1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38#include <linux/pinctrl/consumer.h>
39
40#include <linux/can.h>
41#include <linux/can/dev.h>
42#include <linux/can/error.h>
43#include <linux/can/led.h>
44
45#include "c_can.h"
46
47/* Number of interface registers */
48#define IF_ENUM_REG_LEN		11
49#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50
51/* control extension register D_CAN specific */
52#define CONTROL_EX_PDR		BIT(8)
53
54/* control register */
55#define CONTROL_SWR		BIT(15)
56#define CONTROL_TEST		BIT(7)
57#define CONTROL_CCE		BIT(6)
58#define CONTROL_DISABLE_AR	BIT(5)
59#define CONTROL_ENABLE_AR	(0 << 5)
60#define CONTROL_EIE		BIT(3)
61#define CONTROL_SIE		BIT(2)
62#define CONTROL_IE		BIT(1)
63#define CONTROL_INIT		BIT(0)
64
65#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
66
67/* test register */
68#define TEST_RX			BIT(7)
69#define TEST_TX1		BIT(6)
70#define TEST_TX2		BIT(5)
71#define TEST_LBACK		BIT(4)
72#define TEST_SILENT		BIT(3)
73#define TEST_BASIC		BIT(2)
74
75/* status register */
76#define STATUS_PDA		BIT(10)
77#define STATUS_BOFF		BIT(7)
78#define STATUS_EWARN		BIT(6)
79#define STATUS_EPASS		BIT(5)
80#define STATUS_RXOK		BIT(4)
81#define STATUS_TXOK		BIT(3)
82
83/* error counter register */
84#define ERR_CNT_TEC_MASK	0xff
85#define ERR_CNT_TEC_SHIFT	0
86#define ERR_CNT_REC_SHIFT	8
87#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
88#define ERR_CNT_RP_SHIFT	15
89#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
90
91/* bit-timing register */
92#define BTR_BRP_MASK		0x3f
93#define BTR_BRP_SHIFT		0
94#define BTR_SJW_SHIFT		6
95#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
96#define BTR_TSEG1_SHIFT		8
97#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
98#define BTR_TSEG2_SHIFT		12
99#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
100
101/* interrupt register */
102#define INT_STS_PENDING		0x8000
103
104/* brp extension register */
105#define BRP_EXT_BRPE_MASK	0x0f
106#define BRP_EXT_BRPE_SHIFT	0
107
108/* IFx command request */
109#define IF_COMR_BUSY		BIT(15)
110
111/* IFx command mask */
112#define IF_COMM_WR		BIT(7)
113#define IF_COMM_MASK		BIT(6)
114#define IF_COMM_ARB		BIT(5)
115#define IF_COMM_CONTROL		BIT(4)
116#define IF_COMM_CLR_INT_PND	BIT(3)
117#define IF_COMM_TXRQST		BIT(2)
118#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
119#define IF_COMM_DATAA		BIT(1)
120#define IF_COMM_DATAB		BIT(0)
121
122/* TX buffer setup */
123#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
124				 IF_COMM_TXRQST |		 \
125				 IF_COMM_DATAA | IF_COMM_DATAB)
126
127/* For the low buffers we clear the interrupt bit, but keep newdat */
128#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
129				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
130				 IF_COMM_DATAA | IF_COMM_DATAB)
131
132/* For the high buffers we clear the interrupt bit and newdat */
133#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
134
135
136/* Receive setup of message objects */
137#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
138
139/* Invalidation of message objects */
140#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
141
142/* IFx arbitration */
143#define IF_ARB_MSGVAL		BIT(31)
144#define IF_ARB_MSGXTD		BIT(30)
145#define IF_ARB_TRANSMIT		BIT(29)
146
147/* IFx message control */
148#define IF_MCONT_NEWDAT		BIT(15)
149#define IF_MCONT_MSGLST		BIT(14)
150#define IF_MCONT_INTPND		BIT(13)
151#define IF_MCONT_UMASK		BIT(12)
152#define IF_MCONT_TXIE		BIT(11)
153#define IF_MCONT_RXIE		BIT(10)
154#define IF_MCONT_RMTEN		BIT(9)
155#define IF_MCONT_TXRQST		BIT(8)
156#define IF_MCONT_EOB		BIT(7)
157#define IF_MCONT_DLC_MASK	0xf
158
159#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
160#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
161
162#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
163
164/*
165 * Use IF1 for RX and IF2 for TX
166 */
167#define IF_RX			0
168#define IF_TX			1
