xref: /kernel/linux/linux-5.10/drivers/mtd/ubi/wl.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8/*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 *  o we don't want to move physical eraseblocks just after we have given them
50 *    to the user; instead, we first want to let users fill them up with data;
51 *
52 *  o there is a chance that the user will put the physical eraseblock very
53 *    soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 *   erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88#include <linux/slab.h>
89#include <linux/crc32.h>
90#include <linux/freezer.h>
91#include <linux/kthread.h>
92#include "ubi.h"
93#include "wl.h"
94
95/* Number of physical eraseblocks reserved for wear-leveling purposes */
96#define WL_RESERVED_PEBS 1
97
98/*
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
103 */
104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106/*
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
116 */
117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119/*
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
122 */
123#define WL_MAX_FAILURES 32
124
125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126static int self_check_in_wl_tree(const struct ubi_device *ubi,
127				 struct ubi_wl_entry *e, struct rb_root *root);
128static int self_check_in_pq(const struct ubi_device *ubi,
129			    struct ubi_wl_entry *e);
130
131/**
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
135 *
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
138 */
139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140{
141	struct rb_node **p, *parent = NULL;
142
143	p = &root->rb_node;
144	while (*p) {
145		struct ubi_wl_entry *e1;
146
147		parent = *p;
148		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150		if (e->ec < e1->ec)
151			p = &(*p)->rb_left;
152		else if (e->ec > e1->ec)
153			p = &(*p)->rb_right;
154		else {
155			ubi_assert(e->pnum != e1->pnum);
156			if (e->pnum < e1->pnum)
157				p = &(*p)->rb_left;
158			else
159				p = &(*p)->rb_right;
160		}
161	}
162
163	rb_link_node(&e->u.rb, parent, p);
164	rb_insert_color(&e->u.rb, root);
165}
166
167/**
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
171 *
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
174 */
175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176{
177	ubi->lookuptbl[e->pnum] = NULL;
178	kmem_cache_free(ubi_wl_entry_slab, e);
179}
180
181/**
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 *
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
187 */
188static int do_work(struct ubi_device *ubi)
189{
190	int err;
191	struct ubi_work *wrk;
192
193	cond_resched();
194
195	/*
196	 * @ubi->work_sem is used to synchronize with the workers. Workers take
197	 * it in read mode, so many of them may be doing works at a time. But
198	 * the queue flush code has to be sure the whole queue of works is
199	 * done, and it takes the mutex in write mode.
200	 */
201	down_read(&ubi->work_sem);
202	spin_lock(&ubi->wl_lock);
203	if (list_empty(&ubi->works)) {
204		spin_unlock(&ubi->wl_lock);
205		up_read(&ubi->work_sem);
206		return 0;
207	}
208
209	wrk = list_entry(ubi->works.next, struct ubi_work, list);
210	list_del(&wrk->list);
211	ubi->works_count -= 1;
212	ubi_assert(ubi->works_count >= 0);
213	spin_unlock(&ubi->wl_lock);
214
215	/*
216	 * Call the worker function. Do not touch the work structure
217	 * after this call as it will have been freed or reused by that
218	 * time by the worker function.
219	 */
220	err = wrk->func(ubi, wrk, 0);
221	if (err)
222		ubi_err(ubi, "work failed with error code %d", err);
223	up_read(&ubi->work_sem);
224
225	return err;
226}
227
228/**
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
232 *
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
235 */
236static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237{
238	struct rb_node *p;
239
240	p = root->rb_node;
241	while (p) {
242		struct ubi_wl_entry *e1;
243
244		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245
246		if (e->pnum == e1->pnum) {
247			ubi_assert(e == e1);
248			return 1;
249		}
250
251		if (e->ec < e1->ec)
252			p = p->rb_left;
253		else if (e->ec > e1->ec)
254			p = p->rb_right;
255		else {
256			ubi_assert(e->pnum != e1->pnum);
257			if (e->pnum < e1->pnum)
258				p = p->rb_left;
259			else
260				p = p->rb_right;
261		}
262	}
263
264	return 0;
265}
266
267/**
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
271 *
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
274 */
275static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276{
277	struct ubi_wl_entry *p;
278	int i;
279
280	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281		list_for_each_entry(p, &ubi->pq[i], u.list)
282			if (p == e)
283				return 1;
284
285	return 0;
286}
287
288/**
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
292 *
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
297 */
298static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299{
300	int pq_tail = ubi->pq_head - 1;
301
302	if (pq_tail < 0)
303		pq_tail = UBI_PROT_QUEUE_LEN - 1;
304	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307}
308
309/**
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
314 *
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
317 */
318static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319					  struct rb_root *root, int diff)
320{
321	struct rb_node *p;
322	struct ubi_wl_entry *e;
323	int max;
324
325	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326	max = e->ec + diff;
327
328	p = root->rb_node;
329	while (p) {
330		struct ubi_wl_entry *e1;
331
332		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333		if (e1->ec >= max)
334			p = p->rb_left;
335		else {
336			p = p->rb_right;
337			e = e1;
338		}
339	}
340
341	return e;
342}
343
344/**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354					       struct rb_root *root)
355{
356	struct ubi_wl_entry *e, *first, *last;
357
358	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364		/* If no fastmap has been written and this WL entry can be used
365		 * as anchor PEB, hold it back and return the second best
366		 * WL entry such that fastmap can use the anchor PEB later. */
367		e = may_reserve_for_fm(ubi, e, root);
368	} else
369		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371	return e;
372}
373
374/**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383{
384	struct ubi_wl_entry *e;
385
386	e = find_mean_wl_entry(ubi, &ubi->free);
387	if (!e) {
388		ubi_err(ubi, "no free eraseblocks");
389		return NULL;
390	}
391
392	self_check_in_wl_tree(ubi, e, &ubi->free);
393
394	/*
395	 * Move the physical eraseblock to the protection queue where it will
396	 * be protected from being moved for some time.
397	 */
398	rb_erase(&e->u.rb, &ubi->free);
399	ubi->free_count--;
400	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402	return e;
403}
404
405/**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
413static int prot_queue_del(struct ubi_device *ubi, int pnum)
414{
415	struct ubi_wl_entry *e;
416
417	e = ubi->lookuptbl[pnum];
418	if (!e)
419		return -ENODEV;
420
421	if (self_check_in_pq(ubi, e))
422		return -ENODEV;
423
424	list_del(&e->u.list);
425	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426	return 0;
427}
428
429/**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439		      int torture)
440{
441	int err;
442	struct ubi_ec_hdr *ec_hdr;
443	unsigned long long ec = e->ec;
444
445	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447	err = self_check_ec(ubi, e->pnum, e->ec);
448	if (err)
449		return -EINVAL;
450
451	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452	if (!ec_hdr)
453		return -ENOMEM;
454
455	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456	if (err < 0)
457		goto out_free;
458
459	ec += err;
460	if (ec > UBI_MAX_ERASECOUNTER) {
461		/*
462		 * Erase counter overflow. Upgrade UBI and use 64-bit
463		 * erase counters internally.
