xref: /kernel/linux/linux-5.10/drivers/mtd/ubi/io.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2006, 2007
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём)
7 */
8
9/*
10 * UBI input/output sub-system.
11 *
12 * This sub-system provides a uniform way to work with all kinds of the
13 * underlying MTD devices. It also implements handy functions for reading and
14 * writing UBI headers.
15 *
16 * We are trying to have a paranoid mindset and not to trust to what we read
17 * from the flash media in order to be more secure and robust. So this
18 * sub-system validates every single header it reads from the flash media.
19 *
20 * Some words about how the eraseblock headers are stored.
21 *
22 * The erase counter header is always stored at offset zero. By default, the
23 * VID header is stored after the EC header at the closest aligned offset
24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
25 * header at the closest aligned offset. But this default layout may be
26 * changed. For example, for different reasons (e.g., optimization) UBI may be
27 * asked to put the VID header at further offset, and even at an unaligned
28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
29 * proper padding in front of it. Data offset may also be changed but it has to
30 * be aligned.
31 *
32 * About minimal I/O units. In general, UBI assumes flash device model where
33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
35 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
37 * to do different optimizations.
38 *
39 * This is extremely useful in case of NAND flashes which admit of several
40 * write operations to one NAND page. In this case UBI can fit EC and VID
41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
44 * users.
45 *
46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
48 * headers.
49 *
50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
51 * device, e.g., make @ubi->min_io_size = 512 in the example above?
52 *
53 * A: because when writing a sub-page, MTD still writes a full 2K page but the
54 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
56 * Thus, we prefer to use sub-pages only for EC and VID headers.
57 *
58 * As it was noted above, the VID header may start at a non-aligned offset.
59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
60 * the VID header may reside at offset 1984 which is the last 64 bytes of the
61 * last sub-page (EC header is always at offset zero). This causes some
62 * difficulties when reading and writing VID headers.
63 *
64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
65 * the data and want to write this VID header out. As we can only write in
66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
67 * to offset 448 of this buffer.
68 *
69 * The I/O sub-system does the following trick in order to avoid this extra
70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
72 * When the VID header is being written out, it shifts the VID header pointer
73 * back and writes the whole sub-page.
74 */
75
76#include <linux/crc32.h>
77#include <linux/err.h>
78#include <linux/slab.h>
79#include "ubi.h"
80
81static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
82static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
83static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
84			     const struct ubi_ec_hdr *ec_hdr);
85static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
86static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
87			      const struct ubi_vid_hdr *vid_hdr);
88static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
89			    int offset, int len);
90
91/**
92 * ubi_io_read - read data from a physical eraseblock.
93 * @ubi: UBI device description object
94 * @buf: buffer where to store the read data
95 * @pnum: physical eraseblock number to read from
96 * @offset: offset within the physical eraseblock from where to read
97 * @len: how many bytes to read
98 *
99 * This function reads data from offset @offset of physical eraseblock @pnum
100 * and stores the read data in the @buf buffer. The following return codes are
101 * possible:
102 *
103 * o %0 if all the requested data were successfully read;
104 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
105 *   correctable bit-flips were detected; this is harmless but may indicate
106 *   that this eraseblock may become bad soon (but do not have to);
107 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
108 *   example it can be an ECC error in case of NAND; this most probably means
109 *   that the data is corrupted;
110 * o %-EIO if some I/O error occurred;
111 * o other negative error codes in case of other errors.
112 */
113int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
114		int len)
115{
116	int err, retries = 0;
117	size_t read;
118	loff_t addr;
119
120	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
121
122	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
123	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
124	ubi_assert(len > 0);
125
126	err = self_check_not_bad(ubi, pnum);
127	if (err)
128		return err;
129
130	/*
131	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
132	 * do not do this, the following may happen:
133	 * 1. The buffer contains data from previous operation, e.g., read from
134	 *    another PEB previously. The data looks like expected, e.g., if we
135	 *    just do not read anything and return - the caller would not
136	 *    notice this. E.g., if we are reading a VID header, the buffer may
137	 *    contain a valid VID header from another PEB.
138	 * 2. The driver is buggy and returns us success or -EBADMSG or
139	 *    -EUCLEAN, but it does not actually put any data to the buffer.
140	 *
141	 * This may confuse UBI or upper layers - they may think the buffer
142	 * contains valid data while in fact it is just old data. This is
143	 * especially possible because UBI (and UBIFS) relies on CRC, and
144	 * treats data as correct even in case of ECC errors if the CRC is
145	 * correct.
146	 *
147	 * Try to prevent this situation by changing the first byte of the
148	 * buffer.
149	 */
150	*((uint8_t *)buf) ^= 0xFF;
151
152	addr = (loff_t)pnum * ubi->peb_size + offset;
153retry:
154	err = mtd_read(ubi->mtd, addr, len, &read, buf);
155	if (err) {
156		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
157
158		if (mtd_is_bitflip(err)) {
159			/*
160			 * -EUCLEAN is reported if there was a bit-flip which
161			 * was corrected, so this is harmless.
