1// SPDX-License-Identifier: GPL-2.0 2// CAN bus driver for Bosch M_CAN controller 3// Copyright (C) 2014 Freescale Semiconductor, Inc. 4// Dong Aisheng <b29396@freescale.com> 5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7/* Bosch M_CAN user manual can be obtained from: 8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/ 9 * mcan_users_manual_v302.pdf 10 */ 11 12#include <linux/interrupt.h> 13#include <linux/io.h> 14#include <linux/kernel.h> 15#include <linux/module.h> 16#include <linux/netdevice.h> 17#include <linux/of.h> 18#include <linux/of_device.h> 19#include <linux/platform_device.h> 20#include <linux/pm_runtime.h> 21#include <linux/iopoll.h> 22#include <linux/can/dev.h> 23#include <linux/pinctrl/consumer.h> 24 25#include "m_can.h" 26 27/* registers definition */ 28enum m_can_reg { 29 M_CAN_CREL = 0x0, 30 M_CAN_ENDN = 0x4, 31 M_CAN_CUST = 0x8, 32 M_CAN_DBTP = 0xc, 33 M_CAN_TEST = 0x10, 34 M_CAN_RWD = 0x14, 35 M_CAN_CCCR = 0x18, 36 M_CAN_NBTP = 0x1c, 37 M_CAN_TSCC = 0x20, 38 M_CAN_TSCV = 0x24, 39 M_CAN_TOCC = 0x28, 40 M_CAN_TOCV = 0x2c, 41 M_CAN_ECR = 0x40, 42 M_CAN_PSR = 0x44, 43/* TDCR Register only available for version >=3.1.x */ 44 M_CAN_TDCR = 0x48, 45 M_CAN_IR = 0x50, 46 M_CAN_IE = 0x54, 47 M_CAN_ILS = 0x58, 48 M_CAN_ILE = 0x5c, 49 M_CAN_GFC = 0x80, 50 M_CAN_SIDFC = 0x84, 51 M_CAN_XIDFC = 0x88, 52 M_CAN_XIDAM = 0x90, 53 M_CAN_HPMS = 0x94, 54 M_CAN_NDAT1 = 0x98, 55 M_CAN_NDAT2 = 0x9c, 56 M_CAN_RXF0C = 0xa0, 57 M_CAN_RXF0S = 0xa4, 58 M_CAN_RXF0A = 0xa8, 59 M_CAN_RXBC = 0xac, 60 M_CAN_RXF1C = 0xb0, 61 M_CAN_RXF1S = 0xb4, 62 M_CAN_RXF1A = 0xb8, 63 M_CAN_RXESC = 0xbc, 64 M_CAN_TXBC = 0xc0, 65 M_CAN_TXFQS = 0xc4, 66 M_CAN_TXESC = 0xc8, 67 M_CAN_TXBRP = 0xcc, 68 M_CAN_TXBAR = 0xd0, 69 M_CAN_TXBCR = 0xd4, 70 M_CAN_TXBTO = 0xd8, 71 M_CAN_TXBCF = 0xdc, 72 M_CAN_TXBTIE = 0xe0, 73 M_CAN_TXBCIE = 0xe4, 74 M_CAN_TXEFC = 0xf0, 75 M_CAN_TXEFS = 0xf4, 76 M_CAN_TXEFA = 0xf8, 77}; 78 79/* napi related */ 80#define M_CAN_NAPI_WEIGHT 64 81 82/* message ram configuration data length */ 83#define MRAM_CFG_LEN 8 84 85/* Core Release Register (CREL) */ 86#define CREL_REL_SHIFT 28 87#define CREL_REL_MASK (0xF << CREL_REL_SHIFT) 88#define CREL_STEP_SHIFT 24 89#define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT) 90#define CREL_SUBSTEP_SHIFT 20 91#define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT) 92 93/* Data Bit Timing & Prescaler Register (DBTP) */ 94#define DBTP_TDC BIT(23) 95#define DBTP_DBRP_SHIFT 16 96#define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT) 97#define DBTP_DTSEG1_SHIFT 8 98#define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT) 99#define DBTP_DTSEG2_SHIFT 4 100#define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT) 101#define DBTP_DSJW_SHIFT 0 102#define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT) 103 104/* Transmitter Delay Compensation Register (TDCR) */ 105#define TDCR_TDCO_SHIFT 8 106#define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT) 107#define TDCR_TDCF_SHIFT 0 108#define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT) 109 110/* Test Register (TEST) */ 111#define TEST_LBCK BIT(4) 112 113/* CC Control Register(CCCR) */ 114#define CCCR_CMR_MASK 0x3 115#define CCCR_CMR_SHIFT 10 116#define CCCR_CMR_CANFD 0x1 117#define CCCR_CMR_CANFD_BRS 0x2 118#define CCCR_CMR_CAN 0x3 119#define CCCR_CME_MASK 0x3 120#define CCCR_CME_SHIFT 8 121#define CCCR_CME_CAN 0 122#define CCCR_CME_CANFD 0x1 123#define CCCR_CME_CANFD_BRS 0x2 124#define CCCR_TXP BIT(14) 125#define CCCR_TEST BIT(7) 126#define CCCR_DAR BIT(6) 127#define CCCR_MON BIT(5) 128#define CCCR_CSR BIT(4) 129#define CCCR_CSA BIT(3) 130#define CCCR_ASM BIT(2) 131#define CCCR_CCE BIT(1) 132#define CCCR_INIT BIT(0) 133#define CCCR_CANFD 0x10 134/* for version >=3.1.x */ 135#define CCCR_EFBI BIT(13) 136#define CCCR_PXHD BIT(12) 137#define CCCR_BRSE BIT(9) 138#define CCCR_FDOE BIT(8) 139/* only for version >=3.2.x */ 140#define CCCR_NISO BIT(15) 141 142/* Nominal Bit Timing & Prescaler Register (NBTP) */ 143#define NBTP_NSJW_SHIFT 25 144#define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT) 145#define NBTP_NBRP_SHIFT 16 146#define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT) 147#define NBTP_NTSEG1_SHIFT 8 148#define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT) 149#define NBTP_NTSEG2_SHIFT 0 150#define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT) 151 152/* Error Counter Register(ECR) */ 153#define ECR_RP BIT(15) 154#define ECR_REC_SHIFT 8 155#define ECR_REC_MASK (0x7f << ECR_REC_SHIFT) 156#define ECR_TEC_SHIFT 0 157#define ECR_TEC_MASK 0xff 158 159/* Protocol Status Register(PSR) */ 160#define PSR_BO BIT(7) 161#define PSR_EW BIT(6) 162#define PSR_EP BIT(5) 163#define PSR_LEC_MASK 0x7 164 165/* Interrupt Register(IR) */ 166#define IR_ALL_INT 0xffffffff 167 168/* Renamed bits for versions > 3.1.x */ 169#define IR_ARA BIT(29) 170#define IR_PED BIT(28) 171#define IR_PEA BIT(27) 172 173/* Bits for version 3.0.x */ 174#define IR_STE BIT(31) 175#define IR_FOE BIT(30) 176#define IR_ACKE BIT(29) 177#define IR_BE BIT(28) 178#define IR_CRCE BIT(27) 179#define IR_WDI BIT(26) 180#define IR_BO BIT(25) 181#define IR_EW BIT(24) 182#define IR_EP BIT(23) 183#define IR_ELO BIT(22) 184#define IR_BEU BIT(21) 185#define IR_BEC BIT(20) 186#define IR_DRX BIT(19) 187#define IR_TOO BIT(18) 188#define IR_MRAF BIT(17) 189#define IR_TSW BIT(16) 190#define IR_TEFL BIT(15) 191#define IR_TEFF BIT(14) 192#define IR_TEFW BIT(13) 193#define IR_TEFN BIT(12) 194#define IR_TFE BIT(11) 195#define IR_TCF BIT(10) 196#define IR_TC BIT(9) 197#define IR_HPM BIT(8) 198#define IR_RF1L BIT(7) 199#define IR_RF1F BIT(6) 200#define IR_RF1W BIT(5) 201#define IR_RF1N BIT(4) 202#define IR_RF0L BIT(3) 203#define IR_RF0F BIT(2) 204#define IR_RF0W BIT(1) 205#define IR_RF0N BIT(0) 206#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 207 208/* Interrupts for version 3.0.x */ 209#define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 210#define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ 211 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 212 IR_RF0L) 213#define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 214/* Interrupts for version >= 3.1.x */ 215#define IR_ERR_LEC_31X (IR_PED | IR_PEA) 216#define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ 217 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 218 IR_RF0L) 219#define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 220 221/* Interrupt Line Select (ILS) */ 222#define ILS_ALL_INT0 0x0 223#define ILS_ALL_INT1 0xFFFFFFFF 224 225/* Interrupt Line Enable (ILE) */ 226#define ILE_EINT1 BIT(1) 227#define ILE_EINT0 BIT(0) 228 229/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 230#define RXFC_FWM_SHIFT 24 231#define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT) 232#define RXFC_FS_SHIFT 