464		 */
465		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466			e->pnum, ec);
467		err = -EINVAL;
468		goto out_free;
469	}
470
471	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473	ec_hdr->ec = cpu_to_be64(ec);
474
475	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476	if (err)
477		goto out_free;
478
479	e->ec = ec;
480	spin_lock(&ubi->wl_lock);
481	if (e->ec > ubi->max_ec)
482		ubi->max_ec = e->ec;
483	spin_unlock(&ubi->wl_lock);
484
485out_free:
486	kfree(ec_hdr);
487	return err;
488}
489
490/**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
498static void serve_prot_queue(struct ubi_device *ubi)
499{
500	struct ubi_wl_entry *e, *tmp;
501	int count;
502
503	/*
504	 * There may be several protected physical eraseblock to remove,
505	 * process them all.
506	 */
507repeat:
508	count = 0;
509	spin_lock(&ubi->wl_lock);
510	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511		dbg_wl("PEB %d EC %d protection over, move to used tree",
512			e->pnum, e->ec);
513
514		list_del(&e->u.list);
515		wl_tree_add(e, &ubi->used);
516		if (count++ > 32) {
517			/*
518			 * Let's be nice and avoid holding the spinlock for
519			 * too long.
520			 */
521			spin_unlock(&ubi->wl_lock);
522			cond_resched();
523			goto repeat;
524		}
525	}
526
527	ubi->pq_head += 1;
528	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529		ubi->pq_head = 0;
530	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531	spin_unlock(&ubi->wl_lock);
532}
533
534/**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543{
544	spin_lock(&ubi->wl_lock);
545	list_add_tail(&wrk->list, &ubi->works);
546	ubi_assert(ubi->works_count >= 0);
547	ubi->works_count += 1;
548	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549		wake_up_process(ubi->bgt_thread);
550	spin_unlock(&ubi->wl_lock);
551}
552
553/**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562{
563	down_read(&ubi->work_sem);
564	__schedule_ubi_work(ubi, wrk);
565	up_read(&ubi->work_sem);
566}
567
568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569			int shutdown);
570
571/**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 * @nested: denotes whether the work_sem is already held
579 *
580 * This function returns zero in case of success and a %-ENOMEM in case of
581 * failure.
582 */
583static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584			  int vol_id, int lnum, int torture, bool nested)
585{
586	struct ubi_work *wl_wrk;
587
588	ubi_assert(e);
589
590	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591	       e->pnum, e->ec, torture);
592
593	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594	if (!wl_wrk)
595		return -ENOMEM;
596
597	wl_wrk->func = &erase_worker;
598	wl_wrk->e = e;
599	wl_wrk->vol_id = vol_id;
600	wl_wrk->lnum = lnum;
601	wl_wrk->torture = torture;
602
603	if (nested)
604		__schedule_ubi_work(ubi, wl_wrk);
605	else
606		schedule_ubi_work(ubi, wl_wrk);
607	return 0;
608}
609
610static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611/**
612 * do_sync_erase - run the erase worker synchronously.
613 * @ubi: UBI device description object
614 * @e: the WL entry of the physical eraseblock to erase
615 * @vol_id: the volume ID that last used this PEB
616 * @lnum: the last used logical eraseblock number for the PEB
617 * @torture: if the physical eraseblock has to be tortured
618 *
619 */
620static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621			 int vol_id, int lnum, int torture)
622{
623	struct ubi_work wl_wrk;
624
625	dbg_wl("sync erase of PEB %i", e->pnum);
626
627	wl_wrk.e = e;
628	wl_wrk.vol_id = vol_id;
629	wl_wrk.lnum = lnum;
630	wl_wrk.torture = torture;
631
632	return __erase_worker(ubi, &wl_wrk);
633}
634
635static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636/**
637 * wear_leveling_worker - wear-leveling worker function.
638 * @ubi: UBI device description object
639 * @wrk: the work object
640 * @shutdown: non-zero if the worker has to free memory and exit
641 * because the WL-subsystem is shutting down
642 *
643 * This function copies a more worn out physical eraseblock to a less worn out
644 * one. Returns zero in case of success and a negative error code in case of
645 * failure.
646 */
647static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648				int shutdown)
649{
650	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652	struct ubi_wl_entry *e1, *e2;
653	struct ubi_vid_io_buf *vidb;
654	struct ubi_vid_hdr *vid_hdr;
655	int dst_leb_clean = 0;
656
657	kfree(wrk);
658	if (shutdown)
659		return 0;
660
661	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662	if (!vidb)
663		return -ENOMEM;
664
665	vid_hdr = ubi_get_vid_hdr(vidb);
666
667	down_read(&ubi->fm_eba_sem);
668	mutex_lock(&ubi->move_mutex);
669	spin_lock(&ubi->wl_lock);
670	ubi_assert(!ubi->move_from && !ubi->move_to);
671	ubi_assert(!ubi->move_to_put);
672
673	if (!ubi->free.rb_node ||
674	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
675		/*
676		 * No free physical eraseblocks? Well, they must be waiting in
677		 * the queue to be erased. Cancel movement - it will be
678		 * triggered again when a free physical eraseblock appears.
679		 *
680		 * No used physical eraseblocks? They must be temporarily
681		 * protected from being moved. They will be moved to the
682		 * @ubi->used tree later and the wear-leveling will be
683		 * triggered again.
684		 */
685		dbg_wl("cancel WL, a list is empty: free %d, used %d",
686		       !ubi->free.rb_node, !ubi->used.rb_node);
687		goto out_cancel;
688	}
689
690#ifdef CONFIG_MTD_UBI_FASTMAP
691	e1 = find_anchor_wl_entry(&ubi->used);
692	if (e1 && ubi->fm_anchor &&
693	    (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
694		ubi->fm_do_produce_anchor = 1;
695		/*
696		 * fm_anchor is no longer considered a good anchor.
697		 * NULL assignment also prevents multiple wear level checks
698		 * of this PEB.
699		 */
700		wl_tree_add(ubi->fm_anchor, &ubi->free);
701		ubi->fm_anchor = NULL;
702		ubi->free_count++;
703	}
704
705	if (ubi->fm_do_produce_anchor) {
706		if (!e1)
707			goto out_cancel;
708		e2 = get_peb_for_wl(ubi);
709		if (!e2)
710			goto out_cancel;
711
712		self_check_in_wl_tree(ubi, e1, &ubi->used);
713		rb_erase(&e1->u.rb, &ubi->used);
714		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
715		ubi->fm_do_produce_anchor = 0;
716	} else if (!ubi->scrub.rb_node) {
717#else
718	if (!ubi->scrub.rb_node) {
719#endif
720		/*
721		 * Now pick the least worn-out used physical eraseblock and a
722		 * highly worn-out free physical eraseblock. If the erase
723		 * counters differ much enough, start wear-leveling.
724		 */
725		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
726		e2 = get_peb_for_wl(ubi);
727		if (!e2)
728			goto out_cancel;
729
730		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
731			dbg_wl("no WL needed: min used EC %d, max free EC %d",
732			       e1->ec, e2->ec);
733
734			/* Give the unused PEB back */
735			wl_tree_add(e2, &ubi->free);
736			ubi->free_count++;
737			goto out_cancel;
738		}
739		self_check_in_wl_tree(ubi, e1, &ubi->used);
740		rb_erase(&e1->u.rb, &ubi->used);
741		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
742		       e1->pnum, e1->ec, e2->pnum, e2->ec);
743	} else {
744		/* Perform scrubbing */
745		scrubbing = 1;
746		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
747		e2 = get_peb_for_wl(ubi);
748		if (!e2)
749			goto out_cancel;
750
751		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
752		rb_erase(&e1->u.rb, &ubi->scrub);
753		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
754	}
755
756	ubi->move_from = e1;
757	ubi->move_to = e2;
758	spin_unlock(&ubi->wl_lock);
759
760	/*
761	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
762	 * We so far do not know which logical eraseblock our physical
763	 * eraseblock (@e1) belongs to. We have to read the volume identifier
764	 * header first.
