->stats;
780	struct m_can_classdev *cdev = netdev_priv(dev);
781	struct can_frame *cf;
782	struct sk_buff *skb;
783
784	/* propagate the error condition to the CAN stack */
785	skb = alloc_can_err_skb(dev, &cf);
786
787	/* update tx error stats since there is protocol error */
788	stats->tx_errors++;
789
790	/* update arbitration lost status */
791	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
792		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
793		cdev->can.can_stats.arbitration_lost++;
794		if (skb) {
795			cf->can_id |= CAN_ERR_LOSTARB;
796			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
797		}
798	}
799
800	if (unlikely(!skb)) {
801		netdev_dbg(dev, "allocation of skb failed\n");
802		return 0;
803	}
804	netif_receive_skb(skb);
805
806	return 1;
807}
808
809static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
810				   u32 psr)
811{
812	struct m_can_classdev *cdev = netdev_priv(dev);
813	int work_done = 0;
814
815	if (irqstatus & IR_RF0L)
816		work_done += m_can_handle_lost_msg(dev);
817
818	/* handle lec errors on the bus */
819	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
820	    is_lec_err(psr))
821		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
822
823	/* handle protocol errors in arbitration phase */
824	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
825	    m_can_is_protocol_err(irqstatus))
826		work_done += m_can_handle_protocol_error(dev, irqstatus);
827
828	/* other unproccessed error interrupts */
829	m_can_handle_other_err(dev, irqstatus);
830
831	return work_done;
832}
833
834static int m_can_rx_handler(struct net_device *dev, int quota)
835{
836	struct m_can_classdev *cdev = netdev_priv(dev);
837	int work_done = 0;
838	u32 irqstatus, psr;
839
840	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
841	if (!irqstatus)
842		goto end;
843
844	/* Errata workaround for issue "Needless activation of MRAF irq"
845	 * During frame reception while the MCAN is in Error Passive state
846	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
847	 * it may happen that MCAN_IR.MRAF is set although there was no
848	 * Message RAM access failure.
849	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
850	 * The Message RAM Access Failure interrupt routine needs to check
851	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
852	 * In this case, reset MCAN_IR.MRAF. No further action is required.
853	 */
854	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
855	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
856		struct can_berr_counter bec;
857
858		__m_can_get_berr_counter(dev, &bec);
859		if (bec.rxerr == 127) {
860			m_can_write(cdev, M_CAN_IR, IR_MRAF);
861			irqstatus &= ~IR_MRAF;
862		}
863	}
864
865	psr = m_can_read(cdev, M_CAN_PSR);
866
867	if (irqstatus & IR_ERR_STATE)
868		work_done += m_can_handle_state_errors(dev, psr);
869
870	if (irqstatus & IR_ERR_BUS_30X)
871		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
872
873	if (irqstatus & IR_RF0N)
874		work_done += m_can_do_rx_poll(dev, (quota - work_done));
875end:
876	return work_done;
877}
878
879static int m_can_rx_peripheral(struct net_device *dev)
880{
881	struct m_can_classdev *cdev = netdev_priv(dev);
882
883	m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT);
884
885	m_can_enable_all_interrupts(cdev);
886
887	return 0;
888}
889
890static int m_can_poll(struct napi_struct *napi, int quota)
891{
892	struct net_device *dev = napi->dev;
893	struct m_can_classdev *cdev = netdev_priv(dev);
894	int work_done;
895
896	work_done = m_can_rx_handler(dev, quota);
897	if (work_done < quota) {
898		napi_complete_done(napi, work_done);
899		m_can_enable_all_interrupts(cdev);
900	}
901
902	return work_done;
903}
904
905static void m_can_echo_tx_event(struct net_device *dev)
906{
907	u32 txe_count = 0;
908	u32 m_can_txefs;
909	u32 fgi = 0;
910	int i = 0;
911	unsigned int msg_mark;
912
913	struct m_can_classdev *cdev = netdev_priv(dev);
914	struct net_device_stats *stats = &dev->stats;
915
916	/* read tx event fifo status */
917	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
918
919	/* Get Tx Event fifo element count */
