1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8/* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88#include <linux/slab.h> 89#include <linux/crc32.h> 90#include <linux/freezer.h> 91#include <linux/kthread.h> 92#include "ubi.h" 93#include "wl.h" 94 95/* Number of physical eraseblocks reserved for wear-leveling purposes */ 96#define WL_RESERVED_PEBS 1 97 98/* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106/* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119/* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123#define WL_MAX_FAILURES 32 124 125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131/** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140{ 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165} 166 167/** 168 * wl_tree_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176{ 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179} 180 181/** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * 185 * This function returns zero in case of success and a negative error code in 186 * case of failure. 187 */ 188static int do_work(struct ubi_device *ubi) 189{ 190 int err; 191 struct ubi_work *wrk; 192 193 cond_resched(); 194 195 /* 196 * @ubi->work_sem is used to synchronize with the workers. Workers take 197 * it in read mode, so many of them may be doing works at a time. But 198 * the queue flush code has to be sure the whole queue of works is 199 * done, and it takes the mutex in write mode. 200 */ 201 down_read(&ubi->work_sem); 202 spin_lock(&ubi->wl_lock); 203 if (list_empty(&ubi->works)) { 204 spin_unlock(&ubi->wl_lock); 205 up_read(&ubi->work_sem); 206 return 0; 207 } 208 209 wrk = list_entry(ubi->works.next, struct ubi_work, list); 210 list_del(&wrk->list); 211 ubi->works_count -= 1; 212 ubi_assert(ubi->works_count >= 0); 213 spin_unlock(&ubi->wl_lock); 214 215 /* 216 * Call the worker function. Do not touch the work structure 217 * after this call as it will have been freed or reused by that 218 * time by the worker function. 219 */ 220 err = wrk->func(ubi, wrk, 0); 221 if (err) 222 ubi_err(ubi, "work failed with error code %d", err); 223 up_read(&ubi->work_sem); 224 225 return err; 226} 227 228/** 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 230 * @e: the wear-leveling entry to check 231 * @root: the root of the tree 232 * 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it 234 * is not. 235 */ 236static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 237{ 238 struct rb_node *p; 239 240 p = root->rb_node; 241 while (p) { 242 struct ubi_wl_entry *e1; 243 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 245 246 if (e->pnum == e1->pnum) { 247 ubi_assert(e == e1); 248 return 1; 249 } 250 251 if (e->ec < e1->ec) 252 p = p->rb_left; 253 else if (e->ec > e1->ec) 254 p = p->rb_right; 255 else { 256 ubi_assert(e->pnum != e1->pnum); 257 if (e->pnum < e1->pnum) 258 p = p->rb_left; 259 else 260 p = p->rb_right; 261 } 262 } 263 264 return 0; 265} 266 267/** 268 * in_pq - check if a wear-leveling entry is present in the protection queue. 269 * @ubi: UBI device description object 270 * @e: the wear-leveling entry to check 271 * 272 * This function returns non-zero if @e is in the protection queue and zero 273 * if it is not. 274 */ 275static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 276{ 277 struct ubi_wl_entry *p; 278 int i; 279 280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 281 list_for_each_entry(p, &ubi->pq[i], u.list) 282 if (p == e) 283 return 1; 284 285 return 0; 286} 287 288/** 289 * prot_queue_add - add physical eraseblock to the protection queue. 290 * @ubi: UBI device description object 291 * @e: the physical eraseblock to add 292 * 293 * This function adds @e to the tail of the protection queue @ubi->pq, where 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 296 * be locked. 297 */ 298static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 299{ 300 int pq_tail = ubi->pq_head - 1; 301 302 if (pq_tail < 0) 303 pq_tail = UBI_PROT_QUEUE_LEN - 1; 304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 307} 308 309/** 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 311 * @ubi: UBI device description object 312 * @root: the RB-tree where to look for 313 * @diff: maximum possible difference from the smallest erase counter 314 * 315 * This function looks for a wear leveling entry with erase counter closest to 316 * min + @diff, where min is the smallest erase counter. 317 */ 318static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 319 struct rb_root *root, int diff) 320{ 321 struct rb_node *p; 322 struct ubi_wl_entry *e; 323 int max; 324 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 326 max = e->ec + diff; 327 328 p = root->rb_node; 329 while (p) { 330 struct ubi_wl_entry *e1; 331 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 333 if (e1->ec >= max) 334 p = p->rb_left; 335 else { 336 p = p->rb_right; 337 e = e1; 338 } 339 } 340 341 return e; 342} 343 344/** 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * 349 * This function looks for a wear leveling entry with medium erase counter, 350 * but not greater or equivalent than the lowest erase counter plus 351 * %WL_FREE_MAX_DIFF/2. 352 */ 353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root) 355{ 356 struct ubi_wl_entry *e, *first, *last; 357 358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 360 361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 363 364 /* If no fastmap has been written and this WL entry can be used 365 * as anchor PEB, hold it back and return the second best 366 * WL entry such that fastmap can use the anchor PEB later. */ 367 e = may_reserve_for_fm(ubi, e, root); 368 } else 369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 370 371 return e; 372} 373 374/** 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 376 * refill_wl_user_pool(). 377 * @ubi: UBI device description object 378 * 379 * This function returns a a wear leveling entry in case of success and 380 * NULL in case of failure. 381 */ 382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 383{ 384 struct ubi_wl_entry *e; 385 386 e = find_mean_wl_entry(ubi, &ubi->free); 387 if (!e) { 388 ubi_err(ubi, "no free eraseblocks"); 389 return NULL; 390 } 391 392 self_check_in_wl_tree(ubi, e, &ubi->free); 393 394 /* 395 * Move the physical eraseblock to the protection queue where it will 396 * be protected from being moved for some time. 397 */ 398 rb_erase(&e->u.rb, &ubi->free); 399 ubi->free_count--; 400 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 401 402 return e; 403} 404 405/** 406 * prot_queue_del - remove a physical eraseblock from the protection queue. 407 * @ubi: UBI device description object 408 * @pnum: the physical eraseblock to remove 409 * 410 * This function deletes PEB @pnum from the protection queue and returns zero 411 * in case of success and %-ENODEV if the PEB was not found. 