1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * ASPEED Static Memory Controller driver
4 *
5 * Copyright (c) 2015-2016, IBM Corporation.
6 */
7
8#include <linux/bug.h>
9#include <linux/device.h>
10#include <linux/io.h>
11#include <linux/module.h>
12#include <linux/mutex.h>
13#include <linux/mtd/mtd.h>
14#include <linux/mtd/partitions.h>
15#include <linux/mtd/spi-nor.h>
16#include <linux/of.h>
17#include <linux/of_platform.h>
18#include <linux/sizes.h>
19#include <linux/sysfs.h>
20
21#define DEVICE_NAME	"aspeed-smc"
22
23/*
24 * The driver only support SPI flash
25 */
26enum aspeed_smc_flash_type {
27	smc_type_nor  = 0,
28	smc_type_nand = 1,
29	smc_type_spi  = 2,
30};
31
32struct aspeed_smc_chip;
33
34struct aspeed_smc_info {
35	u32 maxsize;		/* maximum size of chip window */
36	u8 nce;			/* number of chip enables */
37	bool hastype;		/* flash type field exists in config reg */
38	u8 we0;			/* shift for write enable bit for CE0 */
39	u8 ctl0;		/* offset in regs of ctl for CE0 */
40
41	void (*set_4b)(struct aspeed_smc_chip *chip);
42};
43
44static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
45static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
46
47static const struct aspeed_smc_info fmc_2400_info = {
48	.maxsize = 64 * 1024 * 1024,
49	.nce = 5,
50	.hastype = true,
51	.we0 = 16,
52	.ctl0 = 0x10,
53	.set_4b = aspeed_smc_chip_set_4b,
54};
55
56static const struct aspeed_smc_info spi_2400_info = {
57	.maxsize = 64 * 1024 * 1024,
58	.nce = 1,
59	.hastype = false,
60	.we0 = 0,
61	.ctl0 = 0x04,
62	.set_4b = aspeed_smc_chip_set_4b_spi_2400,
63};
64
65static const struct aspeed_smc_info fmc_2500_info = {
66	.maxsize = 256 * 1024 * 1024,
67	.nce = 3,
68	.hastype = true,
69	.we0 = 16,
70	.ctl0 = 0x10,
71	.set_4b = aspeed_smc_chip_set_4b,
72};
73
74static const struct aspeed_smc_info spi_2500_info = {
75	.maxsize = 128 * 1024 * 1024,
76	.nce = 2,
77	.hastype = false,
78	.we0 = 16,
79	.ctl0 = 0x10,
80	.set_4b = aspeed_smc_chip_set_4b,
81};
82
83enum aspeed_smc_ctl_reg_value {
84	smc_base,		/* base value without mode for other commands */
85	smc_read,		/* command reg for (maybe fast) reads */
86	smc_write,		/* command reg for writes */
87	smc_max,
88};
89
90struct aspeed_smc_controller;
91
92struct aspeed_smc_chip {
93	int cs;
94	struct aspeed_smc_controller *controller;
95	void __iomem *ctl;			/* control register */
96	void __iomem *ahb_base;			/* base of chip window */
97	u32 ahb_window_size;			/* chip mapping window size */
98	u32 ctl_val[smc_max];			/* control settings */
99	enum aspeed_smc_flash_type type;	/* what type of flash */
100	struct spi_nor nor;
101};
102
103struct aspeed_smc_controller {
104	struct device *dev;
105
106	struct mutex mutex;			/* controller access mutex */
107	const struct aspeed_smc_info *info;	/* type info of controller */
108	void __iomem *regs;			/* controller registers */
109	void __iomem *ahb_base;			/* per-chip windows resource */
110	u32 ahb_window_size;			/* full mapping window size */
111
112	struct aspeed_smc_chip *chips[];	/* pointers to attached chips */
113};
114
115/*
116 * SPI Flash Configuration Register (AST2500 SPI)
117 *     or
118 * Type setting Register (AST2500 FMC).
119 * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
120 * driver does not support it.