920	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
921			>> TXEFS_EFFL_SHIFT;
922
923	/* Get and process all sent elements */
924	for (i = 0; i < txe_count; i++) {
925		/* retrieve get index */
926		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
927			>> TXEFS_EFGI_SHIFT;
928
929		/* get message marker */
930		msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
931			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
932
933		/* ack txe element */
934		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
935						(fgi << TXEFA_EFAI_SHIFT)));
936
937		/* update stats */
938		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
939		stats->tx_packets++;
940	}
941}
942
943static irqreturn_t m_can_isr(int irq, void *dev_id)
944{
945	struct net_device *dev = (struct net_device *)dev_id;
946	struct m_can_classdev *cdev = netdev_priv(dev);
947	struct net_device_stats *stats = &dev->stats;
948	u32 ir;
949
950	if (pm_runtime_suspended(cdev->dev))
951		return IRQ_NONE;
952	ir = m_can_read(cdev, M_CAN_IR);
953	if (!ir)
954		return IRQ_NONE;
955
956	/* ACK all irqs */
957	if (ir & IR_ALL_INT)
958		m_can_write(cdev, M_CAN_IR, ir);
959
960	if (cdev->ops->clear_interrupts)
961		cdev->ops->clear_interrupts(cdev);
962
963	/* schedule NAPI in case of
964	 * - rx IRQ
965	 * - state change IRQ
966	 * - bus error IRQ and bus error reporting
967	 */
968	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
969		cdev->irqstatus = ir;
970		m_can_disable_all_interrupts(cdev);
971		if (!cdev->is_peripheral)
972			napi_schedule(&cdev->napi);
973		else
974			m_can_rx_peripheral(dev);
975	}
976
977	if (cdev->version == 30) {
978		if (ir & IR_TC) {
979			/* Transmission Complete Interrupt*/
980			stats->tx_bytes += can_get_echo_skb(dev, 0);
981			stats->tx_packets++;
982			can_led_event(dev, CAN_LED_EVENT_TX);
983			netif_wake_queue(dev);
984		}
985	} else  {
986		if (ir & IR_TEFN) {
987			/* New TX FIFO Element arrived */
988			m_can_echo_tx_event(dev);
989			can_led_event(dev, CAN_LED_EVENT_TX);
990			if (netif_queue_stopped(dev) &&
991			    !m_can_tx_fifo_full(cdev))
992				netif_wake_queue(dev);
993		}
994	}
995
996	return IRQ_HANDLED;
997}
998
999static const struct can_bittiming_const m_can_bittiming_const_30X = {
1000	.name = KBUILD_MODNAME,
1001	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1002	.tseg1_max = 64,
1003	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1004	.tseg2_max = 16,
1005	.sjw_max = 16,
1006	.brp_min = 1,
1007	.brp_max = 1024,
1008	.brp_inc = 1,
1009};
1010
1011static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1012	.name = KBUILD_MODNAME,
1013	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1014	.tseg1_max = 16,
1015	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1016	.tseg2_max = 8,
1017	.sjw_max = 4,
1018	.brp_min = 1,
1019	.brp_max = 32,
1020	.brp_inc = 1,
1021};
1022
1023static const struct can_bittiming_const m_can_bittiming_const_31X = {
1024	.name = KBUILD_MODNAME,
1025	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1026	.tseg1_max = 256,
1027	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1028	.tseg2_max = 128,
1029	.sjw_max = 128,
1030	.brp_min = 1,
1031	.brp_max = 512,
1032	.brp_inc = 1,
1033};
1034
1035static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1036	.name = KBUILD_MODNAME,
1037	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1038	.tseg1_max = 32,
1039	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1040	.tseg2_max = 16,
1041	.sjw_max = 16,
1042	.brp_min = 1,
1043	.brp_max = 32,
1044	.brp_inc = 1,
1045};
1046
1047static int m_can_set_bittiming(struct net_device *dev)
1048{
1049	struct m_can_classdev *cdev = netdev_priv(dev);
1050	const struct can_bittiming *bt = &cdev->can.bittiming;
1051	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1052	u16 brp, sjw, tseg1, tseg2;
1053	u32 reg_btp;
1054
1055	brp = bt->brp - 1;
1056	sjw = bt->sjw - 1;
1057	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1058	tseg2 = bt->phase_seg2 - 1;
1059	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1060		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1061	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1062