412 */ 413static int prot_queue_del(struct ubi_device *ubi, int pnum) 414{ 415 struct ubi_wl_entry *e; 416 417 e = ubi->lookuptbl[pnum]; 418 if (!e) 419 return -ENODEV; 420 421 if (self_check_in_pq(ubi, e)) 422 return -ENODEV; 423 424 list_del(&e->u.list); 425 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 426 return 0; 427} 428 429/** 430 * sync_erase - synchronously erase a physical eraseblock. 431 * @ubi: UBI device description object 432 * @e: the the physical eraseblock to erase 433 * @torture: if the physical eraseblock has to be tortured 434 * 435 * This function returns zero in case of success and a negative error code in 436 * case of failure. 437 */ 438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 439 int torture) 440{ 441 int err; 442 struct ubi_ec_hdr *ec_hdr; 443 unsigned long long ec = e->ec; 444 445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 446 447 err = self_check_ec(ubi, e->pnum, e->ec); 448 if (err) 449 return -EINVAL; 450 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 452 if (!ec_hdr) 453 return -ENOMEM; 454 455 err = ubi_io_sync_erase(ubi, e->pnum, torture); 456 if (err < 0) 457 goto out_free; 458 459 ec += err; 460 if (ec > UBI_MAX_ERASECOUNTER) { 461 /* 462 * Erase counter overflow. Upgrade UBI and use 64-bit 463 * erase counters internally. 464 */ 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 466 e->pnum, ec); 467 err = -EINVAL; 468 goto out_free; 469 } 470 471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 472 473 ec_hdr->ec = cpu_to_be64(ec); 474 475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 476 if (err) 477 goto out_free; 478 479 e->ec = ec; 480 spin_lock(&ubi->wl_lock); 481 if (e->ec > ubi->max_ec) 482 ubi->max_ec = e->ec; 483 spin_unlock(&ubi->wl_lock); 484 485out_free: 486 kfree(ec_hdr); 487 return err; 488} 489 490/** 491 * serve_prot_queue - check if it is time to stop protecting PEBs. 492 * @ubi: UBI device description object 493 * 494 * This function is called after each erase operation and removes PEBs from the 495 * tail of the protection queue. These PEBs have been protected for long enough 496 * and should be moved to the used tree. 497 */ 498static void serve_prot_queue(struct ubi_device *ubi) 499{ 500 struct ubi_wl_entry *e, *tmp; 501 int count; 502 503 /* 504 * There may be several protected physical eraseblock to remove, 505 * process them all. 506 */ 507repeat: 508 count = 0; 509 spin_lock(&ubi->wl_lock); 510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 511 dbg_wl("PEB %d EC %d protection over, move to used tree", 512 e->pnum, e->ec); 513 514 list_del(&e->u.list); 515 wl_tree_add(e, &ubi->used); 516 if (count++ > 32) { 517 /* 518 * Let's be nice and avoid holding the spinlock for 519 * too long. 520 */ 521 spin_unlock(&ubi->wl_lock); 522 cond_resched(); 523 goto repeat; 524 } 525 } 526 527 ubi->pq_head += 1; 528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 529 ubi->pq_head = 0; 530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 531 spin_unlock(&ubi->wl_lock); 532} 533 534/** 535 * __schedule_ubi_work - schedule a work. 536 * @ubi: UBI device description object 537 * @wrk: the work to schedule 538 * 539 * This function adds a work defined by @wrk to the tail of the pending works 540 * list. Can only be used if ubi->work_sem is already held in read mode! 541 */ 542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 543{ 544 spin_lock(&ubi->wl_lock); 545 list_add_tail(&wrk->list, &ubi->works); 546 ubi_assert(ubi->works_count >= 0); 547 ubi->works_count += 1; 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 549 wake_up_process(ubi->bgt_thread); 550 spin_unlock(&ubi->wl_lock); 551} 552 553/** 554 * schedule_ubi_work - schedule a work. 555 * @ubi: UBI device description object 556 * @wrk: the work to schedule 557 * 558 * This function adds a work defined by @wrk to the tail of the pending works 559 * list. 560 */ 561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 562{ 563 down_read(&ubi->work_sem); 564 __schedule_ubi_work(ubi, wrk); 565 up_read(&ubi->work_sem); 566} 567 568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 569 int shutdown); 570 571/** 572 * schedule_erase - schedule an erase work. 573 * @ubi: UBI device description object 574 * @e: the WL entry of the physical eraseblock to erase 575 * @vol_id: the volume ID that last used this PEB 576 * @lnum: the last used logical eraseblock number for the PEB 577 * @torture: if the physical eraseblock has to be tortured 578 * @nested: denotes whether the work_sem is already held 579 * 580 * This function returns zero in case of success and a %-ENOMEM in case of 581 * failure. 582 */ 583static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 584 int vol_id, int lnum, int torture, bool nested) 585{ 586 struct ubi_work *wl_wrk; 587 588 ubi_assert(e); 589 590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 591 e->pnum, e->ec, torture); 592 593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 594 if (!wl_wrk) 595 return -ENOMEM; 596 597 wl_wrk->func = &erase_worker; 598 wl_wrk->e = e; 599 wl_wrk->vol_id = vol_id; 600 wl_wrk->lnum = lnum; 601 wl_wrk->torture = torture; 602 603 if (nested) 604 __schedule_ubi_work(ubi, wl_wrk); 605 else 606 schedule_ubi_work(ubi, wl_wrk); 607 return 0; 608} 609 610static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 611/** 612 * do_sync_erase - run the erase worker synchronously. 613 * @ubi: UBI device description object 614 * @e: the WL entry of the physical eraseblock to erase 615 * @vol_id: the volume ID that last used this PEB 616 * @lnum: the last used logical eraseblock number for the PEB 617 * @torture: if the physical eraseblock has to be tortured 618 * 619 */ 620static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 621 int vol_id, int lnum, int torture) 622{ 623 struct ubi_work wl_wrk; 624 625 dbg_wl("sync erase of PEB %i", e->pnum); 626 627 wl_wrk.e = e; 628 wl_wrk.vol_id = vol_id; 629 wl_wrk.lnum = lnum; 630 wl_wrk.torture = torture; 631 632 return __erase_worker(ubi, &wl_wrk); 633} 634 635static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 636/** 637 * wear_leveling_worker - wear-leveling worker function. 638 * @ubi: UBI device description object 639 * @wrk: the work object 640 * @shutdown: non-zero if the worker has to free memory and exit 641 * because the WL-subsystem is shutting down 642 * 643 * This function copies a more worn out physical eraseblock to a less worn out 644 * one. Returns zero in case of success and a negative error code in case of 645 * failure. 