xref: /kernel/linux/linux-5.10/drivers/net/can/dev/dev.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 */
6
7#include <linux/module.h>
8#include <linux/kernel.h>
9#include <linux/slab.h>
10#include <linux/netdevice.h>
11#include <linux/if_arp.h>
12#include <linux/workqueue.h>
13#include <linux/can.h>
14#include <linux/can/can-ml.h>
15#include <linux/can/dev.h>
16#include <linux/can/skb.h>
17#include <linux/can/netlink.h>
18#include <linux/can/led.h>
19#include <linux/of.h>
20#include <net/rtnetlink.h>
21
22#define MOD_DESC "CAN device driver interface"
23
24MODULE_DESCRIPTION(MOD_DESC);
25MODULE_LICENSE("GPL v2");
26MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
27
28/* CAN DLC to real data length conversion helpers */
29
30static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
31			     8, 12, 16, 20, 24, 32, 48, 64};
32
33/* get data length from can_dlc with sanitized can_dlc */
34u8 can_dlc2len(u8 can_dlc)
35{
36	return dlc2len[can_dlc & 0x0F];
37}
38EXPORT_SYMBOL_GPL(can_dlc2len);
39
40static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
41			     9, 9, 9, 9,			/* 9 - 12 */
42			     10, 10, 10, 10,			/* 13 - 16 */
43			     11, 11, 11, 11,			/* 17 - 20 */
44			     12, 12, 12, 12,			/* 21 - 24 */
45			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
46			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
47			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
48			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
49			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
50
51/* map the sanitized data length to an appropriate data length code */
52u8 can_len2dlc(u8 len)
53{
54	if (unlikely(len > 64))
55		return 0xF;
56
57	return len2dlc[len];
58}
59EXPORT_SYMBOL_GPL(can_len2dlc);
60
61#ifdef CONFIG_CAN_CALC_BITTIMING
62#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
63
64/* Bit-timing calculation derived from:
65 *
66 * Code based on LinCAN sources and H8S2638 project
67 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
68 * Copyright 2005      Stanislav Marek
69 * email: pisa@cmp.felk.cvut.cz
70 *
71 * Calculates proper bit-timing parameters for a specified bit-rate
72 * and sample-point, which can then be used to set the bit-timing
73 * registers of the CAN controller. You can find more information
74 * in the header file linux/can/netlink.h.
75 */
76static int
77can_update_sample_point(const struct can_bittiming_const *btc,
78			unsigned int sample_point_nominal, unsigned int tseg,
79			unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
80			unsigned int *sample_point_error_ptr)
81{
82	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
83	unsigned int sample_point, best_sample_point = 0;
84	unsigned int tseg1, tseg2;
85	int i;
86
87	for (i = 0; i <= 1; i++) {
88		tseg2 = tseg + CAN_SYNC_SEG -
89			(sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
90			1000 - i;
91		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
92		tseg1 = tseg - tseg2;
93		if (tseg1 > btc->tseg1_max) {
94			tseg1 = btc->tseg1_max;
95			tseg2 = tseg - tseg1;
96		}
97
98		sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
99			(tseg + CAN_SYNC_SEG);
100		sample_point_error = abs(sample_point_nominal - sample_point);
101
102		if (sample_point <= sample_point_nominal &&
103		    sample_point_error < best_sample_point_error) {
104			best_sample_point = sample_point;
105			best_sample_point_error = sample_point_error;
106			*tseg1_ptr = tseg1;
107			*tseg2_ptr = tseg2;
108		}
109	}
110
111	if (sample_point_error_ptr)
112		*sample_point_error_ptr = best_sample_point_error;
113
114	return best_sample_point;
115}
116
117static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
118			      const struct can_bittiming_const *btc)
119{
120	struct can_priv *priv = netdev_priv(dev);
121	unsigned int bitrate;			/* current bitrate */
122	unsigned int bitrate_error;		/* difference between current and nominal value */
123	unsigned int best_bitrate_error = UINT_MAX;
124	unsigned int sample_point_error;	/* difference between current and nominal value */
125	unsigned int best_sample_point_error = UINT_MAX;
126	unsigned int sample_point_nominal;	/* nominal sample point */
127	unsigned int best_tseg = 0;		/* current best value for tseg */
128	unsigned int best_brp = 0;		/* current best value for brp */
129	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
130	u64 v64;
131
132	/* Use CiA recommended sample points */
133	if (bt->sample_point) {
134		sample_point_nominal = bt->sample_point;
135	} else {
136		if (bt->bitrate > 800000)
137			sample_point_nominal = 750;
138		else if (bt->bitrate > 500000)
139			sample_point_nominal = 800;
140		else
141			sample_point_nominal = 875;
142	}
143
144	/* tseg even = round down, odd = round up */
145	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
146	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
147		tsegall = CAN_SYNC_SEG + tseg / 2;
148