1063	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1064		reg_btp = 0;
1065		brp = dbt->brp - 1;
1066		sjw = dbt->sjw - 1;
1067		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1068		tseg2 = dbt->phase_seg2 - 1;
1069
1070		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1071		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1072		 * paper presented at the International CAN Conference 2013
1073		 */
1074		if (dbt->bitrate > 2500000) {
1075			u32 tdco, ssp;
1076
1077			/* Use the same value of secondary sampling point
1078			 * as the data sampling point
1079			 */
1080			ssp = dbt->sample_point;
1081
1082			/* Equation based on Bosch's M_CAN User Manual's
1083			 * Transmitter Delay Compensation Section
1084			 */
1085			tdco = (cdev->can.clock.freq / 1000) *
1086			       ssp / dbt->bitrate;
1087
1088			/* Max valid TDCO value is 127 */
1089			if (tdco > 127) {
1090				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1091					    tdco);
1092				tdco = 127;
1093			}
1094
1095			reg_btp |= DBTP_TDC;
1096			m_can_write(cdev, M_CAN_TDCR,
1097				    tdco << TDCR_TDCO_SHIFT);
1098		}
1099
1100		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1101			   (sjw << DBTP_DSJW_SHIFT) |
1102			   (tseg1 << DBTP_DTSEG1_SHIFT) |
1103			   (tseg2 << DBTP_DTSEG2_SHIFT);
1104
1105		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1106	}
1107
1108	return 0;
1109}
1110
1111/* Configure M_CAN chip:
1112 * - set rx buffer/fifo element size
1113 * - configure rx fifo
1114 * - accept non-matching frame into fifo 0
1115 * - configure tx buffer
1116 *		- >= v3.1.x: TX FIFO is used
1117 * - configure mode
1118 * - setup bittiming
1119 */
1120static void m_can_chip_config(struct net_device *dev)
1121{
1122	struct m_can_classdev *cdev = netdev_priv(dev);
1123	u32 cccr, test;
1124
1125	m_can_config_endisable(cdev, true);
1126
1127	/* RX Buffer/FIFO Element Size 64 bytes data field */
1128	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1129
1130	/* Accept Non-matching Frames Into FIFO 0 */
1131	m_can_write(cdev, M_CAN_GFC, 0x0);
1132
1133	if (cdev->version == 30) {
1134		/* only support one Tx Buffer currently */
1135		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1136				cdev->mcfg[MRAM_TXB].off);
1137	} else {
1138		/* TX FIFO is used for newer IP Core versions */
1139		m_can_write(cdev, M_CAN_TXBC,
1140			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1141			    (cdev->mcfg[MRAM_TXB].off));
1142	}
1143
1144	/* support 64 bytes payload */
1145	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1146
1147	/* TX Event FIFO */
1148	if (cdev->version == 30) {
1149		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1150				cdev->mcfg[MRAM_TXE].off);
1151	} else {
1152		/* Full TX Event FIFO is used */
1153		m_can_write(cdev, M_CAN_TXEFC,
1154			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1155			     & TXEFC_EFS_MASK) |
1156			    cdev->mcfg[MRAM_TXE].off);
1157	}
1158
1159	/* rx fifo configuration, blocking mode, fifo size 1 */
1160	m_can_write(cdev, M_CAN_RXF0C,
1161		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1162		     cdev->mcfg[MRAM_RXF0].off);
1163
1164	m_can_write(cdev, M_CAN_RXF1C,
1165		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1166		     cdev->mcfg[MRAM_RXF1].off);
1167
1168	cccr = m_can_read(cdev, M_CAN_CCCR);
1169	test = m_can_read(cdev, M_CAN_TEST);
1170	test &= ~TEST_LBCK;
1171	if (cdev->version == 30) {
1172	/* Version 3.0.x */
1173
1174		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1175			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1176			(CCCR_CME_MASK << CCCR_CME_SHIFT));
1177
1178		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1179			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1180
1181	} else {
1182	/* Version 3.1.x or 3.2.x */
1183		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1184			  CCCR_NISO | CCCR_DAR);
1185
1186		/* Only 3.2.x has NISO Bit implemented */
1187		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1188			cccr |= CCCR_NISO;