121 */
122#define CONFIG_REG			0x0
123#define CONFIG_DISABLE_LEGACY		BIT(31) /* 1 */
124
125#define CONFIG_CE2_WRITE		BIT(18)
126#define CONFIG_CE1_WRITE		BIT(17)
127#define CONFIG_CE0_WRITE		BIT(16)
128
129#define CONFIG_CE2_TYPE			BIT(4) /* AST2500 FMC only */
130#define CONFIG_CE1_TYPE			BIT(2) /* AST2500 FMC only */
131#define CONFIG_CE0_TYPE			BIT(0) /* AST2500 FMC only */
132
133/*
134 * CE Control Register
135 */
136#define CE_CONTROL_REG			0x4
137
138/*
139 * CEx Control Register
140 */
141#define CONTROL_AAF_MODE		BIT(31)
142#define CONTROL_IO_MODE_MASK		GENMASK(30, 28)
143#define CONTROL_IO_DUAL_DATA		BIT(29)
144#define CONTROL_IO_DUAL_ADDR_DATA	(BIT(29) | BIT(28))
145#define CONTROL_IO_QUAD_DATA		BIT(30)
146#define CONTROL_IO_QUAD_ADDR_DATA	(BIT(30) | BIT(28))
147#define CONTROL_CE_INACTIVE_SHIFT	24
148#define CONTROL_CE_INACTIVE_MASK	GENMASK(27, \
149					CONTROL_CE_INACTIVE_SHIFT)
150/* 0 = 16T ... 15 = 1T   T=HCLK */
151#define CONTROL_COMMAND_SHIFT		16
152#define CONTROL_DUMMY_COMMAND_OUT	BIT(15)
153#define CONTROL_IO_DUMMY_HI		BIT(14)
154#define CONTROL_IO_DUMMY_HI_SHIFT	14
155#define CONTROL_CLK_DIV4		BIT(13) /* others */
156#define CONTROL_IO_ADDRESS_4B		BIT(13) /* AST2400 SPI */
157#define CONTROL_RW_MERGE		BIT(12)
158#define CONTROL_IO_DUMMY_LO_SHIFT	6
159#define CONTROL_IO_DUMMY_LO		GENMASK(7, \
160						CONTROL_IO_DUMMY_LO_SHIFT)
161#define CONTROL_IO_DUMMY_MASK		(CONTROL_IO_DUMMY_HI | \
162					 CONTROL_IO_DUMMY_LO)
163#define CONTROL_IO_DUMMY_SET(dummy)				 \
164	(((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
165	 (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
166
167#define CONTROL_CLOCK_FREQ_SEL_SHIFT	8
168#define CONTROL_CLOCK_FREQ_SEL_MASK	GENMASK(11, \
169						CONTROL_CLOCK_FREQ_SEL_SHIFT)
170#define CONTROL_LSB_FIRST		BIT(5)
171#define CONTROL_CLOCK_MODE_3		BIT(4)
172#define CONTROL_IN_DUAL_DATA		BIT(3)
173#define CONTROL_CE_STOP_ACTIVE_CONTROL	BIT(2)
174#define CONTROL_COMMAND_MODE_MASK	GENMASK(1, 0)
175#define CONTROL_COMMAND_MODE_NORMAL	0
176#define CONTROL_COMMAND_MODE_FREAD	1
177#define CONTROL_COMMAND_MODE_WRITE	2
178#define CONTROL_COMMAND_MODE_USER	3
179
180#define CONTROL_KEEP_MASK						\
181	(CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
182	 CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
183
184/*
185 * The Segment Register uses a 8MB unit to encode the start address
186 * and the end address of the mapping window of a flash SPI slave :
187 *
188 *        | byte 1 | byte 2 | byte 3 | byte 4 |
189 *        +--------+--------+--------+--------+
190 *        |  end   |  start |   0    |   0    |
191 */
192#define SEGMENT_ADDR_REG0		0x30
193#define SEGMENT_ADDR_START(_r)		((((_r) >> 16) & 0xFF) << 23)
194#define SEGMENT_ADDR_END(_r)		((((_r) >> 24) & 0xFF) << 23)
195#define SEGMENT_ADDR_VALUE(start, end)					\
196	(((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
197#define SEGMENT_ADDR_REG(controller, cs)	\
198	((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)
199
200/*
201 * In user mode all data bytes read or written to the chip decode address
202 * range are transferred to or from the SPI bus. The range is treated as a
203 * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
204 * to its size. The address within the multiple 8kB range is ignored when
205 * sending bytes to the SPI bus.