765	 *
766	 * Note, we are protected from this PEB being unmapped and erased. The
767	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
768	 * which is being moved was unmapped.
769	 */
770
771	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
772	if (err && err != UBI_IO_BITFLIPS) {
773		dst_leb_clean = 1;
774		if (err == UBI_IO_FF) {
775			/*
776			 * We are trying to move PEB without a VID header. UBI
777			 * always write VID headers shortly after the PEB was
778			 * given, so we have a situation when it has not yet
779			 * had a chance to write it, because it was preempted.
780			 * So add this PEB to the protection queue so far,
781			 * because presumably more data will be written there
782			 * (including the missing VID header), and then we'll
783			 * move it.
784			 */
785			dbg_wl("PEB %d has no VID header", e1->pnum);
786			protect = 1;
787			goto out_not_moved;
788		} else if (err == UBI_IO_FF_BITFLIPS) {
789			/*
790			 * The same situation as %UBI_IO_FF, but bit-flips were
791			 * detected. It is better to schedule this PEB for
792			 * scrubbing.
793			 */
794			dbg_wl("PEB %d has no VID header but has bit-flips",
795			       e1->pnum);
796			scrubbing = 1;
797			goto out_not_moved;
798		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
799			/*
800			 * While a full scan would detect interrupted erasures
801			 * at attach time we can face them here when attached from
802			 * Fastmap.
803			 */
804			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
805			       e1->pnum);
806			erase = 1;
807			goto out_not_moved;
808		}
809
810		ubi_err(ubi, "error %d while reading VID header from PEB %d",
811			err, e1->pnum);
812		goto out_error;
813	}
814
815	vol_id = be32_to_cpu(vid_hdr->vol_id);
816	lnum = be32_to_cpu(vid_hdr->lnum);
817
818	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
819	if (err) {
820		if (err == MOVE_CANCEL_RACE) {
821			/*
822			 * The LEB has not been moved because the volume is
823			 * being deleted or the PEB has been put meanwhile. We
824			 * should prevent this PEB from being selected for
825			 * wear-leveling movement again, so put it to the
826			 * protection queue.
827			 */
828			protect = 1;
829			dst_leb_clean = 1;
830			goto out_not_moved;
831		}
832		if (err == MOVE_RETRY) {
833			scrubbing = 1;
834			dst_leb_clean = 1;
835			goto out_not_moved;
836		}
837		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
838		    err == MOVE_TARGET_RD_ERR) {
839			/*
840			 * Target PEB had bit-flips or write error - torture it.
841			 */
842			torture = 1;
843			keep = 1;
844			goto out_not_moved;
845		}
846
847		if (err == MOVE_SOURCE_RD_ERR) {
848			/*
849			 * An error happened while reading the source PEB. Do
850			 * not switch to R/O mode in this case, and give the
851			 * upper layers a possibility to recover from this,
852			 * e.g. by unmapping corresponding LEB. Instead, just
853			 * put this PEB to the @ubi->erroneous list to prevent
854			 * UBI from trying to move it over and over again.
855			 */
856			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
857				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
858					ubi->erroneous_peb_count);
859				goto out_error;
860			}
861			dst_leb_clean = 1;
862			erroneous = 1;
863			goto out_not_moved;
864		}
865
866		if (err < 0)
867			goto out_error;
868
869		ubi_assert(0);
870	}
871
872	/* The PEB has been successfully moved */
873	if (scrubbing)
874		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
875			e1->pnum, vol_id, lnum, e2->pnum);
876	ubi_free_vid_buf(vidb);
877
878	spin_lock(&ubi->wl_lock);
879	if (!ubi->move_to_put) {
880		wl_tree_add(e2, &ubi->used);
881		e2 = NULL;
882	}
883	ubi->move_from = ubi->move_to = NULL;
884	ubi->move_to_put = ubi->wl_scheduled = 0;
885	spin_unlock(&ubi->wl_lock);
886
887	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
888	if (err) {
889		if (e2) {
890			spin_lock(&ubi->wl_lock);
891			wl_entry_destroy(ubi, e2);
892			spin_unlock(&ubi->wl_lock);
893		}
894		goto out_ro;
895	}
896
897	if (e2) {
898		/*
899		 * Well, the target PEB was put meanwhile, schedule it for
900		 * erasure.
901		 */
902		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
903		       e2->pnum, vol_id, lnum);
904		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
905		if (err)
906			goto out_ro;
907	}
908
909	dbg_wl("done");
910	mutex_unlock(&ubi->move_mutex);
911	up_read(&ubi->fm_eba_sem);
912	return 0;
913
914	/*
915	 * For some reasons the LEB was not moved, might be an error, might be
916	 * something else. @e1 was not changed, so return it back. @e2 might
917	 * have been changed, schedule it for erasure.
918	 */
919out_not_moved:
920	if (vol_id != -1)
921		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
922		       e1->pnum, vol_id, lnum, e2->pnum, err);
923	else
924		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
925		       e1->pnum, e2->pnum, err);
926	spin_lock(&ubi->wl_lock);
927	if (protect)
928		prot_queue_add(ubi, e1);
929	else if (erroneous) {
930		wl_tree_add(e1, &ubi->erroneous);
931		ubi->erroneous_peb_count += 1;
932	} else if (scrubbing)
933		wl_tree_add(e1, &ubi->scrub);
934	else if (keep)
935		wl_tree_add(e1, &ubi->used);
936	if (dst_leb_clean) {
937		wl_tree_add(e2, &ubi->free);
938		ubi->free_count++;
939	}
940
941	ubi_assert(!ubi->move_to_put);
942	ubi->move_from = ubi->move_to = NULL;
943	ubi->wl_scheduled = 0;
944	spin_unlock(&ubi->wl_lock);
945
946	ubi_free_vid_buf(vidb);
947	if (dst_leb_clean) {
948		ensure_wear_leveling(ubi, 1);
949	} else {
950		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
951		if (err)
952			goto out_ro;
953	}
954
955	if (erase) {
956		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
957		if (err)
958			goto out_ro;
959	}
960
961	mutex_unlock(&ubi->move_mutex);
962	up_read(&ubi->fm_eba_sem);
963	return 0;
964
965out_error:
966	if (vol_id != -1)
967		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
968			err, e1->pnum, e2->pnum);
969	else
970		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
971			err, e1->pnum, vol_id, lnum, e2->pnum);
972	spin_lock(&ubi->wl_lock);
973	ubi->move_from = ubi->move_to = NULL;
974	ubi->move_to_put = ubi->wl_scheduled = 0;
975	wl_entry_destroy(ubi, e1);
976	wl_entry_destroy(ubi, e2);
977	spin_unlock(&ubi->wl_lock);
978
979	ubi_free_vid_buf(vidb);
980
981out_ro:
982	ubi_ro_mode(ubi);
983	mutex_unlock(&ubi->move_mutex);
984	up_read(&ubi->fm_eba_sem);
985	ubi_assert(err != 0);
986	return err < 0 ? err : -EIO;
987
988out_cancel:
989	ubi->wl_scheduled = 0;
990	spin_unlock(&ubi->wl_lock);
991	mutex_unlock(&ubi->move_mutex);
992	up_read(&ubi->fm_eba_sem);
993	ubi_free_vid_buf(vidb);
994	return 0;
995}
996
997/**
998 * ensure_wear_leveling - schedule wear-leveling if it is needed.