1189
1190		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1191			cccr |= (CCCR_BRSE | CCCR_FDOE);
1192	}
1193
1194	/* Loopback Mode */
1195	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1196		cccr |= CCCR_TEST | CCCR_MON;
1197		test |= TEST_LBCK;
1198	}
1199
1200	/* Enable Monitoring (all versions) */
1201	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1202		cccr |= CCCR_MON;
1203
1204	/* Disable Auto Retransmission (all versions) */
1205	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1206		cccr |= CCCR_DAR;
1207
1208	/* Write config */
1209	m_can_write(cdev, M_CAN_CCCR, cccr);
1210	m_can_write(cdev, M_CAN_TEST, test);
1211
1212	/* Enable interrupts */
1213	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1214	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1215		if (cdev->version == 30)
1216			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1217				    ~(IR_ERR_LEC_30X));
1218		else
1219			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1220				    ~(IR_ERR_LEC_31X));
1221	else
1222		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1223
1224	/* route all interrupts to INT0 */
1225	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1226
1227	/* set bittiming params */
1228	m_can_set_bittiming(dev);
1229
1230	m_can_config_endisable(cdev, false);
1231
1232	if (cdev->ops->init)
1233		cdev->ops->init(cdev);
1234}
1235
1236static void m_can_start(struct net_device *dev)
1237{
1238	struct m_can_classdev *cdev = netdev_priv(dev);
1239
1240	/* basic m_can configuration */
1241	m_can_chip_config(dev);
1242
1243	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1244
1245	m_can_enable_all_interrupts(cdev);
1246}
1247
1248static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1249{
1250	switch (mode) {
1251	case CAN_MODE_START:
1252		m_can_clean(dev);
1253		m_can_start(dev);
1254		netif_wake_queue(dev);
1255		break;
1256	default:
1257		return -EOPNOTSUPP;
1258	}
1259
1260	return 0;
1261}
1262
1263/* Checks core release number of M_CAN
1264 * returns 0 if an unsupported device is detected
1265 * else it returns the release and step coded as:
1266 * return value = 10 * <release> + 1 * <step>
1267 */
1268static int m_can_check_core_release(struct m_can_classdev *cdev)
1269{
1270	u32 crel_reg;
1271	u8 rel;
1272	u8 step;
1273	int res;
1274
1275	/* Read Core Release Version and split into version number
1276	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1277	 */
1278	crel_reg = m_can_read(cdev, M_CAN_CREL);
1279	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1280	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1281
1282	if (rel == 3) {
1283		/* M_CAN v3.x.y: create return value */
1284		res = 30 + step;
1285	} else {
1286		/* Unsupported M_CAN version */
1287		res = 0;
1288	}
1289
1290	return res;
1291}
1292
1293/* Selectable Non ISO support only in version 3.2.x
1294 * This function checks if the bit is writable.
1295 */
1296static bool m_can_niso_supported(struct m_can_classdev *cdev)
1297{
1298	u32 cccr_reg, cccr_poll = 0;
1299	int niso_timeout = -ETIMEDOUT;
1300	int i;
1301
1302	m_can_config_endisable(cdev, true);
1303	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1304	cccr_reg |= CCCR_NISO;
1305	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1306
1307	for (i = 0; i <= 10; i++) {
1308		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1309		if (cccr_poll == cccr_reg) {
1310			niso_timeout = 0;
1311			break;
1312		}
1313
1314		usleep_range(1, 5);
1315	}
1316
1317	/* Clear NISO */
1318	cccr_reg &= ~(CCCR_NISO);
1319	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1320
1321	m_can_config_endisable(cdev, false);
1322
1323	/* return false if time out (-ETIMEDOUT), else return true */
1324	return !niso_timeout;
1325}
1326
1327static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1328{
1329	struct net_device *dev = m_can_dev->net;
1330	int m_can_version;
1331
1332	m_can_version = m_can_check_core_release(m_can_dev);
1333	/* return if unsupported version */
1334	if (!m_can_version) {
1335		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1336			m_can_version);