206 *
207 * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
208 * memcpy_toio on little endian targets use the optimized memcpy routines
209 * that were designed for well behavied memory storage. These routines
210 * have a stutter if the source and destination are not both word aligned,
211 * once with a duplicate access to the source after aligning to the
212 * destination to a word boundary, and again with a duplicate access to
213 * the source when the final byte count is not word aligned.
214 *
215 * When writing or reading the fifo this stutter discards data or sends
216 * too much data to the fifo and can not be used by this driver.
217 *
218 * While the low level io string routines that implement the insl family do
219 * the desired accesses and memory increments, the cross architecture io
220 * macros make them essentially impossible to use on a memory mapped address
221 * instead of a a token from the call to iomap of an io port.
222 *
223 * These fifo routines use readl and friends to a constant io port and update
224 * the memory buffer pointer and count via explicit code. The final updates
225 * to len are optimistically suppressed.
226 */
227static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
228{
229	size_t offset = 0;
230
231	if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
232	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
233		ioread32_rep(src, buf, len >> 2);
234		offset = len & ~0x3;
235		len -= offset;
236	}
237	ioread8_rep(src, (u8 *)buf + offset, len);
238	return 0;
239}
240
241static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
242				   size_t len)
243{
244	size_t offset = 0;
245
246	if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
247	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
248		iowrite32_rep(dst, buf, len >> 2);
249		offset = len & ~0x3;
250		len -= offset;
251	}
252	iowrite8_rep(dst, (const u8 *)buf + offset, len);
253	return 0;
254}
255
256static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
257{
258	return BIT(chip->controller->info->we0 + chip->cs);
259}
260
261static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
262{
263	struct aspeed_smc_controller *controller = chip->controller;
264	u32 reg;
265
266	reg = readl(controller->regs + CONFIG_REG);
267
268	if (reg & aspeed_smc_chip_write_bit(chip))
269		return;
270
271	dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
272		controller->regs + CONFIG_REG, reg);
273	reg |= aspeed_smc_chip_write_bit(chip);
274	writel(reg, controller->regs + CONFIG_REG);
275}
276
277static void aspeed_smc_start_user(struct spi_nor *nor)
278{
279	struct aspeed_smc_chip *chip = nor->priv;
280	u32 ctl = chip->ctl_val[smc_base];
281
282	/*
283	 * When the chip is controlled in user mode, we need write
284	 * access to send the opcodes to it. So check the config.
285	 */
286	aspeed_smc_chip_check_config(chip);
287
288	ctl |= CONTROL_COMMAND_MODE_USER |
289		CONTROL_CE_STOP_ACTIVE_CONTROL;
290	writel(ctl, chip->ctl);
291
292	ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
293	writel(ctl, chip->ctl);
294}
295
296static void aspeed_smc_stop_user(struct spi_nor *nor)
297{
298	struct aspeed_smc_chip *chip = nor->priv;
299
300	u32 ctl = chip->ctl_val[smc_read];
301	u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
302		CONTROL_CE_STOP_ACTIVE_CONTROL;
303
304	writel(ctl2, chip->ctl);	/* stop user CE control */
305	writel(ctl, chip->ctl);		/* default to fread or read mode */
306}
307
308static int aspeed_smc_prep(struct spi_nor *nor)
309{
310	struct aspeed_smc_chip *chip = nor->priv;
311
312	mutex_lock(&chip->controller->mutex);
313	return 0;
314}
315
316static void aspeed_smc_unprep(struct spi_nor *nor)
317{
318	struct aspeed_smc_chip *chip = nor->priv;
319
320	mutex_unlock(&chip->controller->mutex);
321}
322
323static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
324			       size_t len)
325{
326	struct aspeed_smc_chip *chip = nor->priv;
327
328	aspeed_smc_start_user(nor);
329	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
330	aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
331	aspeed_smc_stop_user(nor);
332	return 0;
333}
334
335static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
336				size_t len)
337{
338	struct aspeed_smc_chip *chip = nor->priv;
339
340	aspeed_smc_start_user(nor);
341	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
342	aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
343	aspeed_smc_stop_user(nor);
344	return 0;
345}
346
347static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