999 * @ubi: UBI device description object
1000 * @nested: set to non-zero if this function is called from UBI worker
1001 *
1002 * This function checks if it is time to start wear-leveling and schedules it
1003 * if yes. This function returns zero in case of success and a negative error
1004 * code in case of failure.
1005 */
1006static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1007{
1008	int err = 0;
1009	struct ubi_wl_entry *e1;
1010	struct ubi_wl_entry *e2;
1011	struct ubi_work *wrk;
1012
1013	spin_lock(&ubi->wl_lock);
1014	if (ubi->wl_scheduled)
1015		/* Wear-leveling is already in the work queue */
1016		goto out_unlock;
1017
1018	/*
1019	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1020	 * the WL worker has to be scheduled anyway.
1021	 */
1022	if (!ubi->scrub.rb_node) {
1023		if (!ubi->used.rb_node || !ubi->free.rb_node)
1024			/* No physical eraseblocks - no deal */
1025			goto out_unlock;
1026
1027		/*
1028		 * We schedule wear-leveling only if the difference between the
1029		 * lowest erase counter of used physical eraseblocks and a high
1030		 * erase counter of free physical eraseblocks is greater than
1031		 * %UBI_WL_THRESHOLD.
1032		 */
1033		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1034		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1035
1036		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1037			goto out_unlock;
1038		dbg_wl("schedule wear-leveling");
1039	} else
1040		dbg_wl("schedule scrubbing");
1041
1042	ubi->wl_scheduled = 1;
1043	spin_unlock(&ubi->wl_lock);
1044
1045	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1046	if (!wrk) {
1047		err = -ENOMEM;
1048		goto out_cancel;
1049	}
1050
1051	wrk->func = &wear_leveling_worker;
1052	if (nested)
1053		__schedule_ubi_work(ubi, wrk);
1054	else
1055		schedule_ubi_work(ubi, wrk);
1056	return err;
1057
1058out_cancel:
1059	spin_lock(&ubi->wl_lock);
1060	ubi->wl_scheduled = 0;
1061out_unlock:
1062	spin_unlock(&ubi->wl_lock);
1063	return err;
1064}
1065
1066/**
1067 * __erase_worker - physical eraseblock erase worker function.
1068 * @ubi: UBI device description object
1069 * @wl_wrk: the work object
1070 *
1071 * This function erases a physical eraseblock and perform torture testing if
1072 * needed. It also takes care about marking the physical eraseblock bad if
1073 * needed. Returns zero in case of success and a negative error code in case of
1074 * failure.
1075 */
1076static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1077{
1078	struct ubi_wl_entry *e = wl_wrk->e;
1079	int pnum = e->pnum;
1080	int vol_id = wl_wrk->vol_id;
1081	int lnum = wl_wrk->lnum;
1082	int err, available_consumed = 0;
1083
1084	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1085	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1086
1087	err = sync_erase(ubi, e, wl_wrk->torture);
1088	if (!err) {
1089		spin_lock(&ubi->wl_lock);
1090
1091		if (!ubi->fm_disabled && !ubi->fm_anchor &&
1092		    e->pnum < UBI_FM_MAX_START) {
1093			/*
1094			 * Abort anchor production, if needed it will be
1095			 * enabled again in the wear leveling started below.
1096			 */
1097			ubi->fm_anchor = e;
1098			ubi->fm_do_produce_anchor = 0;
1099		} else {
1100			wl_tree_add(e, &ubi->free);
1101			ubi->free_count++;
1102		}
1103
1104		spin_unlock(&ubi->wl_lock);
1105
1106		/*
1107		 * One more erase operation has happened, take care about
1108		 * protected physical eraseblocks.
1109		 */
1110		serve_prot_queue(ubi);
1111
1112		/* And take care about wear-leveling */
1113		err = ensure_wear_leveling(ubi, 1);
1114		return err;
1115	}
1116
1117	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1118
1119	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1120	    err == -EBUSY) {
1121		int err1;
1122
1123		/* Re-schedule the LEB for erasure */
1124		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1125		if (err1) {
1126			spin_lock(&ubi->wl_lock);
1127			wl_entry_destroy(ubi, e);
1128			spin_unlock(&ubi->wl_lock);
1129			err = err1;
1130			goto out_ro;
1131		}
1132		return err;
1133	}
1134
1135	spin_lock(&ubi->wl_lock);
1136	wl_entry_destroy(ubi, e);
1137	spin_unlock(&ubi->wl_lock);
1138	if (err != -EIO)
1139		/*
1140		 * If this is not %-EIO, we have no idea what to do. Scheduling
1141		 * this physical eraseblock for erasure again would cause
1142		 * errors again and again. Well, lets switch to R/O mode.
1143		 */
1144		goto out_ro;
1145
1146	/* It is %-EIO, the PEB went bad */
1147
1148	if (!ubi->bad_allowed) {
1149		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1150		goto out_ro;
1151	}
1152
1153	spin_lock(&ubi->volumes_lock);
1154	if (ubi->beb_rsvd_pebs == 0) {
1155		if (ubi->avail_pebs == 0) {
1156			spin_unlock(&ubi->volumes_lock);
1157			ubi_err(ubi, "no reserved/available physical eraseblocks");
1158			goto out_ro;
1159		}
1160		ubi->avail_pebs -= 1;
1161		available_consumed = 1;
1162	}
1163	spin_unlock(&ubi->volumes_lock);
1164
1165	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1166	err = ubi_io_mark_bad(ubi, pnum);
1167	if (err)
1168		goto out_ro;
1169
1170	spin_lock(&ubi->volumes_lock);
1171	if (ubi->beb_rsvd_pebs > 0) {
1172		if (available_consumed) {
1173			/*
1174			 * The amount of reserved PEBs increased since we last
1175			 * checked.
1176			 */
1177			ubi->avail_pebs += 1;
1178			available_consumed = 0;
1179		}
1180		ubi->beb_rsvd_pebs -= 1;
1181	}
1182	ubi->bad_peb_count += 1;
1183	ubi->good_peb_count -= 1;
1184	ubi_calculate_reserved(ubi);
1185	if (available_consumed)
1186		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1187	else if (ubi->beb_rsvd_pebs)
1188		ubi_msg(ubi, "%d PEBs left in the reserve",
1189			ubi->beb_rsvd_pebs);
1190	else
1191		ubi_warn(ubi, "last PEB from the reserve was used");
1192	spin_unlock(&ubi->volumes_lock);
1193
1194	return err;
1195
1196out_ro:
1197	if (available_consumed) {
1198		spin_lock(&ubi->volumes_lock);
1199		ubi->avail_pebs += 1;
1200		spin_unlock(&ubi->volumes_lock);
1201	}
1202	ubi_ro_mode(ubi);
1203	return err;
1204}
1205
1206static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1207			  int shutdown)
1208{
1209	int ret;
1210
1211	if (shutdown) {
1212		struct ubi_wl_entry *e = wl_wrk->e;
1213
1214		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1215		kfree(wl_wrk);
1216		wl_entry_destroy(ubi, e);
1217		return 0;
1218	}
1219
1220	ret = __erase_worker(ubi, wl_wrk);
1221	kfree(wl_wrk);
1222	return ret;
1223}
1224
1225/**
1226 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1227 * @ubi: UBI device description object
1228 * @vol_id: the volume ID that last used this PEB
1229 * @lnum: the last used logical eraseblock number for the PEB
1230 * @pnum: physical eraseblock to return
1231 * @torture: if this physical eraseblock has to be tortured
1232 *
1233 * This function is called to return physical eraseblock @pnum to the pool of
1234 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1235 * occurred to this @pnum and it has to be tested. This function returns zero
1236 * in case of success, and a negative error code in case of failure.