162			 *
163			 * We do not report about it here unless debugging is
164			 * enabled. A corresponding message will be printed
165			 * later, when it is has been scrubbed.
166			 */
167			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
168				pnum);
169			ubi_assert(len == read);
170			return UBI_IO_BITFLIPS;
171		}
172
173		if (retries++ < UBI_IO_RETRIES) {
174			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
175				 err, errstr, len, pnum, offset, read);
176			yield();
177			goto retry;
178		}
179
180		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
181			err, errstr, len, pnum, offset, read);
182		dump_stack();
183
184		/*
185		 * The driver should never return -EBADMSG if it failed to read
186		 * all the requested data. But some buggy drivers might do
187		 * this, so we change it to -EIO.
188		 */
189		if (read != len && mtd_is_eccerr(err)) {
190			ubi_assert(0);
191			err = -EIO;
192		}
193	} else {
194		ubi_assert(len == read);
195
196		if (ubi_dbg_is_bitflip(ubi)) {
197			dbg_gen("bit-flip (emulated)");
198			err = UBI_IO_BITFLIPS;
199		}
200	}
201
202	return err;
203}
204
205/**
206 * ubi_io_write - write data to a physical eraseblock.
207 * @ubi: UBI device description object
208 * @buf: buffer with the data to write
209 * @pnum: physical eraseblock number to write to
210 * @offset: offset within the physical eraseblock where to write
211 * @len: how many bytes to write
212 *
213 * This function writes @len bytes of data from buffer @buf to offset @offset
214 * of physical eraseblock @pnum. If all the data were successfully written,
215 * zero is returned. If an error occurred, this function returns a negative
216 * error code. If %-EIO is returned, the physical eraseblock most probably went
217 * bad.
218 *
219 * Note, in case of an error, it is possible that something was still written
220 * to the flash media, but may be some garbage.
221 */
222int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
223		 int len)
224{
225	int err;
226	size_t written;
227	loff_t addr;
228
229	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
230
231	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
232	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
233	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
234	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
235
236	if (ubi->ro_mode) {
237		ubi_err(ubi, "read-only mode");
238		return -EROFS;
239	}
240
241	err = self_check_not_bad(ubi, pnum);
242	if (err)
243		return err;
244
245	/* The area we are writing to has to contain all 0xFF bytes */
246	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
247	if (err)
248		return err;
249
250	if (offset >= ubi->leb_start) {
251		/*
252		 * We write to the data area of the physical eraseblock. Make
253		 * sure it has valid EC and VID headers.
254		 */
255		err = self_check_peb_ec_hdr(ubi, pnum);
256		if (err)
257			return err;
258		err = self_check_peb_vid_hdr(ubi, pnum);
259		if (err)
260			return err;
261	}
262
263	if (ubi_dbg_is_write_failure(ubi)) {
264		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
265			len, pnum, offset);
266		dump_stack();
267		return -EIO;
268	}
269
270	addr = (loff_t)pnum * ubi->peb_size + offset;
271	err = mtd_write(ubi->mtd, addr, len, &written, buf);
272	if (err) {
273		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
274			err, len, pnum, offset, written);
275		dump_stack();
276		ubi_dump_flash(ubi, pnum, offset, len);
277	} else
278		ubi_assert(written == len);
279
280	if (!err) {
281		err = self_check_write(ubi, buf, pnum, offset, len);
282		if (err)
283			return err;
284
285		/*
286		 * Since we always write sequentially, the rest of the PEB has
287		 * to contain only 0xFF bytes.
288		 */
289		offset += len;
290		len = ubi->peb_size - offset;
291		if (len)
292			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
293	}
294
295	return err;
296}
297
298/**
299 * do_sync_erase - synchronously erase a physical eraseblock.
300 * @ubi: UBI device description object
301 * @pnum: the physical eraseblock number to erase
302 *
303 * This function synchronously erases physical eraseblock @pnum and returns
304 * zero in case of success and a negative error code in case of failure. If
305 * %-EIO is returned, the physical eraseblock most probably went bad.
306 */
307static int do_sync_erase(struct ubi_device *ubi, int pnum)
308{
309	int err, retries = 0;
310	struct erase_info ei;
311
312	dbg_io("erase PEB %d", pnum);
313	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
314
315	if (ubi->ro_mode) {
316		ubi_err(ubi, "read-only mode");
317		return -EROFS;
318	}
319
320retry:
321	memset(&ei, 0, sizeof(struct erase_info));
322
323	ei.addr     = (loff_t)pnum * ubi->peb_size;
324	ei.len      = ubi->peb_size;
325
326	err = mtd_erase(ubi->mtd, &ei);
327	if (err) {
328		if (retries++ < UBI_IO_RETRIES) {
329			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
330				 err, pnum);
331			yield();
332			goto retry;
333		}
334		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
335		dump_stack();
336		return err;
337	}
338
339	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
340	if (err)
341		return err;
342
343	if (ubi_dbg_is_erase_failure(ubi)) {
344		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
345		return -EIO;
346	}
347
348	return 0;
349}
350
351/* Patterns to write to a physical eraseblock when torturing it */
352static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
353
354/**
355 * torture_peb - test a supposedly bad physical eraseblock.