149		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
150		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
151
152		/* choose brp step which is possible in system */
153		brp = (brp / btc->brp_inc) * btc->brp_inc;
154		if (brp < btc->brp_min || brp > btc->brp_max)
155			continue;
156
157		bitrate = priv->clock.freq / (brp * tsegall);
158		bitrate_error = abs(bt->bitrate - bitrate);
159
160		/* tseg brp biterror */
161		if (bitrate_error > best_bitrate_error)
162			continue;
163
164		/* reset sample point error if we have a better bitrate */
165		if (bitrate_error < best_bitrate_error)
166			best_sample_point_error = UINT_MAX;
167
168		can_update_sample_point(btc, sample_point_nominal, tseg / 2,
169					&tseg1, &tseg2, &sample_point_error);
170		if (sample_point_error > best_sample_point_error)
171			continue;
172
173		best_sample_point_error = sample_point_error;
174		best_bitrate_error = bitrate_error;
175		best_tseg = tseg / 2;
176		best_brp = brp;
177
178		if (bitrate_error == 0 && sample_point_error == 0)
179			break;
180	}
181
182	if (best_bitrate_error) {
183		/* Error in one-tenth of a percent */
184		v64 = (u64)best_bitrate_error * 1000;
185		do_div(v64, bt->bitrate);
186		bitrate_error = (u32)v64;
187		if (bitrate_error > CAN_CALC_MAX_ERROR) {
188			netdev_err(dev,
189				   "bitrate error %d.%d%% too high\n",
190				   bitrate_error / 10, bitrate_error % 10);
191			return -EDOM;
192		}
193		netdev_warn(dev, "bitrate error %d.%d%%\n",
194			    bitrate_error / 10, bitrate_error % 10);
195	}
196
197	/* real sample point */
198	bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
199						   best_tseg, &tseg1, &tseg2,
200						   NULL);
201
202	v64 = (u64)best_brp * 1000 * 1000 * 1000;
203	do_div(v64, priv->clock.freq);
204	bt->tq = (u32)v64;
205	bt->prop_seg = tseg1 / 2;
206	bt->phase_seg1 = tseg1 - bt->prop_seg;
207	bt->phase_seg2 = tseg2;
208
209	/* check for sjw user settings */
210	if (!bt->sjw || !btc->sjw_max) {
211		bt->sjw = 1;
212	} else {
213		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
214		if (bt->sjw > btc->sjw_max)
215			bt->sjw = btc->sjw_max;
216		/* bt->sjw must not be higher than tseg2 */
217		if (tseg2 < bt->sjw)
218			bt->sjw = tseg2;
219	}
220
221	bt->brp = best_brp;
222
223	/* real bitrate */
224	bt->bitrate = priv->clock.freq /
225		(bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
226
227	return 0;
228}
229#else /* !CONFIG_CAN_CALC_BITTIMING */
230static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
231			      const struct can_bittiming_const *btc)
232{
233	netdev_err(dev, "bit-timing calculation not available\n");
234	return -EINVAL;
235}
236#endif /* CONFIG_CAN_CALC_BITTIMING */
237
238/* Checks the validity of the specified bit-timing parameters prop_seg,
239 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
240 * prescaler value brp. You can find more information in the header
241 * file linux/can/netlink.h.
242 */
243static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
244			       const struct can_bittiming_const *btc)
245{
246	struct can_priv *priv = netdev_priv(dev);
247	int tseg1, alltseg;
248	u64 brp64;
249
250	tseg1 = bt->prop_seg + bt->phase_seg1;
251	if (!bt->sjw)
252		bt->sjw = 1;
253	if (bt->sjw > btc->sjw_max ||
254	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
255	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
256		return -ERANGE;
257
258	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
259	if (btc->brp_inc > 1)
260		do_div(brp64, btc->brp_inc);
261	brp64 += 500000000UL - 1;
262	do_div(brp64, 1000000000UL); /* the practicable BRP */
263	if (btc->brp_inc > 1)
264		brp64 *= btc->brp_inc;
265	bt->brp = (u32)brp64;
266
267	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
268		return -EINVAL;
269
270	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
271	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
272	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
273
274	return 0;
275}
276
277/* Checks the validity of predefined bitrate settings */
278static int
279can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
280		     const u32 *bitrate_const,
281		     const unsigned int bitrate_const_cnt)
282{
283	struct can_priv *priv = netdev_priv(dev);
284	unsigned int i;
285
286	for (i = 0; i < bitrate_const_cnt; i++) {
287		if (bt->bitrate == bitrate_const[i])
288			break;
289	}
290
291	if (i >= priv->bitrate_const_cnt)
292		return -EINVAL;
293
294	return 0;
295}
296
297static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
298			     const struct can_bittiming_const *btc,
299			     const u32 *bitrate_const,
300			     const unsigned int bitrate_const_cnt)
301{
302	int err;
303
304	/* Depending on the given can_bittiming parameter structure the CAN
305	 * timing parameters are calculated based on the provided bitrate OR
306	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
307	 * provided directly which are then checked and fixed up.