1237 */
1238int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1239		   int pnum, int torture)
1240{
1241	int err;
1242	struct ubi_wl_entry *e;
1243
1244	dbg_wl("PEB %d", pnum);
1245	ubi_assert(pnum >= 0);
1246	ubi_assert(pnum < ubi->peb_count);
1247
1248	down_read(&ubi->fm_protect);
1249
1250retry:
1251	spin_lock(&ubi->wl_lock);
1252	e = ubi->lookuptbl[pnum];
1253	if (!e) {
1254		/*
1255		 * This wl entry has been removed for some errors by other
1256		 * process (eg. wear leveling worker), corresponding process
1257		 * (except __erase_worker, which cannot concurrent with
1258		 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1259		 * just ignore this wl entry.
1260		 */
1261		spin_unlock(&ubi->wl_lock);
1262		up_read(&ubi->fm_protect);
1263		return 0;
1264	}
1265	if (e == ubi->move_from) {
1266		/*
1267		 * User is putting the physical eraseblock which was selected to
1268		 * be moved. It will be scheduled for erasure in the
1269		 * wear-leveling worker.
1270		 */
1271		dbg_wl("PEB %d is being moved, wait", pnum);
1272		spin_unlock(&ubi->wl_lock);
1273
1274		/* Wait for the WL worker by taking the @ubi->move_mutex */
1275		mutex_lock(&ubi->move_mutex);
1276		mutex_unlock(&ubi->move_mutex);
1277		goto retry;
1278	} else if (e == ubi->move_to) {
1279		/*
1280		 * User is putting the physical eraseblock which was selected
1281		 * as the target the data is moved to. It may happen if the EBA
1282		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1283		 * but the WL sub-system has not put the PEB to the "used" tree
1284		 * yet, but it is about to do this. So we just set a flag which
1285		 * will tell the WL worker that the PEB is not needed anymore
1286		 * and should be scheduled for erasure.
1287		 */
1288		dbg_wl("PEB %d is the target of data moving", pnum);
1289		ubi_assert(!ubi->move_to_put);
1290		ubi->move_to_put = 1;
1291		spin_unlock(&ubi->wl_lock);
1292		up_read(&ubi->fm_protect);
1293		return 0;
1294	} else {
1295		if (in_wl_tree(e, &ubi->used)) {
1296			self_check_in_wl_tree(ubi, e, &ubi->used);
1297			rb_erase(&e->u.rb, &ubi->used);
1298		} else if (in_wl_tree(e, &ubi->scrub)) {
1299			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1300			rb_erase(&e->u.rb, &ubi->scrub);
1301		} else if (in_wl_tree(e, &ubi->erroneous)) {
1302			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1303			rb_erase(&e->u.rb, &ubi->erroneous);
1304			ubi->erroneous_peb_count -= 1;
1305			ubi_assert(ubi->erroneous_peb_count >= 0);
1306			/* Erroneous PEBs should be tortured */
1307			torture = 1;
1308		} else {
1309			err = prot_queue_del(ubi, e->pnum);
1310			if (err) {
1311				ubi_err(ubi, "PEB %d not found", pnum);
1312				ubi_ro_mode(ubi);
1313				spin_unlock(&ubi->wl_lock);
1314				up_read(&ubi->fm_protect);
1315				return err;
1316			}
1317		}
1318	}
1319	spin_unlock(&ubi->wl_lock);
1320
1321	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1322	if (err) {
1323		spin_lock(&ubi->wl_lock);
1324		wl_tree_add(e, &ubi->used);
1325		spin_unlock(&ubi->wl_lock);
1326	}
1327
1328	up_read(&ubi->fm_protect);
1329	return err;
1330}
1331
1332/**
1333 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1334 * @ubi: UBI device description object
1335 * @pnum: the physical eraseblock to schedule
1336 *
1337 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1338 * needs scrubbing. This function schedules a physical eraseblock for
1339 * scrubbing which is done in background. This function returns zero in case of
1340 * success and a negative error code in case of failure.
1341 */
1342int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1343{
1344	struct ubi_wl_entry *e;
1345
1346	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1347
1348retry:
1349	spin_lock(&ubi->wl_lock);
1350	e = ubi->lookuptbl[pnum];
1351	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1352				   in_wl_tree(e, &ubi->erroneous)) {
1353		spin_unlock(&ubi->wl_lock);
1354		return 0;
1355	}
1356
1357	if (e == ubi->move_to) {
1358		/*
1359		 * This physical eraseblock was used to move data to. The data
1360		 * was moved but the PEB was not yet inserted to the proper
1361		 * tree. We should just wait a little and let the WL worker
1362		 * proceed.
1363		 */
1364		spin_unlock(&ubi->wl_lock);
1365		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1366		yield();
1367		goto retry;
1368	}
1369
1370	if (in_wl_tree(e, &ubi->used)) {
1371		self_check_in_wl_tree(ubi, e, &ubi->used);
1372		rb_erase(&e->u.rb, &ubi->used);
1373	} else {
1374		int err;
1375
1376		err = prot_queue_del(ubi, e->pnum);
1377		if (err) {
1378			ubi_err(ubi, "PEB %d not found", pnum);
1379			ubi_ro_mode(ubi);
1380			spin_unlock(&ubi->wl_lock);
1381			return err;
1382		}
1383	}
1384
1385	wl_tree_add(e, &ubi->scrub);
1386	spin_unlock(&ubi->wl_lock);
1387
1388	/*
1389	 * Technically scrubbing is the same as wear-leveling, so it is done
1390	 * by the WL worker.
1391	 */
1392	return ensure_wear_leveling(ubi, 0);
1393}
1394
1395/**
1396 * ubi_wl_flush - flush all pending works.
1397 * @ubi: UBI device description object
1398 * @vol_id: the volume id to flush for
1399 * @lnum: the logical eraseblock number to flush for
1400 *
1401 * This function executes all pending works for a particular volume id /
1402 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1403 * acts as a wildcard for all of the corresponding volume numbers or logical
1404 * eraseblock numbers. It returns zero in case of success and a negative error
1405 * code in case of failure.
1406 */
1407int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1408{
1409	int err = 0;
1410	int found = 1;
1411
1412	/*
1413	 * Erase while the pending works queue is not empty, but not more than
1414	 * the number of currently pending works.