1337		return -EINVAL;
1338	}
1339
1340	if (!m_can_dev->is_peripheral)
1341		netif_napi_add(dev, &m_can_dev->napi,
1342			       m_can_poll, M_CAN_NAPI_WEIGHT);
1343
1344	/* Shared properties of all M_CAN versions */
1345	m_can_dev->version = m_can_version;
1346	m_can_dev->can.do_set_mode = m_can_set_mode;
1347	m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1348
1349	/* Set M_CAN supported operations */
1350	m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1351					CAN_CTRLMODE_LISTENONLY |
1352					CAN_CTRLMODE_BERR_REPORTING |
1353					CAN_CTRLMODE_FD |
1354					CAN_CTRLMODE_ONE_SHOT;
1355
1356	/* Set properties depending on M_CAN version */
1357	switch (m_can_dev->version) {
1358	case 30:
1359		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1360		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1361		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1362			m_can_dev->bit_timing : &m_can_bittiming_const_30X;
1363
1364		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1365						m_can_dev->data_timing :
1366						&m_can_data_bittiming_const_30X;
1367		break;
1368	case 31:
1369		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1370		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1371		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1372			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1373
1374		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1375						m_can_dev->data_timing :
1376						&m_can_data_bittiming_const_31X;
1377		break;
1378	case 32:
1379	case 33:
1380		/* Support both MCAN version v3.2.x and v3.3.0 */
1381		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1382			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1383
1384		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1385						m_can_dev->data_timing :
1386						&m_can_data_bittiming_const_31X;
1387
1388		m_can_dev->can.ctrlmode_supported |=
1389						(m_can_niso_supported(m_can_dev)
1390						? CAN_CTRLMODE_FD_NON_ISO
1391						: 0);
1392		break;
1393	default:
1394		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1395			m_can_dev->version);
1396		return -EINVAL;
1397	}
1398
1399	if (m_can_dev->ops->init)
1400		m_can_dev->ops->init(m_can_dev);
1401
1402	return 0;
1403}
1404
1405static void m_can_stop(struct net_device *dev)
1406{
1407	struct m_can_classdev *cdev = netdev_priv(dev);
1408
1409	/* disable all interrupts */
1410	m_can_disable_all_interrupts(cdev);
1411
1412	/* Set init mode to disengage from the network */
1413	m_can_config_endisable(cdev, true);
1414
1415	/* set the state as STOPPED */
1416	cdev->can.state = CAN_STATE_STOPPED;
1417}
1418
1419static int m_can_close(struct net_device *dev)
1420{
1421	struct m_can_classdev *cdev = netdev_priv(dev);
1422
1423	netif_stop_queue(dev);
1424
1425	if (!cdev->is_peripheral)
1426		napi_disable(&cdev->napi);
1427
1428	m_can_stop(dev);
1429	m_can_clk_stop(cdev);
1430	free_irq(dev->irq, dev);
1431
1432	if (cdev->is_peripheral) {
1433		cdev->tx_skb = NULL;
1434		destroy_workqueue(cdev->tx_wq);
1435		cdev->tx_wq = NULL;
1436	}
1437
1438	close_candev(dev);
1439	can_led_event(dev, CAN_LED_EVENT_STOP);
1440
1441	return 0;
1442}
1443
1444static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1445{
1446	struct m_can_classdev *cdev = netdev_priv(dev);
1447	/*get wrap around for loopback skb index */
1448	unsigned int wrap = cdev->can.echo_skb_max;
1449	int next_idx;
1450
1451	/* calculate next index */
1452	next_idx = (++putidx >= wrap ? 0 : putidx);
1453
1454	/* check if occupied */
1455	return !!cdev->can.echo_skb[next_idx];
1456}
1457
1458static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1459{
1460	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1461	struct net_device *dev = cdev->net;
1462	struct sk_buff *skb = cdev->tx_skb;
1463	u32 id, cccr, fdflags;
1464	int i;
1465	int putidx;
1466
1467	cdev->tx_skb = NULL;
1468
1469	/* Generate ID field for TX buffer Element */
1470	/* Common to all supported M_CAN versions */
1471	if (cf->can_id & CAN_EFF_FLAG) {
1472		id = cf->can_id & CAN_EFF_MASK;
1473		id |= TX_BUF_XTD;
1474	} else {
