18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * ASPEED Static Memory Controller driver
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (c) 2015-2016, IBM Corporation.
68c2ecf20Sopenharmony_ci */
78c2ecf20Sopenharmony_ci
88c2ecf20Sopenharmony_ci#include <linux/bug.h>
98c2ecf20Sopenharmony_ci#include <linux/device.h>
108c2ecf20Sopenharmony_ci#include <linux/io.h>
118c2ecf20Sopenharmony_ci#include <linux/module.h>
128c2ecf20Sopenharmony_ci#include <linux/mutex.h>
138c2ecf20Sopenharmony_ci#include <linux/mtd/mtd.h>
148c2ecf20Sopenharmony_ci#include <linux/mtd/partitions.h>
158c2ecf20Sopenharmony_ci#include <linux/mtd/spi-nor.h>
168c2ecf20Sopenharmony_ci#include <linux/of.h>
178c2ecf20Sopenharmony_ci#include <linux/of_platform.h>
188c2ecf20Sopenharmony_ci#include <linux/sizes.h>
198c2ecf20Sopenharmony_ci#include <linux/sysfs.h>
208c2ecf20Sopenharmony_ci
218c2ecf20Sopenharmony_ci#define DEVICE_NAME	"aspeed-smc"
228c2ecf20Sopenharmony_ci
238c2ecf20Sopenharmony_ci/*
248c2ecf20Sopenharmony_ci * The driver only support SPI flash
258c2ecf20Sopenharmony_ci */
268c2ecf20Sopenharmony_cienum aspeed_smc_flash_type {
278c2ecf20Sopenharmony_ci	smc_type_nor  = 0,
288c2ecf20Sopenharmony_ci	smc_type_nand = 1,
298c2ecf20Sopenharmony_ci	smc_type_spi  = 2,
308c2ecf20Sopenharmony_ci};
318c2ecf20Sopenharmony_ci
328c2ecf20Sopenharmony_cistruct aspeed_smc_chip;
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_cistruct aspeed_smc_info {
358c2ecf20Sopenharmony_ci	u32 maxsize;		/* maximum size of chip window */
368c2ecf20Sopenharmony_ci	u8 nce;			/* number of chip enables */
378c2ecf20Sopenharmony_ci	bool hastype;		/* flash type field exists in config reg */
388c2ecf20Sopenharmony_ci	u8 we0;			/* shift for write enable bit for CE0 */
398c2ecf20Sopenharmony_ci	u8 ctl0;		/* offset in regs of ctl for CE0 */
408c2ecf20Sopenharmony_ci
418c2ecf20Sopenharmony_ci	void (*set_4b)(struct aspeed_smc_chip *chip);
428c2ecf20Sopenharmony_ci};
438c2ecf20Sopenharmony_ci
448c2ecf20Sopenharmony_cistatic void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
458c2ecf20Sopenharmony_cistatic void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
468c2ecf20Sopenharmony_ci
478c2ecf20Sopenharmony_cistatic const struct aspeed_smc_info fmc_2400_info = {
488c2ecf20Sopenharmony_ci	.maxsize = 64 * 1024 * 1024,
498c2ecf20Sopenharmony_ci	.nce = 5,
508c2ecf20Sopenharmony_ci	.hastype = true,
518c2ecf20Sopenharmony_ci	.we0 = 16,
528c2ecf20Sopenharmony_ci	.ctl0 = 0x10,
538c2ecf20Sopenharmony_ci	.set_4b = aspeed_smc_chip_set_4b,
548c2ecf20Sopenharmony_ci};
558c2ecf20Sopenharmony_ci
568c2ecf20Sopenharmony_cistatic const struct aspeed_smc_info spi_2400_info = {
578c2ecf20Sopenharmony_ci	.maxsize = 64 * 1024 * 1024,
588c2ecf20Sopenharmony_ci	.nce = 1,
598c2ecf20Sopenharmony_ci	.hastype = false,
608c2ecf20Sopenharmony_ci	.we0 = 0,
618c2ecf20Sopenharmony_ci	.ctl0 = 0x04,
628c2ecf20Sopenharmony_ci	.set_4b = aspeed_smc_chip_set_4b_spi_2400,
638c2ecf20Sopenharmony_ci};
648c2ecf20Sopenharmony_ci
658c2ecf20Sopenharmony_cistatic const struct aspeed_smc_info fmc_2500_info = {
668c2ecf20Sopenharmony_ci	.maxsize = 256 * 1024 * 1024,
678c2ecf20Sopenharmony_ci	.nce = 3,
688c2ecf20Sopenharmony_ci	.hastype = true,
698c2ecf20Sopenharmony_ci	.we0 = 16,
708c2ecf20Sopenharmony_ci	.ctl0 = 0x10,
718c2ecf20Sopenharmony_ci	.set_4b = aspeed_smc_chip_set_4b,
728c2ecf20Sopenharmony_ci};
738c2ecf20Sopenharmony_ci
748c2ecf20Sopenharmony_cistatic const struct aspeed_smc_info spi_2500_info = {
758c2ecf20Sopenharmony_ci	.maxsize = 128 * 1024 * 1024,
768c2ecf20Sopenharmony_ci	.nce = 2,
778c2ecf20Sopenharmony_ci	.hastype = false,
788c2ecf20Sopenharmony_ci	.we0 = 16,
798c2ecf20Sopenharmony_ci	.ctl0 = 0x10,
808c2ecf20Sopenharmony_ci	.set_4b = aspeed_smc_chip_set_4b,
818c2ecf20Sopenharmony_ci};
828c2ecf20Sopenharmony_ci
838c2ecf20Sopenharmony_cienum aspeed_smc_ctl_reg_value {
848c2ecf20Sopenharmony_ci	smc_base,		/* base value without mode for other commands */
858c2ecf20Sopenharmony_ci	smc_read,		/* command reg for (maybe fast) reads */
868c2ecf20Sopenharmony_ci	smc_write,		/* command reg for writes */
878c2ecf20Sopenharmony_ci	smc_max,
888c2ecf20Sopenharmony_ci};
898c2ecf20Sopenharmony_ci
908c2ecf20Sopenharmony_cistruct aspeed_smc_controller;
918c2ecf20Sopenharmony_ci
928c2ecf20Sopenharmony_cistruct aspeed_smc_chip {
938c2ecf20Sopenharmony_ci	int cs;
948c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller;
958c2ecf20Sopenharmony_ci	void __iomem *ctl;			/* control register */
968c2ecf20Sopenharmony_ci	void __iomem *ahb_base;			/* base of chip window */
978c2ecf20Sopenharmony_ci	u32 ahb_window_size;			/* chip mapping window size */
988c2ecf20Sopenharmony_ci	u32 ctl_val[smc_max];			/* control settings */
998c2ecf20Sopenharmony_ci	enum aspeed_smc_flash_type type;	/* what type of flash */
1008c2ecf20Sopenharmony_ci	struct spi_nor nor;
1018c2ecf20Sopenharmony_ci};
1028c2ecf20Sopenharmony_ci
1038c2ecf20Sopenharmony_cistruct aspeed_smc_controller {
1048c2ecf20Sopenharmony_ci	struct device *dev;
1058c2ecf20Sopenharmony_ci
1068c2ecf20Sopenharmony_ci	struct mutex mutex;			/* controller access mutex */
1078c2ecf20Sopenharmony_ci	const struct aspeed_smc_info *info;	/* type info of controller */
1088c2ecf20Sopenharmony_ci	void __iomem *regs;			/* controller registers */
1098c2ecf20Sopenharmony_ci	void __iomem *ahb_base;			/* per-chip windows resource */
1108c2ecf20Sopenharmony_ci	u32 ahb_window_size;			/* full mapping window size */
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chips[];	/* pointers to attached chips */
1138c2ecf20Sopenharmony_ci};
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci/*
1168c2ecf20Sopenharmony_ci * SPI Flash Configuration Register (AST2500 SPI)
1178c2ecf20Sopenharmony_ci *     or
1188c2ecf20Sopenharmony_ci * Type setting Register (AST2500 FMC).