1415	 */
1416	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1417	       vol_id, lnum, ubi->works_count);
1418
1419	while (found) {
1420		struct ubi_work *wrk, *tmp;
1421		found = 0;
1422
1423		down_read(&ubi->work_sem);
1424		spin_lock(&ubi->wl_lock);
1425		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1426			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1427			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1428				list_del(&wrk->list);
1429				ubi->works_count -= 1;
1430				ubi_assert(ubi->works_count >= 0);
1431				spin_unlock(&ubi->wl_lock);
1432
1433				err = wrk->func(ubi, wrk, 0);
1434				if (err) {
1435					up_read(&ubi->work_sem);
1436					return err;
1437				}
1438
1439				spin_lock(&ubi->wl_lock);
1440				found = 1;
1441				break;
1442			}
1443		}
1444		spin_unlock(&ubi->wl_lock);
1445		up_read(&ubi->work_sem);
1446	}
1447
1448	/*
1449	 * Make sure all the works which have been done in parallel are
1450	 * finished.
1451	 */
1452	down_write(&ubi->work_sem);
1453	up_write(&ubi->work_sem);
1454
1455	return err;
1456}
1457
1458static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1459{
1460	if (in_wl_tree(e, &ubi->scrub))
1461		return false;
1462	else if (in_wl_tree(e, &ubi->erroneous))
1463		return false;
1464	else if (ubi->move_from == e)
1465		return false;
1466	else if (ubi->move_to == e)
1467		return false;
1468
1469	return true;
1470}
1471
1472/**
1473 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1474 * @ubi: UBI device description object
1475 * @pnum: the physical eraseblock to schedule
1476 * @force: dont't read the block, assume bitflips happened and take action.
1477 *
1478 * This function reads the given eraseblock and checks if bitflips occured.
1479 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1480 * If scrubbing is forced with @force, the eraseblock is not read,
1481 * but scheduled for scrubbing right away.
1482 *
1483 * Returns:
1484 * %EINVAL, PEB is out of range
1485 * %ENOENT, PEB is no longer used by UBI
1486 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1487 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1488 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1489 * %0, no bit flips detected
1490 */
1491int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1492{
1493	int err = 0;
1494	struct ubi_wl_entry *e;
1495
1496	if (pnum < 0 || pnum >= ubi->peb_count) {
1497		err = -EINVAL;
1498		goto out;
1499	}
1500
1501	/*
1502	 * Pause all parallel work, otherwise it can happen that the
1503	 * erase worker frees a wl entry under us.
1504	 */
1505	down_write(&ubi->work_sem);
1506
1507	/*
1508	 * Make sure that the wl entry does not change state while
1509	 * inspecting it.
1510	 */
1511	spin_lock(&ubi->wl_lock);
1512	e = ubi->lookuptbl[pnum];
1513	if (!e) {
1514		spin_unlock(&ubi->wl_lock);
1515		err = -ENOENT;
1516		goto out_resume;
1517	}
1518
1519	/*
1520	 * Does it make sense to check this PEB?
1521	 */
1522	if (!scrub_possible(ubi, e)) {
1523		spin_unlock(&ubi->wl_lock);
1524		err = -EBUSY;
1525		goto out_resume;
1526	}
1527	spin_unlock(&ubi->wl_lock);
1528
1529	if (!force) {
1530		mutex_lock(&ubi->buf_mutex);
1531		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1532		mutex_unlock(&ubi->buf_mutex);
1533	}
1534
1535	if (force || err == UBI_IO_BITFLIPS) {
1536		/*
1537		 * Okay, bit flip happened, let's figure out what we can do.
1538		 */
1539		spin_lock(&ubi->wl_lock);
1540
1541		/*
1542		 * Recheck. We released wl_lock, UBI might have killed the
1543		 * wl entry under us.
1544		 */
1545		e = ubi->lookuptbl[pnum];
1546		if (!e) {
1547			spin_unlock(&ubi->wl_lock);
1548			err = -ENOENT;
1549			goto out_resume;
1550		}
1551
1552		/*
1553		 * Need to re-check state
1554		 */
1555		if (!scrub_possible(ubi, e)) {
1556			spin_unlock(&ubi->wl_lock);
1557			err = -EBUSY;
1558			goto out_resume;
1559		}
1560
1561		if (in_pq(ubi, e)) {
1562			prot_queue_del(ubi, e->pnum);
1563			wl_tree_add(e, &ubi->scrub);
1564			spin_unlock(&ubi->wl_lock);
1565
1566			err = ensure_wear_leveling(ubi, 1);
1567		} else if (in_wl_tree(e, &ubi->used)) {
1568			rb_erase(&e->u.rb, &ubi->used);
1569			wl_tree_add(e, &ubi->scrub);
1570			spin_unlock(&ubi->wl_lock);
1571
1572			err = ensure_wear_leveling(ubi, 1);
1573		} else if (in_wl_tree(e, &ubi->free)) {
1574			rb_erase(&e->u.rb, &ubi->free);
1575			ubi->free_count--;
1576			spin_unlock(&ubi->wl_lock);
1577
1578			/*
1579			 * This PEB is empty we can schedule it for
1580			 * erasure right away. No wear leveling needed.
1581			 */
1582			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1583					     force ? 0 : 1, true);
1584		} else {
1585			spin_unlock(&ubi->wl_lock);
1586			err = -EAGAIN;
1587		}
1588
1589		if (!err && !force)
1590			err = -EUCLEAN;
1591	} else {
1592		err = 0;
1593	}
1594
1595out_resume:
1596	up_write(&ubi->work_sem);
1597out:
1598
1599	return err;
1600}
1601
1602/**
1603 * tree_destroy - destroy an RB-tree.
1604 * @ubi: UBI device description object
1605 * @root: the root of the tree to destroy
1606 */
1607static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1608{
1609	struct rb_node *rb;
1610	struct ubi_wl_entry *e;
1611
1612	rb = root->rb_node;
1613	while (rb) {
1614		if (rb->rb_left)
1615			rb = rb->rb_left;
1616		else if (rb->rb_right)
1617			rb = rb->rb_right;
1618		else {
1619			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1620
1621			rb = rb_parent(rb);
1622			if (rb) {
1623				if (rb->rb_left == &e->u.rb)
1624					rb->rb_left = NULL;
1625				else
1626					rb->rb_right = NULL;
1627			}
1628
1629			wl_entry_destroy(ubi, e);
1630		}
1631	}
1632}
1633
1634/**
1635 * ubi_thread - UBI background thread.
1636 * @u: the UBI device description object pointer
1637 */
1638int ubi_thread(void *u)
1639{
1640	int failures = 0;
1641	struct ubi_device *ubi = u;
1642
1643	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1644		ubi->bgt_name, task_pid_nr(current));
1645
1646	set_freezable();
1647	for (;;) {
1648		int err;
1649
1650		if (kthread_should_stop())
1651			break;
1652
1653		if (try_to_freeze())
1654			continue;
1655
1656		spin_lock(&ubi->wl_lock);
1657		if (list_empty(&ubi->works) || ubi->ro_mode ||
1658		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1659			set_current_state(TASK_INTERRUPTIBLE);
1660			spin_unlock(&ubi->wl_lock);
1661
1662			/*
1663			 * Check kthread_should_stop() after we set the task
1664			 * state to guarantee that we either see the stop bit
1665			 * and exit or the task state is reset to runnable such
1666			 * that it's not scheduled out indefinitely and detects
1667			 * the stop bit at kthread_should_stop().