1475		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1476	}
1477
1478	if (cf->can_id & CAN_RTR_FLAG)
1479		id |= TX_BUF_RTR;
1480
1481	if (cdev->version == 30) {
1482		netif_stop_queue(dev);
1483
1484		/* message ram configuration */
1485		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1486		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1487				 can_len2dlc(cf->len) << 16);
1488
1489		for (i = 0; i < cf->len; i += 4)
1490			m_can_fifo_write(cdev, 0,
1491					 M_CAN_FIFO_DATA(i / 4),
1492					 *(u32 *)(cf->data + i));
1493
1494		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1495			cccr = m_can_read(cdev, M_CAN_CCCR);
1496			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1497			if (can_is_canfd_skb(skb)) {
1498				if (cf->flags & CANFD_BRS)
1499					cccr |= CCCR_CMR_CANFD_BRS <<
1500						CCCR_CMR_SHIFT;
1501				else
1502					cccr |= CCCR_CMR_CANFD <<
1503						CCCR_CMR_SHIFT;
1504			} else {
1505				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1506			}
1507			m_can_write(cdev, M_CAN_CCCR, cccr);
1508		}
1509		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1510
1511		can_put_echo_skb(skb, dev, 0);
1512
1513		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1514		/* End of xmit function for version 3.0.x */
1515	} else {
1516		/* Transmit routine for version >= v3.1.x */
1517
1518		/* Check if FIFO full */
1519		if (m_can_tx_fifo_full(cdev)) {
1520			/* This shouldn't happen */
1521			netif_stop_queue(dev);
1522			netdev_warn(dev,
1523				    "TX queue active although FIFO is full.");
1524
1525			if (cdev->is_peripheral) {
1526				kfree_skb(skb);
1527				dev->stats.tx_dropped++;
1528				return NETDEV_TX_OK;
1529			} else {
1530				return NETDEV_TX_BUSY;
1531			}
1532		}
1533
1534		/* get put index for frame */
1535		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1536				  >> TXFQS_TFQPI_SHIFT);
1537		/* Write ID Field to FIFO Element */
1538		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1539
1540		/* get CAN FD configuration of frame */
1541		fdflags = 0;
1542		if (can_is_canfd_skb(skb)) {
1543			fdflags |= TX_BUF_FDF;
1544			if (cf->flags & CANFD_BRS)
1545				fdflags |= TX_BUF_BRS;
1546		}
1547
1548		/* Construct DLC Field. Also contains CAN-FD configuration
1549		 * use put index of fifo as message marker
1550		 * it is used in TX interrupt for
1551		 * sending the correct echo frame
1552		 */
1553		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1554				 ((putidx << TX_BUF_MM_SHIFT) &
1555				  TX_BUF_MM_MASK) |
1556				 (can_len2dlc(cf->len) << 16) |
1557				 fdflags | TX_BUF_EFC);
1558
1559		for (i = 0; i < cf->len; i += 4)
1560			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1561					 *(u32 *)(cf->data + i));
1562
1563		/* Push loopback echo.
1564		 * Will be looped back on TX interrupt based on message marker
1565		 */
1566		can_put_echo_skb(skb, dev, putidx);
1567
1568		/* Enable TX FIFO element to start transfer  */
1569		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1570
1571		/* stop network queue if fifo full */
1572		if (m_can_tx_fifo_full(cdev) ||
1573		    m_can_next_echo_skb_occupied(dev, putidx))
1574			netif_stop_queue(dev);
1575	}
1576
1577	return NETDEV_TX_OK;
1578}
1579
1580static void m_can_tx_work_queue(struct work_struct *ws)
1581{
1582	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1583						tx_work);
1584
1585	m_can_tx_handler(cdev);
1586}
1587
1588static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1589				    struct net_device *dev)
1590{
1591	struct m_can_classdev *cdev = netdev_priv(dev);
1592
1593	if (can_dropped_invalid_skb(dev, skb))
1594		return NETDEV_TX_OK;
1595
1596	if (cdev->is_peripheral) {
1597		if (cdev->tx_skb) {
1598			netdev_err(dev, "hard_xmit called while tx busy\n");
1599			return NETDEV_TX_BUSY;
1600		}
1601
1602		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1603			m_can_clean(dev);
1604		} else {
1605			/* Need to stop the queue to avoid numerous requests
1606			 * from being sent.  Suggested improvement is to create
1607			 * a queueing mechanism that will queue the skbs and
1608			 * process them in order.