646 */ 647static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 648 int shutdown) 649{ 650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 651 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 652 struct ubi_wl_entry *e1, *e2; 653 struct ubi_vid_io_buf *vidb; 654 struct ubi_vid_hdr *vid_hdr; 655 int dst_leb_clean = 0; 656 657 kfree(wrk); 658 if (shutdown) 659 return 0; 660 661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 662 if (!vidb) 663 return -ENOMEM; 664 665 vid_hdr = ubi_get_vid_hdr(vidb); 666 667 down_read(&ubi->fm_eba_sem); 668 mutex_lock(&ubi->move_mutex); 669 spin_lock(&ubi->wl_lock); 670 ubi_assert(!ubi->move_from && !ubi->move_to); 671 ubi_assert(!ubi->move_to_put); 672 673 if (!ubi->free.rb_node || 674 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 675 /* 676 * No free physical eraseblocks? Well, they must be waiting in 677 * the queue to be erased. Cancel movement - it will be 678 * triggered again when a free physical eraseblock appears. 679 * 680 * No used physical eraseblocks? They must be temporarily 681 * protected from being moved. They will be moved to the 682 * @ubi->used tree later and the wear-leveling will be 683 * triggered again. 684 */ 685 dbg_wl("cancel WL, a list is empty: free %d, used %d", 686 !ubi->free.rb_node, !ubi->used.rb_node); 687 goto out_cancel; 688 } 689 690#ifdef CONFIG_MTD_UBI_FASTMAP 691 e1 = find_anchor_wl_entry(&ubi->used); 692 if (e1 && ubi->fm_anchor && 693 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) { 694 ubi->fm_do_produce_anchor = 1; 695 /* 696 * fm_anchor is no longer considered a good anchor. 697 * NULL assignment also prevents multiple wear level checks 698 * of this PEB. 699 */ 700 wl_tree_add(ubi->fm_anchor, &ubi->free); 701 ubi->fm_anchor = NULL; 702 ubi->free_count++; 703 } 704 705 if (ubi->fm_do_produce_anchor) { 706 if (!e1) 707 goto out_cancel; 708 e2 = get_peb_for_wl(ubi); 709 if (!e2) 710 goto out_cancel; 711 712 self_check_in_wl_tree(ubi, e1, &ubi->used); 713 rb_erase(&e1->u.rb, &ubi->used); 714 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 715 ubi->fm_do_produce_anchor = 0; 716 } else if (!ubi->scrub.rb_node) { 717#else 718 if (!ubi->scrub.rb_node) { 719#endif 720 /* 721 * Now pick the least worn-out used physical eraseblock and a 722 * highly worn-out free physical eraseblock. If the erase 723 * counters differ much enough, start wear-leveling. 724 */ 725 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 726 e2 = get_peb_for_wl(ubi); 727 if (!e2) 728 goto out_cancel; 729 730 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 731 dbg_wl("no WL needed: min used EC %d, max free EC %d", 732 e1->ec, e2->ec); 733 734 /* Give the unused PEB back */ 735 wl_tree_add(e2, &ubi->free); 736 ubi->free_count++; 737 goto out_cancel; 738 } 739 self_check_in_wl_tree(ubi, e1, &ubi->used); 740 rb_erase(&e1->u.rb, &ubi->used); 741 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 742 e1->pnum, e1->ec, e2->pnum, e2->ec); 743 } else { 744 /* Perform scrubbing */ 745 scrubbing = 1; 746 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 747 e2 = get_peb_for_wl(ubi); 748 if (!e2) 749 goto out_cancel; 750 751 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 752 rb_erase(&e1->u.rb, &ubi->scrub); 753 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 754 } 755 756 ubi->move_from = e1; 757 ubi->move_to = e2; 758 spin_unlock(&ubi->wl_lock); 759 760 /* 761 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 762 * We so far do not know which logical eraseblock our physical 763 * eraseblock (@e1) belongs to. We have to read the volume identifier 764 * header first. 765 * 766 * Note, we are protected from this PEB being unmapped and erased. The 767 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 768 * which is being moved was unmapped. 769 */ 770 771 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 772 if (err && err != UBI_IO_BITFLIPS) { 773 dst_leb_clean = 1; 774 if (err == UBI_IO_FF) { 775 /* 776 * We are trying to move PEB without a VID header. UBI 777 * always write VID headers shortly after the PEB was 778 * given, so we have a situation when it has not yet 779 * had a chance to write it, because it was preempted. 780 * So add this PEB to the protection queue so far, 781 * because presumably more data will be written there 782 * (including the missing VID header), and then we'll 783 * move it. 784 */ 785 dbg_wl("PEB %d has no VID header", e1->pnum); 786 protect = 1; 787 goto out_not_moved; 788 } else if (err == UBI_IO_FF_BITFLIPS) { 789 /* 790 * The same situation as %UBI_IO_FF, but bit-flips were 791 * detected. It is better to schedule this PEB for 792 * scrubbing. 793 */ 794 dbg_wl("PEB %d has no VID header but has bit-flips", 795 e1->pnum); 796 scrubbing = 1; 797 goto out_not_moved; 798 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 799 /* 800 * While a full scan would detect interrupted erasures 801 * at attach time we can face them here when attached from 802 * Fastmap. 803 */ 804 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 805 e1->pnum); 806 erase = 1; 807 goto out_not_moved; 808 } 809 810 ubi_err(ubi, "error %d while reading VID header from PEB %d", 811 err, e1->pnum); 812 goto out_error; 813 } 814 815 vol_id = be32_to_cpu(vid_hdr->vol_id); 816 lnum = be32_to_cpu(vid_hdr->lnum); 817 818 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 819 if (err) { 820 if (err == MOVE_CANCEL_RACE) { 821 /* 822 * The LEB has not been moved because the volume is 823 * being deleted or the PEB has been put meanwhile. We 824 * should prevent this PEB from being selected for 825 * wear-leveling movement again, so put it to the 826 * protection queue. 827 */ 828 protect = 1; 829 dst_leb_clean = 1; 830 goto out_not_moved; 831 } 832 if (err == MOVE_RETRY) { 833 scrubbing = 1; 834 dst_leb_clean = 1; 835 goto out_not_moved; 836 } 837 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 838 err == MOVE_TARGET_RD_ERR) { 839 /* 840 * Target PEB had bit-flips or write error - torture it. 841 */ 842 torture = 1; 843 keep = 1; 844 goto out_not_moved; 845 } 846 847 if (err == MOVE_SOURCE_RD_ERR) { 848 /* 849 * An error happened while reading the source PEB. Do 850 * not switch to R/O mode in this case, and give the 851 * upper layers a possibility to recover from this, 852 * e.g. by unmapping corresponding LEB. Instead, just 853 * put this PEB to the @ubi->erroneous list to prevent 854 * UBI from trying to move it over and over again. 855 */ 856 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 857 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 858 ubi->erroneous_peb_count); 859 goto out_error; 860 } 861 dst_leb_clean = 1; 862 erroneous = 1; 863 goto out_not_moved; 864 } 865 866 if (err < 0) 867 goto out_error; 868 869 ubi_assert(0); 870 } 871 872 /* The PEB has been successfully moved */ 873 if (scrubbing) 874 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 875 e1->pnum, vol_id, lnum, e2->pnum); 876 ubi_free_vid_buf(vidb); 877 878 spin_lock(&ubi->wl_lock); 879 if (!ubi->move_to_put) { 880 wl_tree_add(e2, &ubi->used); 881 e2 = NULL; 882 } 883 ubi->move_from = ubi->move_to = NULL; 884 ubi->move_to_put = ubi->wl_scheduled = 0; 885 spin_unlock(&ubi->wl_lock); 886 887 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 888 if (err) { 889 if (e2) { 890 spin_lock(&ubi->wl_lock); 891 wl_entry_destroy(ubi, e2); 892 spin_unlock(&ubi->wl_lock); 893 } 894 goto out_ro; 895 } 896 897 if (e2) { 898 /* 899 * Well, the target PEB was put meanwhile, schedule it for 900 * erasure. 