169
170/* minimum timeout for checking BUSY status */
171#define MIN_TIMEOUT_VALUE	6
172
173/* Wait for ~1 sec for INIT bit */
174#define INIT_WAIT_MS		1000
175
176/* napi related */
177#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
178
179/* c_can lec values */
180enum c_can_lec_type {
181	LEC_NO_ERROR = 0,
182	LEC_STUFF_ERROR,
183	LEC_FORM_ERROR,
184	LEC_ACK_ERROR,
185	LEC_BIT1_ERROR,
186	LEC_BIT0_ERROR,
187	LEC_CRC_ERROR,
188	LEC_UNUSED,
189	LEC_MASK = LEC_UNUSED,
190};
191
192/*
193 * c_can error types:
194 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
195 */
196enum c_can_bus_error_types {
197	C_CAN_NO_ERROR = 0,
198	C_CAN_BUS_OFF,
199	C_CAN_ERROR_WARNING,
200	C_CAN_ERROR_PASSIVE,
201};
202
203static const struct can_bittiming_const c_can_bittiming_const = {
204	.name = KBUILD_MODNAME,
205	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
206	.tseg1_max = 16,
207	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
208	.tseg2_max = 8,
209	.sjw_max = 4,
210	.brp_min = 1,
211	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
212	.brp_inc = 1,
213};
214
215static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
216{
217	if (priv->device)
218		pm_runtime_get_sync(priv->device);
219}
220
221static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
222{
223	if (priv->device)
224		pm_runtime_put_sync(priv->device);
225}
226
227static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
228{
229	if (priv->raminit)
230		priv->raminit(priv, enable);
231}
232
233static void c_can_irq_control(struct c_can_priv *priv, bool enable)
234{
235	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
236
237	if (enable)
238		ctrl |= CONTROL_IRQMSK;
239
240	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
241}
242
243static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
244{
245	struct c_can_priv *priv = netdev_priv(dev);
246	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
247
248	priv->write_reg32(priv, reg, (cmd << 16) | obj);
249
250	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
251		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
252			return;
253		udelay(1);
254	}
255	netdev_err(dev, "Updating object timed out\n");
256
257}
258
259static inline void c_can_object_get(struct net_device *dev, int iface,
260				    u32 obj, u32 cmd)
261{
262	c_can_obj_update(dev, iface, cmd, obj);
263}
264
265static inline void c_can_object_put(struct net_device *dev, int iface,
266				    u32 obj, u32 cmd)
267{
268	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
269}
270
271/*
272 * Note: According to documentation clearing TXIE while MSGVAL is set
273 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
274 * load significantly.
275 */
276static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
277{
278	struct c_can_priv *priv = netdev_priv(dev);
279
280	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
281	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
282}
283
284static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
285{
286	struct c_can_priv *priv = netdev_priv(dev);
287
288	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
289	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
290	c_can_inval_tx_object(dev, iface, obj);
291}
292
293static void c_can_setup_tx_object(struct net_device *dev, int iface,
294				  struct can_frame *frame, int idx)
295{
296	struct c_can_priv *priv = netdev_priv(dev);
297	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
298	bool rtr = frame->can_id & CAN_RTR_FLAG;
299	u32 arb = IF_ARB_MSGVAL;
300	int i;
301
302	if (frame->can_id & CAN_EFF_FLAG) {
303		arb |= frame->can_id & CAN_EFF_MASK;
304		arb |= IF_ARB_MSGXTD;
305	} else {
306		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
307	}
308
309	if (!rtr)
310		arb |= IF_ARB_TRANSMIT;
311
312	/*
313	 * If we change the DIR bit, we need to invalidate the buffer
314	 * first, i.e. clear the MSGVAL flag in the arbiter.