1668			 */
1669			if (kthread_should_stop()) {
1670				set_current_state(TASK_RUNNING);
1671				break;
1672			}
1673
1674			schedule();
1675			continue;
1676		}
1677		spin_unlock(&ubi->wl_lock);
1678
1679		err = do_work(ubi);
1680		if (err) {
1681			ubi_err(ubi, "%s: work failed with error code %d",
1682				ubi->bgt_name, err);
1683			if (failures++ > WL_MAX_FAILURES) {
1684				/*
1685				 * Too many failures, disable the thread and
1686				 * switch to read-only mode.
1687				 */
1688				ubi_msg(ubi, "%s: %d consecutive failures",
1689					ubi->bgt_name, WL_MAX_FAILURES);
1690				ubi_ro_mode(ubi);
1691				ubi->thread_enabled = 0;
1692				continue;
1693			}
1694		} else
1695			failures = 0;
1696
1697		cond_resched();
1698	}
1699
1700	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1701	ubi->thread_enabled = 0;
1702	return 0;
1703}
1704
1705/**
1706 * shutdown_work - shutdown all pending works.
1707 * @ubi: UBI device description object
1708 */
1709static void shutdown_work(struct ubi_device *ubi)
1710{
1711	while (!list_empty(&ubi->works)) {
1712		struct ubi_work *wrk;
1713
1714		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1715		list_del(&wrk->list);
1716		wrk->func(ubi, wrk, 1);
1717		ubi->works_count -= 1;
1718		ubi_assert(ubi->works_count >= 0);
1719	}
1720}
1721
1722/**
1723 * erase_aeb - erase a PEB given in UBI attach info PEB
1724 * @ubi: UBI device description object
1725 * @aeb: UBI attach info PEB
1726 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1727 */
1728static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1729{
1730	struct ubi_wl_entry *e;
1731	int err;
1732
1733	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1734	if (!e)
1735		return -ENOMEM;
1736
1737	e->pnum = aeb->pnum;
1738	e->ec = aeb->ec;
1739	ubi->lookuptbl[e->pnum] = e;
1740
1741	if (sync) {
1742		err = sync_erase(ubi, e, false);
1743		if (err)
1744			goto out_free;
1745
1746		wl_tree_add(e, &ubi->free);
1747		ubi->free_count++;
1748	} else {
1749		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1750		if (err)
1751			goto out_free;
1752	}
1753
1754	return 0;
1755
1756out_free:
1757	wl_entry_destroy(ubi, e);
1758
1759	return err;
1760}
1761
1762/**
1763 * ubi_wl_init - initialize the WL sub-system using attaching information.
1764 * @ubi: UBI device description object
1765 * @ai: attaching information
1766 *
1767 * This function returns zero in case of success, and a negative error code in
1768 * case of failure.
1769 */
1770int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1771{
1772	int err, i, reserved_pebs, found_pebs = 0;
1773	struct rb_node *rb1, *rb2;
1774	struct ubi_ainf_volume *av;
1775	struct ubi_ainf_peb *aeb, *tmp;
1776	struct ubi_wl_entry *e;
1777
1778	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1779	spin_lock_init(&ubi->wl_lock);
1780	mutex_init(&ubi->move_mutex);
1781	init_rwsem(&ubi->work_sem);
1782	ubi->max_ec = ai->max_ec;
1783	INIT_LIST_HEAD(&ubi->works);
1784
1785	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1786
1787	err = -ENOMEM;
1788	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1789	if (!ubi->lookuptbl)
1790		return err;
1791
1792	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1793		INIT_LIST_HEAD(&ubi->pq[i]);
1794	ubi->pq_head = 0;
1795
1796	ubi->free_count = 0;
1797	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1798		cond_resched();
1799
1800		err = erase_aeb(ubi, aeb, false);
1801		if (err)
1802			goto out_free;
1803
1804		found_pebs++;
1805	}
1806
1807	list_for_each_entry(aeb, &ai->free, u.list) {
1808		cond_resched();
1809
1810		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1811		if (!e) {
1812			err = -ENOMEM;
1813			goto out_free;
1814		}
1815
1816		e->pnum = aeb->pnum;
1817		e->ec = aeb->ec;
1818		ubi_assert(e->ec >= 0);
1819
1820		wl_tree_add(e, &ubi->free);
1821		ubi->free_count++;
1822
1823		ubi->lookuptbl[e->pnum] = e;
1824
1825		found_pebs++;
1826	}
1827
1828	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1829		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1830			cond_resched();
1831
1832			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1833			if (!e) {
1834				err = -ENOMEM;
1835				goto out_free;
1836			}
1837
1838			e->pnum = aeb->pnum;
1839			e->ec = aeb->ec;
1840			ubi->lookuptbl[e->pnum] = e;
1841
1842			if (!aeb->scrub) {
1843				dbg_wl("add PEB %d EC %d to the used tree",
1844				       e->pnum, e->ec);
1845				wl_tree_add(e, &ubi->used);
1846			} else {
1847				dbg_wl("add PEB %d EC %d to the scrub tree",
1848				       e->pnum, e->ec);
1849				wl_tree_add(e, &ubi->scrub);
1850			}
1851
1852			found_pebs++;
1853		}
1854	}
1855
1856	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1857		cond_resched();
1858
1859		e = ubi_find_fm_block(ubi, aeb->pnum);
1860
1861		if (e) {
1862			ubi_assert(!ubi->lookuptbl[e->pnum]);
1863			ubi->lookuptbl[e->pnum] = e;
1864		} else {
1865			bool sync = false;
1866
1867			/*
1868			 * Usually old Fastmap PEBs are scheduled for erasure
1869			 * and we don't have to care about them but if we face
1870			 * an power cut before scheduling them we need to
1871			 * take care of them here.
1872			 */
1873			if (ubi->lookuptbl[aeb->pnum])
1874				continue;
1875
1876			/*
1877			 * The fastmap update code might not find a free PEB for
1878			 * writing the fastmap anchor to and then reuses the
1879			 * current fastmap anchor PEB. When this PEB gets erased
1880			 * and a power cut happens before it is written again we
1881			 * must make sure that the fastmap attach code doesn't
1882			 * find any outdated fastmap anchors, hence we erase the
1883			 * outdated fastmap anchor PEBs synchronously here.
1884			 */
1885			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1886				sync = true;
1887
1888			err = erase_aeb(ubi, aeb, sync);
1889			if (err)
1890				goto out_free;
1891		}
1892
1893		found_pebs++;
1894	}
1895
1896	dbg_wl("found %i PEBs", found_pebs);
1897
1898	ubi_assert(ubi->good_peb_count == found_pebs);
1899
1900	reserved_pebs = WL_RESERVED_PEBS;
1901	ubi_fastmap_init(ubi, &reserved_pebs);
1902
1903	if (ubi->avail_pebs < reserved_pebs) {
1904		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1905			ubi->avail_pebs, reserved_pebs);
1906		if (ubi->corr_peb_count)
1907			ubi_err(ubi, "%d PEBs are corrupted and not used",
1908				ubi->corr_peb_count);
1909		err = -ENOSPC;
1910		goto out_free;
1911	}
1912	ubi->avail_pebs -= reserved_pebs;
1913	ubi->rsvd_pebs += reserved_pebs;
1914
1915	/* Schedule wear-leveling if needed */
1916	err = ensure_wear_leveling(ubi, 0);
1917	if (err)
1918		goto out_free;
1919
1920#ifdef CONFIG_MTD_UBI_FASTMAP
1921	if (!ubi->ro_mode && !ubi->fm_disabled)
1922		ubi_ensure_anchor_pebs(ubi);
1923#endif
1924	return 0;
1925
1926out_free:
1927	shutdown_work(ubi);
1928	tree_destroy(ubi, &ubi->used);
1929	tree_destroy(ubi, &ubi->free);
1930	tree_destroy(ubi, &ubi->scrub);
1931	kfree(ubi->lookuptbl);
1932	return err;
1933}
1934
1935/**
1936 * protection_queue_destroy - destroy the protection queue.