308	 */
309	if (!bt->tq && bt->bitrate && btc)
310		err = can_calc_bittiming(dev, bt, btc);
311	else if (bt->tq && !bt->bitrate && btc)
312		err = can_fixup_bittiming(dev, bt, btc);
313	else if (!bt->tq && bt->bitrate && bitrate_const)
314		err = can_validate_bitrate(dev, bt, bitrate_const,
315					   bitrate_const_cnt);
316	else
317		err = -EINVAL;
318
319	return err;
320}
321
322static void can_update_state_error_stats(struct net_device *dev,
323					 enum can_state new_state)
324{
325	struct can_priv *priv = netdev_priv(dev);
326
327	if (new_state <= priv->state)
328		return;
329
330	switch (new_state) {
331	case CAN_STATE_ERROR_WARNING:
332		priv->can_stats.error_warning++;
333		break;
334	case CAN_STATE_ERROR_PASSIVE:
335		priv->can_stats.error_passive++;
336		break;
337	case CAN_STATE_BUS_OFF:
338		priv->can_stats.bus_off++;
339		break;
340	default:
341		break;
342	}
343}
344
345static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
346{
347	switch (state) {
348	case CAN_STATE_ERROR_ACTIVE:
349		return CAN_ERR_CRTL_ACTIVE;
350	case CAN_STATE_ERROR_WARNING:
351		return CAN_ERR_CRTL_TX_WARNING;
352	case CAN_STATE_ERROR_PASSIVE:
353		return CAN_ERR_CRTL_TX_PASSIVE;
354	default:
355		return 0;
356	}
357}
358
359static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
360{
361	switch (state) {
362	case CAN_STATE_ERROR_ACTIVE:
363		return CAN_ERR_CRTL_ACTIVE;
364	case CAN_STATE_ERROR_WARNING:
365		return CAN_ERR_CRTL_RX_WARNING;
366	case CAN_STATE_ERROR_PASSIVE:
367		return CAN_ERR_CRTL_RX_PASSIVE;
368	default:
369		return 0;
370	}
371}
372
373static const char *can_get_state_str(const enum can_state state)
374{
375	switch (state) {
376	case CAN_STATE_ERROR_ACTIVE:
377		return "Error Active";
378	case CAN_STATE_ERROR_WARNING:
379		return "Error Warning";
380	case CAN_STATE_ERROR_PASSIVE:
381		return "Error Passive";
382	case CAN_STATE_BUS_OFF:
383		return "Bus Off";
384	case CAN_STATE_STOPPED:
385		return "Stopped";
386	case CAN_STATE_SLEEPING:
387		return "Sleeping";
388	default:
389		return "<unknown>";
390	}
391
392	return "<unknown>";
393}
394
395void can_change_state(struct net_device *dev, struct can_frame *cf,
396		      enum can_state tx_state, enum can_state rx_state)
397{
398	struct can_priv *priv = netdev_priv(dev);
399	enum can_state new_state = max(tx_state, rx_state);
400
401	if (unlikely(new_state == priv->state)) {
402		netdev_warn(dev, "%s: oops, state did not change", __func__);
403		return;
404	}
405
406	netdev_dbg(dev, "Controller changed from %s State (%d) into %s State (%d).\n",
407		   can_get_state_str(priv->state), priv->state,
408		   can_get_state_str(new_state), new_state);
409
410	can_update_state_error_stats(dev, new_state);
411	priv->state = new_state;
412
413	if (!cf)
414		return;
415
416	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
417		cf->can_id |= CAN_ERR_BUSOFF;
418		return;
419	}
420
421	cf->can_id |= CAN_ERR_CRTL;
422	cf->data[1] |= tx_state >= rx_state ?
423		       can_tx_state_to_frame(dev, tx_state) : 0;
424	cf->data[1] |= tx_state <= rx_state ?
425		       can_rx_state_to_frame(dev, rx_state) : 0;
426}
427EXPORT_SYMBOL_GPL(can_change_state);
428
429/* Local echo of CAN messages
430 *
431 * CAN network devices *should* support a local echo functionality
432 * (see Documentation/networking/can.rst). To test the handling of CAN
433 * interfaces that do not support the local echo both driver types are
434 * implemented. In the case that the driver does not support the echo
435 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
436 * to perform the echo as a fallback solution.
437 */
438static void can_flush_echo_skb(struct net_device *dev)
439{
440	struct can_priv *priv = netdev_priv(dev);
441	struct net_device_stats *stats = &dev->stats;
442	int i;
443
444	for (i = 0; i < priv->echo_skb_max; i++) {
445		if (priv->echo_skb[i]) {
446			kfree_skb(priv->echo_skb[i]);
447			priv->echo_skb[i] = NULL;
448			stats->tx_dropped++;
449			stats->tx_aborted_errors++;
450		}
451	}
452}
453
454/* Put the skb on the stack to be looped backed locally lateron
455 *
456 * The function is typically called in the start_xmit function
457 * of the device driver. The driver must protect access to
458 * priv->echo_skb, if necessary.
459 */
460int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
461		     unsigned int idx)
462{
463	struct can_priv *priv = netdev_priv(dev);
464
465	BUG_ON(idx >= priv->echo_skb_max);
466
467	/* check flag whether this packet has to be looped back */
468	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
469	    (skb->protocol != htons(ETH_P_CAN) &&
470	     skb->protocol != htons(ETH_P_CANFD))) {
471		kfree_skb(skb);
472		return 0;
473	}
474
475	if (!priv->echo_skb[idx]) {
476		skb = can_create_echo_skb(skb);
477		if (!skb)
478			return -ENOMEM;
479
480		/* make settings for echo to reduce code in irq context */
481		skb->pkt_type = PACKET_BROADCAST;
482		skb->ip_summed = CHECKSUM_UNNECESSARY;
483		skb->dev = dev;
484
485		/* save this skb for tx interrupt echo handling */
486		priv->echo_skb[idx] = skb;
487	} else {
488		/* locking problem with netif_stop_queue() ?? */
489		netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx);
490		kfree_skb(skb);
491		return -EBUSY;
492	}
493
494	return 0;
495}
496EXPORT_SYMBOL_GPL(can_put_echo_skb);
497
498struct sk_buff *
499__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
500{
501	struct can_priv *priv = netdev_priv(dev);
502
503	if (idx >= priv->echo_skb_max) {
504		netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
505			   __func__, idx, priv->echo_skb_max);
506		return NULL;
507	}
508
509	if (priv->echo_skb[idx]) {
510		/* Using "struct canfd_frame::len" for the frame
511		 * length is supported on both CAN and CANFD frames.