1198c2ecf20Sopenharmony_ci * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
1208c2ecf20Sopenharmony_ci * driver does not support it.
1218c2ecf20Sopenharmony_ci */
1228c2ecf20Sopenharmony_ci#define CONFIG_REG			0x0
1238c2ecf20Sopenharmony_ci#define CONFIG_DISABLE_LEGACY		BIT(31) /* 1 */
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci#define CONFIG_CE2_WRITE		BIT(18)
1268c2ecf20Sopenharmony_ci#define CONFIG_CE1_WRITE		BIT(17)
1278c2ecf20Sopenharmony_ci#define CONFIG_CE0_WRITE		BIT(16)
1288c2ecf20Sopenharmony_ci
1298c2ecf20Sopenharmony_ci#define CONFIG_CE2_TYPE			BIT(4) /* AST2500 FMC only */
1308c2ecf20Sopenharmony_ci#define CONFIG_CE1_TYPE			BIT(2) /* AST2500 FMC only */
1318c2ecf20Sopenharmony_ci#define CONFIG_CE0_TYPE			BIT(0) /* AST2500 FMC only */
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_ci/*
1348c2ecf20Sopenharmony_ci * CE Control Register
1358c2ecf20Sopenharmony_ci */
1368c2ecf20Sopenharmony_ci#define CE_CONTROL_REG			0x4
1378c2ecf20Sopenharmony_ci
1388c2ecf20Sopenharmony_ci/*
1398c2ecf20Sopenharmony_ci * CEx Control Register
1408c2ecf20Sopenharmony_ci */
1418c2ecf20Sopenharmony_ci#define CONTROL_AAF_MODE		BIT(31)
1428c2ecf20Sopenharmony_ci#define CONTROL_IO_MODE_MASK		GENMASK(30, 28)
1438c2ecf20Sopenharmony_ci#define CONTROL_IO_DUAL_DATA		BIT(29)
1448c2ecf20Sopenharmony_ci#define CONTROL_IO_DUAL_ADDR_DATA	(BIT(29) | BIT(28))
1458c2ecf20Sopenharmony_ci#define CONTROL_IO_QUAD_DATA		BIT(30)
1468c2ecf20Sopenharmony_ci#define CONTROL_IO_QUAD_ADDR_DATA	(BIT(30) | BIT(28))
1478c2ecf20Sopenharmony_ci#define CONTROL_CE_INACTIVE_SHIFT	24
1488c2ecf20Sopenharmony_ci#define CONTROL_CE_INACTIVE_MASK	GENMASK(27, \
1498c2ecf20Sopenharmony_ci					CONTROL_CE_INACTIVE_SHIFT)
1508c2ecf20Sopenharmony_ci/* 0 = 16T ... 15 = 1T   T=HCLK */
1518c2ecf20Sopenharmony_ci#define CONTROL_COMMAND_SHIFT		16
1528c2ecf20Sopenharmony_ci#define CONTROL_DUMMY_COMMAND_OUT	BIT(15)
1538c2ecf20Sopenharmony_ci#define CONTROL_IO_DUMMY_HI		BIT(14)
1548c2ecf20Sopenharmony_ci#define CONTROL_IO_DUMMY_HI_SHIFT	14
1558c2ecf20Sopenharmony_ci#define CONTROL_CLK_DIV4		BIT(13) /* others */
1568c2ecf20Sopenharmony_ci#define CONTROL_IO_ADDRESS_4B		BIT(13) /* AST2400 SPI */
1578c2ecf20Sopenharmony_ci#define CONTROL_RW_MERGE		BIT(12)
1588c2ecf20Sopenharmony_ci#define CONTROL_IO_DUMMY_LO_SHIFT	6
1598c2ecf20Sopenharmony_ci#define CONTROL_IO_DUMMY_LO		GENMASK(7, \
1608c2ecf20Sopenharmony_ci						CONTROL_IO_DUMMY_LO_SHIFT)
1618c2ecf20Sopenharmony_ci#define CONTROL_IO_DUMMY_MASK		(CONTROL_IO_DUMMY_HI | \
1628c2ecf20Sopenharmony_ci					 CONTROL_IO_DUMMY_LO)
1638c2ecf20Sopenharmony_ci#define CONTROL_IO_DUMMY_SET(dummy)				 \
1648c2ecf20Sopenharmony_ci	(((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
1658c2ecf20Sopenharmony_ci	 (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
1668c2ecf20Sopenharmony_ci
1678c2ecf20Sopenharmony_ci#define CONTROL_CLOCK_FREQ_SEL_SHIFT	8
1688c2ecf20Sopenharmony_ci#define CONTROL_CLOCK_FREQ_SEL_MASK	GENMASK(11, \
1698c2ecf20Sopenharmony_ci						CONTROL_CLOCK_FREQ_SEL_SHIFT)
1708c2ecf20Sopenharmony_ci#define CONTROL_LSB_FIRST		BIT(5)
1718c2ecf20Sopenharmony_ci#define CONTROL_CLOCK_MODE_3		BIT(4)
1728c2ecf20Sopenharmony_ci#define CONTROL_IN_DUAL_DATA		BIT(3)
1738c2ecf20Sopenharmony_ci#define CONTROL_CE_STOP_ACTIVE_CONTROL	BIT(2)
1748c2ecf20Sopenharmony_ci#define CONTROL_COMMAND_MODE_MASK	GENMASK(1, 0)
1758c2ecf20Sopenharmony_ci#define CONTROL_COMMAND_MODE_NORMAL	0
1768c2ecf20Sopenharmony_ci#define CONTROL_COMMAND_MODE_FREAD	1
1778c2ecf20Sopenharmony_ci#define CONTROL_COMMAND_MODE_WRITE	2
1788c2ecf20Sopenharmony_ci#define CONTROL_COMMAND_MODE_USER	3
1798c2ecf20Sopenharmony_ci
1808c2ecf20Sopenharmony_ci#define CONTROL_KEEP_MASK						\
1818c2ecf20Sopenharmony_ci	(CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
1828c2ecf20Sopenharmony_ci	 CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
1838c2ecf20Sopenharmony_ci
1848c2ecf20Sopenharmony_ci/*
1858c2ecf20Sopenharmony_ci * The Segment Register uses a 8MB unit to encode the start address
1868c2ecf20Sopenharmony_ci * and the end address of the mapping window of a flash SPI slave :
1878c2ecf20Sopenharmony_ci *
1888c2ecf20Sopenharmony_ci *        | byte 1 | byte 2 | byte 3 | byte 4 |
1898c2ecf20Sopenharmony_ci *        +--------+--------+--------+--------+
1908c2ecf20Sopenharmony_ci *        |  end   |  start |   0    |   0    |
1918c2ecf20Sopenharmony_ci */
1928c2ecf20Sopenharmony_ci#define SEGMENT_ADDR_REG0		0x30
1938c2ecf20Sopenharmony_ci#define SEGMENT_ADDR_START(_r)		((((_r) >> 16) & 0xFF) << 23)
1948c2ecf20Sopenharmony_ci#define SEGMENT_ADDR_END(_r)		((((_r) >> 24) & 0xFF) << 23)
1958c2ecf20Sopenharmony_ci#define SEGMENT_ADDR_VALUE(start, end)					\
1968c2ecf20Sopenharmony_ci	(((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
1978c2ecf20Sopenharmony_ci#define SEGMENT_ADDR_REG(controller, cs)	\
1988c2ecf20Sopenharmony_ci	((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)
1998c2ecf20Sopenharmony_ci
2008c2ecf20Sopenharmony_ci/*
2018c2ecf20Sopenharmony_ci * In user mode all data bytes read or written to the chip decode address