16 233#define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT) 234 235/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 236#define RXFS_RFL BIT(25) 237#define RXFS_FF BIT(24) 238#define RXFS_FPI_SHIFT 16 239#define RXFS_FPI_MASK 0x3f0000 240#define RXFS_FGI_SHIFT 8 241#define RXFS_FGI_MASK 0x3f00 242#define RXFS_FFL_MASK 0x7f 243 244/* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 245#define M_CAN_RXESC_8BYTES 0x0 246#define M_CAN_RXESC_64BYTES 0x777 247 248/* Tx Buffer Configuration(TXBC) */ 249#define TXBC_NDTB_SHIFT 16 250#define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT) 251#define TXBC_TFQS_SHIFT 24 252#define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT) 253 254/* Tx FIFO/Queue Status (TXFQS) */ 255#define TXFQS_TFQF BIT(21) 256#define TXFQS_TFQPI_SHIFT 16 257#define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT) 258#define TXFQS_TFGI_SHIFT 8 259#define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT) 260#define TXFQS_TFFL_SHIFT 0 261#define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT) 262 263/* Tx Buffer Element Size Configuration(TXESC) */ 264#define TXESC_TBDS_8BYTES 0x0 265#define TXESC_TBDS_64BYTES 0x7 266 267/* Tx Event FIFO Configuration (TXEFC) */ 268#define TXEFC_EFS_SHIFT 16 269#define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT) 270 271/* Tx Event FIFO Status (TXEFS) */ 272#define TXEFS_TEFL BIT(25) 273#define TXEFS_EFF BIT(24) 274#define TXEFS_EFGI_SHIFT 8 275#define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT) 276#define TXEFS_EFFL_SHIFT 0 277#define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT) 278 279/* Tx Event FIFO Acknowledge (TXEFA) */ 280#define TXEFA_EFAI_SHIFT 0 281#define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT) 282 283/* Message RAM Configuration (in bytes) */ 284#define SIDF_ELEMENT_SIZE 4 285#define XIDF_ELEMENT_SIZE 8 286#define RXF0_ELEMENT_SIZE 72 287#define RXF1_ELEMENT_SIZE 72 288#define RXB_ELEMENT_SIZE 72 289#define TXE_ELEMENT_SIZE 8 290#define TXB_ELEMENT_SIZE 72 291 292/* Message RAM Elements */ 293#define M_CAN_FIFO_ID 0x0 294#define M_CAN_FIFO_DLC 0x4 295#define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2)) 296 297/* Rx Buffer Element */ 298/* R0 */ 299#define RX_BUF_ESI BIT(31) 300#define RX_BUF_XTD BIT(30) 301#define RX_BUF_RTR BIT(29) 302/* R1 */ 303#define RX_BUF_ANMF BIT(31) 304#define RX_BUF_FDF BIT(21) 305#define RX_BUF_BRS BIT(20) 306 307/* Tx Buffer Element */ 308/* T0 */ 309#define TX_BUF_ESI BIT(31) 310#define TX_BUF_XTD BIT(30) 311#define TX_BUF_RTR BIT(29) 312/* T1 */ 313#define TX_BUF_EFC BIT(23) 314#define TX_BUF_FDF BIT(21) 315#define TX_BUF_BRS BIT(20) 316#define TX_BUF_MM_SHIFT 24 317#define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT) 318 319/* Tx event FIFO Element */ 320/* E1 */ 321#define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT 322#define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT) 323 324static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 325{ 326 return cdev->ops->read_reg(cdev, reg); 327} 328 329static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 330 u32 val) 331{ 332 cdev->ops->write_reg(cdev, reg, val); 333} 334 335static u32 m_can_fifo_read(struct m_can_classdev *cdev, 336 u32 fgi, unsigned int offset) 337{ 338 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 339 offset; 340 341 return cdev->ops->read_fifo(cdev, addr_offset); 342} 343 344static void m_can_fifo_write(struct m_can_classdev *cdev, 345 u32 fpi, unsigned int offset, u32 val) 346{ 347 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 348 offset; 349 350 cdev->ops->write_fifo(cdev, addr_offset, val); 351} 352 353static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev, 354 u32 fpi, u32 val) 355{ 356 cdev->ops->write_fifo(cdev, fpi, val); 357} 358 359static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset) 360{ 361 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 362 offset; 363 364 return cdev->ops->read_fifo(cdev, addr_offset); 365} 366 367static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) 368{ 369 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); 370} 371 372void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 373{ 374 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 375 u32 timeout = 10; 376 u32 val = 0; 377 378 /* Clear the Clock stop request if it was set */ 379 if (cccr & CCCR_CSR) 380 cccr &= ~CCCR_CSR; 381 382 if (enable) { 383 /* enable m_can configuration */ 384 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 385 udelay(5); 386 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 387 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 388 } else { 389 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 390 } 391 392 /* there's a delay for module initialization */ 393 if (enable) 394 val = CCCR_INIT | CCCR_CCE; 395 396 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 397 if (timeout == 0) { 398 netdev_warn(cdev->net, "Failed to init module\n"); 399 return; 400 } 401 timeout--; 402 udelay(1); 403 } 404} 405 406static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 407{ 408 /* Only interrupt line 0 is used in this driver */ 409 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 410} 411 412static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 413{ 414 m_can_write(cdev, M_CAN_ILE, 0x0); 415} 416 417static void m_can_clean(struct net_device *net) 418{ 419 struct m_can_classdev *cdev = netdev_priv(net); 420 421 if (cdev->tx_skb) { 422 int putidx = 0; 423 424 net->stats.tx_errors++; 425 if (cdev->version > 30) 426 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & 427 TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT); 428 429 can_free_echo_skb(cdev->net, putidx); 430 cdev->tx_skb = NULL; 431 } 432} 433 434static void m_can_read_fifo(struct net_device *dev, u32 rxfs) 435{ 436 struct net_device_stats *stats = &dev->stats; 437 struct m_can_classdev *cdev = netdev_priv(dev); 438 struct canfd_frame *cf; 439 struct sk_buff *skb; 440 u32 id, fgi, dlc; 441 int i; 442 443 /* calculate the fifo get index for where to read data */ 444 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT; 445 dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC); 446 if (dlc & RX_BUF_FDF) 447 skb = alloc_canfd_skb(dev, &cf); 448 else 449 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 450 if (!skb) { 451 stats->rx_dropped++; 452 return; 453 } 454 455 if (dlc & RX_BUF_FDF) 456 cf->len = can_dlc2len((dlc >> 16) & 0x0F); 457 else 458 cf->len = get_can_dlc((dlc >> 16) & 0x0F); 459 460 id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID); 461 if (id & RX_BUF_XTD) 462 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 463 else 464 cf->can_id = (id >> 18) & CAN_SFF_MASK; 465 466 if (id & RX_BUF_ESI) { 467 cf->flags |= CANFD_ESI; 468 netdev_dbg(dev, "ESI Error\n"); 469 } 470 471 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) { 472 cf->can_id |= CAN_RTR_FLAG; 473 } else { 474 if (dlc & RX_BUF_BRS) 475 cf->flags |= CANFD_BRS; 476 477 for (i = 0; i < cf->len; i += 4) 478 *(u32 *)(cf->data + i) = 479 m_can_fifo_read(cdev, fgi, 480 M_CAN_FIFO_DATA(i / 4)); 481 } 482 483 /* acknowledge rx fifo 0 */ 484 m_can_write(cdev, M_CAN_RXF0A, fgi); 485 486 stats->rx_packets++; 487 stats->rx_bytes += cf->len; 488 489 netif_receive_skb(skb); 490} 491 492static int m_can_do_rx_poll(struct net_device *dev, int quota) 493{ 494 struct m_can_classdev *cdev = netdev_priv(dev); 495 u32 pkts = 0; 496 u32 rxfs; 497 498 rxfs = m_can_read(cdev, M_CAN_RXF0S); 499 if (!