348{
349	struct aspeed_smc_chip *chip = nor->priv;
350	__be32 temp;
351	u32 cmdaddr;
352
353	switch (nor->addr_width) {
354	default:
355		WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
356			  nor->addr_width);
357		fallthrough;
358	case 3:
359		cmdaddr = addr & 0xFFFFFF;
360		cmdaddr |= cmd << 24;
361
362		temp = cpu_to_be32(cmdaddr);
363		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
364		break;
365	case 4:
366		temp = cpu_to_be32(addr);
367		aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
368		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
369		break;
370	}
371}
372
373static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
374				    size_t len, u_char *read_buf)
375{
376	struct aspeed_smc_chip *chip = nor->priv;
377	int i;
378	u8 dummy = 0xFF;
379
380	aspeed_smc_start_user(nor);
381	aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
382	for (i = 0; i < chip->nor.read_dummy / 8; i++)
383		aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
384
385	aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
386	aspeed_smc_stop_user(nor);
387	return len;
388}
389
390static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
391				     size_t len, const u_char *write_buf)
392{
393	struct aspeed_smc_chip *chip = nor->priv;
394
395	aspeed_smc_start_user(nor);
396	aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
397	aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
398	aspeed_smc_stop_user(nor);
399	return len;
400}
401
402static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
403{
404	struct aspeed_smc_chip *chip;
405	int n;
406
407	for (n = 0; n < controller->info->nce; n++) {
408		chip = controller->chips[n];
409		if (chip)
410			mtd_device_unregister(&chip->nor.mtd);
411	}
412
413	return 0;
414}
415
416static int aspeed_smc_remove(struct platform_device *dev)
417{
418	return aspeed_smc_unregister(platform_get_drvdata(dev));
419}
420
421static const struct of_device_id aspeed_smc_matches[] = {
422	{ .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
423	{ .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
424	{ .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
425	{ .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
426	{ }
427};
428MODULE_DEVICE_TABLE(of, aspeed_smc_matches);
429
430/*
431 * Each chip has a mapping window defined by a segment address
432 * register defining a start and an end address on the AHB bus. These
433 * addresses can be configured to fit the chip size and offer a
434 * contiguous memory region across chips. For the moment, we only
435 * check that each chip segment is valid.
436 */
437static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
438					  struct resource *res)
439{
440	struct aspeed_smc_controller *controller = chip->controller;
441	u32 offset = 0;
442	u32 reg;
443
444	if (controller->info->nce > 1) {
445		reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));
446
447		if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
448			return NULL;
449
450		offset = SEGMENT_ADDR_START(reg) - res->start;
451	}
452
453	return controller->ahb_base + offset;
454}
455
456static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
457{
458	u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));
459
460	return SEGMENT_ADDR_START(seg0_val);
461}
462
463static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
464			    u32 size)
465{
466	struct aspeed_smc_controller *controller = chip->controller;
467	void __iomem *seg_reg;
468	u32 seg_oldval, seg_newval, ahb_base_phy, end;
469
470	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
471
472	seg_reg = SEGMENT_ADDR_REG(controller, cs);
473	seg_oldval = readl(seg_reg);
474
475	/*
476	 * If the chip size is not specified, use the default segment
477	 * size, but take into account the possible overlap with the
478	 * previous segment
479	 */
480	if (!size)
481		size = SEGMENT_ADDR_END(seg_oldval) - start;
482
483	/*
484	 * The segment cannot exceed the maximum window size of the
485	 * controller.
486	 */
487	if (start + size > ahb_base_phy + controller->ahb_window_size) {
488		size = ahb_base_phy + controller->ahb_window_size - start;
489		dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
490			 cs, size >> 20);
491	}
492
493	end = start + size;
494	seg_newval = SEGMENT_ADDR_VALUE(start, end);
495	writel(seg_newval, seg_reg);
496
497	/*
498	 * Restore default value if something goes wrong. The chip
499	 * might have set some bogus value and we would loose access
500	 * to the chip.