2028c2ecf20Sopenharmony_ci * range are transferred to or from the SPI bus. The range is treated as a
2038c2ecf20Sopenharmony_ci * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
2048c2ecf20Sopenharmony_ci * to its size. The address within the multiple 8kB range is ignored when
2058c2ecf20Sopenharmony_ci * sending bytes to the SPI bus.
2068c2ecf20Sopenharmony_ci *
2078c2ecf20Sopenharmony_ci * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
2088c2ecf20Sopenharmony_ci * memcpy_toio on little endian targets use the optimized memcpy routines
2098c2ecf20Sopenharmony_ci * that were designed for well behavied memory storage. These routines
2108c2ecf20Sopenharmony_ci * have a stutter if the source and destination are not both word aligned,
2118c2ecf20Sopenharmony_ci * once with a duplicate access to the source after aligning to the
2128c2ecf20Sopenharmony_ci * destination to a word boundary, and again with a duplicate access to
2138c2ecf20Sopenharmony_ci * the source when the final byte count is not word aligned.
2148c2ecf20Sopenharmony_ci *
2158c2ecf20Sopenharmony_ci * When writing or reading the fifo this stutter discards data or sends
2168c2ecf20Sopenharmony_ci * too much data to the fifo and can not be used by this driver.
2178c2ecf20Sopenharmony_ci *
2188c2ecf20Sopenharmony_ci * While the low level io string routines that implement the insl family do
2198c2ecf20Sopenharmony_ci * the desired accesses and memory increments, the cross architecture io
2208c2ecf20Sopenharmony_ci * macros make them essentially impossible to use on a memory mapped address
2218c2ecf20Sopenharmony_ci * instead of a a token from the call to iomap of an io port.
2228c2ecf20Sopenharmony_ci *
2238c2ecf20Sopenharmony_ci * These fifo routines use readl and friends to a constant io port and update
2248c2ecf20Sopenharmony_ci * the memory buffer pointer and count via explicit code. The final updates
2258c2ecf20Sopenharmony_ci * to len are optimistically suppressed.
2268c2ecf20Sopenharmony_ci */
2278c2ecf20Sopenharmony_cistatic int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
2288c2ecf20Sopenharmony_ci{
2298c2ecf20Sopenharmony_ci	size_t offset = 0;
2308c2ecf20Sopenharmony_ci
2318c2ecf20Sopenharmony_ci	if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
2328c2ecf20Sopenharmony_ci	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
2338c2ecf20Sopenharmony_ci		ioread32_rep(src, buf, len >> 2);
2348c2ecf20Sopenharmony_ci		offset = len & ~0x3;
2358c2ecf20Sopenharmony_ci		len -= offset;
2368c2ecf20Sopenharmony_ci	}
2378c2ecf20Sopenharmony_ci	ioread8_rep(src, (u8 *)buf + offset, len);
2388c2ecf20Sopenharmony_ci	return 0;
2398c2ecf20Sopenharmony_ci}
2408c2ecf20Sopenharmony_ci
2418c2ecf20Sopenharmony_cistatic int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
2428c2ecf20Sopenharmony_ci				   size_t len)
2438c2ecf20Sopenharmony_ci{
2448c2ecf20Sopenharmony_ci	size_t offset = 0;
2458c2ecf20Sopenharmony_ci
2468c2ecf20Sopenharmony_ci	if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
2478c2ecf20Sopenharmony_ci	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
2488c2ecf20Sopenharmony_ci		iowrite32_rep(dst, buf, len >> 2);
2498c2ecf20Sopenharmony_ci		offset = len & ~0x3;
2508c2ecf20Sopenharmony_ci		len -= offset;
2518c2ecf20Sopenharmony_ci	}
2528c2ecf20Sopenharmony_ci	iowrite8_rep(dst, (const u8 *)buf + offset, len);
2538c2ecf20Sopenharmony_ci	return 0;
2548c2ecf20Sopenharmony_ci}
2558c2ecf20Sopenharmony_ci
2568c2ecf20Sopenharmony_cistatic inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
2578c2ecf20Sopenharmony_ci{
2588c2ecf20Sopenharmony_ci	return BIT(chip->controller->info->we0 + chip->cs);
2598c2ecf20Sopenharmony_ci}
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_cistatic void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
2628c2ecf20Sopenharmony_ci{
2638c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller = chip->controller;
2648c2ecf20Sopenharmony_ci	u32 reg;
2658c2ecf20Sopenharmony_ci
2668c2ecf20Sopenharmony_ci	reg = readl(controller->regs + CONFIG_REG);
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_ci	if (reg & aspeed_smc_chip_write_bit(chip))
2698c2ecf20Sopenharmony_ci		return;
2708c2ecf20Sopenharmony_ci
2718c2ecf20Sopenharmony_ci	dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
2728c2ecf20Sopenharmony_ci		controller->regs + CONFIG_REG, reg);
2738c2ecf20Sopenharmony_ci	reg |= aspeed_smc_chip_write_bit(chip);
2748c2ecf20Sopenharmony_ci	writel(reg, controller->regs + CONFIG_REG);
2758c2ecf20Sopenharmony_ci}
2768c2ecf20Sopenharmony_ci
2778c2ecf20Sopenharmony_cistatic void aspeed_smc_start_user(struct spi_nor *nor)
2788c2ecf20Sopenharmony_ci{
2798c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chip = nor->priv;
2808c2ecf20Sopenharmony_ci	u32 ctl = chip->ctl_val[smc_base];
2818c2ecf20Sopenharmony_ci
2828c2ecf20Sopenharmony_ci	/*
2838c2ecf20Sopenharmony_ci	 * When the chip is controlled in user mode, we need write
2848c2ecf20Sopenharmony_ci	 * access to send the opcodes to it. So check the config.