(rxfs & RXFS_FFL_MASK)) { 500 netdev_dbg(dev, "no messages in fifo0\n"); 501 return 0; 502 } 503 504 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { 505 m_can_read_fifo(dev, rxfs); 506 507 quota--; 508 pkts++; 509 rxfs = m_can_read(cdev, M_CAN_RXF0S); 510 } 511 512 if (pkts) 513 can_led_event(dev, CAN_LED_EVENT_RX); 514 515 return pkts; 516} 517 518static int m_can_handle_lost_msg(struct net_device *dev) 519{ 520 struct net_device_stats *stats = &dev->stats; 521 struct sk_buff *skb; 522 struct can_frame *frame; 523 524 netdev_err(dev, "msg lost in rxf0\n"); 525 526 stats->rx_errors++; 527 stats->rx_over_errors++; 528 529 skb = alloc_can_err_skb(dev, &frame); 530 if (unlikely(!skb)) 531 return 0; 532 533 frame->can_id |= CAN_ERR_CRTL; 534 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 535 536 netif_receive_skb(skb); 537 538 return 1; 539} 540 541static int m_can_handle_lec_err(struct net_device *dev, 542 enum m_can_lec_type lec_type) 543{ 544 struct m_can_classdev *cdev = netdev_priv(dev); 545 struct net_device_stats *stats = &dev->stats; 546 struct can_frame *cf; 547 struct sk_buff *skb; 548 549 cdev->can.can_stats.bus_error++; 550 stats->rx_errors++; 551 552 /* propagate the error condition to the CAN stack */ 553 skb = alloc_can_err_skb(dev, &cf); 554 if (unlikely(!skb)) 555 return 0; 556 557 /* check for 'last error code' which tells us the 558 * type of the last error to occur on the CAN bus 559 */ 560 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 561 562 switch (lec_type) { 563 case LEC_STUFF_ERROR: 564 netdev_dbg(dev, "stuff error\n"); 565 cf->data[2] |= CAN_ERR_PROT_STUFF; 566 break; 567 case LEC_FORM_ERROR: 568 netdev_dbg(dev, "form error\n"); 569 cf->data[2] |= CAN_ERR_PROT_FORM; 570 break; 571 case LEC_ACK_ERROR: 572 netdev_dbg(dev, "ack error\n"); 573 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 574 break; 575 case LEC_BIT1_ERROR: 576 netdev_dbg(dev, "bit1 error\n"); 577 cf->data[2] |= CAN_ERR_PROT_BIT1; 578 break; 579 case LEC_BIT0_ERROR: 580 netdev_dbg(dev, "bit0 error\n"); 581 cf->data[2] |= CAN_ERR_PROT_BIT0; 582 break; 583 case LEC_CRC_ERROR: 584 netdev_dbg(dev, "CRC error\n"); 585 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 586 break; 587 default: 588 break; 589 } 590 591 stats->rx_packets++; 592 stats->rx_bytes += cf->can_dlc; 593 netif_receive_skb(skb); 594 595 return 1; 596} 597 598static int __m_can_get_berr_counter(const struct net_device *dev, 599 struct can_berr_counter *bec) 600{ 601 struct m_can_classdev *cdev = netdev_priv(dev); 602 unsigned int ecr; 603 604 ecr = m_can_read(cdev, M_CAN_ECR); 605 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT; 606 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT; 607 608 return 0; 609} 610 611static int m_can_clk_start(struct m_can_classdev *cdev) 612{ 613 int err; 614 615 if (cdev->pm_clock_support == 0) 616 return 0; 617 618 err = pm_runtime_get_sync(cdev->dev); 619 if (err < 0) { 620 pm_runtime_put_noidle(cdev->dev); 621 return err; 622 } 623 624 return 0; 625} 626 627static void m_can_clk_stop(struct m_can_classdev *cdev) 628{ 629 if (cdev->pm_clock_support) 630 pm_runtime_put_sync(cdev->dev); 631} 632 633static int m_can_get_berr_counter(const struct net_device *dev, 634 struct can_berr_counter *bec) 635{ 636 struct m_can_classdev *cdev = netdev_priv(dev); 637 int err; 638 639 err = m_can_clk_start(cdev); 640 if (err) 641 return err; 642 643 __m_can_get_berr_counter(dev, bec); 644 645 m_can_clk_stop(cdev); 646 647 return 0; 648} 649 650static int m_can_handle_state_change(struct net_device *dev, 651 enum can_state new_state) 652{ 653 struct m_can_classdev *cdev = netdev_priv(dev); 654 struct net_device_stats *stats = &dev->stats; 655 struct can_frame *cf; 656 struct sk_buff *skb; 657 struct can_berr_counter bec; 658 unsigned int ecr; 659 660 switch (new_state) { 661 case CAN_STATE_ERROR_WARNING: 662 /* error warning state */ 663 cdev->can.can_stats.error_warning++; 664 cdev->can.state = CAN_STATE_ERROR_WARNING; 665 break; 666 case CAN_STATE_ERROR_PASSIVE: 667 /* error passive state */ 668 cdev->can.can_stats.error_passive++; 669 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 670 break; 671 case CAN_STATE_BUS_OFF: 672 /* bus-off state */ 673 cdev->can.state = CAN_STATE_BUS_OFF; 674 m_can_disable_all_interrupts(cdev); 675 cdev->can.can_stats.bus_off++; 676 can_bus_off(dev); 677 break; 678 default: 679 break; 680 } 681 682 /* propagate the error condition to the CAN stack */ 683 skb = alloc_can_err_skb(dev, &cf); 684 if (unlikely(!skb)) 685 return 0; 686 687 __m_can_get_berr_counter(dev, &bec); 688 689 switch (new_state) { 690 case CAN_STATE_ERROR_WARNING: 691 /* error warning state */ 692 cf->can_id |= CAN_ERR_CRTL; 693 cf->data[1] = (bec.txerr > bec.rxerr) ? 694 CAN_ERR_CRTL_TX_WARNING : 695 CAN_ERR_CRTL_RX_WARNING; 696 cf->data[6] = bec.txerr; 697 cf->data[7] = bec.rxerr; 698 break; 699 case CAN_STATE_ERROR_PASSIVE: 700 /* error passive state */ 701 cf->can_id |= CAN_ERR_CRTL; 702 ecr = m_can_read(cdev, M_CAN_ECR); 703 if (ecr & ECR_RP) 704 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 705 if (bec.txerr > 127) 706 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 707 cf->data[6] = bec.txerr; 708 cf->data[7] = bec.rxerr; 709 break; 710 case CAN_STATE_BUS_OFF: 711 /* bus-off state */ 712 cf->can_id |= CAN_ERR_BUSOFF; 713 break; 714 default: 715 break; 716 } 717 718 stats->rx_packets++; 719 stats->rx_bytes += cf->can_dlc; 720 netif_receive_skb(skb); 721 722 return 1; 723} 724 725static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 726{ 727 struct m_can_classdev *cdev = netdev_priv(dev); 728 int work_done = 0; 729 730 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 731 netdev_dbg(dev, "entered error warning state\n"); 732 work_done += m_can_handle_state_change(dev, 733 CAN_STATE_ERROR_WARNING); 734 } 735 736 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 737 netdev_dbg(dev, "entered error passive state\n"); 738 work_done += m_can_handle_state_change(dev, 739 CAN_STATE_ERROR_PASSIVE); 740 } 741 742 