1937 * @ubi: UBI device description object
1938 */
1939static void protection_queue_destroy(struct ubi_device *ubi)
1940{
1941	int i;
1942	struct ubi_wl_entry *e, *tmp;
1943
1944	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1945		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1946			list_del(&e->u.list);
1947			wl_entry_destroy(ubi, e);
1948		}
1949	}
1950}
1951
1952/**
1953 * ubi_wl_close - close the wear-leveling sub-system.
1954 * @ubi: UBI device description object
1955 */
1956void ubi_wl_close(struct ubi_device *ubi)
1957{
1958	dbg_wl("close the WL sub-system");
1959	ubi_fastmap_close(ubi);
1960	shutdown_work(ubi);
1961	protection_queue_destroy(ubi);
1962	tree_destroy(ubi, &ubi->used);
1963	tree_destroy(ubi, &ubi->erroneous);
1964	tree_destroy(ubi, &ubi->free);
1965	tree_destroy(ubi, &ubi->scrub);
1966	kfree(ubi->lookuptbl);
1967}
1968
1969/**
1970 * self_check_ec - make sure that the erase counter of a PEB is correct.
1971 * @ubi: UBI device description object
1972 * @pnum: the physical eraseblock number to check
1973 * @ec: the erase counter to check
1974 *
1975 * This function returns zero if the erase counter of physical eraseblock @pnum
1976 * is equivalent to @ec, and a negative error code if not or if an error
1977 * occurred.
1978 */
1979static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1980{
1981	int err;
1982	long long read_ec;
1983	struct ubi_ec_hdr *ec_hdr;
1984
1985	if (!ubi_dbg_chk_gen(ubi))
1986		return 0;
1987
1988	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1989	if (!ec_hdr)
1990		return -ENOMEM;
1991
1992	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1993	if (err && err != UBI_IO_BITFLIPS) {
1994		/* The header does not have to exist */
1995		err = 0;
1996		goto out_free;
1997	}
1998
1999	read_ec = be64_to_cpu(ec_hdr->ec);
2000	if (ec != read_ec && read_ec - ec > 1) {
2001		ubi_err(ubi, "self-check failed for PEB %d", pnum);
2002		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2003		dump_stack();
2004		err = 1;
2005	} else
2006		err = 0;
2007
2008out_free:
2009	kfree(ec_hdr);
2010	return err;
2011}
2012
2013/**
2014 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2015 * @ubi: UBI device description object
2016 * @e: the wear-leveling entry to check
2017 * @root: the root of the tree
2018 *
2019 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2020 * is not.
2021 */
2022static int self_check_in_wl_tree(const struct ubi_device *ubi,
2023				 struct ubi_wl_entry *e, struct rb_root *root)
2024{
2025	if (!ubi_dbg_chk_gen(ubi))
2026		return 0;
2027
2028	if (in_wl_tree(e, root))
2029		return 0;
2030
2031	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2032		e->pnum, e->ec, root);
2033	dump_stack();
2034	return -EINVAL;
2035}
2036
2037/**
2038 * self_check_in_pq - check if wear-leveling entry is in the protection
2039 *                        queue.
2040 * @ubi: UBI device description object
2041 * @e: the wear-leveling entry to check
2042 *
2043 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2044 */
2045static int self_check_in_pq(const struct ubi_device *ubi,
2046			    struct ubi_wl_entry *e)
2047{
2048	if (!ubi_dbg_chk_gen(ubi))
2049		return 0;
2050
2051	if (in_pq(ubi, e))
2052		return 0;
2053
2054	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2055		e->pnum, e->ec);
2056	dump_stack();
2057	return -EINVAL;
2058}
2059#ifndef CONFIG_MTD_UBI_FASTMAP
2060static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2061{
2062	struct ubi_wl_entry *e;
2063
2064	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2065	self_check_in_wl_tree(ubi, e, &ubi->free);
2066	ubi->free_count--;
2067	ubi_assert(ubi->free_count >= 0);
2068	rb_erase(&e->u.rb, &ubi->free);
2069
2070	return e;
2071}
2072
2073/**
2074 * produce_free_peb - produce a free physical eraseblock.
2075 * @ubi: UBI device description object
2076 *
2077 * This function tries to make a free PEB by means of synchronous execution of
2078 * pending works. This may be needed if, for example the background thread is
2079 * disabled. Returns zero in case of success and a negative error code in case
2080 * of failure.
2081 */
2082static int produce_free_peb(struct ubi_device *ubi)
2083{
2084	int err;
2085
2086	while (!ubi->free.rb_node && ubi->works_count) {
2087		spin_unlock(&ubi->wl_lock);
2088
2089		dbg_wl("do one work synchronously");
2090		err = do_work(ubi);
2091
2092		spin_lock(&ubi->wl_lock);
2093		if (err)
2094			return err;
2095	}
2096
2097	return 0;
2098}
2099
2100/**
2101 * ubi_wl_get_peb - get a physical eraseblock.
2102 * @ubi: UBI device description object
2103 *
2104 * This function returns a physical eraseblock in case of success and a
2105 * negative error code in case of failure.
2106 * Returns with ubi->fm_eba_sem held in read mode!
2107 */
2108int ubi_wl_get_peb(struct ubi_device *ubi)
2109{
2110	int err;
2111	struct ubi_wl_entry *e;
2112
2113retry:
2114	down_read(&ubi->fm_eba_sem);
2115	spin_lock(&ubi->wl_lock);
2116	if (!ubi->free.rb_node) {
2117		if (ubi->works_count == 0) {
2118			ubi_err(ubi, "no free eraseblocks");
2119			ubi_assert(list_empty(&ubi->works));
2120			spin_unlock(&ubi->wl_lock);
2121			return -ENOSPC;
2122		}
2123
2124		err = produce_free_peb(ubi);
2125		if (err < 0) {
2126			spin_unlock(&ubi->wl_lock);
2127			return err;
2128		}
2129		spin_unlock(&ubi->wl_lock);
2130		up_read(&ubi->fm_eba_sem);
2131		goto retry;
2132
2133	}
2134	e = wl_get_wle(ubi);
2135	prot_queue_add(ubi, e);
2136	spin_unlock(&ubi->wl_lock);
2137
2138	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2139				    ubi->peb_size - ubi->vid_hdr_aloffset);
2140	if (err) {
2141		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2142		return err;
2143	}
2144
2145	return e->pnum;
2146}
2147#else
2148#include "fastmap-wl.c"
2149#endif
2150