2858c2ecf20Sopenharmony_ci	 */
2868c2ecf20Sopenharmony_ci	aspeed_smc_chip_check_config(chip);
2878c2ecf20Sopenharmony_ci
2888c2ecf20Sopenharmony_ci	ctl |= CONTROL_COMMAND_MODE_USER |
2898c2ecf20Sopenharmony_ci		CONTROL_CE_STOP_ACTIVE_CONTROL;
2908c2ecf20Sopenharmony_ci	writel(ctl, chip->ctl);
2918c2ecf20Sopenharmony_ci
2928c2ecf20Sopenharmony_ci	ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
2938c2ecf20Sopenharmony_ci	writel(ctl, chip->ctl);
2948c2ecf20Sopenharmony_ci}
2958c2ecf20Sopenharmony_ci
2968c2ecf20Sopenharmony_cistatic void aspeed_smc_stop_user(struct spi_nor *nor)
2978c2ecf20Sopenharmony_ci{
2988c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chip = nor->priv;
2998c2ecf20Sopenharmony_ci
3008c2ecf20Sopenharmony_ci	u32 ctl = chip->ctl_val[smc_read];
3018c2ecf20Sopenharmony_ci	u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
3028c2ecf20Sopenharmony_ci		CONTROL_CE_STOP_ACTIVE_CONTROL;
3038c2ecf20Sopenharmony_ci
3048c2ecf20Sopenharmony_ci	writel(ctl2, chip->ctl);	/* stop user CE control */
3058c2ecf20Sopenharmony_ci	writel(ctl, chip->ctl);		/* default to fread or read mode */
3068c2ecf20Sopenharmony_ci}
3078c2ecf20Sopenharmony_ci
3088c2ecf20Sopenharmony_cistatic int aspeed_smc_prep(struct spi_nor *nor)
3098c2ecf20Sopenharmony_ci{
3108c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chip = nor->priv;
3118c2ecf20Sopenharmony_ci
3128c2ecf20Sopenharmony_ci	mutex_lock(&chip->controller->mutex);
3138c2ecf20Sopenharmony_ci	return 0;
3148c2ecf20Sopenharmony_ci}
3158c2ecf20Sopenharmony_ci
3168c2ecf20Sopenharmony_cistatic void aspeed_smc_unprep(struct spi_nor *nor)
3178c2ecf20Sopenharmony_ci{
3188c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chip = nor->priv;
3198c2ecf20Sopenharmony_ci
3208c2ecf20Sopenharmony_ci	mutex_unlock(&chip->controller->mutex);
3218c2ecf20Sopenharmony_ci}
3228c2ecf20Sopenharmony_ci
3238c2ecf20Sopenharmony_cistatic int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
3248c2ecf20Sopenharmony_ci			       size_t len)
3258c2ecf20Sopenharmony_ci{
3268c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chip = nor->priv;
3278c2ecf20Sopenharmony_ci
3288c2ecf20Sopenharmony_ci	aspeed_smc_start_user(nor);
3298c2ecf20Sopenharmony_ci	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
3308c2ecf20Sopenharmony_ci	aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
3318c2ecf20Sopenharmony_ci	aspeed_smc_stop_user(nor);
3328c2ecf20Sopenharmony_ci	return 0;
3338c2ecf20Sopenharmony_ci}
3348c2ecf20Sopenharmony_ci
3358c2ecf20Sopenharmony_cistatic int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
3368c2ecf20Sopenharmony_ci				size_t len)
3378c2ecf20Sopenharmony_ci{
3388c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chip = nor->priv;
3398c2ecf20Sopenharmony_ci
3408c2ecf20Sopenharmony_ci	aspeed_smc_start_user(nor);
3418c2ecf20Sopenharmony_ci	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
3428c2ecf20Sopenharmony_ci	aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
3438c2ecf20Sopenharmony_ci	aspeed_smc_stop_user(nor);
3448c2ecf20Sopenharmony_ci	return 0;
3458c2ecf20Sopenharmony_ci}
3468c2ecf20Sopenharmony_ci
3478c2ecf20Sopenharmony_cistatic void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
3488c2ecf20Sopenharmony_ci{
3498c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chip = nor->priv;
3508c2ecf20Sopenharmony_ci	__be32 temp;
3518c2ecf20Sopenharmony_ci	u32 cmdaddr;
3528c2ecf20Sopenharmony_ci
3538c2ecf20Sopenharmony_ci	switch (nor->addr_width) {
3548c2ecf20Sopenharmony_ci	default:
3558c2ecf20Sopenharmony_ci		WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
3568c2ecf20Sopenharmony_ci			  nor->addr_width);
3578c2ecf20Sopenharmony_ci		fallthrough;
3588c2ecf20Sopenharmony_ci	case 3:
3598c2ecf20Sopenharmony_ci		cmdaddr = addr & 0xFFFFFF;
3608c2ecf20Sopenharmony_ci		cmdaddr |= cmd << 24;
3618c2ecf20Sopenharmony_ci
3628c2ecf20Sopenharmony_ci		temp = cpu_to_be32(cmdaddr);
3638c2ecf20Sopenharmony_ci		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
3648c2ecf20Sopenharmony_ci		break;
3658c2ecf20Sopenharmony_ci	case 4:
3668c2ecf20Sopenharmony_ci		temp = cpu_to_be32(addr);
3678c2ecf20Sopenharmony_ci		aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
3688c2ecf20Sopenharmony_ci		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
3698c2ecf20Sopenharmony_ci		break;
3708c2ecf20Sopenharmony_ci	}
3718c2ecf20Sopenharmony_ci}
3728c2ecf20Sopenharmony_ci
3738c2ecf20Sopenharmony_cistatic ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
3748c2ecf20Sopenharmony_ci				    size_t len, u_char *read_buf)
3758c2ecf20Sopenharmony_ci{
3768c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chip = nor->priv;
3778c2ecf20Sopenharmony_ci	int i;
3788c2ecf20Sopenharmony_ci	u8 dummy = 0xFF;
3798c2ecf20Sopenharmony_ci
3808c2ecf20Sopenharmony_ci	aspeed_smc_start_user(nor);
3818c2ecf20Sopenharmony_ci	aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
3828c2ecf20Sopenharmony_ci	for (i = 0; i < chip->nor.read_dummy / 8; i++)
3838c2ecf20Sopenharmony_ci		aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
3848c2ecf20Sopenharmony_ci
3858c2ecf20Sopenharmony_ci	aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
3868c2ecf20Sopenharmony_ci	aspeed_smc_stop_user(nor);