901 */ 902 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 903 e2->pnum, vol_id, lnum); 904 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 905 if (err) 906 goto out_ro; 907 } 908 909 dbg_wl("done"); 910 mutex_unlock(&ubi->move_mutex); 911 up_read(&ubi->fm_eba_sem); 912 return 0; 913 914 /* 915 * For some reasons the LEB was not moved, might be an error, might be 916 * something else. @e1 was not changed, so return it back. @e2 might 917 * have been changed, schedule it for erasure. 918 */ 919out_not_moved: 920 if (vol_id != -1) 921 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 922 e1->pnum, vol_id, lnum, e2->pnum, err); 923 else 924 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 925 e1->pnum, e2->pnum, err); 926 spin_lock(&ubi->wl_lock); 927 if (protect) 928 prot_queue_add(ubi, e1); 929 else if (erroneous) { 930 wl_tree_add(e1, &ubi->erroneous); 931 ubi->erroneous_peb_count += 1; 932 } else if (scrubbing) 933 wl_tree_add(e1, &ubi->scrub); 934 else if (keep) 935 wl_tree_add(e1, &ubi->used); 936 if (dst_leb_clean) { 937 wl_tree_add(e2, &ubi->free); 938 ubi->free_count++; 939 } 940 941 ubi_assert(!ubi->move_to_put); 942 ubi->move_from = ubi->move_to = NULL; 943 ubi->wl_scheduled = 0; 944 spin_unlock(&ubi->wl_lock); 945 946 ubi_free_vid_buf(vidb); 947 if (dst_leb_clean) { 948 ensure_wear_leveling(ubi, 1); 949 } else { 950 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 951 if (err) 952 goto out_ro; 953 } 954 955 if (erase) { 956 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 957 if (err) 958 goto out_ro; 959 } 960 961 mutex_unlock(&ubi->move_mutex); 962 up_read(&ubi->fm_eba_sem); 963 return 0; 964 965out_error: 966 if (vol_id != -1) 967 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 968 err, e1->pnum, e2->pnum); 969 else 970 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 971 err, e1->pnum, vol_id, lnum, e2->pnum); 972 spin_lock(&ubi->wl_lock); 973 ubi->move_from = ubi->move_to = NULL; 974 ubi->move_to_put = ubi->wl_scheduled = 0; 975 wl_entry_destroy(ubi, e1); 976 wl_entry_destroy(ubi, e2); 977 spin_unlock(&ubi->wl_lock); 978 979 ubi_free_vid_buf(vidb); 980 981out_ro: 982 ubi_ro_mode(ubi); 983 mutex_unlock(&ubi->move_mutex); 984 up_read(&ubi->fm_eba_sem); 985 ubi_assert(err != 0); 986 return err < 0 ? err : -EIO; 987 988out_cancel: 989 ubi->wl_scheduled = 0; 990 spin_unlock(&ubi->wl_lock); 991 mutex_unlock(&ubi->move_mutex); 992 up_read(&ubi->fm_eba_sem); 993 ubi_free_vid_buf(vidb); 994 return 0; 995} 996 997/** 998 * ensure_wear_leveling - schedule wear-leveling if it is needed. 999 * @ubi: UBI device description object 1000 * @nested: set to non-zero if this function is called from UBI worker 1001 * 1002 * This function checks if it is time to start wear-leveling and schedules it 1003 * if yes. This function returns zero in case of success and a negative error 1004 * code in case of failure. 1005 */ 1006static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1007{ 1008 int err = 0; 1009 struct ubi_wl_entry *e1; 1010 struct ubi_wl_entry *e2; 1011 struct ubi_work *wrk; 1012 1013 spin_lock(&ubi->wl_lock); 1014 if (ubi->wl_scheduled) 1015 /* Wear-leveling is already in the work queue */ 1016 goto out_unlock; 1017 1018 /* 1019 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1020 * the WL worker has to be scheduled anyway. 1021 */ 1022 if (!ubi->scrub.rb_node) { 1023 if (!ubi->used.rb_node || !ubi->free.rb_node) 1024 /* No physical eraseblocks - no deal */ 1025 goto out_unlock; 1026 1027 /* 1028 * We schedule wear-leveling only if the difference between the 1029 * lowest erase counter of used physical eraseblocks and a high 1030 * erase counter of free physical eraseblocks is greater than 1031 * %UBI_WL_THRESHOLD. 1032 */ 1033 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1034 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1035 1036 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1037 goto out_unlock; 1038 dbg_wl("schedule wear-leveling"); 1039 } else 1040 dbg_wl("schedule scrubbing"); 1041 1042 ubi->wl_scheduled = 1; 1043 spin_unlock(&ubi->wl_lock); 1044 1045 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1046 if (!wrk) { 1047 err = -ENOMEM; 1048 goto out_cancel; 1049 } 1050 1051 wrk->func = &wear_leveling_worker; 1052 if (nested) 1053 __schedule_ubi_work(ubi, wrk); 1054 else 1055 schedule_ubi_work(ubi, wrk); 1056 return err; 1057 1058out_cancel: 1059 spin_lock(&ubi->wl_lock); 1060 ubi->wl_scheduled = 0; 1061out_unlock: 1062 spin_unlock(&ubi->wl_lock); 1063 return err; 1064} 1065 1066/** 1067 * __erase_worker - physical eraseblock erase worker function. 1068 * @ubi: UBI device description object 1069 * @wl_wrk: the work object 1070 * 1071 * This function erases a physical eraseblock and perform torture testing if 1072 * needed. It also takes care about marking the physical eraseblock bad if 1073 * needed. Returns zero in case of success and a negative error code in case of 1074 * failure. 1075 */ 1076static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1077{ 1078 struct ubi_wl_entry *e = wl_wrk->e; 1079 int pnum = e->pnum; 1080 int vol_id = wl_wrk->vol_id; 1081 int lnum = wl_wrk->lnum; 1082 int err, available_consumed = 0; 1083 1084 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1085 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1086 1087 err = sync_erase(ubi, e, wl_wrk->torture); 1088 if (!err) { 1089 spin_lock(&ubi->wl_lock); 1090 1091 if (!ubi->fm_disabled && !ubi->fm_anchor && 1092 e->pnum < UBI_FM_MAX_START) { 1093 /* 1094 * Abort anchor production, if needed it will be 1095 * enabled again in the wear leveling started below. 1096 */ 1097 ubi->fm_anchor = e; 1098 ubi->fm_do_produce_anchor = 0; 1099 } else { 1100 wl_tree_add(e, &ubi->free); 1101 ubi->free_count++; 1102 } 1103 1104 spin_unlock(&ubi->wl_lock); 1105 1106 /* 1107 * One more erase operation has happened, take care about 1108 * protected physical eraseblocks. 