512		 */
513		struct sk_buff *skb = priv->echo_skb[idx];
514		struct canfd_frame *cf = (struct canfd_frame *)skb->data;
515
516		/* get the real payload length for netdev statistics */
517		if (cf->can_id & CAN_RTR_FLAG)
518			*len_ptr = 0;
519		else
520			*len_ptr = cf->len;
521
522		priv->echo_skb[idx] = NULL;
523
524		return skb;
525	}
526
527	return NULL;
528}
529
530/* Get the skb from the stack and loop it back locally
531 *
532 * The function is typically called when the TX done interrupt
533 * is handled in the device driver. The driver must protect
534 * access to priv->echo_skb, if necessary.
535 */
536unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
537{
538	struct sk_buff *skb;
539	u8 len;
540
541	skb = __can_get_echo_skb(dev, idx, &len);
542	if (!skb)
543		return 0;
544
545	skb_get(skb);
546	if (netif_rx(skb) == NET_RX_SUCCESS)
547		dev_consume_skb_any(skb);
548	else
549		dev_kfree_skb_any(skb);
550
551	return len;
552}
553EXPORT_SYMBOL_GPL(can_get_echo_skb);
554
555/* Remove the skb from the stack and free it.
556 *
557 * The function is typically called when TX failed.
558 */
559void can_free_echo_skb(struct net_device *dev, unsigned int idx)
560{
561	struct can_priv *priv = netdev_priv(dev);
562
563	BUG_ON(idx >= priv->echo_skb_max);
564
565	if (priv->echo_skb[idx]) {
566		dev_kfree_skb_any(priv->echo_skb[idx]);
567		priv->echo_skb[idx] = NULL;
568	}
569}
570EXPORT_SYMBOL_GPL(can_free_echo_skb);
571
572/* CAN device restart for bus-off recovery */
573static void can_restart(struct net_device *dev)
574{
575	struct can_priv *priv = netdev_priv(dev);
576	struct net_device_stats *stats = &dev->stats;
577	struct sk_buff *skb;
578	struct can_frame *cf;
579	int err;
580
581	if (netif_carrier_ok(dev))
582		netdev_err(dev, "Attempt to restart for bus-off recovery, but carrier is OK?\n");
583
584	/* No synchronization needed because the device is bus-off and
585	 * no messages can come in or go out.
586	 */
587	can_flush_echo_skb(dev);
588
589	/* send restart message upstream */
590	skb = alloc_can_err_skb(dev, &cf);
591	if (!skb)
592		goto restart;
593
594	cf->can_id |= CAN_ERR_RESTARTED;
595
596	stats->rx_packets++;
597	stats->rx_bytes += cf->can_dlc;
598
599	netif_rx_ni(skb);
600
601restart:
602	netdev_dbg(dev, "restarted\n");
603	priv->can_stats.restarts++;
604
605	/* Now restart the device */
606	netif_carrier_on(dev);
607	err = priv->do_set_mode(dev, CAN_MODE_START);
608	if (err) {
609		netdev_err(dev, "Error %d during restart", err);
610		netif_carrier_off(dev);
611	}
612}
613
614static void can_restart_work(struct work_struct *work)
615{
616	struct delayed_work *dwork = to_delayed_work(work);
617	struct can_priv *priv = container_of(dwork, struct can_priv,
618					     restart_work);
619
620	can_restart(priv->dev);
621}
622
623int can_restart_now(struct net_device *dev)
624{
625	struct can_priv *priv = netdev_priv(dev);
626
627	/* A manual restart is only permitted if automatic restart is
628	 * disabled and the device is in the bus-off state
629	 */
630	if (priv->restart_ms)
631		return -EINVAL;
632	if (priv->state != CAN_STATE_BUS_OFF)
633		return -EBUSY;
634
635	cancel_delayed_work_sync(&priv->restart_work);
636	can_restart(dev);
637
638	return 0;
639}
640
641/* CAN bus-off
642 *
643 * This functions should be called when the device goes bus-off to
644 * tell the netif layer that no more packets can be sent or received.
645 * If enabled, a timer is started to trigger bus-off recovery.