3878c2ecf20Sopenharmony_ci	return len;
3888c2ecf20Sopenharmony_ci}
3898c2ecf20Sopenharmony_ci
3908c2ecf20Sopenharmony_cistatic ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
3918c2ecf20Sopenharmony_ci				     size_t len, const u_char *write_buf)
3928c2ecf20Sopenharmony_ci{
3938c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chip = nor->priv;
3948c2ecf20Sopenharmony_ci
3958c2ecf20Sopenharmony_ci	aspeed_smc_start_user(nor);
3968c2ecf20Sopenharmony_ci	aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
3978c2ecf20Sopenharmony_ci	aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
3988c2ecf20Sopenharmony_ci	aspeed_smc_stop_user(nor);
3998c2ecf20Sopenharmony_ci	return len;
4008c2ecf20Sopenharmony_ci}
4018c2ecf20Sopenharmony_ci
4028c2ecf20Sopenharmony_cistatic int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
4038c2ecf20Sopenharmony_ci{
4048c2ecf20Sopenharmony_ci	struct aspeed_smc_chip *chip;
4058c2ecf20Sopenharmony_ci	int n;
4068c2ecf20Sopenharmony_ci
4078c2ecf20Sopenharmony_ci	for (n = 0; n < controller->info->nce; n++) {
4088c2ecf20Sopenharmony_ci		chip = controller->chips[n];
4098c2ecf20Sopenharmony_ci		if (chip)
4108c2ecf20Sopenharmony_ci			mtd_device_unregister(&chip->nor.mtd);
4118c2ecf20Sopenharmony_ci	}
4128c2ecf20Sopenharmony_ci
4138c2ecf20Sopenharmony_ci	return 0;
4148c2ecf20Sopenharmony_ci}
4158c2ecf20Sopenharmony_ci
4168c2ecf20Sopenharmony_cistatic int aspeed_smc_remove(struct platform_device *dev)
4178c2ecf20Sopenharmony_ci{
4188c2ecf20Sopenharmony_ci	return aspeed_smc_unregister(platform_get_drvdata(dev));
4198c2ecf20Sopenharmony_ci}
4208c2ecf20Sopenharmony_ci
4218c2ecf20Sopenharmony_cistatic const struct of_device_id aspeed_smc_matches[] = {
4228c2ecf20Sopenharmony_ci	{ .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
4238c2ecf20Sopenharmony_ci	{ .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
4248c2ecf20Sopenharmony_ci	{ .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
4258c2ecf20Sopenharmony_ci	{ .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
4268c2ecf20Sopenharmony_ci	{ }
4278c2ecf20Sopenharmony_ci};
4288c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, aspeed_smc_matches);
4298c2ecf20Sopenharmony_ci
4308c2ecf20Sopenharmony_ci/*
4318c2ecf20Sopenharmony_ci * Each chip has a mapping window defined by a segment address
4328c2ecf20Sopenharmony_ci * register defining a start and an end address on the AHB bus. These
4338c2ecf20Sopenharmony_ci * addresses can be configured to fit the chip size and offer a
4348c2ecf20Sopenharmony_ci * contiguous memory region across chips. For the moment, we only
4358c2ecf20Sopenharmony_ci * check that each chip segment is valid.
4368c2ecf20Sopenharmony_ci */
4378c2ecf20Sopenharmony_cistatic void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
4388c2ecf20Sopenharmony_ci					  struct resource *res)
4398c2ecf20Sopenharmony_ci{
4408c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller = chip->controller;
4418c2ecf20Sopenharmony_ci	u32 offset = 0;
4428c2ecf20Sopenharmony_ci	u32 reg;
4438c2ecf20Sopenharmony_ci
4448c2ecf20Sopenharmony_ci	if (controller->info->nce > 1) {
4458c2ecf20Sopenharmony_ci		reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));
4468c2ecf20Sopenharmony_ci
4478c2ecf20Sopenharmony_ci		if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
4488c2ecf20Sopenharmony_ci			return NULL;
4498c2ecf20Sopenharmony_ci
4508c2ecf20Sopenharmony_ci		offset = SEGMENT_ADDR_START(reg) - res->start;
4518c2ecf20Sopenharmony_ci	}
4528c2ecf20Sopenharmony_ci
4538c2ecf20Sopenharmony_ci	return controller->ahb_base + offset;
4548c2ecf20Sopenharmony_ci}
4558c2ecf20Sopenharmony_ci
4568c2ecf20Sopenharmony_cistatic u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
4578c2ecf20Sopenharmony_ci{
4588c2ecf20Sopenharmony_ci	u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));
4598c2ecf20Sopenharmony_ci
4608c2ecf20Sopenharmony_ci	return SEGMENT_ADDR_START(seg0_val);
4618c2ecf20Sopenharmony_ci}
4628c2ecf20Sopenharmony_ci
4638c2ecf20Sopenharmony_cistatic u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
4648c2ecf20Sopenharmony_ci			    u32 size)
4658c2ecf20Sopenharmony_ci{
4668c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller = chip->controller;
4678c2ecf20Sopenharmony_ci	void __iomem *seg_reg;
4688c2ecf20Sopenharmony_ci	u32 seg_oldval, seg_newval, ahb_base_phy, end;
4698c2ecf20Sopenharmony_ci
4708c2ecf20Sopenharmony_ci	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
4718c2ecf20Sopenharmony_ci
4728c2ecf20Sopenharmony_ci	seg_reg = SEGMENT_ADDR_REG(controller, cs);
4738c2ecf20Sopenharmony_ci	seg_oldval = readl(seg_reg);
4748c2ecf20Sopenharmony_ci
4758c2ecf20Sopenharmony_ci	/*
4768c2ecf20Sopenharmony_ci	 * If the chip size is not specified, use the default segment
4778c2ecf20Sopenharmony_ci	 * size, but take into account the possible overlap with the
4788c2ecf20Sopenharmony_ci	 * previous segment
4798c2ecf20Sopenharmony_ci	 */
4808c2ecf20Sopenharmony_ci	if (!size)
4818c2ecf20Sopenharmony_ci		size = SEGMENT_ADDR_END(seg_oldval) - start;
4828c2ecf20Sopenharmony_ci
4838c2ecf20Sopenharmony_ci	/*
4848c2ecf20Sopenharmony_ci	 * The segment cannot exceed the maximum window size of the
4858c2ecf20Sopenharmony_ci	 * controller.