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 743 netdev_dbg(dev, "entered error bus off state\n"); 744 work_done += m_can_handle_state_change(dev, 745 CAN_STATE_BUS_OFF); 746 } 747 748 return work_done; 749} 750 751static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 752{ 753 if (irqstatus & IR_WDI) 754 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 755 if (irqstatus & IR_BEU) 756 netdev_err(dev, "Bit Error Uncorrected\n"); 757 if (irqstatus & IR_BEC) 758 netdev_err(dev, "Bit Error Corrected\n"); 759 if (irqstatus & IR_TOO) 760 netdev_err(dev, "Timeout reached\n"); 761 if (irqstatus & IR_MRAF) 762 netdev_err(dev, "Message RAM access failure occurred\n"); 763} 764 765static inline bool is_lec_err(u32 psr) 766{ 767 psr &= LEC_UNUSED; 768 769 return psr && (psr != LEC_UNUSED); 770} 771 772static inline bool m_can_is_protocol_err(u32 irqstatus) 773{ 774 return irqstatus & IR_ERR_LEC_31X; 775} 776 777static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 778{ 779 struct net_device_stats *stats = &dev->stats; 780 struct m_can_classdev *cdev = netdev_priv(dev); 781 struct can_frame *cf; 782 struct sk_buff *skb; 783 784 /* propagate the error condition to the CAN stack */ 785 skb = alloc_can_err_skb(dev, &cf); 786 787 /* update tx error stats since there is protocol error */ 788 stats->tx_errors++; 789 790 /* update arbitration lost status */ 791 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 792 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 793 cdev->can.can_stats.arbitration_lost++; 794 if (skb) { 795 cf->can_id |= CAN_ERR_LOSTARB; 796 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 797 } 798 } 799 800 if (unlikely(!skb)) { 801 netdev_dbg(dev, "allocation of skb failed\n"); 802 return 0; 803 } 804 netif_receive_skb(skb); 805 806 return 1; 807} 808 809static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 810 u32 psr) 811{ 812 struct m_can_classdev *cdev = netdev_priv(dev); 813 int work_done = 0; 814 815 if (irqstatus & IR_RF0L) 816 work_done += m_can_handle_lost_msg(dev); 817 818 /* handle lec errors on the bus */ 819 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 820 is_lec_err(psr)) 821 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); 822 823 /* handle protocol errors in arbitration phase */ 824 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 825 m_can_is_protocol_err(irqstatus)) 826 work_done += m_can_handle_protocol_error(dev, irqstatus); 827 828 /* other unproccessed error interrupts */ 829 m_can_handle_other_err(dev, irqstatus); 830 831 return work_done; 832} 833 834static int m_can_rx_handler(struct net_device *dev, int quota) 835{ 836 struct m_can_classdev *cdev = netdev_priv(dev); 837 int work_done = 0; 838 u32 irqstatus, psr; 839 840 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 841 if (!irqstatus) 842 goto end; 843 844 /* Errata workaround for issue "Needless activation of MRAF irq" 845 * During frame reception while the MCAN is in Error Passive state 846 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 847 * it may happen that MCAN_IR.MRAF is set although there was no 848 * Message RAM access failure. 849 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 850 * The Message RAM Access Failure interrupt routine needs to check 851 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 852 * In this case, reset MCAN_IR.MRAF. No further action is required. 853 */ 854 if (cdev->version <= 31 && irqstatus & IR_MRAF && 855 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 856 struct can_berr_counter bec; 857 858 __m_can_get_berr_counter(dev, &bec); 859 if (bec.rxerr == 127) { 860 m_can_write(cdev, M_CAN_IR, IR_MRAF); 861 irqstatus &= ~IR_MRAF; 862 } 863 } 864 865 psr = m_can_read(cdev, M_CAN_PSR); 866 867 if (irqstatus & IR_ERR_STATE) 868 work_done += m_can_handle_state_errors(dev, psr); 869 870 if (irqstatus & IR_ERR_BUS_30X) 871 work_done += m_can_handle_bus_errors(dev, irqstatus, psr); 872 873 if (irqstatus & IR_RF0N) 874 work_done += m_can_do_rx_poll(dev, (quota - work_done)); 875end: 876 return work_done; 877} 878 879static int m_can_rx_peripheral(struct net_device *dev) 880{ 881 struct m_can_classdev *cdev = netdev_priv(dev); 882 883 m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT); 884 885 m_can_enable_all_interrupts(cdev); 886 887 return 0; 888} 889 890static int m_can_poll(struct napi_struct *napi, int quota) 891{ 892 struct net_device *dev = napi->dev; 893 struct m_can_classdev *cdev = netdev_priv(dev); 894 int work_done; 895 896 work_done = m_can_rx_handler(dev, quota); 897 if (work_done < quota) { 898 napi_complete_done(napi, work_done); 899 m_can_enable_all_interrupts(cdev); 900 } 901 902 return work_done; 903} 904 905static void m_can_echo_tx_event(struct net_device *dev) 906{ 907 u32 txe_count = 0; 908 u32 m_can_txefs; 909 u32 fgi = 0; 910 int i = 0; 911 unsigned int msg_mark; 912 913 struct m_can_classdev *cdev = netdev_priv(dev); 914 struct net_device_stats *stats = &dev->stats; 915 916 /* read tx event fifo status */ 917 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 918 919 /* Get Tx Event fifo element count */ 920 txe_count = (m_can_txefs & TXEFS_EFFL_MASK) 921 >> TXEFS_EFFL_SHIFT; 922 923 /* Get and process all sent elements */ 924 for (i = 0; i < txe_count; i++) { 925 /* retrieve get index */ 926 fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK) 927 >> TXEFS_EFGI_SHIFT; 928 929 /* get message marker */ 930 msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) & 931 TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT; 932 933 /* ack txe element */ 934 m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK & 935 (fgi << TXEFA_EFAI_SHIFT))); 936 937 /* update stats */ 938 stats->tx_bytes += can_get_echo_skb(dev, msg_mark); 939 stats->tx_packets++; 940 } 941} 942 943static irqreturn_t m_can_isr(int irq, void *dev_id) 944{ 945 struct net_device *dev = (struct net_device *)dev_id; 946 struct m_can_classdev *cdev = netdev_priv(dev); 947 struct net_device_stats *stats = &dev->stats; 948 u32 ir; 949 950 if (pm_runtime_suspended(cdev->dev)) 951 return IRQ_NONE; 952 ir = m_can_read(cdev, M_CAN_IR); 953 if (!ir) 954 return IRQ_NONE; 955 956 /* ACK all irqs */ 957 if (ir & IR_ALL_INT) 958 m_can_write(cdev, M_CAN_IR, ir); 959 960 if (cdev->ops->clear_interrupts) 961 cdev->ops->clear_interrupts(cdev); 962 963 /* schedule NAPI in case of 964 * - rx IRQ 965 * - state change IRQ 966 * - bus error IRQ and bus error reporting 967 */ 968 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { 969 cdev->irqstatus = ir; 970 m_can_disable_all_interrupts(cdev); 971 if (!cdev->is_peripheral) 972 napi_schedule(&cdev->napi); 973 else 974 m_can_rx_peripheral(dev); 975 } 976 977 if (cdev->version == 30) { 978 if (ir & IR_TC) { 979 /* Transmission Complete Interrupt*/ 980 stats->tx_bytes += can_get_echo_skb(dev, 