315	 */
316	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
317		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
318
319		c_can_inval_msg_object(dev, iface, obj);
320		change_bit(idx, &priv->tx_dir);
321	}
322
323	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
324
325	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
326
327	if (priv->type == BOSCH_D_CAN) {
328		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
329
330		for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
331			data = (u32)frame->data[i];
332			data |= (u32)frame->data[i + 1] << 8;
333			data |= (u32)frame->data[i + 2] << 16;
334			data |= (u32)frame->data[i + 3] << 24;
335			priv->write_reg32(priv, dreg, data);
336		}
337	} else {
338		for (i = 0; i < frame->can_dlc; i += 2) {
339			priv->write_reg(priv,
340					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
341					frame->data[i] |
342					(frame->data[i + 1] << 8));
343		}
344	}
345}
346
347static int c_can_handle_lost_msg_obj(struct net_device *dev,
348				     int iface, int objno, u32 ctrl)
349{
350	struct net_device_stats *stats = &dev->stats;
351	struct c_can_priv *priv = netdev_priv(dev);
352	struct can_frame *frame;
353	struct sk_buff *skb;
354
355	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
356	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
357	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
358
359	stats->rx_errors++;
360	stats->rx_over_errors++;
361
362	/* create an error msg */
363	skb = alloc_can_err_skb(dev, &frame);
364	if (unlikely(!skb))
365		return 0;
366
367	frame->can_id |= CAN_ERR_CRTL;
368	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
369
370	netif_receive_skb(skb);
371	return 1;
372}
373
374static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
375{
376	struct net_device_stats *stats = &dev->stats;
377	struct c_can_priv *priv = netdev_priv(dev);
378	struct can_frame *frame;
379	struct sk_buff *skb;
380	u32 arb, data;
381
382	skb = alloc_can_skb(dev, &frame);
383	if (!skb) {
384		stats->rx_dropped++;
385		return -ENOMEM;
386	}
387
388	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
389
390	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
391
392	if (arb & IF_ARB_MSGXTD)
393		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
394	else
395		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
396
397	if (arb & IF_ARB_TRANSMIT) {
398		frame->can_id |= CAN_RTR_FLAG;
399	} else {
400		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
401
402		if (priv->type == BOSCH_D_CAN) {
403			for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
404				data = priv->read_reg32(priv, dreg);
405				frame->data[i] = data;
406				frame->data[i + 1] = data >> 8;
407				frame->data[i + 2] = data >> 16;
408				frame->data[i + 3] = data >> 24;
409			}
410		} else {
411			for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
412				data = priv->read_reg(priv, dreg);
413				frame->data[i] = data;
414				frame->data[i + 1] = data >> 8;
415			}
416		}
417	}
418
419	stats->rx_packets++;
420	stats->rx_bytes += frame->can_dlc;
421
422	netif_receive_skb(skb);
423	return 0;
424}
425
426static void c_can_setup_receive_object(struct net_device *dev, int iface,
427				       u32 obj, u32 mask, u32 id, u32 mcont)
428{
429	struct c_can_priv *priv = netdev_priv(dev);
430
431	mask |= BIT(29);
432	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
433
434	id |= IF_ARB_MSGVAL;
435	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
436
437	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
438	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
439}
440
441static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
442				    struct net_device *dev)
443{
444	struct can_frame *frame = (struct can_frame *)skb->data;
445	struct c_can_priv *priv = netdev_priv(dev);
446	u32 idx, obj;
447
448	if (can_dropped_invalid_skb(dev, skb))
449		return NETDEV_TX_OK;
450	/*
451	 * This is not a FIFO. C/D_CAN sends out the buffers
452	 * prioritized. The lowest buffer number wins.
453	 */
454	idx = fls(atomic_read(&priv->tx_active));
455	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
456
457	/* If this is the last buffer, stop the xmit queue */
458	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
459		netif_stop_queue(dev);
460	/*
461	 * Store the message in the interface so we can call
462	 * can_put_echo_skb(). We must do this before we enable
463	 * transmit as we might race against do_tx().
464	 */
465	c_can_setup_tx_object(dev, IF_TX, frame, idx);
466	priv->dlc[idx] = frame->can_dlc;
467	can_put_echo_skb(skb, dev, idx);
468
469	/* Update the active bits */
470	atomic_add((1 << idx), &priv->tx_active);
471	/* Start transmission */
472	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
473
474	return NETDEV_TX_OK;
475}
476
477static int c_can_wait_for_ctrl_init(struct net_device *dev,
478				    struct c_can_priv *priv, u32 init)
479{
480	int retry = 0;
481
482	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
483		udelay(10);
484		if (retry++ > 1000) {
485			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
486			return -EIO;
487		}
488	}
489	return 0;
490}
491
492static int c_can_set_bittiming(struct net_device *dev)
493{
494	unsigned int reg_btr, reg_brpe, ctrl_save;
495	u8 brp, brpe, sjw, tseg1, tseg2;
496	u32 ten_bit_brp;
497	struct c_can_priv *priv = netdev_priv(dev);
498	const struct can_bittiming *bt = &priv->can.bittiming;
499	int res;
500
501	/* c_can provides a 6-bit brp and 4-bit brpe fields */
502	ten_bit_brp = bt->brp - 1;
503	brp = ten_bit_brp & BTR_BRP_MASK;
504	brpe = ten_bit_brp >> 6;
505
506	sjw = bt->sjw - 1;
507	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
508	tseg2 = bt->phase_seg2 - 1;
509	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
510			(tseg2 << BTR_TSEG2_SHIFT);
511	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
512
513	netdev_info(dev,
514		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
515
516	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
517	ctrl_save &= ~CONTROL_INIT;
518	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
519	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
520	if (res)
521		return res;
522
523	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
524	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
525	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
526
527	return c_can_wait_for_ctrl_init(dev, priv, 0);
528}
529
530/*
531 * Configure C_CAN message objects for Tx and Rx purposes:
532 * C_CAN provides a total of 32 message objects that can be configured
533 * either for Tx or Rx purposes. Here the first 16 message objects are used as
534 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
535 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
536 * See user guide document for further details on configuring message
537 * objects.