356 * @ubi: UBI device description object
357 * @pnum: the physical eraseblock number to test
358 *
359 * This function returns %-EIO if the physical eraseblock did not pass the
360 * test, a positive number of erase operations done if the test was
361 * successfully passed, and other negative error codes in case of other errors.
362 */
363static int torture_peb(struct ubi_device *ubi, int pnum)
364{
365	int err, i, patt_count;
366
367	ubi_msg(ubi, "run torture test for PEB %d", pnum);
368	patt_count = ARRAY_SIZE(patterns);
369	ubi_assert(patt_count > 0);
370
371	mutex_lock(&ubi->buf_mutex);
372	for (i = 0; i < patt_count; i++) {
373		err = do_sync_erase(ubi, pnum);
374		if (err)
375			goto out;
376
377		/* Make sure the PEB contains only 0xFF bytes */
378		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
379		if (err)
380			goto out;
381
382		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
383		if (err == 0) {
384			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
385				pnum);
386			err = -EIO;
387			goto out;
388		}
389
390		/* Write a pattern and check it */
391		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
392		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
393		if (err)
394			goto out;
395
396		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
397		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
398		if (err)
399			goto out;
400
401		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
402					ubi->peb_size);
403		if (err == 0) {
404			ubi_err(ubi, "pattern %x checking failed for PEB %d",
405				patterns[i], pnum);
406			err = -EIO;
407			goto out;
408		}
409	}
410
411	err = patt_count;
412	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
413
414out:
415	mutex_unlock(&ubi->buf_mutex);
416	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
417		/*
418		 * If a bit-flip or data integrity error was detected, the test
419		 * has not passed because it happened on a freshly erased
420		 * physical eraseblock which means something is wrong with it.
421		 */
422		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
423			pnum);
424		err = -EIO;
425	}
426	return err;
427}
428
429/**
430 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
431 * @ubi: UBI device description object
432 * @pnum: physical eraseblock number to prepare
433 *
434 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
435 * algorithm: the PEB is first filled with zeroes, then it is erased. And
436 * filling with zeroes starts from the end of the PEB. This was observed with
437 * Spansion S29GL512N NOR flash.
438 *
439 * This means that in case of a power cut we may end up with intact data at the
440 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
441 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
442 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
443 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
444 *
445 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
446 * magic numbers in order to invalidate them and prevent the failures. Returns
447 * zero in case of success and a negative error code in case of failure.
448 */
449static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
450{
451	int err;
452	size_t written;
453	loff_t addr;
454	uint32_t data = 0;
455	struct ubi_ec_hdr ec_hdr;
456	struct ubi_vid_io_buf vidb;
457
458	/*
459	 * Note, we cannot generally define VID header buffers on stack,
460	 * because of the way we deal with these buffers (see the header
461	 * comment in this file). But we know this is a NOR-specific piece of
462	 * code, so we can do this. But yes, this is error-prone and we should
463	 * (pre-)allocate VID header buffer instead.
464	 */
465	struct ubi_vid_hdr vid_hdr;
466
467	/*
468	 * If VID or EC is valid, we have to corrupt them before erasing.
469	 * It is important to first invalidate the EC header, and then the VID
470	 * header. Otherwise a power cut may lead to valid EC header and
471	 * invalid VID header, in which case UBI will treat this PEB as
472	 * corrupted and will try to preserve it, and print scary warnings.
473	 */
474	addr = (loff_t)pnum * ubi->peb_size;
475	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
476	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
477	    err != UBI_IO_FF){
478		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
479		if(err)
480			goto error;
481	}
482
483	ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
484	ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
485
486	err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
487	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
488	    err != UBI_IO_FF){
489		addr += ubi->vid_hdr_aloffset;
490		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
491		if (err)
492			goto error;
493	}
494	return 0;
495
496error:
497	/*
498	 * The PEB contains a valid VID or EC header, but we cannot invalidate
499	 * it. Supposedly the flash media or the driver is screwed up, so
500	 * return an error.
501	 */
502	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
503	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
504	return -EIO;
505}
506
507/**
508 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
509 * @ubi: UBI device description object
510 * @pnum: physical eraseblock number to erase
511 * @torture: if this physical eraseblock has to be tortured
512 *
513 * This function synchronously erases physical eraseblock @pnum. If @torture
514 * flag is not zero, the physical eraseblock is checked by means of writing
515 * different patterns to it and reading them back. If the torturing is enabled,
516 * the physical eraseblock is erased more than once.