646 */
647void can_bus_off(struct net_device *dev)
648{
649	struct can_priv *priv = netdev_priv(dev);
650
651	if (priv->restart_ms)
652		netdev_info(dev, "bus-off, scheduling restart in %d ms\n",
653			    priv->restart_ms);
654	else
655		netdev_info(dev, "bus-off\n");
656
657	netif_carrier_off(dev);
658
659	if (priv->restart_ms)
660		schedule_delayed_work(&priv->restart_work,
661				      msecs_to_jiffies(priv->restart_ms));
662}
663EXPORT_SYMBOL_GPL(can_bus_off);
664
665static void can_setup(struct net_device *dev)
666{
667	dev->type = ARPHRD_CAN;
668	dev->mtu = CAN_MTU;
669	dev->hard_header_len = 0;
670	dev->addr_len = 0;
671	dev->tx_queue_len = 10;
672
673	/* New-style flags. */
674	dev->flags = IFF_NOARP;
675	dev->features = NETIF_F_HW_CSUM;
676}
677
678struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
679{
680	struct sk_buff *skb;
681
682	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
683			       sizeof(struct can_frame));
684	if (unlikely(!skb))
685		return NULL;
686
687	skb->protocol = htons(ETH_P_CAN);
688	skb->pkt_type = PACKET_BROADCAST;
689	skb->ip_summed = CHECKSUM_UNNECESSARY;
690
691	skb_reset_mac_header(skb);
692	skb_reset_network_header(skb);
693	skb_reset_transport_header(skb);
694
695	can_skb_reserve(skb);
696	can_skb_prv(skb)->ifindex = dev->ifindex;
697	can_skb_prv(skb)->skbcnt = 0;
698
699	*cf = skb_put_zero(skb, sizeof(struct can_frame));
700
701	return skb;
702}
703EXPORT_SYMBOL_GPL(alloc_can_skb);
704
705struct sk_buff *alloc_canfd_skb(struct net_device *dev,
706				struct canfd_frame **cfd)
707{
708	struct sk_buff *skb;
709
710	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
711			       sizeof(struct canfd_frame));
712	if (unlikely(!skb))
713		return NULL;
714
715	skb->protocol = htons(ETH_P_CANFD);
716	skb->pkt_type = PACKET_BROADCAST;
717	skb->ip_summed = CHECKSUM_UNNECESSARY;
718
719	skb_reset_mac_header(skb);
720	skb_reset_network_header(skb);
721	skb_reset_transport_header(skb);
722
723	can_skb_reserve(skb);
724	can_skb_prv(skb)->ifindex = dev->ifindex;
725	can_skb_prv(skb)->skbcnt = 0;
726
727	*cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
728
729	return skb;
730}
731EXPORT_SYMBOL_GPL(alloc_canfd_skb);
732
733struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
734{
735	struct sk_buff *skb;
736
737	skb = alloc_can_skb(dev, cf);
738	if (unlikely(!skb))
739		return NULL;
740
741	(*cf)->can_id = CAN_ERR_FLAG;
742	(*cf)->can_dlc = CAN_ERR_DLC;
743
744	return skb;
745}
746EXPORT_SYMBOL_GPL(alloc_can_err_skb);
747
748/* Allocate and setup space for the CAN network device */
749struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
750				    unsigned int txqs, unsigned int rxqs)
751{
752	struct can_ml_priv *can_ml;
753	struct net_device *dev;
754	struct can_priv *priv;
755	int size;
756
757	/* We put the driver's priv, the CAN mid layer priv and the
758	 * echo skb into the netdevice's priv. The memory layout for
759	 * the netdev_priv is like this:
760	 *
761	 * +-------------------------+
762	 * | driver's priv           |
763	 * +-------------------------+
764	 * | struct can_ml_priv      |
765	 * +-------------------------+
766	 * | array of struct sk_buff |
767	 * +-------------------------+
768	 */
769
770	size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
771
772	if (echo_skb_max)
773		size = ALIGN(size, sizeof(struct sk_buff *)) +
774			echo_skb_max * sizeof(struct sk_buff *);
775
776	dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
777			       txqs, rxqs);
778	if (!dev)
779		return NULL;
780
781	priv = netdev_priv(dev);
782	priv->dev = dev;
783
784	can_ml = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
785	can_set_ml_priv(dev, can_ml);
786
787	if (echo_skb_max) {
788		priv->echo_skb_max = echo_skb_max;
789		priv->echo_skb = (void *)priv +
790			(size - echo_skb_max * sizeof(struct sk_buff *));
791	}
792
793	priv->state = CAN_STATE_STOPPED;
794
795	INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
796
797	return dev;
798}
799EXPORT_SYMBOL_GPL(alloc_candev_mqs);
800
801/* Free space of the CAN network device */
802void free_candev(struct net_device *dev)
803{
804	free_netdev(dev);
805}
806EXPORT_SYMBOL_GPL(free_candev);
807
808/* changing MTU and control mode for CAN/CANFD devices */
809int can_change_mtu(struct net_device *dev, int new_mtu)
810{
811	struct can_priv *priv = netdev_priv(dev);
812
813	/* Do not allow changing the MTU while running */
814	if (dev->flags & IFF_UP)
815		return -EBUSY;
816
817	/* allow change of MTU according to the CANFD ability of the device */
818	switch (new_mtu) {
819	case CAN_MTU:
820		/* 'CANFD-only' controllers can not switch to CAN_MTU */
821		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
822			return -EINVAL;
823
824		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
825		break;
826
827	case CANFD_MTU:
828		/* check for potential CANFD ability */
829		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
830		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
831			return -EINVAL;
832
833		priv->ctrlmode |= CAN_CTRLMODE_FD;
834		break;
835
836	default:
837		return -EINVAL;
838	}
839
840	dev->mtu = new_mtu;
841	return 0;
842}
843EXPORT_SYMBOL_GPL(can_change_mtu);
844
845/* Common open function when the device gets opened.