538 */
539static void c_can_configure_msg_objects(struct net_device *dev)
540{
541	int i;
542
543	/* first invalidate all message objects */
544	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
545		c_can_inval_msg_object(dev, IF_RX, i);
546
547	/* setup receive message objects */
548	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
549		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
550
551	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
552				   IF_MCONT_RCV_EOB);
553}
554
555static int c_can_software_reset(struct net_device *dev)
556{
557	struct c_can_priv *priv = netdev_priv(dev);
558	int retry = 0;
559
560	if (priv->type != BOSCH_D_CAN)
561		return 0;
562
563	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
564	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
565		msleep(20);
566		if (retry++ > 100) {
567			netdev_err(dev, "CCTRL: software reset failed\n");
568			return -EIO;
569		}
570	}
571
572	return 0;
573}
574
575/*
576 * Configure C_CAN chip:
577 * - enable/disable auto-retransmission
578 * - set operating mode
579 * - configure message objects
580 */
581static int c_can_chip_config(struct net_device *dev)
582{
583	struct c_can_priv *priv = netdev_priv(dev);
584	int err;
585
586	err = c_can_software_reset(dev);
587	if (err)
588		return err;
589
590	/* enable automatic retransmission */
591	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
592
593	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
594	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
595		/* loopback + silent mode : useful for hot self-test */
596		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
597		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
598	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
599		/* loopback mode : useful for self-test function */
600		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
601		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
602	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
603		/* silent mode : bus-monitoring mode */
604		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
605		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
606	}
607
608	/* configure message objects */
609	c_can_configure_msg_objects(dev);
610
611	/* set a `lec` value so that we can check for updates later */
612	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
613
614	/* Clear all internal status */
615	atomic_set(&priv->tx_active, 0);
616	priv->rxmasked = 0;
617	priv->tx_dir = 0;
618
619	/* set bittiming params */
620	return c_can_set_bittiming(dev);
621}
622
623static int c_can_start(struct net_device *dev)
624{
625	struct c_can_priv *priv = netdev_priv(dev);
626	int err;
627	struct pinctrl *p;
628
629	/* basic c_can configuration */
630	err = c_can_chip_config(dev);
631	if (err)
632		return err;
633
634	/* Setup the command for new messages */
635	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
636		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
637
638	priv->can.state = CAN_STATE_ERROR_ACTIVE;
639
640	/* Attempt to use "active" if available else use "default" */
641	p = pinctrl_get_select(priv->device, "active");
642	if (!IS_ERR(p))
643		pinctrl_put(p);
644	else
645		pinctrl_pm_select_default_state(priv->device);
646
647	return 0;
648}
649
650static void c_can_stop(struct net_device *dev)
651{
652	struct c_can_priv *priv = netdev_priv(dev);
653
654	c_can_irq_control(priv, false);
655
656	/* put ctrl to init on stop to end ongoing transmission */
657	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
658
659	/* deactivate pins */
660	pinctrl_pm_select_sleep_state(dev->dev.parent);
661	priv->can.state = CAN_STATE_STOPPED;
662}
663
664static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
665{
666	struct c_can_priv *priv = netdev_priv(dev);
667	int err;
668
669	switch (mode) {
670	case CAN_MODE_START:
671		err = c_can_start(dev);
672		if (err)
673			return err;
674		netif_wake_queue(dev);
675		c_can_irq_control(priv, true);
676		break;
677	default:
678		return -EOPNOTSUPP;
679	}
680
681	return 0;
682}
683
684static int __c_can_get_berr_counter(const struct net_device *dev,
685				    struct can_berr_counter *bec)
686{
687	unsigned int reg_err_counter;
688	struct c_can_priv *priv = netdev_priv(dev);
689
690	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
691	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
692				ERR_CNT_REC_SHIFT;
693	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
694
695	return 0;
696}
697
698static int c_can_get_berr_counter(const struct net_device *dev,
699				  struct can_berr_counter *bec)
700{
701	struct c_can_priv *priv = netdev_priv(dev);
702	int err;
703
704	c_can_pm_runtime_get_sync(priv);
705	err = __c_can_get_berr_counter(dev, bec);
706	c_can_pm_runtime_put_sync(priv);
707
708	return err;
709}
710
711static void c_can_do_tx(struct net_device *dev)
712{
713	struct c_can_priv *priv = netdev_priv(dev);
714	struct net_device_stats *stats = &dev->stats;
715	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
716
717	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
718
719	while ((idx = ffs(pend))) {
720		idx--;
721		pend &= ~(1 << idx);
722		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
723		c_can_inval_tx_object(dev, IF_RX, obj);
724		can_get_echo_skb(dev, idx);
725		bytes += priv->dlc[idx];
726		pkts++;
727	}
728
729	/* Clear the bits in the tx_active mask */
730	atomic_sub(clr, &priv->tx_active);
731
732	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
733		netif_wake_queue(dev);
734
735	if (pkts) {
736		stats->tx_bytes += bytes;
737		stats->tx_packets += pkts;
738		can_led_event(dev, CAN_LED_EVENT_TX);
739	}
740}
741
742/*
743 * If we have a gap in the pending bits, that means we either
744 * raced with the hardware or failed to readout all upper
745 * objects in the last run due to quota limit.