1609			 */
1610			cdev->tx_skb = skb;
1611			netif_stop_queue(cdev->net);
1612			queue_work(cdev->tx_wq, &cdev->tx_work);
1613		}
1614	} else {
1615		cdev->tx_skb = skb;
1616		return m_can_tx_handler(cdev);
1617	}
1618
1619	return NETDEV_TX_OK;
1620}
1621
1622static int m_can_open(struct net_device *dev)
1623{
1624	struct m_can_classdev *cdev = netdev_priv(dev);
1625	int err;
1626
1627	err = m_can_clk_start(cdev);
1628	if (err)
1629		return err;
1630
1631	/* open the can device */
1632	err = open_candev(dev);
1633	if (err) {
1634		netdev_err(dev, "failed to open can device\n");
1635		goto exit_disable_clks;
1636	}
1637
1638	/* register interrupt handler */
1639	if (cdev->is_peripheral) {
1640		cdev->tx_skb = NULL;
1641		cdev->tx_wq = alloc_workqueue("mcan_wq",
1642					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1643		if (!cdev->tx_wq) {
1644			err = -ENOMEM;
1645			goto out_wq_fail;
1646		}
1647
1648		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1649
1650		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1651					   IRQF_ONESHOT,
1652					   dev->name, dev);
1653	} else {
1654		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1655				  dev);
1656	}
1657
1658	if (err < 0) {
1659		netdev_err(dev, "failed to request interrupt\n");
1660		goto exit_irq_fail;
1661	}
1662
1663	/* start the m_can controller */
1664	m_can_start(dev);
1665
1666	can_led_event(dev, CAN_LED_EVENT_OPEN);
1667
1668	if (!cdev->is_peripheral)
1669		napi_enable(&cdev->napi);
1670
1671	netif_start_queue(dev);
1672
1673	return 0;
1674
1675exit_irq_fail:
1676	if (cdev->is_peripheral)
1677		destroy_workqueue(cdev->tx_wq);
1678out_wq_fail:
1679	close_candev(dev);
1680exit_disable_clks:
1681	m_can_clk_stop(cdev);
1682	return err;
1683}
1684
1685static const struct net_device_ops m_can_netdev_ops = {
1686	.ndo_open = m_can_open,
1687	.ndo_stop = m_can_close,
1688	.ndo_start_xmit = m_can_start_xmit,
1689	.ndo_change_mtu = can_change_mtu,
1690};
1691
1692static int register_m_can_dev(struct net_device *dev)
1693{
1694	dev->flags |= IFF_ECHO;	/* we support local echo */
1695	dev->netdev_ops = &m_can_netdev_ops;
1696
1697	return register_candev(dev);
1698}
1699
1700static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1701				const u32 *mram_config_vals)
1702{
1703	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1704	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1705	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1706			cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1707	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1708	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1709			cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1710	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1711			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1712	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1713			cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1714	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1715			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1716	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1717			cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1718	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1719	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1720			cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1721	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1722	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1723			cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1724	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1725			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1726
1727	dev_dbg(cdev->dev,
1728		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1729		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1730		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1731		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1732		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1733		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1734		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1735		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1736}
1737
1738void m_can_init_ram(struct m_can_classdev *cdev)
1739{
1740	int end, i, start;
1741
1742	/* initialize the entire Message RAM in use to avoid possible
1743	 * ECC/parity checksum errors when reading an uninitialized buffer
1744	 */
1745	start = cdev->mcfg[MRAM_SIDF].off;
1746	end = cdev->mcfg[MRAM_TXB].off +
1747		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1748