0); 981 stats->tx_packets++; 982 can_led_event(dev, CAN_LED_EVENT_TX); 983 netif_wake_queue(dev); 984 } 985 } else { 986 if (ir & IR_TEFN) { 987 /* New TX FIFO Element arrived */ 988 m_can_echo_tx_event(dev); 989 can_led_event(dev, CAN_LED_EVENT_TX); 990 if (netif_queue_stopped(dev) && 991 !m_can_tx_fifo_full(cdev)) 992 netif_wake_queue(dev); 993 } 994 } 995 996 return IRQ_HANDLED; 997} 998 999static const struct can_bittiming_const m_can_bittiming_const_30X = { 1000 .name = KBUILD_MODNAME, 1001 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1002 .tseg1_max = 64, 1003 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1004 .tseg2_max = 16, 1005 .sjw_max = 16, 1006 .brp_min = 1, 1007 .brp_max = 1024, 1008 .brp_inc = 1, 1009}; 1010 1011static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1012 .name = KBUILD_MODNAME, 1013 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1014 .tseg1_max = 16, 1015 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1016 .tseg2_max = 8, 1017 .sjw_max = 4, 1018 .brp_min = 1, 1019 .brp_max = 32, 1020 .brp_inc = 1, 1021}; 1022 1023static const struct can_bittiming_const m_can_bittiming_const_31X = { 1024 .name = KBUILD_MODNAME, 1025 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1026 .tseg1_max = 256, 1027 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1028 .tseg2_max = 128, 1029 .sjw_max = 128, 1030 .brp_min = 1, 1031 .brp_max = 512, 1032 .brp_inc = 1, 1033}; 1034 1035static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1036 .name = KBUILD_MODNAME, 1037 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1038 .tseg1_max = 32, 1039 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1040 .tseg2_max = 16, 1041 .sjw_max = 16, 1042 .brp_min = 1, 1043 .brp_max = 32, 1044 .brp_inc = 1, 1045}; 1046 1047static int m_can_set_bittiming(struct net_device *dev) 1048{ 1049 struct m_can_classdev *cdev = netdev_priv(dev); 1050 const struct can_bittiming *bt = &cdev->can.bittiming; 1051 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1052 u16 brp, sjw, tseg1, tseg2; 1053 u32 reg_btp; 1054 1055 brp = bt->brp - 1; 1056 sjw = bt->sjw - 1; 1057 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1058 tseg2 = bt->phase_seg2 - 1; 1059 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) | 1060 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT); 1061 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1062 1063 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1064 reg_btp = 0; 1065 brp = dbt->brp - 1; 1066 sjw = dbt->sjw - 1; 1067 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1068 tseg2 = dbt->phase_seg2 - 1; 1069 1070 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1071 * This is mentioned in the "Bit Time Requirements for CAN FD" 1072 * paper presented at the International CAN Conference 2013 1073 */ 1074 if (dbt->bitrate > 2500000) { 1075 u32 tdco, ssp; 1076 1077 /* Use the same value of secondary sampling point 1078 * as the data sampling point 1079 */ 1080 ssp = dbt->sample_point; 1081 1082 /* Equation based on Bosch's M_CAN User Manual's 1083 * Transmitter Delay Compensation Section 1084 */ 1085 tdco = (cdev->can.clock.freq / 1000) * 1086 ssp / dbt->bitrate; 1087 1088 /* Max valid TDCO value is 127 */ 1089 if (tdco > 127) { 1090 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1091 tdco); 1092 tdco = 127; 1093 } 1094 1095 reg_btp |= DBTP_TDC; 1096 m_can_write(cdev, M_CAN_TDCR, 1097 tdco << TDCR_TDCO_SHIFT); 1098 } 1099 1100 reg_btp |= (brp << DBTP_DBRP_SHIFT) | 1101 (sjw << DBTP_DSJW_SHIFT) | 1102 (tseg1 << DBTP_DTSEG1_SHIFT) | 1103 (tseg2 << DBTP_DTSEG2_SHIFT); 1104 1105 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1106 } 1107 1108 return 0; 1109} 1110 1111/* Configure M_CAN chip: 1112 * - set rx buffer/fifo element size 1113 * - configure rx fifo 1114 * - accept non-matching frame into fifo 0 1115 * - configure tx buffer 1116 * - >= v3.1.x: TX FIFO is used 1117 * - configure mode 1118 * - setup bittiming 1119 */ 1120static void m_can_chip_config(struct net_device *dev) 1121{ 1122 struct m_can_classdev *cdev = netdev_priv(dev); 1123 u32 cccr, test; 1124 1125 m_can_config_endisable(cdev, true); 1126 1127 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1128 m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES); 1129 1130 /* Accept Non-matching Frames Into FIFO 0 */ 1131 m_can_write(cdev, M_CAN_GFC, 0x0); 1132 1133 if (cdev->version == 30) { 1134 /* only support one Tx Buffer currently */ 1135 m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) | 1136 cdev->mcfg[MRAM_TXB].off); 1137 } else { 1138 /* TX FIFO is used for newer IP Core versions */ 1139 m_can_write(cdev, M_CAN_TXBC, 1140 (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) | 1141 (cdev->mcfg[MRAM_TXB].off)); 1142 } 1143 1144 /* support 64 bytes payload */ 1145 m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES); 1146 1147 /* TX Event FIFO */ 1148 if (cdev->version == 30) { 1149 m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) | 1150 cdev->mcfg[MRAM_TXE].off); 1151 } else { 1152 /* Full TX Event FIFO is used */ 1153 m_can_write(cdev, M_CAN_TXEFC, 1154 ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT) 1155 & TXEFC_EFS_MASK) | 1156 cdev->mcfg[MRAM_TXE].off); 1157 } 1158 1159 /* rx fifo configuration, blocking mode, fifo size 1 */ 1160 m_can_write(cdev, M_CAN_RXF0C, 1161 (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) | 1162 cdev->mcfg[MRAM_RXF0].off); 1163 1164 m_can_write(cdev, M_CAN_RXF1C, 1165 (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) | 1166 cdev->mcfg[MRAM_RXF1].off); 1167 1168 cccr = m_can_read(cdev, M_CAN_CCCR); 1169 test = m_can_read(cdev, M_CAN_TEST); 1170 test &= ~TEST_LBCK; 1171 if (cdev->version == 30) { 1172 /* Version 3.0.x */ 1173 1174 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1175 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) | 1176 (CCCR_CME_MASK << CCCR_CME_SHIFT)); 1177 1178 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1179 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT; 1180 1181 } else { 1182 /* Version 3.1.x or 3.2.x */ 1183 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1184 CCCR_NISO | CCCR_DAR); 1185 1186 /* Only 3.2.x has NISO Bit implemented */ 1187 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1188 cccr |= CCCR_NISO; 1189 1190 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1191 cccr |= (CCCR_BRSE | CCCR_FDOE); 1192 } 1193 1194 /* Loopback Mode */ 1195 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1196 cccr |= CCCR_TEST | CCCR_MON; 1197 test |= TEST_LBCK; 1198 } 1199 1200 /* Enable Monitoring (all versions) */ 1201 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1202 cccr |= CCCR_MON; 1203 1204 /* Disable Auto Retransmission (all versions) */ 1205 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1206 