517 *
518 * This function returns the number of erasures made in case of success, %-EIO
519 * if the erasure failed or the torturing test failed, and other negative error
520 * codes in case of other errors. Note, %-EIO means that the physical
521 * eraseblock is bad.
522 */
523int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
524{
525	int err, ret = 0;
526
527	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
528
529	err = self_check_not_bad(ubi, pnum);
530	if (err != 0)
531		return err;
532
533	if (ubi->ro_mode) {
534		ubi_err(ubi, "read-only mode");
535		return -EROFS;
536	}
537
538	if (ubi->nor_flash) {
539		err = nor_erase_prepare(ubi, pnum);
540		if (err)
541			return err;
542	}
543
544	if (torture) {
545		ret = torture_peb(ubi, pnum);
546		if (ret < 0)
547			return ret;
548	}
549
550	err = do_sync_erase(ubi, pnum);
551	if (err)
552		return err;
553
554	return ret + 1;
555}
556
557/**
558 * ubi_io_is_bad - check if a physical eraseblock is bad.
559 * @ubi: UBI device description object
560 * @pnum: the physical eraseblock number to check
561 *
562 * This function returns a positive number if the physical eraseblock is bad,
563 * zero if not, and a negative error code if an error occurred.
564 */
565int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
566{
567	struct mtd_info *mtd = ubi->mtd;
568
569	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
570
571	if (ubi->bad_allowed) {
572		int ret;
573
574		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
575		if (ret < 0)
576			ubi_err(ubi, "error %d while checking if PEB %d is bad",
577				ret, pnum);
578		else if (ret)
579			dbg_io("PEB %d is bad", pnum);
580		return ret;
581	}
582
583	return 0;
584}
585
586/**
587 * ubi_io_mark_bad - mark a physical eraseblock as bad.
588 * @ubi: UBI device description object
589 * @pnum: the physical eraseblock number to mark
590 *
591 * This function returns zero in case of success and a negative error code in
592 * case of failure.
593 */
594int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
595{
596	int err;
597	struct mtd_info *mtd = ubi->mtd;
598
599	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
600
601	if (ubi->ro_mode) {
602		ubi_err(ubi, "read-only mode");
603		return -EROFS;
604	}
605
606	if (!ubi->bad_allowed)
607		return 0;
608
609	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
610	if (err)
611		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
612	return err;
613}
614
615/**
616 * validate_ec_hdr - validate an erase counter header.
617 * @ubi: UBI device description object
618 * @ec_hdr: the erase counter header to check
619 *
620 * This function returns zero if the erase counter header is OK, and %1 if
621 * not.
622 */
623static int validate_ec_hdr(const struct ubi_device *ubi,
624			   const struct ubi_ec_hdr *ec_hdr)
625{
626	long long ec;
627	int vid_hdr_offset, leb_start;
628
629	ec = be64_to_cpu(ec_hdr->ec);
630	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
631	leb_start = be32_to_cpu(ec_hdr->data_offset);
632
633	if (ec_hdr->version != UBI_VERSION) {
634		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
635			UBI_VERSION, (int)ec_hdr->version);
636		goto bad;
637	}
638
639	if (vid_hdr_offset != ubi->vid_hdr_offset) {
640		ubi_err(ubi, "bad VID header offset %d, expected %d",
641			vid_hdr_offset, ubi->vid_hdr_offset);
642		goto bad;
643	}
644
645	if (leb_start != ubi->leb_start) {
646		ubi_err(ubi, "bad data offset %d, expected %d",
647			leb_start, ubi->leb_start);
648		goto bad;
649	}
650
651	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
652		ubi_err(ubi, "bad erase counter %lld", ec);
653		goto bad;
654	}
655
656	return 0;
657
658bad:
659	ubi_err(ubi, "bad EC header");
660	ubi_dump_ec_hdr(ec_hdr);
661	dump_stack();
662	return 1;
663}
664
665/**
666 * ubi_io_read_ec_hdr - read and check an erase counter header.
667 * @ubi: UBI device description object
668 * @pnum: physical eraseblock to read from
669 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
670 * header
671 * @verbose: be verbose if the header is corrupted or was not found
672 *
673 * This function reads erase counter header from physical eraseblock @pnum and
674 * stores it in @ec_hdr. This function also checks CRC checksum of the read
675 * erase counter header. The following codes may be returned:
676 *
677 * o %0 if the CRC checksum is correct and the header was successfully read;
678 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
679 *   and corrected by the flash driver; this is harmless but may indicate that
680 *   this eraseblock may become bad soon (but may be not);
681 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
682 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
683 *   a data integrity error (uncorrectable ECC error in case of NAND);
684 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
685 * o a negative error code in case of failure.