746 */
747static u32 c_can_adjust_pending(u32 pend)
748{
749	u32 weight, lasts;
750
751	if (pend == RECEIVE_OBJECT_BITS)
752		return pend;
753
754	/*
755	 * If the last set bit is larger than the number of pending
756	 * bits we have a gap.
757	 */
758	weight = hweight32(pend);
759	lasts = fls(pend);
760
761	/* If the bits are linear, nothing to do */
762	if (lasts == weight)
763		return pend;
764
765	/*
766	 * Find the first set bit after the gap. We walk backwards
767	 * from the last set bit.
768	 */
769	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
770
771	return pend & ~((1 << lasts) - 1);
772}
773
774static inline void c_can_rx_object_get(struct net_device *dev,
775				       struct c_can_priv *priv, u32 obj)
776{
777		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
778}
779
780static inline void c_can_rx_finalize(struct net_device *dev,
781				     struct c_can_priv *priv, u32 obj)
782{
783	if (priv->type != BOSCH_D_CAN)
784		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
785}
786
787static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
788			      u32 pend, int quota)
789{
790	u32 pkts = 0, ctrl, obj;
791
792	while ((obj = ffs(pend)) && quota > 0) {
793		pend &= ~BIT(obj - 1);
794
795		c_can_rx_object_get(dev, priv, obj);
796		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
797
798		if (ctrl & IF_MCONT_MSGLST) {
799			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
800
801			pkts += n;
802			quota -= n;
803			continue;
804		}
805
806		/*
807		 * This really should not happen, but this covers some
808		 * odd HW behaviour. Do not remove that unless you
809		 * want to brick your machine.
810		 */
811		if (!(ctrl & IF_MCONT_NEWDAT))
812			continue;
813
814		/* read the data from the message object */
815		c_can_read_msg_object(dev, IF_RX, ctrl);
816
817		c_can_rx_finalize(dev, priv, obj);
818
819		pkts++;
820		quota--;
821	}
822
823	return pkts;
824}
825
826static inline u32 c_can_get_pending(struct c_can_priv *priv)
827{
828	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
829
830	return pend;
831}
832
833/*
834 * theory of operation:
835 *
836 * c_can core saves a received CAN message into the first free message
837 * object it finds free (starting with the lowest). Bits NEWDAT and
838 * INTPND are set for this message object indicating that a new message
839 * has arrived. To work-around this issue, we keep two groups of message
840 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
841 *
842 * We clear the newdat bit right away.
843 *
844 * This can result in packet reordering when the readout is slow.
845 */
846static int c_can_do_rx_poll(struct net_device *dev, int quota)
847{
848	struct c_can_priv *priv = netdev_priv(dev);
849	u32 pkts = 0, pend = 0, toread, n;
850
851	/*
852	 * It is faster to read only one 16bit register. This is only possible
853	 * for a maximum number of 16 objects.
854	 */
855	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
856			"Implementation does not support more message objects than 16");
857
858	while (quota > 0) {
859		if (!pend) {
860			pend = c_can_get_pending(priv);
861			if (!pend)
862				break;
863			/*
864			 * If the pending field has a gap, handle the
865			 * bits above the gap first.