1749	for (i = start; i < end; i += 4)
1750		m_can_fifo_write_no_off(cdev, i, 0x0);
1751}
1752EXPORT_SYMBOL_GPL(m_can_init_ram);
1753
1754int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1755{
1756	int ret = 0;
1757
1758	m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
1759	m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1760
1761	if (IS_ERR(m_can_dev->cclk)) {
1762		dev_err(m_can_dev->dev, "no clock found\n");
1763		ret = -ENODEV;
1764	}
1765
1766	return ret;
1767}
1768EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1769
1770struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1771{
1772	struct m_can_classdev *class_dev = NULL;
1773	u32 mram_config_vals[MRAM_CFG_LEN];
1774	struct net_device *net_dev;
1775	u32 tx_fifo_size;
1776	int ret;
1777
1778	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1779					     "bosch,mram-cfg",
1780					     mram_config_vals,
1781					     sizeof(mram_config_vals) / 4);
1782	if (ret) {
1783		dev_err(dev, "Could not get Message RAM configuration.");
1784		goto out;
1785	}
1786
1787	/* Get TX FIFO size
1788	 * Defines the total amount of echo buffers for loopback
1789	 */
1790	tx_fifo_size = mram_config_vals[7];
1791
1792	/* allocate the m_can device */
1793	net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
1794	if (!net_dev) {
1795		dev_err(dev, "Failed to allocate CAN device");
1796		goto out;
1797	}
1798
1799	class_dev = netdev_priv(net_dev);
1800	if (!class_dev) {
1801		dev_err(dev, "Failed to init netdev cdevate");
1802		goto out;
1803	}
1804
1805	class_dev->net = net_dev;
1806	class_dev->dev = dev;
1807	SET_NETDEV_DEV(net_dev, dev);
1808
1809	m_can_of_parse_mram(class_dev, mram_config_vals);
1810out:
1811	return class_dev;
1812}
1813EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1814
1815void m_can_class_free_dev(struct net_device *net)
1816{
1817	free_candev(net);
1818}
1819EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1820
1821int m_can_class_register(struct m_can_classdev *m_can_dev)
1822{
1823	int ret;
1824
1825	if (m_can_dev->pm_clock_support) {
1826		pm_runtime_enable(m_can_dev->dev);
1827		ret = m_can_clk_start(m_can_dev);
1828		if (ret)
1829			goto pm_runtime_fail;
1830	}
1831
1832	ret = m_can_dev_setup(m_can_dev);
1833	if (ret)
1834		goto clk_disable;
1835
1836	ret = register_m_can_dev(m_can_dev->net);
1837	if (ret) {
1838		dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
1839			m_can_dev->net->name, ret);
1840		goto clk_disable;
1841	}
1842
1843	devm_can_led_init(m_can_dev->net);
1844
1845	of_can_transceiver(m_can_dev->net);
1846
1847	dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
1848		 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1849
1850	/* Probe finished
1851	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1852	 */
1853clk_disable:
1854	m_can_clk_stop(m_can_dev);
1855pm_runtime_fail:
1856	if (ret) {
1857		if (m_can_dev->pm_clock_support)
1858			pm_runtime_disable(m_can_dev->dev);
1859	}
1860
1861	return ret;
1862}
1863EXPORT_SYMBOL_GPL(m_can_class_register);
1864
1865int m_can_class_suspend(struct device *dev)
1866{
1867	struct net_device *ndev = dev_get_drvdata(dev);
1868	struct m_can_classdev *cdev = netdev_priv(ndev);
1869
1870	if (netif_running(ndev)) {
1871		netif_stop_queue(ndev);
1872		netif_device_detach(ndev);
1873		m_can_stop(ndev);
1874		m_can_clk_stop(cdev);
1875	}
1876
1877	pinctrl_pm_select_sleep_state(dev);
1878
1879	cdev->can.state = CAN_STATE_SLEEPING;
1880
1881	return 0;
1882}
1883EXPORT_SYMBOL_GPL(m_can_class_suspend);
1884
1885int m_can_class_resume(struct device *dev)
1886{
1887	struct net_device *ndev = dev_get_drvdata(dev);
1888	struct m_can_classdev *cdev = netdev_priv(ndev);
1889
1890	pinctrl_pm_select_default_state(dev);
1891
1892	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1893
1894	if (netif_running(ndev)) {
1895		int ret;
1896
1897		ret = m_can_clk_start(cdev);
1898		if (ret)
1899			return ret;
1900
1901		m_can_init_ram(cdev);
1902		m_can_start(ndev);
1903		netif_device_attach(ndev);
1904		netif_start_queue(ndev);
1905	}
1906
1907	return 0;
1908}
1909EXPORT_SYMBOL_GPL(m_can_class_resume);
1910
1911void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1912{
1913	unregister_candev(m_can_dev->net);
1914}
1915EXPORT_SYMBOL_GPL(m_can_class_unregister);
1916
1917MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1918MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1919MODULE_LICENSE("GPL v2");
1920MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1921