686 */
687int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
688		       struct ubi_ec_hdr *ec_hdr, int verbose)
689{
690	int err, read_err;
691	uint32_t crc, magic, hdr_crc;
692
693	dbg_io("read EC header from PEB %d", pnum);
694	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
695
696	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
697	if (read_err) {
698		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
699			return read_err;
700
701		/*
702		 * We read all the data, but either a correctable bit-flip
703		 * occurred, or MTD reported a data integrity error
704		 * (uncorrectable ECC error in case of NAND). The former is
705		 * harmless, the later may mean that the read data is
706		 * corrupted. But we have a CRC check-sum and we will detect
707		 * this. If the EC header is still OK, we just report this as
708		 * there was a bit-flip, to force scrubbing.
709		 */
710	}
711
712	magic = be32_to_cpu(ec_hdr->magic);
713	if (magic != UBI_EC_HDR_MAGIC) {
714		if (mtd_is_eccerr(read_err))
715			return UBI_IO_BAD_HDR_EBADMSG;
716
717		/*
718		 * The magic field is wrong. Let's check if we have read all
719		 * 0xFF. If yes, this physical eraseblock is assumed to be
720		 * empty.
721		 */
722		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
723			/* The physical eraseblock is supposedly empty */
724			if (verbose)
725				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
726					 pnum);
727			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
728				pnum);
729			if (!read_err)
730				return UBI_IO_FF;
731			else
732				return UBI_IO_FF_BITFLIPS;
733		}
734
735		/*
736		 * This is not a valid erase counter header, and these are not
737		 * 0xFF bytes. Report that the header is corrupted.
738		 */
739		if (verbose) {
740			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
741				 pnum, magic, UBI_EC_HDR_MAGIC);
742			ubi_dump_ec_hdr(ec_hdr);
743		}
744		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
745			pnum, magic, UBI_EC_HDR_MAGIC);
746		return UBI_IO_BAD_HDR;
747	}
748
749	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
750	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
751
752	if (hdr_crc != crc) {
753		if (verbose) {
754			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
755				 pnum, crc, hdr_crc);
756			ubi_dump_ec_hdr(ec_hdr);
757		}
758		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
759			pnum, crc, hdr_crc);
760
761		if (!read_err)
762			return UBI_IO_BAD_HDR;
763		else
764			return UBI_IO_BAD_HDR_EBADMSG;
765	}
766
767	/* And of course validate what has just been read from the media */
768	err = validate_ec_hdr(ubi, ec_hdr);
769	if (err) {
770		ubi_err(ubi, "validation failed for PEB %d", pnum);
771		return -EINVAL;
772	}
773
774	/*
775	 * If there was %-EBADMSG, but the header CRC is still OK, report about
776	 * a bit-flip to force scrubbing on this PEB.
777	 */
778	return read_err ? UBI_IO_BITFLIPS : 0;
779}
780
781/**
782 * ubi_io_write_ec_hdr - write an erase counter header.
783 * @ubi: UBI device description object
784 * @pnum: physical eraseblock to write to
785 * @ec_hdr: the erase counter header to write
786 *
787 * This function writes erase counter header described by @ec_hdr to physical
788 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
789 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
790 * field.
791 *
792 * This function returns zero in case of success and a negative error code in
793 * case of failure. If %-EIO is returned, the physical eraseblock most probably
794 * went bad.
795 */
796int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
797			struct ubi_ec_hdr *ec_hdr)
798{
799	int err;
800	uint32_t crc;
801
802	dbg_io("write EC header to PEB %d", pnum);
803	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
804
805	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
806	ec_hdr->version = UBI_VERSION;
807	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
808	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
809	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
810	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
811	ec_hdr->hdr_crc = cpu_to_be32(crc);
812
813	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
814	if (err)
815		return err;
816
817	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
818		return -EROFS;
819
820	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
821	return err;
822}
823
824/**
825 * validate_vid_hdr - validate a volume identifier header.
826 * @ubi: UBI device description object
827 * @vid_hdr: the volume identifier header to check
828 *
829 * This function checks that data stored in the volume identifier header
830 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
831 */
832static int validate_vid_hdr(const struct ubi_device *ubi,
833			    const struct ubi_vid_hdr *vid_hdr)
834{
835	int vol_type = vid_hdr->vol_type;
836	int copy_flag = vid_hdr->copy_flag;
837	int vol_id = be32_to_cpu(vid_hdr->vol_id);
838	int lnum = be32_to_cpu(vid_hdr->lnum);
839	int compat = vid_hdr->compat;
840	int data_size = be32_to_cpu(vid_hdr->data_size);
841	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
842	int data_pad = be32_to_cpu(vid_hdr->data_pad);
843	int data_crc = be32_to_cpu(vid_hdr->data_crc);
844	int usable_leb_size = ubi->leb_size - data_pad;
845
846	if (copy_flag != 0 && copy_flag != 1) {
847		ubi_err(ubi, "bad copy_flag");
848		goto bad;
849	}
850
851	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
852	    data_pad < 0) {
853		ubi_err(ubi, "negative values");
854		goto bad;
855	}
856
857	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
858		ubi_err(ubi, "bad vol_id");
859		goto bad;
860	}
861
862	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
863		ubi_err(ubi, "bad compat");
864		goto bad;
865	}
866
867	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
868	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
869	    compat != UBI_COMPAT_REJECT) {
870		ubi_err(ubi, "bad compat");
871		goto bad;
872	}
873
874	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
875		ubi_err(ubi, "bad vol_type");
876		goto bad;
877	}
878
879	if (data_pad >= ubi->leb_size / 2) {
880		ubi_err(ubi, "bad data_pad");
881		goto bad;
882	}
883
884	if (data_size > ubi->leb_size) {
885		ubi_err(ubi, "bad data_size");
886		goto bad;
887	}
888
889	if (vol_type == UBI_VID_STATIC) {
890		/*
891		 * Although from high-level point of view static volumes may
892		 * contain zero bytes of data, but no VID headers can contain
893		 * zero at these fields, because they empty volumes do not have
894		 * mapped logical eraseblocks.