4868c2ecf20Sopenharmony_ci	 */
4878c2ecf20Sopenharmony_ci	if (start + size > ahb_base_phy + controller->ahb_window_size) {
4888c2ecf20Sopenharmony_ci		size = ahb_base_phy + controller->ahb_window_size - start;
4898c2ecf20Sopenharmony_ci		dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
4908c2ecf20Sopenharmony_ci			 cs, size >> 20);
4918c2ecf20Sopenharmony_ci	}
4928c2ecf20Sopenharmony_ci
4938c2ecf20Sopenharmony_ci	end = start + size;
4948c2ecf20Sopenharmony_ci	seg_newval = SEGMENT_ADDR_VALUE(start, end);
4958c2ecf20Sopenharmony_ci	writel(seg_newval, seg_reg);
4968c2ecf20Sopenharmony_ci
4978c2ecf20Sopenharmony_ci	/*
4988c2ecf20Sopenharmony_ci	 * Restore default value if something goes wrong. The chip
4998c2ecf20Sopenharmony_ci	 * might have set some bogus value and we would loose access
5008c2ecf20Sopenharmony_ci	 * to the chip.
5018c2ecf20Sopenharmony_ci	 */
5028c2ecf20Sopenharmony_ci	if (seg_newval != readl(seg_reg)) {
5038c2ecf20Sopenharmony_ci		dev_err(chip->nor.dev, "CE%d window invalid", cs);
5048c2ecf20Sopenharmony_ci		writel(seg_oldval, seg_reg);
5058c2ecf20Sopenharmony_ci		start = SEGMENT_ADDR_START(seg_oldval);
5068c2ecf20Sopenharmony_ci		end = SEGMENT_ADDR_END(seg_oldval);
5078c2ecf20Sopenharmony_ci		size = end - start;
5088c2ecf20Sopenharmony_ci	}
5098c2ecf20Sopenharmony_ci
5108c2ecf20Sopenharmony_ci	dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
5118c2ecf20Sopenharmony_ci		 cs, start, end, size >> 20);
5128c2ecf20Sopenharmony_ci
5138c2ecf20Sopenharmony_ci	return size;
5148c2ecf20Sopenharmony_ci}
5158c2ecf20Sopenharmony_ci
5168c2ecf20Sopenharmony_ci/*
5178c2ecf20Sopenharmony_ci * The segment register defines the mapping window on the AHB bus and
5188c2ecf20Sopenharmony_ci * it needs to be configured depending on the chip size. The segment
5198c2ecf20Sopenharmony_ci * register of the following CE also needs to be tuned in order to
5208c2ecf20Sopenharmony_ci * provide a contiguous window across multiple chips.
5218c2ecf20Sopenharmony_ci *
5228c2ecf20Sopenharmony_ci * This is expected to be called in increasing CE order
5238c2ecf20Sopenharmony_ci */
5248c2ecf20Sopenharmony_cistatic u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
5258c2ecf20Sopenharmony_ci{
5268c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller = chip->controller;
5278c2ecf20Sopenharmony_ci	u32 ahb_base_phy, start;
5288c2ecf20Sopenharmony_ci	u32 size = chip->nor.mtd.size;
5298c2ecf20Sopenharmony_ci
5308c2ecf20Sopenharmony_ci	/*
5318c2ecf20Sopenharmony_ci	 * Each controller has a chip size limit for direct memory
5328c2ecf20Sopenharmony_ci	 * access
5338c2ecf20Sopenharmony_ci	 */
5348c2ecf20Sopenharmony_ci	if (size > controller->info->maxsize)
5358c2ecf20Sopenharmony_ci		size = controller->info->maxsize;
5368c2ecf20Sopenharmony_ci
5378c2ecf20Sopenharmony_ci	/*
5388c2ecf20Sopenharmony_ci	 * The AST2400 SPI controller only handles one chip and does
5398c2ecf20Sopenharmony_ci	 * not have segment registers. Let's use the chip size for the
5408c2ecf20Sopenharmony_ci	 * AHB window.
5418c2ecf20Sopenharmony_ci	 */
5428c2ecf20Sopenharmony_ci	if (controller->info == &spi_2400_info)
5438c2ecf20Sopenharmony_ci		goto out;
5448c2ecf20Sopenharmony_ci
5458c2ecf20Sopenharmony_ci	/*
5468c2ecf20Sopenharmony_ci	 * The AST2500 SPI controller has a HW bug when the CE0 chip
5478c2ecf20Sopenharmony_ci	 * size reaches 128MB. Enforce a size limit of 120MB to
5488c2ecf20Sopenharmony_ci	 * prevent the controller from using bogus settings in the
5498c2ecf20Sopenharmony_ci	 * segment register.
5508c2ecf20Sopenharmony_ci	 */
5518c2ecf20Sopenharmony_ci	if (chip->cs == 0 && controller->info == &spi_2500_info &&
5528c2ecf20Sopenharmony_ci	    size == SZ_128M) {
5538c2ecf20Sopenharmony_ci		size = 120 << 20;
5548c2ecf20Sopenharmony_ci		dev_info(chip->nor.dev,
5558c2ecf20Sopenharmony_ci			 "CE%d window resized to %dMB (AST2500 HW quirk)",
5568c2ecf20Sopenharmony_ci			 chip->cs, size >> 20);
5578c2ecf20Sopenharmony_ci	}
5588c2ecf20Sopenharmony_ci
5598c2ecf20Sopenharmony_ci	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
5608c2ecf20Sopenharmony_ci
5618c2ecf20Sopenharmony_ci	/*
5628c2ecf20Sopenharmony_ci	 * As a start address for the current segment, use the default
5638c2ecf20Sopenharmony_ci	 * start address if we are handling CE0 or use the previous
5648c2ecf20Sopenharmony_ci	 * segment ending address
5658c2ecf20Sopenharmony_ci	 */
5668c2ecf20Sopenharmony_ci	if (chip->cs) {
5678c2ecf20Sopenharmony_ci		u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));
5688c2ecf20Sopenharmony_ci
5698c2ecf20Sopenharmony_ci		start = SEGMENT_ADDR_END(prev);
5708c2ecf20Sopenharmony_ci	} else {
5718c2ecf20Sopenharmony_ci		start = ahb_base_phy;
5728c2ecf20Sopenharmony_ci	}
5738c2ecf20Sopenharmony_ci
5748c2ecf20Sopenharmony_ci	size = chip_set_segment(chip, chip->cs, start, size);
5758c2ecf20Sopenharmony_ci
5768c2ecf20Sopenharmony_ci	/* Update chip base address on the AHB bus */
5778c2ecf20Sopenharmony_ci	chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);
5788c2ecf20Sopenharmony_ci
5798c2ecf20Sopenharmony_ci	/*
5808c2ecf20Sopenharmony_ci	 * Now, make sure the next segment does not overlap with the
5818c2ecf20Sopenharmony_ci	 * current one we just configured, even if there is no
5828c2ecf20Sopenharmony_ci	 * available chip. That could break access in Command Mode.