846 *
847 * This function should be called in the open function of the device
848 * driver.
849 */
850int open_candev(struct net_device *dev)
851{
852	struct can_priv *priv = netdev_priv(dev);
853
854	if (!priv->bittiming.bitrate) {
855		netdev_err(dev, "bit-timing not yet defined\n");
856		return -EINVAL;
857	}
858
859	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
860	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
861	    (!priv->data_bittiming.bitrate ||
862	     priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
863		netdev_err(dev, "incorrect/missing data bit-timing\n");
864		return -EINVAL;
865	}
866
867	/* Switch carrier on if device was stopped while in bus-off state */
868	if (!netif_carrier_ok(dev))
869		netif_carrier_on(dev);
870
871	return 0;
872}
873EXPORT_SYMBOL_GPL(open_candev);
874
875#ifdef CONFIG_OF
876/* Common function that can be used to understand the limitation of
877 * a transceiver when it provides no means to determine these limitations
878 * at runtime.
879 */
880void of_can_transceiver(struct net_device *dev)
881{
882	struct device_node *dn;
883	struct can_priv *priv = netdev_priv(dev);
884	struct device_node *np = dev->dev.parent->of_node;
885	int ret;
886
887	dn = of_get_child_by_name(np, "can-transceiver");
888	if (!dn)
889		return;
890
891	ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
892	of_node_put(dn);
893	if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
894		netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
895}
896EXPORT_SYMBOL_GPL(of_can_transceiver);
897#endif
898
899/* Common close function for cleanup before the device gets closed.
900 *
901 * This function should be called in the close function of the device
902 * driver.
903 */
904void close_candev(struct net_device *dev)
905{
906	struct can_priv *priv = netdev_priv(dev);
907
908	cancel_delayed_work_sync(&priv->restart_work);
909	can_flush_echo_skb(dev);
910}
911EXPORT_SYMBOL_GPL(close_candev);
912
913/* CAN netlink interface */
914static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
915	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
916	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
917	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
918	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
919	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
920	[IFLA_CAN_BITTIMING_CONST]
921				= { .len = sizeof(struct can_bittiming_const) },
922	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
923	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
924	[IFLA_CAN_DATA_BITTIMING]
925				= { .len = sizeof(struct can_bittiming) },
926	[IFLA_CAN_DATA_BITTIMING_CONST]
927				= { .len = sizeof(struct can_bittiming_const) },
928	[IFLA_CAN_TERMINATION]	= { .type = NLA_U16 },
929};
930
931static int can_validate(struct nlattr *tb[], struct nlattr *data[],
932			struct netlink_ext_ack *extack)
933{
934	bool is_can_fd = false;
935
936	/* Make sure that valid CAN FD configurations always consist of
937	 * - nominal/arbitration bittiming
938	 * - data bittiming
939	 * - control mode with CAN_CTRLMODE_FD set
940	 */
941
942	if (!data)
943		return 0;
944
945	if (data[IFLA_CAN_CTRLMODE]) {
946		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
947
948		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
949	}
950
951	if (is_can_fd) {
952		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
953			return -EOPNOTSUPP;
954	}
955
956	if (data[IFLA_CAN_DATA_BITTIMING]) {
957		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
958			return -EOPNOTSUPP;
959	}
960
961	return 0;
962}
963
964static int can_changelink(struct net_device *dev, struct nlattr *tb[],
965			  struct nlattr *data[],
966			  struct netlink_ext_ack *extack)
967{
968	struct can_priv *priv = netdev_priv(dev);
969	int err;
970
971	/* We need synchronization with dev->stop() */
972	ASSERT_RTNL();
973
974	if (data[IFLA_CAN_BITTIMING]) {
975		struct can_bittiming bt;
976
977		/* Do not allow changing bittiming while running */
978		if (dev->flags & IFF_UP)
979			return -EBUSY;
980
981		/* Calculate bittiming parameters based on
982		 * bittiming_const if set, otherwise pass bitrate
983		 * directly via do_set_bitrate(). Bail out if neither
984		 * is given.