895		 */
896		if (used_ebs == 0) {
897			ubi_err(ubi, "zero used_ebs");
898			goto bad;
899		}
900		if (data_size == 0) {
901			ubi_err(ubi, "zero data_size");
902			goto bad;
903		}
904		if (lnum < used_ebs - 1) {
905			if (data_size != usable_leb_size) {
906				ubi_err(ubi, "bad data_size");
907				goto bad;
908			}
909		} else if (lnum == used_ebs - 1) {
910			if (data_size == 0) {
911				ubi_err(ubi, "bad data_size at last LEB");
912				goto bad;
913			}
914		} else {
915			ubi_err(ubi, "too high lnum");
916			goto bad;
917		}
918	} else {
919		if (copy_flag == 0) {
920			if (data_crc != 0) {
921				ubi_err(ubi, "non-zero data CRC");
922				goto bad;
923			}
924			if (data_size != 0) {
925				ubi_err(ubi, "non-zero data_size");
926				goto bad;
927			}
928		} else {
929			if (data_size == 0) {
930				ubi_err(ubi, "zero data_size of copy");
931				goto bad;
932			}
933		}
934		if (used_ebs != 0) {
935			ubi_err(ubi, "bad used_ebs");
936			goto bad;
937		}
938	}
939
940	return 0;
941
942bad:
943	ubi_err(ubi, "bad VID header");
944	ubi_dump_vid_hdr(vid_hdr);
945	dump_stack();
946	return 1;
947}
948
949/**
950 * ubi_io_read_vid_hdr - read and check a volume identifier header.
951 * @ubi: UBI device description object
952 * @pnum: physical eraseblock number to read from
953 * @vidb: the volume identifier buffer to store data in
954 * @verbose: be verbose if the header is corrupted or wasn't found
955 *
956 * This function reads the volume identifier header from physical eraseblock
957 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
958 * volume identifier header. The error codes are the same as in
959 * 'ubi_io_read_ec_hdr()'.
960 *
961 * Note, the implementation of this function is also very similar to
962 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
963 */
964int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
965			struct ubi_vid_io_buf *vidb, int verbose)
966{
967	int err, read_err;
968	uint32_t crc, magic, hdr_crc;
969	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
970	void *p = vidb->buffer;
971
972	dbg_io("read VID header from PEB %d", pnum);
973	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
974
975	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
976			  ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
977	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
978		return read_err;
979
980	magic = be32_to_cpu(vid_hdr->magic);
981	if (magic != UBI_VID_HDR_MAGIC) {
982		if (mtd_is_eccerr(read_err))
983			return UBI_IO_BAD_HDR_EBADMSG;
984
985		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
986			if (verbose)
987				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
988					 pnum);
989			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
990				pnum);
991			if (!read_err)
992				return UBI_IO_FF;
993			else
994				return UBI_IO_FF_BITFLIPS;
995		}
996
997		if (verbose) {
998			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
999				 pnum, magic, UBI_VID_HDR_MAGIC);
1000			ubi_dump_vid_hdr(vid_hdr);
1001		}
1002		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1003			pnum, magic, UBI_VID_HDR_MAGIC);
1004		return UBI_IO_BAD_HDR;
1005	}
1006
1007	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1008	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1009
1010	if (hdr_crc != crc) {
1011		if (verbose) {
1012			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1013				 pnum, crc, hdr_crc);
1014			ubi_dump_vid_hdr(vid_hdr);
1015		}
1016		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1017			pnum, crc, hdr_crc);
1018		if (!read_err)
1019			return UBI_IO_BAD_HDR;
1020		else
1021			return UBI_IO_BAD_HDR_EBADMSG;
1022	}
1023
1024	err = validate_vid_hdr(ubi, vid_hdr);
1025	if (err) {
1026		ubi_err(ubi, "validation failed for PEB %d", pnum);
1027		return -EINVAL;
1028	}
1029
1030	return read_err ? UBI_IO_BITFLIPS : 0;
1031}
1032
1033/**
1034 * ubi_io_write_vid_hdr - write a volume identifier header.