cccr |= CCCR_DAR; 1207 1208 /* Write config */ 1209 m_can_write(cdev, M_CAN_CCCR, cccr); 1210 m_can_write(cdev, M_CAN_TEST, test); 1211 1212 /* Enable interrupts */ 1213 m_can_write(cdev, M_CAN_IR, IR_ALL_INT); 1214 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) 1215 if (cdev->version == 30) 1216 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1217 ~(IR_ERR_LEC_30X)); 1218 else 1219 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1220 ~(IR_ERR_LEC_31X)); 1221 else 1222 m_can_write(cdev, M_CAN_IE, IR_ALL_INT); 1223 1224 /* route all interrupts to INT0 */ 1225 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1226 1227 /* set bittiming params */ 1228 m_can_set_bittiming(dev); 1229 1230 m_can_config_endisable(cdev, false); 1231 1232 if (cdev->ops->init) 1233 cdev->ops->init(cdev); 1234} 1235 1236static void m_can_start(struct net_device *dev) 1237{ 1238 struct m_can_classdev *cdev = netdev_priv(dev); 1239 1240 /* basic m_can configuration */ 1241 m_can_chip_config(dev); 1242 1243 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1244 1245 m_can_enable_all_interrupts(cdev); 1246} 1247 1248static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1249{ 1250 switch (mode) { 1251 case CAN_MODE_START: 1252 m_can_clean(dev); 1253 m_can_start(dev); 1254 netif_wake_queue(dev); 1255 break; 1256 default: 1257 return -EOPNOTSUPP; 1258 } 1259 1260 return 0; 1261} 1262 1263/* Checks core release number of M_CAN 1264 * returns 0 if an unsupported device is detected 1265 * else it returns the release and step coded as: 1266 * return value = 10 * <release> + 1 * <step> 1267 */ 1268static int m_can_check_core_release(struct m_can_classdev *cdev) 1269{ 1270 u32 crel_reg; 1271 u8 rel; 1272 u8 step; 1273 int res; 1274 1275 /* Read Core Release Version and split into version number 1276 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1277 */ 1278 crel_reg = m_can_read(cdev, M_CAN_CREL); 1279 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT); 1280 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT); 1281 1282 if (rel == 3) { 1283 /* M_CAN v3.x.y: create return value */ 1284 res = 30 + step; 1285 } else { 1286 /* Unsupported M_CAN version */ 1287 res = 0; 1288 } 1289 1290 return res; 1291} 1292 1293/* Selectable Non ISO support only in version 3.2.x 1294 * This function checks if the bit is writable. 1295 */ 1296static bool m_can_niso_supported(struct m_can_classdev *cdev) 1297{ 1298 u32 cccr_reg, cccr_poll = 0; 1299 int niso_timeout = -ETIMEDOUT; 1300 int i; 1301 1302 m_can_config_endisable(cdev, true); 1303 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1304 cccr_reg |= CCCR_NISO; 1305 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1306 1307 for (i = 0; i <= 10; i++) { 1308 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1309 if (cccr_poll == cccr_reg) { 1310 niso_timeout = 0; 1311 break; 1312 } 1313 1314 usleep_range(1, 5); 1315 } 1316 1317 /* Clear NISO */ 1318 cccr_reg &= ~(CCCR_NISO); 1319 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1320 1321 m_can_config_endisable(cdev, false); 1322 1323 /* return false if time out (-ETIMEDOUT), else return true */ 1324 return !niso_timeout; 1325} 1326 1327static int m_can_dev_setup(struct m_can_classdev *m_can_dev) 1328{ 1329 struct net_device *dev = m_can_dev->net; 1330 int m_can_version; 1331 1332 m_can_version = m_can_check_core_release(m_can_dev); 1333 /* return if unsupported version */ 1334 if (!m_can_version) { 1335 dev_err(m_can_dev->dev, "Unsupported version number: %2d", 1336 m_can_version); 1337 return -EINVAL; 1338 } 1339 1340 if (!m_can_dev->is_peripheral) 1341 netif_napi_add(dev, &m_can_dev->napi, 1342 m_can_poll, M_CAN_NAPI_WEIGHT); 1343 1344 /* Shared properties of all M_CAN versions */ 1345 m_can_dev->version = m_can_version; 1346 m_can_dev->can.do_set_mode = m_can_set_mode; 1347 m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter; 1348 1349 /* Set M_CAN supported operations */ 1350 m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1351 CAN_CTRLMODE_LISTENONLY | 1352 CAN_CTRLMODE_BERR_REPORTING | 1353 CAN_CTRLMODE_FD | 1354 CAN_CTRLMODE_ONE_SHOT; 1355 1356 /* Set properties depending on M_CAN version */ 1357 switch (m_can_dev->version) { 1358 case 30: 1359 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1360 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1361 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? 1362 m_can_dev->bit_timing : &m_can_bittiming_const_30X; 1363 1364 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? 1365 m_can_dev->data_timing : 1366 &m_can_data_bittiming_const_30X; 1367 break; 1368 case 31: 1369 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1370 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1371 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? 1372 m_can_dev->bit_timing : &m_can_bittiming_const_31X; 1373 1374 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? 1375 m_can_dev->data_timing : 1376 &m_can_data_bittiming_const_31X; 1377 break; 1378 case 32: 1379 case 33: 1380 /* Support both MCAN version v3.2.x and v3.3.0 */ 1381 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? 1382 m_can_dev->bit_timing : &m_can_bittiming_const_31X; 1383 1384 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? 1385 m_can_dev->data_timing : 1386 &m_can_data_bittiming_const_31X; 1387 1388 m_can_dev->can.ctrlmode_supported |= 1389 (m_can_niso_supported(m_can_dev) 1390 ? CAN_CTRLMODE_FD_NON_ISO 1391 : 0); 1392 break; 1393 default: 1394 dev_err(m_can_dev->dev, "Unsupported version number: %2d", 1395 m_can_dev->version); 1396 return -EINVAL; 1397 } 1398 1399 if (m_can_dev->ops->init) 1400 m_can_dev->ops->init(m_can_dev); 1401 1402 return 0; 1403} 1404 1405static void m_can_stop(struct net_device *dev) 1406{ 1407 struct m_can_classdev *cdev = netdev_priv(dev); 1408 1409 /* disable all interrupts */ 1410 m_can_disable_all_interrupts(cdev); 1411 1412 /* Set init mode to disengage from the network */ 1413 m_can_config_endisable(cdev, true); 1414 1415 /* set the state as STOPPED */ 1416 cdev->can.state = CAN_STATE_STOPPED; 1417} 1418 1419static int m_can_close(struct net_device *dev) 1420{ 1421 struct m_can_classdev *cdev = netdev_priv(dev); 1422 1423 netif_stop_queue(dev); 1424 1425 if (!cdev->is_peripheral) 1426 napi_disable(&cdev->napi); 1427 1428 m_can_stop(dev); 1429 m_can_clk_stop(cdev); 1430 free_irq(dev->irq, dev); 1431 1432 if (cdev->is_peripheral) { 1433 cdev->tx_skb = NULL; 1434 destroy_workqueue(cdev->tx_wq); 1435 cdev->tx_wq = NULL; 1436 } 1437 1438 close_candev(dev); 1439 can_led_event(dev, CAN_LED_EVENT_STOP); 1440 1441 return 0; 1442} 1443 1444static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) 1445{ 1446 struct m_can_classdev *cdev = netdev_priv(dev); 1447 /*get wrap around for loopback skb index */ 1448 unsigned int wrap = cdev->can.echo_skb_max; 1449 int next_idx; 1450 1451 /* calculate next index */ 1452 next_idx = (++putidx >= wrap ? 