501	 */
502	if (seg_newval != readl(seg_reg)) {
503		dev_err(chip->nor.dev, "CE%d window invalid", cs);
504		writel(seg_oldval, seg_reg);
505		start = SEGMENT_ADDR_START(seg_oldval);
506		end = SEGMENT_ADDR_END(seg_oldval);
507		size = end - start;
508	}
509
510	dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
511		 cs, start, end, size >> 20);
512
513	return size;
514}
515
516/*
517 * The segment register defines the mapping window on the AHB bus and
518 * it needs to be configured depending on the chip size. The segment
519 * register of the following CE also needs to be tuned in order to
520 * provide a contiguous window across multiple chips.
521 *
522 * This is expected to be called in increasing CE order
523 */
524static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
525{
526	struct aspeed_smc_controller *controller = chip->controller;
527	u32 ahb_base_phy, start;
528	u32 size = chip->nor.mtd.size;
529
530	/*
531	 * Each controller has a chip size limit for direct memory
532	 * access
533	 */
534	if (size > controller->info->maxsize)
535		size = controller->info->maxsize;
536
537	/*
538	 * The AST2400 SPI controller only handles one chip and does
539	 * not have segment registers. Let's use the chip size for the
540	 * AHB window.
541	 */
542	if (controller->info == &spi_2400_info)
543		goto out;
544
545	/*
546	 * The AST2500 SPI controller has a HW bug when the CE0 chip
547	 * size reaches 128MB. Enforce a size limit of 120MB to
548	 * prevent the controller from using bogus settings in the
549	 * segment register.
550	 */
551	if (chip->cs == 0 && controller->info == &spi_2500_info &&
552	    size == SZ_128M) {
553		size = 120 << 20;
554		dev_info(chip->nor.dev,
555			 "CE%d window resized to %dMB (AST2500 HW quirk)",
556			 chip->cs, size >> 20);
557	}
558
559	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
560
561	/*
562	 * As a start address for the current segment, use the default
563	 * start address if we are handling CE0 or use the previous
564	 * segment ending address
565	 */
566	if (chip->cs) {
567		u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));
568
569		start = SEGMENT_ADDR_END(prev);
570	} else {
571		start = ahb_base_phy;
572	}
573
574	size = chip_set_segment(chip, chip->cs, start, size);
575
576	/* Update chip base address on the AHB bus */
577	chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);
578
579	/*
580	 * Now, make sure the next segment does not overlap with the
581	 * current one we just configured, even if there is no
582	 * available chip. That could break access in Command Mode.
583	 */
584	if (chip->cs < controller->info->nce - 1)
585		chip_set_segment(chip, chip->cs + 1, start + size, 0);
586
587out:
588	if (size < chip->nor.mtd.size)
589		dev_warn(chip->nor.dev,
590			 "CE%d window too small for chip %dMB",
591			 chip->cs, (u32)chip->nor.mtd.size >> 20);
592
593	return size;
594}
595
596static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
597{
598	struct aspeed_smc_controller *controller = chip->controller;
599	u32 reg;
600
601	reg = readl(controller->regs + CONFIG_REG);
602
603	reg |= aspeed_smc_chip_write_bit(chip);
604	writel(reg, controller->regs + CONFIG_REG);
605}
606
607static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
608{
609	struct aspeed_smc_controller *controller = chip->controller;
610	u32 reg;
611
612	chip->type = type;
613
614	reg = readl(controller->regs + CONFIG_REG);
615	reg &= ~(3 << (chip->cs * 2));
616	reg |= chip->type << (chip->cs * 2);
617	writel(reg, controller->regs + CONFIG_REG);
618}
619
620/*
621 * The first chip of the AST2500 FMC flash controller is strapped by
622 * hardware, or autodetected, but other chips need to be set. Enforce
623 * the 4B setting for all chips.
624 */
625static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
626{
627	struct aspeed_smc_controller *controller = chip->controller;
628	u32 reg;
629
630	reg = readl(controller->regs + CE_CONTROL_REG);
631	reg |= 1 << chip->cs;
632	writel(reg, controller->regs + CE_CONTROL_REG);
633}
634
635/*
636 * The AST2400 SPI flash controller does not have a CE Control
637 * register. It uses the CE0 control register to set 4Byte mode at the
638 * controller level.