866			 */
867			toread = c_can_adjust_pending(pend);
868		} else {
869			toread = pend;
870		}
871		/* Remove the bits from pend */
872		pend &= ~toread;
873		/* Read the objects */
874		n = c_can_read_objects(dev, priv, toread, quota);
875		pkts += n;
876		quota -= n;
877	}
878
879	if (pkts)
880		can_led_event(dev, CAN_LED_EVENT_RX);
881
882	return pkts;
883}
884
885static int c_can_handle_state_change(struct net_device *dev,
886				enum c_can_bus_error_types error_type)
887{
888	unsigned int reg_err_counter;
889	unsigned int rx_err_passive;
890	struct c_can_priv *priv = netdev_priv(dev);
891	struct net_device_stats *stats = &dev->stats;
892	struct can_frame *cf;
893	struct sk_buff *skb;
894	struct can_berr_counter bec;
895
896	switch (error_type) {
897	case C_CAN_NO_ERROR:
898		priv->can.state = CAN_STATE_ERROR_ACTIVE;
899		break;
900	case C_CAN_ERROR_WARNING:
901		/* error warning state */
902		priv->can.can_stats.error_warning++;
903		priv->can.state = CAN_STATE_ERROR_WARNING;
904		break;
905	case C_CAN_ERROR_PASSIVE:
906		/* error passive state */
907		priv->can.can_stats.error_passive++;
908		priv->can.state = CAN_STATE_ERROR_PASSIVE;
909		break;
910	case C_CAN_BUS_OFF:
911		/* bus-off state */
912		priv->can.state = CAN_STATE_BUS_OFF;
913		priv->can.can_stats.bus_off++;
914		break;
915	default:
916		break;
917	}
918
919	/* propagate the error condition to the CAN stack */
920	skb = alloc_can_err_skb(dev, &cf);
921	if (unlikely(!skb))
922		return 0;
923
924	__c_can_get_berr_counter(dev, &bec);
925	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
926	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
927				ERR_CNT_RP_SHIFT;
928
929	switch (error_type) {
930	case C_CAN_NO_ERROR:
931		/* error warning state */
932		cf->can_id |= CAN_ERR_CRTL;
933		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
934		cf->data[6] = bec.txerr;
935		cf->data[7] = bec.rxerr;
936		break;
937	case C_CAN_ERROR_WARNING:
938		/* error warning state */
939		cf->can_id |= CAN_ERR_CRTL;
940		cf->data[1] = (bec.txerr > bec.rxerr) ?
941			CAN_ERR_CRTL_TX_WARNING :
942			CAN_ERR_CRTL_RX_WARNING;
943		cf->data[6] = bec.txerr;
944		cf->data[7] = bec.rxerr;
945
946		break;
947	case C_CAN_ERROR_PASSIVE:
948		/* error passive state */
949		cf->can_id |= CAN_ERR_CRTL;
950		if (rx_err_passive)
951			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
952		if (bec.txerr > 127)
953			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
954
955		cf->data[6] = bec.txerr;
956		cf->data[7] = bec.rxerr;
957		break;
958	case C_CAN_BUS_OFF:
959		/* bus-off state */
960		cf->can_id |= CAN_ERR_BUSOFF;
961		can_bus_off(dev);
962		break;
963	default:
964		break;
965	}
966
967	stats->rx_packets++;
968	stats->rx_bytes += cf->can_dlc;
969	netif_receive_skb(skb);
970
971	return 1;
972}
973
974static int c_can_handle_bus_err(struct net_device *dev,
975				enum c_can_lec_type lec_type)
976{
977	struct c_can_priv *priv = netdev_priv(dev);
978	struct net_device_stats *stats = &dev->stats;
979	struct can_frame *cf;
980	struct sk_buff *skb;
981
982	/*
983	 * early exit if no lec update or no error.
984	 * no lec update means that no CAN bus event has been detected
985	 * since CPU wrote 0x7 value to status reg.
986	 */
987	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
988		return 0;
989
990	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
991		return 0;
992
993	/* common for all type of bus errors */
994	priv->can.can_stats.bus_error++;
995	stats->rx_errors++;
996
997	/* propagate the error condition to the CAN stack */
998	skb = alloc_can_err_skb(dev, &cf);
999	if (unlikely(!skb))
1000		return 0;
1001
1002	/*
1003	 * check for 'last error code' which tells us the
1004	 * type of the last error to occur on the CAN bus
1005	 */
1006	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1007
1008	switch (lec_type) {
1009	case LEC_STUFF_ERROR:
1010		netdev_dbg(dev, "stuff error\n");
1011		cf->data[2] |= CAN_ERR_PROT_STUFF;
1012		break;
1013	case LEC_FORM_ERROR:
1014		netdev_dbg(dev, "form error\n");
1015		cf->data[2] |= CAN_ERR_PROT_FORM;
1016		break;
1017	case LEC_ACK_ERROR:
1018		netdev_dbg(dev, "ack error\n");
1019		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1020		break;
1021	case LEC_BIT1_ERROR:
1022		netdev_dbg(dev, "bit1 error\n");
1023		cf->data[2] |= CAN_ERR_PROT_BIT1;
1024		break;
1025	case LEC_BIT0_ERROR:
1026		netdev_dbg(dev, "bit0 error\n");
1027		cf->data[2] |= CAN_ERR_PROT_BIT0;
1028		break;
1029	case LEC_CRC_ERROR:
1030		netdev_dbg(dev, "CRC error\n");
1031		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1032		break;
1033	default:
1034		break;
1035	}
1036
1037	stats->rx_packets++;
1038	stats->rx_bytes += cf->can_dlc;
1039	netif_receive_skb(skb);
1040	return 1;
1041}
1042
1043static int c_can_poll(struct napi_struct *napi, int quota)
1044{
1045	struct net_device *dev = napi->dev;
1046	struct c_can_priv *priv = netdev_priv(dev);
1047	u16 curr, last = priv->last_status;
1048	int work_done = 0;
1049
1050	/* Only read the status register if a status interrupt was pending */
1051	if (atomic_xchg(&priv->sie_pending, 0)) {
1052		priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1053		/* Ack status on C_CAN. D_CAN is self clearing */
1054		if (priv->type != BOSCH_D_CAN)
1055			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1056	} else {
1057		/* no change detected ... */
1058		curr = last;
1059	}
1060
1061	/* handle state changes */
1062	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1063		netdev_dbg(dev, "entered error warning state\n");
1064		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1065	}
1066
1067	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1068		netdev_dbg(dev, "entered error passive state\n");
1069		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1070	}
1071
1072	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1073		netdev_dbg(dev, "entered bus off state\n");
1074		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1075		goto end;
1076	}
1077
1078	/* handle bus recovery events */
1079	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1080		netdev_dbg(dev, "left bus off state\n");
1081		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1082	}
1083
1084	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1085		netdev_dbg(dev, "left error passive state\n");
1086		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1087	}
1088
1089	if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1090		netdev_dbg(dev, "left error warning state\n");
1091		work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1092	}
1093
1094	/* handle lec errors on the bus */
1095	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1096
1097	/* Handle Tx/Rx events. We do this unconditionally */
1098	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1099	c_can_do_tx(dev);
1100
1101end:
1102	if (work_done < quota) {
1103		napi_complete_done(napi, work_done);
1104		/* enable all IRQs if we are not in bus off state */
1105		if (priv->can.state != CAN_STATE_BUS_OFF)
1106			c_can_irq_control(priv, true);
1107	}
1108
1109	return work_done;
1110}
1111
1112static irqreturn_t c_can_isr(int irq, void *dev_id)
1113{
1114	struct net_device *dev = (struct net_device *)dev_id;
1115	struct c_can_priv *priv = netdev_priv(dev);
1116	int reg_int;
1117
1118	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1119	if (!reg_int)
1120		return IRQ_NONE;
1121
1122	/* save for later use */
1123	if (reg_int & INT_STS_PENDING)
1124		atomic_set(&priv->sie_pending, 1);
1125
1126	/* disable all interrupts and schedule the NAPI */
1127	c_can_irq_control(priv, false);
1128	napi_schedule(&priv->napi);
1129
1130	return IRQ_HANDLED;
1131}
1132
1133static int c_can_open(struct net_device *dev)
1134{
1135	int err;
1136	struct c_can_priv *priv = netdev_priv(dev);
1137
1138	c_can_pm_runtime_get_sync(priv);
1139	c_can_reset_ram(priv, true);
1140
1141	/* open the can device */
1142	err = open_candev(dev);
1143	if (err) {
1144		netdev_err(dev, "failed to open can device\n");
1145		goto exit_open_fail;
1146	}
1147
1148	/* register interrupt handler */
1149	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1150				dev);
1151	if (err < 0) {
1152		netdev_err(dev, "failed to request interrupt\n");
1153		goto exit_irq_fail;
1154	}
1155
1156	/* start the c_can controller */
1157	err = c_can_start(dev);
1158	if (err)
1159		goto exit_start_fail;
1160
1161	can_led_event(dev, CAN_LED_EVENT_OPEN);
1162
1163	napi_enable(&priv->napi);
1164	/* enable status change, error and module interrupts */
1165	c_can_irq_control(priv, true);
1166	netif_start_queue(dev);
1167
1168	return 0;
1169
1170exit_start_fail:
1171	free_irq(dev->irq, dev);
1172exit_irq_fail:
1173	close_candev(dev);
1174exit_open_fail:
1175	c_can_reset_ram(priv, false);
1176	c_can_pm_runtime_put_sync(priv);
1177	return err;
1178}
1179
1180static int c_can_close(struct net_device *dev)
1181{
1182	struct c_can_priv *priv = netdev_priv(dev);
1183
1184	netif_stop_queue(dev);
1185	napi_disable(&priv->napi);