0 : putidx); 1453 1454 /* check if occupied */ 1455 return !!cdev->can.echo_skb[next_idx]; 1456} 1457 1458static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) 1459{ 1460 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; 1461 struct net_device *dev = cdev->net; 1462 struct sk_buff *skb = cdev->tx_skb; 1463 u32 id, cccr, fdflags; 1464 int i; 1465 int putidx; 1466 1467 cdev->tx_skb = NULL; 1468 1469 /* Generate ID field for TX buffer Element */ 1470 /* Common to all supported M_CAN versions */ 1471 if (cf->can_id & CAN_EFF_FLAG) { 1472 id = cf->can_id & CAN_EFF_MASK; 1473 id |= TX_BUF_XTD; 1474 } else { 1475 id = ((cf->can_id & CAN_SFF_MASK) << 18); 1476 } 1477 1478 if (cf->can_id & CAN_RTR_FLAG) 1479 id |= TX_BUF_RTR; 1480 1481 if (cdev->version == 30) { 1482 netif_stop_queue(dev); 1483 1484 /* message ram configuration */ 1485 m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id); 1486 m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC, 1487 can_len2dlc(cf->len) << 16); 1488 1489 for (i = 0; i < cf->len; i += 4) 1490 m_can_fifo_write(cdev, 0, 1491 M_CAN_FIFO_DATA(i / 4), 1492 *(u32 *)(cf->data + i)); 1493 1494 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1495 cccr = m_can_read(cdev, M_CAN_CCCR); 1496 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT); 1497 if (can_is_canfd_skb(skb)) { 1498 if (cf->flags & CANFD_BRS) 1499 cccr |= CCCR_CMR_CANFD_BRS << 1500 CCCR_CMR_SHIFT; 1501 else 1502 cccr |= CCCR_CMR_CANFD << 1503 CCCR_CMR_SHIFT; 1504 } else { 1505 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT; 1506 } 1507 m_can_write(cdev, M_CAN_CCCR, cccr); 1508 } 1509 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1510 1511 can_put_echo_skb(skb, dev, 0); 1512 1513 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1514 /* End of xmit function for version 3.0.x */ 1515 } else { 1516 /* Transmit routine for version >= v3.1.x */ 1517 1518 /* Check if FIFO full */ 1519 if (m_can_tx_fifo_full(cdev)) { 1520 /* This shouldn't happen */ 1521 netif_stop_queue(dev); 1522 netdev_warn(dev, 1523 "TX queue active although FIFO is full."); 1524 1525 if (cdev->is_peripheral) { 1526 kfree_skb(skb); 1527 dev->stats.tx_dropped++; 1528 return NETDEV_TX_OK; 1529 } else { 1530 return NETDEV_TX_BUSY; 1531 } 1532 } 1533 1534 /* get put index for frame */ 1535 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK) 1536 >> TXFQS_TFQPI_SHIFT); 1537 /* Write ID Field to FIFO Element */ 1538 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id); 1539 1540 /* get CAN FD configuration of frame */ 1541 fdflags = 0; 1542 if (can_is_canfd_skb(skb)) { 1543 fdflags |= TX_BUF_FDF; 1544 if (cf->flags & CANFD_BRS) 1545 fdflags |= TX_BUF_BRS; 1546 } 1547 1548 /* Construct DLC Field. Also contains CAN-FD configuration 1549 * use put index of fifo as message marker 1550 * it is used in TX interrupt for 1551 * sending the correct echo frame 1552 */ 1553 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC, 1554 ((putidx << TX_BUF_MM_SHIFT) & 1555 TX_BUF_MM_MASK) | 1556 (can_len2dlc(cf->len) << 16) | 1557 fdflags | TX_BUF_EFC); 1558 1559 for (i = 0; i < cf->len; i += 4) 1560 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4), 1561 *(u32 *)(cf->data + i)); 1562 1563 /* Push loopback echo. 1564 * Will be looped back on TX interrupt based on message marker 1565 */ 1566 can_put_echo_skb(skb, dev, putidx); 1567 1568 /* Enable TX FIFO element to start transfer */ 1569 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); 1570 1571 /* stop network queue if fifo full */ 1572 if (m_can_tx_fifo_full(cdev) || 1573 m_can_next_echo_skb_occupied(dev, putidx)) 1574 netif_stop_queue(dev); 1575 } 1576 1577 return NETDEV_TX_OK; 1578} 1579 1580static void m_can_tx_work_queue(struct work_struct *ws) 1581{ 1582 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, 1583 tx_work); 1584 1585 m_can_tx_handler(cdev); 1586} 1587 1588static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1589 struct net_device *dev) 1590{ 1591 struct m_can_classdev *cdev = netdev_priv(dev); 1592 1593 if (can_dropped_invalid_skb(dev, skb)) 1594 return NETDEV_TX_OK; 1595 1596 if (cdev->is_peripheral) { 1597 if (cdev->tx_skb) { 1598 netdev_err(dev, "hard_xmit called while tx busy\n"); 1599 return NETDEV_TX_BUSY; 1600 } 1601 1602 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1603 m_can_clean(dev); 1604 } else { 1605 /* Need to stop the queue to avoid numerous requests 1606 * from being sent. Suggested improvement is to create 1607 * a queueing mechanism that will queue the skbs and 1608 * process them in order. 1609 */ 1610 cdev->tx_skb = skb; 1611 netif_stop_queue(cdev->net); 1612 queue_work(cdev->tx_wq, &cdev->tx_work); 1613 } 1614 } else { 1615 cdev->tx_skb = skb; 1616 return m_can_tx_handler(cdev); 1617 } 1618 1619 return NETDEV_TX_OK; 1620} 1621 1622static int m_can_open(struct net_device *dev) 1623{ 1624 struct m_can_classdev *cdev = netdev_priv(dev); 1625 int err; 1626 1627 err = m_can_clk_start(cdev); 1628 if (err) 1629 return err; 1630 1631 /* open the can device */ 1632 err = open_candev(dev); 1633 if (err) { 1634 netdev_err(dev, "failed to open can device\n"); 1635 goto exit_disable_clks; 1636 } 1637 1638 /* register interrupt handler */ 1639 if (cdev->is_peripheral) { 1640 cdev->tx_skb = NULL; 1641 cdev->tx_wq = alloc_workqueue("mcan_wq", 1642 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); 1643 if (!cdev->tx_wq) { 1644 err = -ENOMEM; 1645 goto out_wq_fail; 1646 } 1647 1648 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); 1649 1650 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1651 IRQF_ONESHOT, 1652 dev->name, dev); 1653 } else { 1654 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 1655 dev); 1656 } 1657 1658 if (err < 0) { 1659 netdev_err(dev, "failed to request interrupt\n"); 1660 goto exit_irq_fail; 1661 } 1662 1663 /* start the m_can controller */ 1664 m_can_start(dev); 1665 1666 can_led_event(dev, CAN_LED_EVENT_OPEN); 1667 1668 if (!cdev->is_peripheral) 1669 napi_enable(&cdev->napi); 1670 1671 netif_start_queue(dev); 1672 1673 return 0; 1674 1675exit_irq_fail: 1676 if (cdev->is_peripheral) 1677 destroy_workqueue(cdev->tx_wq); 1678out_wq_fail: 1679 close_candev(dev); 1680exit_disable_clks: 1681 m_can_clk_stop(cdev); 1682 return err; 1683} 1684 1685static const struct net_device_ops m_can_netdev_ops = { 1686 .ndo_open = m_can_open, 1687 .ndo_stop = m_can_close, 1688 .ndo_start_xmit = m_can_start_xmit, 1689 .ndo_change_mtu = can_change_mtu, 1690}; 1691 1692static int register_m_can_dev(struct net_device *dev) 1693{ 1694 dev->flags |= IFF_ECHO; /* we support local echo */ 1695 dev->netdev_ops = &m_can_netdev_ops; 1696 1697 return register_candev(dev); 