1035 * @ubi: UBI device description object
1036 * @pnum: the physical eraseblock number to write to
1037 * @vidb: the volume identifier buffer to write
1038 *
1039 * This function writes the volume identifier header described by @vid_hdr to
1040 * physical eraseblock @pnum. This function automatically fills the
1041 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1042 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1043 *
1044 * This function returns zero in case of success and a negative error code in
1045 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1046 * bad.
1047 */
1048int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1049			 struct ubi_vid_io_buf *vidb)
1050{
1051	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1052	int err;
1053	uint32_t crc;
1054	void *p = vidb->buffer;
1055
1056	dbg_io("write VID header to PEB %d", pnum);
1057	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1058
1059	err = self_check_peb_ec_hdr(ubi, pnum);
1060	if (err)
1061		return err;
1062
1063	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1064	vid_hdr->version = UBI_VERSION;
1065	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1066	vid_hdr->hdr_crc = cpu_to_be32(crc);
1067
1068	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1069	if (err)
1070		return err;
1071
1072	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1073		return -EROFS;
1074
1075	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1076			   ubi->vid_hdr_alsize);
1077	return err;
1078}
1079
1080/**
1081 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1082 * @ubi: UBI device description object
1083 * @pnum: physical eraseblock number to check
1084 *
1085 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1086 * it is bad and a negative error code if an error occurred.
1087 */
1088static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1089{
1090	int err;
1091
1092	if (!ubi_dbg_chk_io(ubi))
1093		return 0;
1094
1095	err = ubi_io_is_bad(ubi, pnum);
1096	if (!err)
1097		return err;
1098
1099	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1100	dump_stack();
1101	return err > 0 ? -EINVAL : err;
1102}
1103
1104/**
1105 * self_check_ec_hdr - check if an erase counter header is all right.
1106 * @ubi: UBI device description object
1107 * @pnum: physical eraseblock number the erase counter header belongs to
1108 * @ec_hdr: the erase counter header to check
1109 *
1110 * This function returns zero if the erase counter header contains valid
1111 * values, and %-EINVAL if not.
1112 */
1113static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1114			     const struct ubi_ec_hdr *ec_hdr)
1115{
1116	int err;
1117	uint32_t magic;
1118
1119	if (!ubi_dbg_chk_io(ubi))
1120		return 0;
1121
1122	magic = be32_to_cpu(ec_hdr->magic);
1123	if (magic != UBI_EC_HDR_MAGIC) {
1124		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1125			magic, UBI_EC_HDR_MAGIC);
1126		goto fail;
1127	}
1128
1129	err = validate_ec_hdr(ubi, ec_hdr);
1130	if (err) {
1131		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1132		goto fail;
1133	}
1134
1135	return 0;
1136
1137fail:
1138	ubi_dump_ec_hdr(ec_hdr);
1139	dump_stack();
1140	return -EINVAL;
1141}
1142
1143/**
1144 * self_check_peb_ec_hdr - check erase counter header.
1145 * @ubi: UBI device description object
1146 * @pnum: the physical eraseblock number to check
1147 *
1148 * This function returns zero if the erase counter header is all right and and
1149 * a negative error code if not or if an error occurred.
1150 */
1151static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1152{
1153	int err;
1154	uint32_t crc, hdr_crc;
1155	struct ubi_ec_hdr *ec_hdr;
1156
1157	if (!ubi_dbg_chk_io(ubi))
1158		return 0;
1159
1160	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1161	if (!ec_hdr)
1162		return -ENOMEM;
1163
1164	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1165	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1166		goto exit;
1167
1168	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1169	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1170	if (hdr_crc != crc) {
1171		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1172			crc, hdr_crc);
1173		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1174		ubi_dump_ec_hdr(ec_hdr);
1175		dump_stack();
1176		err = -EINVAL;
1177		goto exit;
1178	}
1179
1180	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1181
1182exit:
1183	kfree(ec_hdr);
1184	return err;
1185}
1186
1187/**
1188 * self_check_vid_hdr - check that a volume identifier header is all right.
1189 * @ubi: UBI device description object
1190 * @pnum: physical eraseblock number the volume identifier header belongs to
1191 * @vid_hdr: the volume identifier header to check
1192 *
1193 * This function returns zero if the volume identifier header is all right, and
1194 * %-EINVAL if not.
1195 */
1196static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1197			      const struct ubi_vid_hdr *vid_hdr)
1198{
1199	int err;
1200	uint32_t magic;
1201
1202	if (!ubi_dbg_chk_io(ubi))
1203		return 0;
1204
1205	magic = be32_to_cpu(vid_hdr->magic);
1206	if (magic != UBI_VID_HDR_MAGIC) {
1207		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1208			magic, pnum, UBI_VID_HDR_MAGIC);
1209		goto fail;
1210	}
1211
1212	err = validate_vid_hdr(ubi, vid_hdr);
1213	if (err) {
1214		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1215		goto fail;
1216	}
1217
1218	return err;
1219
1220fail:
1221	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1222	ubi_dump_vid_hdr(vid_hdr);
1223	dump_stack();
1224	return -EINVAL;
1225
1226}
1227
1228/**
1229 * self_check_peb_vid_hdr - check volume identifier header.