639 */
640static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
641{
642	chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
643	chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
644}
645
646static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
647				      struct resource *res)
648{
649	struct aspeed_smc_controller *controller = chip->controller;
650	const struct aspeed_smc_info *info = controller->info;
651	u32 reg, base_reg;
652
653	/*
654	 * Always turn on the write enable bit to allow opcodes to be
655	 * sent in user mode.
656	 */
657	aspeed_smc_chip_enable_write(chip);
658
659	/* The driver only supports SPI type flash */
660	if (info->hastype)
661		aspeed_smc_chip_set_type(chip, smc_type_spi);
662
663	/*
664	 * Configure chip base address in memory
665	 */
666	chip->ahb_base = aspeed_smc_chip_base(chip, res);
667	if (!chip->ahb_base) {
668		dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
669		return -EINVAL;
670	}
671
672	/*
673	 * Get value of the inherited control register. U-Boot usually
674	 * does some timing calibration on the FMC chip, so it's good
675	 * to keep them. In the future, we should handle calibration
676	 * from Linux.
677	 */
678	reg = readl(chip->ctl);
679	dev_dbg(controller->dev, "control register: %08x\n", reg);
680
681	base_reg = reg & CONTROL_KEEP_MASK;
682	if (base_reg != reg) {
683		dev_dbg(controller->dev,
684			"control register changed to: %08x\n",
685			base_reg);
686	}
687	chip->ctl_val[smc_base] = base_reg;
688
689	/*
690	 * Retain the prior value of the control register as the
691	 * default if it was normal access mode. Otherwise start with
692	 * the sanitized base value set to read mode.
693	 */
694	if ((reg & CONTROL_COMMAND_MODE_MASK) ==
695	    CONTROL_COMMAND_MODE_NORMAL)
696		chip->ctl_val[smc_read] = reg;
697	else
698		chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
699			CONTROL_COMMAND_MODE_NORMAL;
700
701	dev_dbg(controller->dev, "default control register: %08x\n",
702		chip->ctl_val[smc_read]);
703	return 0;
704}
705
706static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
707{
708	struct aspeed_smc_controller *controller = chip->controller;
709	const struct aspeed_smc_info *info = controller->info;
710	u32 cmd;
711
712	if (chip->nor.addr_width == 4 && info->set_4b)
713		info->set_4b(chip);
714
715	/* This is for direct AHB access when using Command Mode. */
716	chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);
717
718	/*
719	 * base mode has not been optimized yet. use it for writes.
720	 */
721	chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
722		chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
723		CONTROL_COMMAND_MODE_WRITE;
724
725	dev_dbg(controller->dev, "write control register: %08x\n",
726		chip->ctl_val[smc_write]);
727
728	/*
729	 * TODO: Adjust clocks if fast read is supported and interpret
730	 * SPI NOR flags to adjust controller settings.
731	 */
732	if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
733		if (chip->nor.read_dummy == 0)
734			cmd = CONTROL_COMMAND_MODE_NORMAL;
735		else
736			cmd = CONTROL_COMMAND_MODE_FREAD;
737	} else {
738		dev_err(chip->nor.dev, "unsupported SPI read mode\n");
739		return -EINVAL;
740	}
741
742	chip->ctl_val[smc_read] |= cmd |
743		CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
744
745	dev_dbg(controller->dev, "base control register: %08x\n",
746		chip->ctl_val[smc_read]);
747	return 0;
748}
749
750static const struct spi_nor_controller_ops aspeed_smc_controller_ops = {
751	.prepare = aspeed_smc_prep,
752	.unprepare = aspeed_smc_unprep,
753	.read_reg = aspeed_smc_read_reg,
754	.write_reg = aspeed_smc_write_reg,
755	.read = aspeed_smc_read_user,
756	.write = aspeed_smc_write_user,
757};
758
759static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
760				  struct device_node *np, struct resource *r)
761{
762	const struct spi_nor_hwcaps hwcaps = {