1698} 1699 1700static void m_can_of_parse_mram(struct m_can_classdev *cdev, 1701 const u32 *mram_config_vals) 1702{ 1703 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 1704 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 1705 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 1706 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1707 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 1708 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 1709 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1710 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 1711 (RXFC_FS_MASK >> RXFC_FS_SHIFT); 1712 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 1713 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1714 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 1715 (RXFC_FS_MASK >> RXFC_FS_SHIFT); 1716 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 1717 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1718 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 1719 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 1720 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1721 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 1722 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 1723 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1724 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 1725 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT); 1726 1727 dev_dbg(cdev->dev, 1728 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1729 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 1730 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 1731 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 1732 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 1733 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 1734 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 1735 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 1736} 1737 1738void m_can_init_ram(struct m_can_classdev *cdev) 1739{ 1740 int end, i, start; 1741 1742 /* initialize the entire Message RAM in use to avoid possible 1743 * ECC/parity checksum errors when reading an uninitialized buffer 1744 */ 1745 start = cdev->mcfg[MRAM_SIDF].off; 1746 end = cdev->mcfg[MRAM_TXB].off + 1747 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1748 1749 for (i = start; i < end; i += 4) 1750 m_can_fifo_write_no_off(cdev, i, 0x0); 1751} 1752EXPORT_SYMBOL_GPL(m_can_init_ram); 1753 1754int m_can_class_get_clocks(struct m_can_classdev *m_can_dev) 1755{ 1756 int ret = 0; 1757 1758 m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk"); 1759 m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk"); 1760 1761 if (IS_ERR(m_can_dev->cclk)) { 1762 dev_err(m_can_dev->dev, "no clock found\n"); 1763 ret = -ENODEV; 1764 } 1765 1766 return ret; 1767} 1768EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 1769 1770struct m_can_classdev *m_can_class_allocate_dev(struct device *dev) 1771{ 1772 struct m_can_classdev *class_dev = NULL; 1773 u32 mram_config_vals[MRAM_CFG_LEN]; 1774 struct net_device *net_dev; 1775 u32 tx_fifo_size; 1776 int ret; 1777 1778 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 1779 "bosch,mram-cfg", 1780 mram_config_vals, 1781 sizeof(mram_config_vals) / 4); 1782 if (ret) { 1783 dev_err(dev, "Could not get Message RAM configuration."); 1784 goto out; 1785 } 1786 1787 /* Get TX FIFO size 1788 * Defines the total amount of echo buffers for loopback 1789 */ 1790 tx_fifo_size = mram_config_vals[7]; 1791 1792 /* allocate the m_can device */ 1793 net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size); 1794 if (!net_dev) { 1795 dev_err(dev, "Failed to allocate CAN device"); 1796 goto out; 1797 } 1798 1799 class_dev = netdev_priv(net_dev); 1800 if (!class_dev) { 1801 dev_err(dev, "Failed to init netdev cdevate"); 1802 goto out; 1803 } 1804 1805 class_dev->net = net_dev; 1806 class_dev->dev = dev; 1807 SET_NETDEV_DEV(net_dev, dev); 1808 1809 m_can_of_parse_mram(class_dev, mram_config_vals); 1810out: 1811 return class_dev; 1812} 1813EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 1814 1815void m_can_class_free_dev(struct net_device *net) 1816{ 1817 free_candev(net); 1818} 1819EXPORT_SYMBOL_GPL(m_can_class_free_dev); 1820 1821int m_can_class_register(struct m_can_classdev *m_can_dev) 1822{ 1823 int ret; 1824 1825 if (m_can_dev->pm_clock_support) { 1826 pm_runtime_enable(m_can_dev->dev); 1827 ret = m_can_clk_start(m_can_dev); 1828 if (ret) 1829 goto pm_runtime_fail; 1830 } 1831 1832 ret = m_can_dev_setup(m_can_dev); 1833 if (ret) 1834 goto clk_disable; 1835 1836 ret = register_m_can_dev(m_can_dev->net); 1837 if (ret) { 1838 dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n", 1839 m_can_dev->net->name, ret); 1840 goto clk_disable; 1841 } 1842 1843 devm_can_led_init(m_can_dev->net); 1844 1845 of_can_transceiver(m_can_dev->net); 1846 1847 dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n", 1848 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version); 1849 1850 /* Probe finished 1851 * Stop clocks. They will be reactivated once the M_CAN device is opened 1852 */ 1853clk_disable: 1854 m_can_clk_stop(m_can_dev); 1855pm_runtime_fail: 1856 if (ret) { 1857 if (m_can_dev->pm_clock_support) 1858 pm_runtime_disable(m_can_dev->dev); 1859 } 1860 1861 return ret; 1862} 1863EXPORT_SYMBOL_GPL(m_can_class_register); 1864 1865int m_can_class_suspend(struct device *dev) 1866{ 1867 struct net_device *ndev = dev_get_drvdata(dev); 1868 struct m_can_classdev *cdev = netdev_priv(ndev); 1869 1870 if (netif_running(ndev)) { 1871 netif_stop_queue(ndev); 1872 netif_device_detach(ndev); 1873 m_can_stop(ndev); 1874 m_can_clk_stop(cdev); 1875 } 1876 1877 pinctrl_pm_select_sleep_state(dev); 1878 1879 cdev->can.state = CAN_STATE_SLEEPING; 1880 1881 return 0; 1882} 1883EXPORT_SYMBOL_GPL(m_can_class_suspend); 1884 1885int m_can_class_resume(struct device *dev) 1886{ 1887 struct net_device *ndev = dev_get_drvdata(dev); 1888 struct m_can_classdev *cdev = netdev_priv(ndev); 1889 1890 pinctrl_pm_select_default_state(dev); 1891 1892 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1893 1894 if (netif_running(ndev)) { 1895 int ret; 1896 1897 ret = m_can_clk_start(cdev); 1898 if (ret) 1899 return ret; 1900 1901 m_can_init_ram(cdev); 1902 m_can_start(ndev); 1903 netif_device_attach(ndev); 1904 netif_start_queue(ndev); 1905 } 1906 1907 return 0; 1908} 1909EXPORT_SYMBOL_GPL(m_can_class_resume); 1910 1911void m_can_class_unregister(struct m_can_classdev *m_can_dev) 1912{ 1913 unregister_candev(m_can_dev->net); 1914} 1915EXPORT_SYMBOL_GPL(m_can_class_unregister); 1916 1917MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 1918MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 1919MODULE_LICENSE("GPL v2"); 1920MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 1921