1230 * @ubi: UBI device description object
1231 * @pnum: the physical eraseblock number to check
1232 *
1233 * This function returns zero if the volume identifier header is all right,
1234 * and a negative error code if not or if an error occurred.
1235 */
1236static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1237{
1238	int err;
1239	uint32_t crc, hdr_crc;
1240	struct ubi_vid_io_buf *vidb;
1241	struct ubi_vid_hdr *vid_hdr;
1242	void *p;
1243
1244	if (!ubi_dbg_chk_io(ubi))
1245		return 0;
1246
1247	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1248	if (!vidb)
1249		return -ENOMEM;
1250
1251	vid_hdr = ubi_get_vid_hdr(vidb);
1252	p = vidb->buffer;
1253	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1254			  ubi->vid_hdr_alsize);
1255	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1256		goto exit;
1257
1258	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1259	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1260	if (hdr_crc != crc) {
1261		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1262			pnum, crc, hdr_crc);
1263		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1264		ubi_dump_vid_hdr(vid_hdr);
1265		dump_stack();
1266		err = -EINVAL;
1267		goto exit;
1268	}
1269
1270	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1271
1272exit:
1273	ubi_free_vid_buf(vidb);
1274	return err;
1275}
1276
1277/**
1278 * self_check_write - make sure write succeeded.
1279 * @ubi: UBI device description object
1280 * @buf: buffer with data which were written
1281 * @pnum: physical eraseblock number the data were written to
1282 * @offset: offset within the physical eraseblock the data were written to
1283 * @len: how many bytes were written
1284 *
1285 * This functions reads data which were recently written and compares it with
1286 * the original data buffer - the data have to match. Returns zero if the data
1287 * match and a negative error code if not or in case of failure.
1288 */
1289static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1290			    int offset, int len)
1291{
1292	int err, i;
1293	size_t read;
1294	void *buf1;
1295	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1296
1297	if (!ubi_dbg_chk_io(ubi))
1298		return 0;
1299
1300	buf1 = __vmalloc(len, GFP_NOFS);
1301	if (!buf1) {
1302		ubi_err(ubi, "cannot allocate memory to check writes");
1303		return 0;
1304	}
1305
1306	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1307	if (err && !mtd_is_bitflip(err))
1308		goto out_free;
1309
1310	for (i = 0; i < len; i++) {
1311		uint8_t c = ((uint8_t *)buf)[i];
1312		uint8_t c1 = ((uint8_t *)buf1)[i];
1313		int dump_len;
1314
1315		if (c == c1)
1316			continue;
1317
1318		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1319			pnum, offset, len);
1320		ubi_msg(ubi, "data differ at position %d", i);
1321		dump_len = max_t(int, 128, len - i);
1322		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1323			i, i + dump_len);
1324		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1325			       buf + i, dump_len, 1);
1326		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1327			i, i + dump_len);
1328		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1329			       buf1 + i, dump_len, 1);
1330		dump_stack();
1331		err = -EINVAL;
1332		goto out_free;
1333	}
1334
1335	vfree(buf1);
1336	return 0;
1337
1338out_free:
1339	vfree(buf1);
1340	return err;
1341}
1342
1343/**
1344 * ubi_self_check_all_ff - check that a region of flash is empty.
1345 * @ubi: UBI device description object
1346 * @pnum: the physical eraseblock number to check
1347 * @offset: the starting offset within the physical eraseblock to check
1348 * @len: the length of the region to check
1349 *
1350 * This function returns zero if only 0xFF bytes are present at offset
1351 * @offset of the physical eraseblock @pnum, and a negative error code if not
1352 * or if an error occurred.
1353 */
1354int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1355{
1356	size_t read;
1357	int err;
1358	void *buf;
1359	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1360
1361	if (!ubi_dbg_chk_io(ubi))
1362		return 0;
1363
1364	buf = __vmalloc(len, GFP_NOFS);
1365	if (!buf) {
1366		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1367		return 0;
1368	}
1369
1370	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1371	if (err && !mtd_is_bitflip(err)) {
1372		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1373			err, len, pnum, offset, read);
1374		goto error;
1375	}
1376
1377	err = ubi_check_pattern(buf, 0xFF, len);
1378	if (err == 0) {
1379		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1380			pnum, offset, len);
1381		goto fail;
1382	}
1383
1384	vfree(buf);
1385	return 0;
1386
1387fail:
1388	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1389	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1390	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1391	err = -EINVAL;
1392error:
1393	dump_stack();
1394	vfree(buf);
1395	return err;
1396}
1397