1109 */ 1110 serve_prot_queue(ubi); 1111 1112 /* And take care about wear-leveling */ 1113 err = ensure_wear_leveling(ubi, 1); 1114 return err; 1115 } 1116 1117 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1118 1119 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1120 err == -EBUSY) { 1121 int err1; 1122 1123 /* Re-schedule the LEB for erasure */ 1124 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true); 1125 if (err1) { 1126 spin_lock(&ubi->wl_lock); 1127 wl_entry_destroy(ubi, e); 1128 spin_unlock(&ubi->wl_lock); 1129 err = err1; 1130 goto out_ro; 1131 } 1132 return err; 1133 } 1134 1135 spin_lock(&ubi->wl_lock); 1136 wl_entry_destroy(ubi, e); 1137 spin_unlock(&ubi->wl_lock); 1138 if (err != -EIO) 1139 /* 1140 * If this is not %-EIO, we have no idea what to do. Scheduling 1141 * this physical eraseblock for erasure again would cause 1142 * errors again and again. Well, lets switch to R/O mode. 1143 */ 1144 goto out_ro; 1145 1146 /* It is %-EIO, the PEB went bad */ 1147 1148 if (!ubi->bad_allowed) { 1149 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1150 goto out_ro; 1151 } 1152 1153 spin_lock(&ubi->volumes_lock); 1154 if (ubi->beb_rsvd_pebs == 0) { 1155 if (ubi->avail_pebs == 0) { 1156 spin_unlock(&ubi->volumes_lock); 1157 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1158 goto out_ro; 1159 } 1160 ubi->avail_pebs -= 1; 1161 available_consumed = 1; 1162 } 1163 spin_unlock(&ubi->volumes_lock); 1164 1165 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1166 err = ubi_io_mark_bad(ubi, pnum); 1167 if (err) 1168 goto out_ro; 1169 1170 spin_lock(&ubi->volumes_lock); 1171 if (ubi->beb_rsvd_pebs > 0) { 1172 if (available_consumed) { 1173 /* 1174 * The amount of reserved PEBs increased since we last 1175 * checked. 1176 */ 1177 ubi->avail_pebs += 1; 1178 available_consumed = 0; 1179 } 1180 ubi->beb_rsvd_pebs -= 1; 1181 } 1182 ubi->bad_peb_count += 1; 1183 ubi->good_peb_count -= 1; 1184 ubi_calculate_reserved(ubi); 1185 if (available_consumed) 1186 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1187 else if (ubi->beb_rsvd_pebs) 1188 ubi_msg(ubi, "%d PEBs left in the reserve", 1189 ubi->beb_rsvd_pebs); 1190 else 1191 ubi_warn(ubi, "last PEB from the reserve was used"); 1192 spin_unlock(&ubi->volumes_lock); 1193 1194 return err; 1195 1196out_ro: 1197 if (available_consumed) { 1198 spin_lock(&ubi->volumes_lock); 1199 ubi->avail_pebs += 1; 1200 spin_unlock(&ubi->volumes_lock); 1201 } 1202 ubi_ro_mode(ubi); 1203 return err; 1204} 1205 1206static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1207 int shutdown) 1208{ 1209 int ret; 1210 1211 if (shutdown) { 1212 struct ubi_wl_entry *e = wl_wrk->e; 1213 1214 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1215 kfree(wl_wrk); 1216 wl_entry_destroy(ubi, e); 1217 return 0; 1218 } 1219 1220 ret = __erase_worker(ubi, wl_wrk); 1221 kfree(wl_wrk); 1222 return ret; 1223} 1224 1225/** 1226 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1227 * @ubi: UBI device description object 1228 * @vol_id: the volume ID that last used this PEB 1229 * @lnum: the last used logical eraseblock number for the PEB 1230 * @pnum: physical eraseblock to return 1231 * @torture: if this physical eraseblock has to be tortured 1232 * 1233 * This function is called to return physical eraseblock @pnum to the pool of 1234 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1235 * occurred to this @pnum and it has to be tested. This function returns zero 1236 * in case of success, and a negative error code in case of failure. 1237 */ 1238int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1239 int pnum, int torture) 1240{ 1241 int err; 1242 struct ubi_wl_entry *e; 1243 1244 dbg_wl("PEB %d", pnum); 1245 ubi_assert(pnum >= 0); 1246 ubi_assert(pnum < ubi->peb_count); 1247 1248 down_read(&ubi->fm_protect); 1249 1250retry: 1251 spin_lock(&ubi->wl_lock); 1252 e = ubi->lookuptbl[pnum]; 1253 if (!e) { 1254 /* 1255 * This wl entry has been removed for some errors by other 1256 * process (eg. wear leveling worker), corresponding process 1257 * (except __erase_worker, which cannot concurrent with 1258 * ubi_wl_put_peb) will set ubi ro_mode at the same time, 1259 * just ignore this wl entry. 1260 */ 1261 spin_unlock(&ubi->wl_lock); 1262 up_read(&ubi->fm_protect); 1263 return 0; 1264 } 1265 if (e == ubi->move_from) { 1266 /* 1267 * User is putting the physical eraseblock which was selected to 1268 * be moved. It will be scheduled for erasure in the 1269 * wear-leveling worker. 1270 */ 1271 dbg_wl("PEB %d is being moved, wait", pnum); 1272 spin_unlock(&ubi->wl_lock); 1273 1274 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1275 mutex_lock(&ubi->move_mutex); 1276 mutex_unlock(&ubi->move_mutex); 1277 goto retry; 1278 } else if (e == ubi->move_to) { 1279 /* 1280 * User is putting the physical eraseblock which was selected 1281 * as the target the data is moved to. It may happen if the EBA 1282 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1283 * but the WL sub-system has not put the PEB to the "used" tree 1284 * yet, but it is about to do this. So we just set a flag which 1285 * will tell the WL worker that the PEB is not needed anymore 1286 * and should be scheduled for erasure. 1287 */ 1288 dbg_wl("PEB %d is the target of data moving", pnum); 1289 ubi_assert(!ubi->move_to_put); 1290 ubi->move_to_put = 1; 1291 spin_unlock(&ubi->wl_lock); 1292 up_read(&ubi->fm_protect); 1293 return 0; 1294 } else { 1295 if (in_wl_tree(e, &ubi->used)) { 1296 self_check_in_wl_tree(ubi, e, &ubi->used); 1297 rb_erase(&e->u.rb, &ubi->used); 1298 } else if (in_wl_tree(e, &ubi->scrub)) { 1299 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1300 rb_erase(&e->u.rb, &ubi->scrub); 1301 } else if (in_wl_tree(e, &ubi->erroneous)) { 1302 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1303 rb_erase(&e->u.rb, &ubi->erroneous); 1304 ubi->erroneous_peb_count -= 1; 1305 ubi_assert(ubi->erroneous_peb_count >= 0); 1306 /* Erroneous PEBs should be tortured */ 1307 torture = 1; 1308 } else { 1309 err = prot_queue_del(ubi, e->pnum); 1310 if (err) { 1311 ubi_err(ubi, "PEB %d not found", pnum); 1312 ubi_ro_mode(ubi); 1313 spin_unlock(&ubi->wl_lock); 1314 up_read(&ubi->fm_protect); 1315 return err; 1316 } 1317 } 1318 } 1319 spin_unlock(&ubi->wl_lock); 1320 1321 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1322 if (err) { 1323 spin_lock(&ubi->wl_lock); 1324 wl_tree_add(e, &ubi->used); 1325 spin_unlock(&ubi->wl_lock); 1326 } 1327 1328 up_read(&ubi->fm_protect); 1329 return err; 1330} 1331 1332/** 1333 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1334 * @ubi: UBI device description object 1335 * @pnum: the physical eraseblock to schedule 1336 * 1337 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1338 * needs scrubbing. This function schedules a physical eraseblock for 1339 * scrubbing which is done in background. This function returns zero in case of 1340 * success and a negative error code in case of failure. 1341 */ 1342int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1343{ 1344 struct ubi_wl_entry *e; 1345 1346 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1347 1348retry: 1349 spin_lock(&ubi->wl_lock); 1350 e = ubi->lookuptbl[pnum]; 1351 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1352 in_wl_tree(e, &ubi->erroneous)) { 1353 spin_unlock(&ubi->wl_lock); 1354 return 0; 1355 } 1356 1357 if (e == ubi->move_to) { 1358 /* 1359 * This physical eraseblock was used to move data to. The data 1360 * was moved but the PEB was not yet inserted to the proper 1361 * tree. We should just wait a little and let the WL worker 1362 * proceed. 