5838c2ecf20Sopenharmony_ci	 */
5848c2ecf20Sopenharmony_ci	if (chip->cs < controller->info->nce - 1)
5858c2ecf20Sopenharmony_ci		chip_set_segment(chip, chip->cs + 1, start + size, 0);
5868c2ecf20Sopenharmony_ci
5878c2ecf20Sopenharmony_ciout:
5888c2ecf20Sopenharmony_ci	if (size < chip->nor.mtd.size)
5898c2ecf20Sopenharmony_ci		dev_warn(chip->nor.dev,
5908c2ecf20Sopenharmony_ci			 "CE%d window too small for chip %dMB",
5918c2ecf20Sopenharmony_ci			 chip->cs, (u32)chip->nor.mtd.size >> 20);
5928c2ecf20Sopenharmony_ci
5938c2ecf20Sopenharmony_ci	return size;
5948c2ecf20Sopenharmony_ci}
5958c2ecf20Sopenharmony_ci
5968c2ecf20Sopenharmony_cistatic void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
5978c2ecf20Sopenharmony_ci{
5988c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller = chip->controller;
5998c2ecf20Sopenharmony_ci	u32 reg;
6008c2ecf20Sopenharmony_ci
6018c2ecf20Sopenharmony_ci	reg = readl(controller->regs + CONFIG_REG);
6028c2ecf20Sopenharmony_ci
6038c2ecf20Sopenharmony_ci	reg |= aspeed_smc_chip_write_bit(chip);
6048c2ecf20Sopenharmony_ci	writel(reg, controller->regs + CONFIG_REG);
6058c2ecf20Sopenharmony_ci}
6068c2ecf20Sopenharmony_ci
6078c2ecf20Sopenharmony_cistatic void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
6088c2ecf20Sopenharmony_ci{
6098c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller = chip->controller;
6108c2ecf20Sopenharmony_ci	u32 reg;
6118c2ecf20Sopenharmony_ci
6128c2ecf20Sopenharmony_ci	chip->type = type;
6138c2ecf20Sopenharmony_ci
6148c2ecf20Sopenharmony_ci	reg = readl(controller->regs + CONFIG_REG);
6158c2ecf20Sopenharmony_ci	reg &= ~(3 << (chip->cs * 2));
6168c2ecf20Sopenharmony_ci	reg |= chip->type << (chip->cs * 2);
6178c2ecf20Sopenharmony_ci	writel(reg, controller->regs + CONFIG_REG);
6188c2ecf20Sopenharmony_ci}
6198c2ecf20Sopenharmony_ci
6208c2ecf20Sopenharmony_ci/*
6218c2ecf20Sopenharmony_ci * The first chip of the AST2500 FMC flash controller is strapped by
6228c2ecf20Sopenharmony_ci * hardware, or autodetected, but other chips need to be set. Enforce
6238c2ecf20Sopenharmony_ci * the 4B setting for all chips.
6248c2ecf20Sopenharmony_ci */
6258c2ecf20Sopenharmony_cistatic void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
6268c2ecf20Sopenharmony_ci{
6278c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller = chip->controller;
6288c2ecf20Sopenharmony_ci	u32 reg;
6298c2ecf20Sopenharmony_ci
6308c2ecf20Sopenharmony_ci	reg = readl(controller->regs + CE_CONTROL_REG);
6318c2ecf20Sopenharmony_ci	reg |= 1 << chip->cs;
6328c2ecf20Sopenharmony_ci	writel(reg, controller->regs + CE_CONTROL_REG);
6338c2ecf20Sopenharmony_ci}
6348c2ecf20Sopenharmony_ci
6358c2ecf20Sopenharmony_ci/*
6368c2ecf20Sopenharmony_ci * The AST2400 SPI flash controller does not have a CE Control
6378c2ecf20Sopenharmony_ci * register. It uses the CE0 control register to set 4Byte mode at the
6388c2ecf20Sopenharmony_ci * controller level.
6398c2ecf20Sopenharmony_ci */
6408c2ecf20Sopenharmony_cistatic void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
6418c2ecf20Sopenharmony_ci{
6428c2ecf20Sopenharmony_ci	chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
6438c2ecf20Sopenharmony_ci	chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
6448c2ecf20Sopenharmony_ci}
6458c2ecf20Sopenharmony_ci
6468c2ecf20Sopenharmony_cistatic int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
6478c2ecf20Sopenharmony_ci				      struct resource *res)
6488c2ecf20Sopenharmony_ci{
6498c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller = chip->controller;
6508c2ecf20Sopenharmony_ci	const struct aspeed_smc_info *info = controller->info;
6518c2ecf20Sopenharmony_ci	u32 reg, base_reg;
6528c2ecf20Sopenharmony_ci
6538c2ecf20Sopenharmony_ci	/*
6548c2ecf20Sopenharmony_ci	 * Always turn on the write enable bit to allow opcodes to be
6558c2ecf20Sopenharmony_ci	 * sent in user mode.
6568c2ecf20Sopenharmony_ci	 */
6578c2ecf20Sopenharmony_ci	aspeed_smc_chip_enable_write(chip);
6588c2ecf20Sopenharmony_ci
6598c2ecf20Sopenharmony_ci	/* The driver only supports SPI type flash */
6608c2ecf20Sopenharmony_ci	if (info->hastype)
6618c2ecf20Sopenharmony_ci		aspeed_smc_chip_set_type(chip, smc_type_spi);
6628c2ecf20Sopenharmony_ci
6638c2ecf20Sopenharmony_ci	/*
6648c2ecf20Sopenharmony_ci	 * Configure chip base address in memory
6658c2ecf20Sopenharmony_ci	 */
6668c2ecf20Sopenharmony_ci	chip->ahb_base = aspeed_smc_chip_base(chip, res);
6678c2ecf20Sopenharmony_ci	if (!chip->ahb_base) {
6688c2ecf20Sopenharmony_ci		dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
6698c2ecf20Sopenharmony_ci		return -EINVAL;
6708c2ecf20Sopenharmony_ci	}
6718c2ecf20Sopenharmony_ci
6728c2ecf20Sopenharmony_ci	/*
6738c2ecf20Sopenharmony_ci	 * Get value of the inherited control register. U-Boot usually
6748c2ecf20Sopenharmony_ci	 * does some timing calibration on the FMC chip, so it's good
6758c2ecf20Sopenharmony_ci	 * to keep them. In the future, we should handle calibration
6768c2ecf20Sopenharmony_ci	 * from Linux.