1186	c_can_stop(dev);
1187	free_irq(dev->irq, dev);
1188	close_candev(dev);
1189
1190	c_can_reset_ram(priv, false);
1191	c_can_pm_runtime_put_sync(priv);
1192
1193	can_led_event(dev, CAN_LED_EVENT_STOP);
1194
1195	return 0;
1196}
1197
1198struct net_device *alloc_c_can_dev(void)
1199{
1200	struct net_device *dev;
1201	struct c_can_priv *priv;
1202
1203	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1204	if (!dev)
1205		return NULL;
1206
1207	priv = netdev_priv(dev);
1208	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1209
1210	priv->dev = dev;
1211	priv->can.bittiming_const = &c_can_bittiming_const;
1212	priv->can.do_set_mode = c_can_set_mode;
1213	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1214	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1215					CAN_CTRLMODE_LISTENONLY |
1216					CAN_CTRLMODE_BERR_REPORTING;
1217
1218	return dev;
1219}
1220EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1221
1222#ifdef CONFIG_PM
1223int c_can_power_down(struct net_device *dev)
1224{
1225	u32 val;
1226	unsigned long time_out;
1227	struct c_can_priv *priv = netdev_priv(dev);
1228
1229	if (!(dev->flags & IFF_UP))
1230		return 0;
1231
1232	WARN_ON(priv->type != BOSCH_D_CAN);
1233
1234	/* set PDR value so the device goes to power down mode */
1235	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1236	val |= CONTROL_EX_PDR;
1237	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1238
1239	/* Wait for the PDA bit to get set */
1240	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1241	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1242				time_after(time_out, jiffies))
1243		cpu_relax();
1244
1245	if (time_after(jiffies, time_out))
1246		return -ETIMEDOUT;
1247
1248	c_can_stop(dev);
1249
1250	c_can_reset_ram(priv, false);
1251	c_can_pm_runtime_put_sync(priv);
1252
1253	return 0;
1254}
1255EXPORT_SYMBOL_GPL(c_can_power_down);
1256
1257int c_can_power_up(struct net_device *dev)
1258{
1259	u32 val;
1260	unsigned long time_out;
1261	struct c_can_priv *priv = netdev_priv(dev);
1262	int ret;
1263
1264	if (!(dev->flags & IFF_UP))
1265		return 0;
1266
1267	WARN_ON(priv->type != BOSCH_D_CAN);
1268
1269	c_can_pm_runtime_get_sync(priv);
1270	c_can_reset_ram(priv, true);
1271
1272	/* Clear PDR and INIT bits */
1273	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1274	val &= ~CONTROL_EX_PDR;
1275	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1276	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1277	val &= ~CONTROL_INIT;
1278	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1279
1280	/* Wait for the PDA bit to get clear */
1281	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1282	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1283				time_after(time_out, jiffies))
1284		cpu_relax();
1285
1286	if (time_after(jiffies, time_out)) {
1287		ret = -ETIMEDOUT;
1288		goto err_out;
1289	}
1290
1291	ret = c_can_start(dev);
1292	if (ret)
1293		goto err_out;
1294
1295	c_can_irq_control(priv, true);
1296
1297	return 0;
1298
1299err_out:
1300	c_can_reset_ram(priv, false);
1301	c_can_pm_runtime_put_sync(priv);
1302
1303	return ret;
1304}
1305EXPORT_SYMBOL_GPL(c_can_power_up);
1306#endif
1307
1308void free_c_can_dev(struct net_device *dev)
1309{
1310	struct c_can_priv *priv = netdev_priv(dev);
1311
1312	netif_napi_del(&priv->napi);
1313	free_candev(dev);
1314}
1315EXPORT_SYMBOL_GPL(free_c_can_dev);
1316
1317static const struct net_device_ops c_can_netdev_ops = {
1318	.ndo_open = c_can_open,
1319	.ndo_stop = c_can_close,
1320	.ndo_start_xmit = c_can_start_xmit,
1321	.ndo_change_mtu = can_change_mtu,
1322};
1323
1324int register_c_can_dev(struct net_device *dev)
1325{
1326	int err;
1327
1328	/* Deactivate pins to prevent DRA7 DCAN IP from being
1329	 * stuck in transition when module is disabled.
1330	 * Pins are activated in c_can_start() and deactivated
1331	 * in c_can_stop()
1332	 */
1333	pinctrl_pm_select_sleep_state(dev->dev.parent);
1334
1335	dev->flags |= IFF_ECHO;	/* we support local echo */
1336	dev->netdev_ops = &c_can_netdev_ops;
1337
1338	err = register_candev(dev);
1339	if (!err)
1340		devm_can_led_init(dev);
1341	return err;
1342}
1343EXPORT_SYMBOL_GPL(register_c_can_dev);
1344
1345void unregister_c_can_dev(struct net_device *dev)
1346{
1347	unregister_candev(dev);
1348}
1349EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1350
1351MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1352MODULE_LICENSE("GPL v2");
1353MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1354