985		 */
986		if (!priv->bittiming_const && !priv->do_set_bittiming)
987			return -EOPNOTSUPP;
988
989		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
990		err = can_get_bittiming(dev, &bt,
991					priv->bittiming_const,
992					priv->bitrate_const,
993					priv->bitrate_const_cnt);
994		if (err)
995			return err;
996
997		if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
998			netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
999				   priv->bitrate_max);
1000			return -EINVAL;
1001		}
1002
1003		memcpy(&priv->bittiming, &bt, sizeof(bt));
1004
1005		if (priv->do_set_bittiming) {
1006			/* Finally, set the bit-timing registers */
1007			err = priv->do_set_bittiming(dev);
1008			if (err)
1009				return err;
1010		}
1011	}
1012
1013	if (data[IFLA_CAN_CTRLMODE]) {
1014		struct can_ctrlmode *cm;
1015		u32 ctrlstatic;
1016		u32 maskedflags;
1017
1018		/* Do not allow changing controller mode while running */
1019		if (dev->flags & IFF_UP)
1020			return -EBUSY;
1021		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
1022		ctrlstatic = priv->ctrlmode_static;
1023		maskedflags = cm->flags & cm->mask;
1024
1025		/* check whether provided bits are allowed to be passed */
1026		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
1027			return -EOPNOTSUPP;
1028
1029		/* do not check for static fd-non-iso if 'fd' is disabled */
1030		if (!(maskedflags & CAN_CTRLMODE_FD))
1031			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
1032
1033		/* make sure static options are provided by configuration */
1034		if ((maskedflags & ctrlstatic) != ctrlstatic)
1035			return -EOPNOTSUPP;
1036
1037		/* clear bits to be modified and copy the flag values */
1038		priv->ctrlmode &= ~cm->mask;
1039		priv->ctrlmode |= maskedflags;
1040
1041		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
1042		if (priv->ctrlmode & CAN_CTRLMODE_FD)
1043			dev->mtu = CANFD_MTU;
1044		else
1045			dev->mtu = CAN_MTU;
1046	}
1047
1048	if (data[IFLA_CAN_RESTART_MS]) {
1049		/* Do not allow changing restart delay while running */
1050		if (dev->flags & IFF_UP)
1051			return -EBUSY;
1052		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1053	}
1054
1055	if (data[IFLA_CAN_RESTART]) {
1056		/* Do not allow a restart while not running */
1057		if (!(dev->flags & IFF_UP))
1058			return -EINVAL;
1059		err = can_restart_now(dev);
1060		if (err)
1061			return err;
1062	}
1063
1064	if (data[IFLA_CAN_DATA_BITTIMING]) {
1065		struct can_bittiming dbt;
1066
1067		/* Do not allow changing bittiming while running */
1068		if (dev->flags & IFF_UP)
1069			return -EBUSY;
1070
1071		/* Calculate bittiming parameters based on
1072		 * data_bittiming_const if set, otherwise pass bitrate
1073		 * directly via do_set_bitrate(). Bail out if neither
1074		 * is given.
1075		 */
1076		if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1077			return -EOPNOTSUPP;
1078
1079		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1080		       sizeof(dbt));
1081		err = can_get_bittiming(dev, &dbt,
1082					priv->data_bittiming_const,
1083					priv->data_bitrate_const,
1084					priv->data_bitrate_const_cnt);
1085		if (err)
1086			return err;
1087
1088		if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1089			netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1090				   priv->bitrate_max);
1091			return -EINVAL;
1092		}
1093
1094		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1095
1096		if (priv->do_set_data_bittiming) {
1097			/* Finally, set the bit-timing registers */
1098			err = priv->do_set_data_bittiming(dev);
1099			if (err)
1100				return err;
1101		}
1102	}
1103
1104	if (data[IFLA_CAN_TERMINATION]) {
1105		const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1106		const unsigned int num_term = priv->termination_const_cnt;
1107		unsigned int i;
1108
1109		if (!priv->do_set_termination)
1110			return -EOPNOTSUPP;
1111
1112		/* check whether given value is supported by the interface */
1113		for (i = 0; i < num_term; i++) {
1114			if (termval == priv->termination_const[i])
1115				break;
1116		}
1117		if (i >= num_term)
1118			return -EINVAL;
1119
1120		/* Finally, set the termination value */
1121		err = priv->do_set_termination(dev, termval);
1122		if (err)
1123			return err;
1124
1125		priv->termination = termval;
1126	}
1127
1128	return 0;
1129}
1130
1131static size_t can_get_size(const struct net_device *dev)
1132{
1133	struct can_priv *priv = netdev_priv(dev);
1134	size_t size = 0;
1135
1136	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
1137		size += nla_total_size(sizeof(struct can_bittiming));
1138	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
1139		size += nla_total_size(sizeof(struct can_bittiming_const));
1140	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
1141	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
1142	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
1143	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
1144	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
1145		size += nla_total_size(sizeof(struct can_berr_counter));
1146	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
1147		size += nla_total_size(sizeof(struct can_bittiming));
1148	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
1149		size += nla_total_size(sizeof(struct can_bittiming_const));
1150	if (priv->termination_const) {
1151		size += nla_total_size(sizeof(priv->termination));		/* IFLA_CAN_TERMINATION */
1152		size += nla_total_size(sizeof(*priv->termination_const) *	/* IFLA_CAN_TERMINATION_CONST */
1153				       priv->termination_const_cnt);
1154	}
1155	if (priv->bitrate_const)				/* IFLA_CAN_BITRATE_CONST */
1156		size += nla_total_size(sizeof(*priv->bitrate_const) *