1363 */ 1364 spin_unlock(&ubi->wl_lock); 1365 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1366 yield(); 1367 goto retry; 1368 } 1369 1370 if (in_wl_tree(e, &ubi->used)) { 1371 self_check_in_wl_tree(ubi, e, &ubi->used); 1372 rb_erase(&e->u.rb, &ubi->used); 1373 } else { 1374 int err; 1375 1376 err = prot_queue_del(ubi, e->pnum); 1377 if (err) { 1378 ubi_err(ubi, "PEB %d not found", pnum); 1379 ubi_ro_mode(ubi); 1380 spin_unlock(&ubi->wl_lock); 1381 return err; 1382 } 1383 } 1384 1385 wl_tree_add(e, &ubi->scrub); 1386 spin_unlock(&ubi->wl_lock); 1387 1388 /* 1389 * Technically scrubbing is the same as wear-leveling, so it is done 1390 * by the WL worker. 1391 */ 1392 return ensure_wear_leveling(ubi, 0); 1393} 1394 1395/** 1396 * ubi_wl_flush - flush all pending works. 1397 * @ubi: UBI device description object 1398 * @vol_id: the volume id to flush for 1399 * @lnum: the logical eraseblock number to flush for 1400 * 1401 * This function executes all pending works for a particular volume id / 1402 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1403 * acts as a wildcard for all of the corresponding volume numbers or logical 1404 * eraseblock numbers. It returns zero in case of success and a negative error 1405 * code in case of failure. 1406 */ 1407int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1408{ 1409 int err = 0; 1410 int found = 1; 1411 1412 /* 1413 * Erase while the pending works queue is not empty, but not more than 1414 * the number of currently pending works. 1415 */ 1416 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1417 vol_id, lnum, ubi->works_count); 1418 1419 while (found) { 1420 struct ubi_work *wrk, *tmp; 1421 found = 0; 1422 1423 down_read(&ubi->work_sem); 1424 spin_lock(&ubi->wl_lock); 1425 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1426 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1427 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1428 list_del(&wrk->list); 1429 ubi->works_count -= 1; 1430 ubi_assert(ubi->works_count >= 0); 1431 spin_unlock(&ubi->wl_lock); 1432 1433 err = wrk->func(ubi, wrk, 0); 1434 if (err) { 1435 up_read(&ubi->work_sem); 1436 return err; 1437 } 1438 1439 spin_lock(&ubi->wl_lock); 1440 found = 1; 1441 break; 1442 } 1443 } 1444 spin_unlock(&ubi->wl_lock); 1445 up_read(&ubi->work_sem); 1446 } 1447 1448 /* 1449 * Make sure all the works which have been done in parallel are 1450 * finished. 1451 */ 1452 down_write(&ubi->work_sem); 1453 up_write(&ubi->work_sem); 1454 1455 return err; 1456} 1457 1458static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1459{ 1460 if (in_wl_tree(e, &ubi->scrub)) 1461 return false; 1462 else if (in_wl_tree(e, &ubi->erroneous)) 1463 return false; 1464 else if (ubi->move_from == e) 1465 return false; 1466 else if (ubi->move_to == e) 1467 return false; 1468 1469 return true; 1470} 1471 1472/** 1473 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1474 * @ubi: UBI device description object 1475 * @pnum: the physical eraseblock to schedule 1476 * @force: dont't read the block, assume bitflips happened and take action. 1477 * 1478 * This function reads the given eraseblock and checks if bitflips occured. 1479 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1480 * If scrubbing is forced with @force, the eraseblock is not read, 1481 * but scheduled for scrubbing right away. 1482 * 1483 * Returns: 1484 * %EINVAL, PEB is out of range 1485 * %ENOENT, PEB is no longer used by UBI 1486 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1487 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1488 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1489 * %0, no bit flips detected 1490 */ 1491int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1492{ 1493 int err = 0; 1494 struct ubi_wl_entry *e; 1495 1496 if (pnum < 0 || pnum >= ubi->peb_count) { 1497 err = -EINVAL; 1498 goto out; 1499 } 1500 1501 /* 1502 * Pause all parallel work, otherwise it can happen that the 1503 * erase worker frees a wl entry under us. 1504 */ 1505 down_write(&ubi->work_sem); 1506 1507 /* 1508 * Make sure that the wl entry does not change state while 1509 * inspecting it. 1510 */ 1511 spin_lock(&ubi->wl_lock); 1512 e = ubi->lookuptbl[pnum]; 1513 if (!e) { 1514 spin_unlock(&ubi->wl_lock); 1515 err = -ENOENT; 1516 goto out_resume; 1517 } 1518 1519 /* 1520 * Does it make sense to check this PEB? 1521 */ 1522 if (!scrub_possible(ubi, e)) { 1523 spin_unlock(&ubi->wl_lock); 1524 err = -EBUSY; 1525 goto out_resume; 1526 } 1527 spin_unlock(&ubi->wl_lock); 1528 1529 if (!force) { 1530 mutex_lock(&ubi->buf_mutex); 1531 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1532 mutex_unlock(&ubi->buf_mutex); 1533 } 1534 1535 if (force || err == UBI_IO_BITFLIPS) { 1536 /* 1537 * Okay, bit flip happened, let's figure out what we can do. 1538 */ 1539 spin_lock(&ubi->wl_lock); 1540 1541 /* 1542 * Recheck. We released wl_lock, UBI might have killed the 1543 * wl entry under us. 1544 */ 1545 e = ubi->lookuptbl[pnum]; 1546 if (!e) { 1547 spin_unlock(&ubi->wl_lock); 1548 err = -ENOENT; 1549 goto out_resume; 1550 } 1551 1552 /* 1553 * Need to re-check state 1554 */ 1555 if (!scrub_possible(ubi, e)) { 1556 spin_unlock(&ubi->wl_lock); 1557 err = -EBUSY; 1558 goto out_resume; 1559 } 1560 1561 if (in_pq(ubi, e)) { 1562 prot_queue_del(ubi, e->pnum); 1563 wl_tree_add(e, &ubi->scrub); 1564 spin_unlock(&ubi->wl_lock); 1565 1566 err = ensure_wear_leveling(ubi, 1); 1567 } else if (in_wl_tree(e, &ubi->used)) { 1568 rb_erase(&e->u.rb, &ubi->used); 1569 wl_tree_add(e, &ubi->scrub); 1570 spin_unlock(&ubi->wl_lock); 1571 1572 err = ensure_wear_leveling(ubi, 1); 1573 } else if (in_wl_tree(e, &ubi->free)) { 1574 rb_erase(&e->u.rb, &ubi->free); 1575 ubi->free_count--; 1576 spin_unlock(&ubi->wl_lock); 1577 1578 /* 1579 * This PEB is empty we can schedule it for 1580 * erasure right away. No wear leveling needed. 1581 */ 1582 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1583 force ? 0 : 1, true); 1584 } else { 1585 spin_unlock(&ubi->wl_lock); 1586 err = -EAGAIN; 1587 } 1588 1589 if (!err && !force) 1590 err = -EUCLEAN; 1591 } else { 1592 err = 0; 1593 } 1594 1595out_resume: 1596 up_write(&ubi->work_sem); 1597out: 1598 1599 return err; 1600} 1601 1602/** 1603 * tree_destroy - destroy an RB-tree. 1604 * @ubi: UBI device description object 1605 * @root: the root of the tree to destroy 1606 */ 1607static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1608{ 1609 struct rb_node *rb; 1610 struct ubi_wl_entry *e; 1611 1612 rb = root->rb_node; 1613 while (rb) { 1614 if (rb->rb_left) 1615 rb = rb->rb_left; 1616 else if (rb->rb_right) 1617 rb = rb->rb_right; 1618 else { 1619 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1620 1621 rb = rb_parent(rb); 1622 if (rb) { 1623 if (rb->rb_left == &e->u.rb) 1624 rb->rb_left = NULL; 1625 else 1626 rb->rb_right = NULL; 1627 } 1628 1629 wl_entry_destroy(ubi, e); 1630 } 1631 } 1632} 1633 1634/** 1635 * ubi_thread - UBI background thread. 