763		.mask = SNOR_HWCAPS_READ |
764			SNOR_HWCAPS_READ_FAST |
765			SNOR_HWCAPS_PP,
766	};
767	const struct aspeed_smc_info *info = controller->info;
768	struct device *dev = controller->dev;
769	struct device_node *child;
770	unsigned int cs;
771	int ret = -ENODEV;
772
773	for_each_available_child_of_node(np, child) {
774		struct aspeed_smc_chip *chip;
775		struct spi_nor *nor;
776		struct mtd_info *mtd;
777
778		/* This driver does not support NAND or NOR flash devices. */
779		if (!of_device_is_compatible(child, "jedec,spi-nor"))
780			continue;
781
782		ret = of_property_read_u32(child, "reg", &cs);
783		if (ret) {
784			dev_err(dev, "Couldn't not read chip select.\n");
785			break;
786		}
787
788		if (cs >= info->nce) {
789			dev_err(dev, "Chip select %d out of range.\n",
790				cs);
791			ret = -ERANGE;
792			break;
793		}
794
795		if (controller->chips[cs]) {
796			dev_err(dev, "Chip select %d already in use by %s\n",
797				cs, dev_name(controller->chips[cs]->nor.dev));
798			ret = -EBUSY;
799			break;
800		}
801
802		chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
803		if (!chip) {
804			ret = -ENOMEM;
805			break;
806		}
807
808		chip->controller = controller;
809		chip->ctl = controller->regs + info->ctl0 + cs * 4;
810		chip->cs = cs;
811
812		nor = &chip->nor;
813		mtd = &nor->mtd;
814
815		nor->dev = dev;
816		nor->priv = chip;
817		spi_nor_set_flash_node(nor, child);
818		nor->controller_ops = &aspeed_smc_controller_ops;
819
820		ret = aspeed_smc_chip_setup_init(chip, r);
821		if (ret)
822			break;
823
824		/*
825		 * TODO: Add support for Dual and Quad SPI protocols
826		 * attach when board support is present as determined
827		 * by of property.
828		 */
829		ret = spi_nor_scan(nor, NULL, &hwcaps);
830		if (ret)
831			break;
832
833		ret = aspeed_smc_chip_setup_finish(chip);
834		if (ret)
835			break;
836
837		ret = mtd_device_register(mtd, NULL, 0);
838		if (ret)
839			break;
840
841		controller->chips[cs] = chip;
842	}
843
844	if (ret) {
845		of_node_put(child);
846		aspeed_smc_unregister(controller);
847	}
848
849	return ret;
850}
851
852static int aspeed_smc_probe(struct platform_device *pdev)
853{
854	struct device_node *np = pdev->dev.of_node;
855	struct device *dev = &pdev->dev;
856	struct aspeed_smc_controller *controller;
857	const struct of_device_id *match;
858	const struct aspeed_smc_info *info;
859	struct resource *res;
860	int ret;
861
862	match = of_match_device(aspeed_smc_matches, &pdev->dev);
863	if (!match || !match->data)
864		return -ENODEV;
865	info = match->data;
866
867	controller = devm_kzalloc(&pdev->dev,
868				  struct_size(controller, chips, info->nce),
869				  GFP_KERNEL);
870	if (!controller)
871		return -ENOMEM;
872	controller->info = info;
873	controller->dev = dev;
874
875	mutex_init(&controller->mutex);
876	platform_set_drvdata(pdev, controller);
877
878	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
879	controller->regs = devm_ioremap_resource(dev, res);
880	if (IS_ERR(controller->regs))
881		return PTR_ERR(controller->regs);
882
883	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
884	controller->ahb_base = devm_ioremap_resource(dev, res);
885	if (IS_ERR(controller->ahb_base))
886		return PTR_ERR(controller->ahb_base);
887
888	controller->ahb_window_size = resource_size(res);
889
890	ret = aspeed_smc_setup_flash(controller, np, res);
891	if (ret)
892		dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
893
894	return ret;
895}
896
897static struct platform_driver aspeed_smc_driver = {
898	.probe = aspeed_smc_probe,
899	.remove = aspeed_smc_remove,
900	.driver = {
901		.name = DEVICE_NAME,
902		.of_match_table = aspeed_smc_matches,
903	}
904};
905
906module_platform_driver(aspeed_smc_driver);
907
908MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
909MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
910MODULE_LICENSE("GPL v2");
911