1157				       priv->bitrate_const_cnt);
1158	if (priv->data_bitrate_const)				/* IFLA_CAN_DATA_BITRATE_CONST */
1159		size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1160				       priv->data_bitrate_const_cnt);
1161	size += sizeof(priv->bitrate_max);			/* IFLA_CAN_BITRATE_MAX */
1162
1163	return size;
1164}
1165
1166static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1167{
1168	struct can_priv *priv = netdev_priv(dev);
1169	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1170	struct can_berr_counter bec = { };
1171	enum can_state state = priv->state;
1172
1173	if (priv->do_get_state)
1174		priv->do_get_state(dev, &state);
1175
1176	if ((priv->bittiming.bitrate &&
1177	     nla_put(skb, IFLA_CAN_BITTIMING,
1178		     sizeof(priv->bittiming), &priv->bittiming)) ||
1179
1180	    (priv->bittiming_const &&
1181	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1182		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1183
1184	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1185	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1186	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1187	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1188
1189	    (priv->do_get_berr_counter &&
1190	     !priv->do_get_berr_counter(dev, &bec) &&
1191	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1192
1193	    (priv->data_bittiming.bitrate &&
1194	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1195		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1196
1197	    (priv->data_bittiming_const &&
1198	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1199		     sizeof(*priv->data_bittiming_const),
1200		     priv->data_bittiming_const)) ||
1201
1202	    (priv->termination_const &&
1203	     (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1204	      nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1205		      sizeof(*priv->termination_const) *
1206		      priv->termination_const_cnt,
1207		      priv->termination_const))) ||
1208
1209	    (priv->bitrate_const &&
1210	     nla_put(skb, IFLA_CAN_BITRATE_CONST,
1211		     sizeof(*priv->bitrate_const) *
1212		     priv->bitrate_const_cnt,
1213		     priv->bitrate_const)) ||
1214
1215	    (priv->data_bitrate_const &&
1216	     nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1217		     sizeof(*priv->data_bitrate_const) *
1218		     priv->data_bitrate_const_cnt,
1219		     priv->data_bitrate_const)) ||
1220
1221	    (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1222		     sizeof(priv->bitrate_max),
1223		     &priv->bitrate_max))
1224	    )
1225
1226		return -EMSGSIZE;
1227
1228	return 0;
1229}
1230
1231static size_t can_get_xstats_size(const struct net_device *dev)
1232{
1233	return sizeof(struct can_device_stats);
1234}
1235
1236static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1237{
1238	struct can_priv *priv = netdev_priv(dev);
1239
1240	if (nla_put(skb, IFLA_INFO_XSTATS,
1241		    sizeof(priv->can_stats), &priv->can_stats))
1242		goto nla_put_failure;
1243	return 0;
1244
1245nla_put_failure:
1246	return -EMSGSIZE;
1247}
1248
1249static int can_newlink(struct net *src_net, struct net_device *dev,
1250		       struct nlattr *tb[], struct nlattr *data[],
1251		       struct netlink_ext_ack *extack)
1252{
1253	return -EOPNOTSUPP;
1254}
1255
1256static void can_dellink(struct net_device *dev, struct list_head *head)
1257{
1258}
1259
1260static struct rtnl_link_ops can_link_ops __read_mostly = {
1261	.kind		= "can",
1262	.netns_refund	= true,
1263	.maxtype	= IFLA_CAN_MAX,
1264	.policy		= can_policy,
1265	.setup		= can_setup,
1266	.validate	= can_validate,
1267	.newlink	= can_newlink,
1268	.changelink	= can_changelink,
1269	.dellink	= can_dellink,
1270	.get_size	= can_get_size,
1271	.fill_info	= can_fill_info,
1272	.get_xstats_size = can_get_xstats_size,
1273	.fill_xstats	= can_fill_xstats,
1274};
1275
1276/* Register the CAN network device */
1277int register_candev(struct net_device *dev)
1278{
1279	struct can_priv *priv = netdev_priv(dev);
1280
1281	/* Ensure termination_const, termination_const_cnt and
1282	 * do_set_termination consistency. All must be either set or
1283	 * unset.
1284	 */
1285	if ((!priv->termination_const != !priv->termination_const_cnt) ||
1286	    (!priv->termination_const != !priv->do_set_termination))
1287		return -EINVAL;
1288
1289	if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1290		return -EINVAL;
1291
1292	if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1293		return -EINVAL;
1294
1295	dev->rtnl_link_ops = &can_link_ops;
1296	netif_carrier_off(dev);
1297
1298	return register_netdev(dev);
1299}
1300EXPORT_SYMBOL_GPL(register_candev);
1301
1302/* Unregister the CAN network device */
1303void unregister_candev(struct net_device *dev)
1304{
1305	unregister_netdev(dev);
1306}
1307EXPORT_SYMBOL_GPL(unregister_candev);
1308
1309/* Test if a network device is a candev based device
1310 * and return the can_priv* if so.
1311 */
1312struct can_priv *safe_candev_priv(struct net_device *dev)
1313{
1314	if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1315		return NULL;
1316
1317	return netdev_priv(dev);
1318}
1319EXPORT_SYMBOL_GPL(safe_candev_priv);
1320
1321static __init int can_dev_init(void)
1322{
1323	int err;
1324
1325	can_led_notifier_init();
1326
1327	err = rtnl_link_register(&can_link_ops);
1328	if (!err)
1329		pr_info(MOD_DESC "\n");
1330
1331	return err;
1332}
1333module_init(can_dev_init);
1334
1335static __exit void can_dev_exit(void)
1336{
1337	rtnl_link_unregister(&can_link_ops);
1338
1339	can_led_notifier_exit();
1340}
1341module_exit(can_dev_exit);
1342
1343MODULE_ALIAS_RTNL_LINK("can");
1344