1636 * @u: the UBI device description object pointer 1637 */ 1638int ubi_thread(void *u) 1639{ 1640 int failures = 0; 1641 struct ubi_device *ubi = u; 1642 1643 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1644 ubi->bgt_name, task_pid_nr(current)); 1645 1646 set_freezable(); 1647 for (;;) { 1648 int err; 1649 1650 if (kthread_should_stop()) 1651 break; 1652 1653 if (try_to_freeze()) 1654 continue; 1655 1656 spin_lock(&ubi->wl_lock); 1657 if (list_empty(&ubi->works) || ubi->ro_mode || 1658 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1659 set_current_state(TASK_INTERRUPTIBLE); 1660 spin_unlock(&ubi->wl_lock); 1661 1662 /* 1663 * Check kthread_should_stop() after we set the task 1664 * state to guarantee that we either see the stop bit 1665 * and exit or the task state is reset to runnable such 1666 * that it's not scheduled out indefinitely and detects 1667 * the stop bit at kthread_should_stop(). 1668 */ 1669 if (kthread_should_stop()) { 1670 set_current_state(TASK_RUNNING); 1671 break; 1672 } 1673 1674 schedule(); 1675 continue; 1676 } 1677 spin_unlock(&ubi->wl_lock); 1678 1679 err = do_work(ubi); 1680 if (err) { 1681 ubi_err(ubi, "%s: work failed with error code %d", 1682 ubi->bgt_name, err); 1683 if (failures++ > WL_MAX_FAILURES) { 1684 /* 1685 * Too many failures, disable the thread and 1686 * switch to read-only mode. 1687 */ 1688 ubi_msg(ubi, "%s: %d consecutive failures", 1689 ubi->bgt_name, WL_MAX_FAILURES); 1690 ubi_ro_mode(ubi); 1691 ubi->thread_enabled = 0; 1692 continue; 1693 } 1694 } else 1695 failures = 0; 1696 1697 cond_resched(); 1698 } 1699 1700 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1701 ubi->thread_enabled = 0; 1702 return 0; 1703} 1704 1705/** 1706 * shutdown_work - shutdown all pending works. 1707 * @ubi: UBI device description object 1708 */ 1709static void shutdown_work(struct ubi_device *ubi) 1710{ 1711 while (!list_empty(&ubi->works)) { 1712 struct ubi_work *wrk; 1713 1714 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1715 list_del(&wrk->list); 1716 wrk->func(ubi, wrk, 1); 1717 ubi->works_count -= 1; 1718 ubi_assert(ubi->works_count >= 0); 1719 } 1720} 1721 1722/** 1723 * erase_aeb - erase a PEB given in UBI attach info PEB 1724 * @ubi: UBI device description object 1725 * @aeb: UBI attach info PEB 1726 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1727 */ 1728static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1729{ 1730 struct ubi_wl_entry *e; 1731 int err; 1732 1733 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1734 if (!e) 1735 return -ENOMEM; 1736 1737 e->pnum = aeb->pnum; 1738 e->ec = aeb->ec; 1739 ubi->lookuptbl[e->pnum] = e; 1740 1741 if (sync) { 1742 err = sync_erase(ubi, e, false); 1743 if (err) 1744 goto out_free; 1745 1746 wl_tree_add(e, &ubi->free); 1747 ubi->free_count++; 1748 } else { 1749 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1750 if (err) 1751 goto out_free; 1752 } 1753 1754 return 0; 1755 1756out_free: 1757 wl_entry_destroy(ubi, e); 1758 1759 return err; 1760} 1761 1762/** 1763 * ubi_wl_init - initialize the WL sub-system using attaching information. 1764 * @ubi: UBI device description object 1765 * @ai: attaching information 1766 * 1767 * This function returns zero in case of success, and a negative error code in 1768 * case of failure. 1769 */ 1770int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1771{ 1772 int err, i, reserved_pebs, found_pebs = 0; 1773 struct rb_node *rb1, *rb2; 1774 struct ubi_ainf_volume *av; 1775 struct ubi_ainf_peb *aeb, *tmp; 1776 struct ubi_wl_entry *e; 1777 1778 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1779 spin_lock_init(&ubi->wl_lock); 1780 mutex_init(&ubi->move_mutex); 1781 init_rwsem(&ubi->work_sem); 1782 ubi->max_ec = ai->max_ec; 1783 INIT_LIST_HEAD(&ubi->works); 1784 1785 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1786 1787 err = -ENOMEM; 1788 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1789 if (!ubi->lookuptbl) 1790 return err; 1791 1792 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1793 INIT_LIST_HEAD(&ubi->pq[i]); 1794 ubi->pq_head = 0; 1795 1796 ubi->free_count = 0; 1797 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1798 cond_resched(); 1799 1800 err = erase_aeb(ubi, aeb, false); 1801 if (err) 1802 goto out_free; 1803 1804 found_pebs++; 1805 } 1806 1807 list_for_each_entry(aeb, &ai->free, u.list) { 1808 cond_resched(); 1809 1810 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1811 if (!e) { 1812 err = -ENOMEM; 1813 goto out_free; 1814 } 1815 1816 e->pnum = aeb->pnum; 1817 e->ec = aeb->ec; 1818 ubi_assert(e->ec >= 0); 1819 1820 wl_tree_add(e, &ubi->free); 1821 ubi->free_count++; 1822 1823 ubi->lookuptbl[e->pnum] = e; 1824 1825 found_pebs++; 1826 } 1827 1828 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1829 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1830 cond_resched(); 1831 1832 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1833 if (!e) { 1834 err = -ENOMEM; 1835 goto out_free; 1836 } 1837 1838 e->pnum = aeb->pnum; 1839 e->ec = aeb->ec; 1840 ubi->lookuptbl[e->pnum] = e; 1841 1842 if (!aeb->scrub) { 1843 dbg_wl("add PEB %d EC %d to the used tree", 1844 e->pnum, e->ec); 1845 wl_tree_add(e, &ubi->used); 1846 } else { 1847 dbg_wl("add PEB %d EC %d to the scrub tree", 1848 e->pnum, e->ec); 1849 wl_tree_add(e, &ubi->scrub); 1850 } 1851 1852 found_pebs++; 1853 } 1854 } 1855 1856 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1857 cond_resched(); 1858 1859 e = ubi_find_fm_block(ubi, aeb->pnum); 1860 1861 if (e) { 1862 ubi_assert(!ubi->lookuptbl[e->pnum]); 1863 ubi->lookuptbl[e->pnum] = e; 1864 } else { 1865 bool sync = false; 1866 1867 /* 1868 * Usually old Fastmap PEBs are scheduled for erasure 1869 * and we don't have to care about them but if we face 1870 * an power cut before scheduling them we need to 1871 * take care of them here. 1872 */ 1873 if (ubi->lookuptbl[aeb->pnum]) 1874 continue; 1875 1876 /* 1877 * The fastmap update code might not find a free PEB for 1878 * writing the fastmap anchor to and then reuses the 1879 * current fastmap anchor PEB. When this PEB gets erased 1880 * and a power cut happens before it is written again we 1881 * must make sure that the fastmap attach code doesn't 1882 * find any outdated fastmap anchors, hence we erase the 1883 * outdated fastmap anchor PEBs synchronously here. 1884 */ 1885 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1886 sync = true; 1887 1888 err = erase_aeb(ubi, aeb, sync); 1889 if (err) 1890 goto out_free; 1891 } 1892 1893 found_pebs++; 1894 } 1895 1896 dbg_wl("found %i PEBs", found_pebs); 1897 1898 ubi_assert(ubi->good_peb_count == found_pebs); 1899 1900 reserved_pebs = WL_RESERVED_PEBS; 1901 ubi_fastmap_init(ubi, &reserved_pebs); 1902 1903 if (ubi->avail_pebs < reserved_pebs) { 1904 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1905 ubi->avail_pebs, reserved_pebs); 1906 if (ubi->corr_peb_count) 1907 ubi_err(ubi, "%d PEBs are corrupted and not used", 1908 ubi->corr_peb_count); 1909 err = -ENOSPC; 1910 goto out_free; 1911 } 1912 ubi->avail_pebs -= reserved_pebs; 1913 ubi->rsvd_pebs += reserved_pebs; 1914 1915 /* Schedule wear-leveling if needed */ 1916 err = ensure_wear_leveling(ubi, 0); 1917 if (err) 1918 goto out_free; 1919 1920#ifdef CONFIG_MTD_UBI_FASTMAP 1921 if (!ubi->ro_mode && !ubi->fm_disabled) 1922 ubi_ensure_anchor_pebs(ubi); 1923#endif 1924 return 0; 1925 1926out_free: 1927 shutdown_work(ubi); 1928 tree_destroy(ubi, &ubi->used); 1929 tree_destroy(ubi, &ubi->free); 1930 tree_destroy(ubi, &ubi->scrub); 1931 kfree(ubi->lookuptbl); 1932 return err; 1933} 1934 1935/** 1936 * protection_queue_destroy - destroy the protection queue. 1937 * @ubi: UBI device description object 1938 */ 1939static void protection_queue_destroy(struct ubi_device *ubi) 1940{ 1941 int i; 1942 struct ubi_wl_entry *e, *tmp; 1943 1944 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1945 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1946 list_del(&e->u.list); 1947 wl_entry_destroy(ubi, e); 1948 } 1949 } 1950} 1951 1952/** 1953 * ubi_wl_close - close the wear-leveling sub-system. 1954 * @ubi: UBI device description object 1955 */ 1956void ubi_wl_close(struct ubi_device *ubi) 1957{ 1958 dbg_wl("close the WL sub-system"); 1959 ubi_fastmap_close(ubi); 1960 shutdown_work(ubi); 1961 protection_queue_destroy(ubi); 1962 tree_destroy(ubi, &ubi->used); 1963 tree_destroy(ubi, &ubi->erroneous); 1964 tree_destroy(ubi, &ubi->free); 1965 tree_destroy(ubi, &ubi->scrub); 1966 kfree(ubi->lookuptbl); 1967} 1968 1969/** 1970 * self_check_ec - make sure that the erase counter of a PEB is correct. 1971 * @ubi: UBI device description object 1972 * @pnum: the physical eraseblock number to check 1973 * @ec: the erase counter to check 1974 * 1975 * This function returns zero if the erase counter of physical eraseblock @pnum 1976 * is equivalent to @ec, and a negative error code if not or if an error 1977 * occurred. 1978 */ 1979static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1980{ 1981 int err; 1982 long long read_ec; 1983 struct ubi_ec_hdr *ec_hdr; 1984 1985 if (!ubi_dbg_chk_gen(ubi)) 1986 return 0; 1987 1988 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1989 if (!ec_hdr) 1990 return -ENOMEM; 1991 1992 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1993 if (err && err != UBI_IO_BITFLIPS) { 1994 /* The header does not have to exist */ 1995 err = 0; 1996 goto out_free; 1997 } 1998 1999 read_ec = be64_to_cpu(ec_hdr->ec); 2000 if (ec != read_ec && read_ec - ec > 1) { 2001 ubi_err(ubi, "self-check failed for PEB %d", pnum); 2002 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 2003 dump_stack(); 2004 err = 1; 2005 } else 2006 err = 0; 2007 2008out_free: 2009 kfree(ec_hdr); 2010 return err; 2011} 2012 2013/** 2014 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2015 * @ubi: UBI device description object 2016 * @e: the wear-leveling entry to check 2017 * @root: the root of the tree 2018 * 2019 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2020 * is not. 2021 */ 2022static int self_check_in_wl_tree(const struct ubi_device *ubi, 2023 struct ubi_wl_entry *e, struct rb_root *root) 2024{ 2025 if (!ubi_dbg_chk_gen(ubi)) 2026 return 0; 2027 2028 if (in_wl_tree(e, root)) 2029 return 0; 2030 2031 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 2032 e->pnum, e->ec, root); 2033 dump_stack(); 2034 return -EINVAL; 2035} 2036 2037/** 2038 * self_check_in_pq - check if wear-leveling entry is in the protection 2039 * queue. 2040 * @ubi: UBI device description object 2041 * @e: the wear-leveling entry to check 2042 * 2043 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2044 */ 2045static int self_check_in_pq(const struct ubi_device *ubi, 2046 struct ubi_wl_entry *e) 2047{ 2048 if (!ubi_dbg_chk_gen(ubi)) 2049 return 0; 2050 2051 if (in_pq(ubi, e)) 2052 return 0; 2053 2054 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2055 e->pnum, e->ec); 2056 dump_stack(); 2057 return -EINVAL; 2058} 2059#ifndef CONFIG_MTD_UBI_FASTMAP 2060static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2061{ 2062 struct ubi_wl_entry *e; 2063 2064 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2065 self_check_in_wl_tree(ubi, e, &ubi->free); 2066 ubi->free_count--; 2067 ubi_assert(ubi->free_count >= 0); 2068 rb_erase(&e->u.rb, &ubi->free); 2069 2070 return e; 2071} 2072 2073/** 2074 * produce_free_peb - produce a free physical eraseblock. 2075 * @ubi: UBI device description object 2076 * 2077 * This function tries to make a free PEB by means of synchronous execution of 2078 * pending works. This may be needed if, for example the background thread is 2079 * disabled. Returns zero in case of success and a negative error code in case 2080 * of failure. 2081 */ 2082static int produce_free_peb(struct ubi_device *ubi) 2083{ 2084 int err; 2085 2086 while (!ubi->free.rb_node && ubi->works_count) { 2087 spin_unlock(&ubi->wl_lock); 2088 2089 dbg_wl("do one work synchronously"); 2090 err = do_work(ubi); 2091 2092 spin_lock(&ubi->wl_lock); 2093 if (err) 2094 return err; 2095 } 2096 2097 return 0; 2098} 2099 2100/** 2101 * ubi_wl_get_peb - get a physical eraseblock. 2102 * @ubi: UBI device description object 2103 * 2104 * This function returns a physical eraseblock in case of success and a 2105 * negative error code in case of failure. 2106 * Returns with ubi->fm_eba_sem held in read mode! 2107 */ 2108int ubi_wl_get_peb(struct ubi_device *ubi) 2109{ 2110 int err; 2111 struct ubi_wl_entry *e; 2112 2113retry: 2114 down_read(&ubi->fm_eba_sem); 2115 spin_lock(&ubi->wl_lock); 2116 if (!ubi->free.rb_node) { 2117 if (ubi->works_count == 0) { 2118 ubi_err(ubi, "no free eraseblocks"); 2119 ubi_assert(list_empty(&ubi->works)); 2120 spin_unlock(&ubi->wl_lock); 2121 return -ENOSPC; 2122 } 2123 2124 err = produce_free_peb(ubi); 2125 if (err < 0) { 2126 spin_unlock(&ubi->wl_lock); 2127 return err; 2128 } 2129 spin_unlock(&ubi->wl_lock); 2130 up_read(&ubi->fm_eba_sem); 2131 goto retry; 2132 2133 } 2134 e = wl_get_wle(ubi); 2135 prot_queue_add(ubi, e); 2136 spin_unlock(&ubi->wl_lock); 2137 2138 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2139 ubi->peb_size - ubi->vid_hdr_aloffset); 2140 if (err) { 2141 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2142 return err; 2143 } 2144 2145 return e->pnum; 2146} 2147#else 2148#include "fastmap-wl.c" 2149#endif 2150