6778c2ecf20Sopenharmony_ci	 */
6788c2ecf20Sopenharmony_ci	reg = readl(chip->ctl);
6798c2ecf20Sopenharmony_ci	dev_dbg(controller->dev, "control register: %08x\n", reg);
6808c2ecf20Sopenharmony_ci
6818c2ecf20Sopenharmony_ci	base_reg = reg & CONTROL_KEEP_MASK;
6828c2ecf20Sopenharmony_ci	if (base_reg != reg) {
6838c2ecf20Sopenharmony_ci		dev_dbg(controller->dev,
6848c2ecf20Sopenharmony_ci			"control register changed to: %08x\n",
6858c2ecf20Sopenharmony_ci			base_reg);
6868c2ecf20Sopenharmony_ci	}
6878c2ecf20Sopenharmony_ci	chip->ctl_val[smc_base] = base_reg;
6888c2ecf20Sopenharmony_ci
6898c2ecf20Sopenharmony_ci	/*
6908c2ecf20Sopenharmony_ci	 * Retain the prior value of the control register as the
6918c2ecf20Sopenharmony_ci	 * default if it was normal access mode. Otherwise start with
6928c2ecf20Sopenharmony_ci	 * the sanitized base value set to read mode.
6938c2ecf20Sopenharmony_ci	 */
6948c2ecf20Sopenharmony_ci	if ((reg & CONTROL_COMMAND_MODE_MASK) ==
6958c2ecf20Sopenharmony_ci	    CONTROL_COMMAND_MODE_NORMAL)
6968c2ecf20Sopenharmony_ci		chip->ctl_val[smc_read] = reg;
6978c2ecf20Sopenharmony_ci	else
6988c2ecf20Sopenharmony_ci		chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
6998c2ecf20Sopenharmony_ci			CONTROL_COMMAND_MODE_NORMAL;
7008c2ecf20Sopenharmony_ci
7018c2ecf20Sopenharmony_ci	dev_dbg(controller->dev, "default control register: %08x\n",
7028c2ecf20Sopenharmony_ci		chip->ctl_val[smc_read]);
7038c2ecf20Sopenharmony_ci	return 0;
7048c2ecf20Sopenharmony_ci}
7058c2ecf20Sopenharmony_ci
7068c2ecf20Sopenharmony_cistatic int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
7078c2ecf20Sopenharmony_ci{
7088c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller = chip->controller;
7098c2ecf20Sopenharmony_ci	const struct aspeed_smc_info *info = controller->info;
7108c2ecf20Sopenharmony_ci	u32 cmd;
7118c2ecf20Sopenharmony_ci
7128c2ecf20Sopenharmony_ci	if (chip->nor.addr_width == 4 && info->set_4b)
7138c2ecf20Sopenharmony_ci		info->set_4b(chip);
7148c2ecf20Sopenharmony_ci
7158c2ecf20Sopenharmony_ci	/* This is for direct AHB access when using Command Mode. */
7168c2ecf20Sopenharmony_ci	chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);
7178c2ecf20Sopenharmony_ci
7188c2ecf20Sopenharmony_ci	/*
7198c2ecf20Sopenharmony_ci	 * base mode has not been optimized yet. use it for writes.
7208c2ecf20Sopenharmony_ci	 */
7218c2ecf20Sopenharmony_ci	chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
7228c2ecf20Sopenharmony_ci		chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
7238c2ecf20Sopenharmony_ci		CONTROL_COMMAND_MODE_WRITE;
7248c2ecf20Sopenharmony_ci
7258c2ecf20Sopenharmony_ci	dev_dbg(controller->dev, "write control register: %08x\n",
7268c2ecf20Sopenharmony_ci		chip->ctl_val[smc_write]);
7278c2ecf20Sopenharmony_ci
7288c2ecf20Sopenharmony_ci	/*
7298c2ecf20Sopenharmony_ci	 * TODO: Adjust clocks if fast read is supported and interpret
7308c2ecf20Sopenharmony_ci	 * SPI NOR flags to adjust controller settings.
7318c2ecf20Sopenharmony_ci	 */
7328c2ecf20Sopenharmony_ci	if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
7338c2ecf20Sopenharmony_ci		if (chip->nor.read_dummy == 0)
7348c2ecf20Sopenharmony_ci			cmd = CONTROL_COMMAND_MODE_NORMAL;
7358c2ecf20Sopenharmony_ci		else
7368c2ecf20Sopenharmony_ci			cmd = CONTROL_COMMAND_MODE_FREAD;
7378c2ecf20Sopenharmony_ci	} else {
7388c2ecf20Sopenharmony_ci		dev_err(chip->nor.dev, "unsupported SPI read mode\n");
7398c2ecf20Sopenharmony_ci		return -EINVAL;
7408c2ecf20Sopenharmony_ci	}
7418c2ecf20Sopenharmony_ci
7428c2ecf20Sopenharmony_ci	chip->ctl_val[smc_read] |= cmd |
7438c2ecf20Sopenharmony_ci		CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
7448c2ecf20Sopenharmony_ci
7458c2ecf20Sopenharmony_ci	dev_dbg(controller->dev, "base control register: %08x\n",
7468c2ecf20Sopenharmony_ci		chip->ctl_val[smc_read]);
7478c2ecf20Sopenharmony_ci	return 0;
7488c2ecf20Sopenharmony_ci}
7498c2ecf20Sopenharmony_ci
7508c2ecf20Sopenharmony_cistatic const struct spi_nor_controller_ops aspeed_smc_controller_ops = {
7518c2ecf20Sopenharmony_ci	.prepare = aspeed_smc_prep,
7528c2ecf20Sopenharmony_ci	.unprepare = aspeed_smc_unprep,
7538c2ecf20Sopenharmony_ci	.read_reg = aspeed_smc_read_reg,
7548c2ecf20Sopenharmony_ci	.write_reg = aspeed_smc_write_reg,
7558c2ecf20Sopenharmony_ci	.read = aspeed_smc_read_user,
7568c2ecf20Sopenharmony_ci	.write = aspeed_smc_write_user,
7578c2ecf20Sopenharmony_ci};
7588c2ecf20Sopenharmony_ci
7598c2ecf20Sopenharmony_cistatic int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
7608c2ecf20Sopenharmony_ci				  struct device_node *np, struct resource *r)
7618c2ecf20Sopenharmony_ci{
7628c2ecf20Sopenharmony_ci	const struct spi_nor_hwcaps hwcaps = {
7638c2ecf20Sopenharmony_ci		.mask = SNOR_HWCAPS_READ |
7648c2ecf20Sopenharmony_ci			SNOR_HWCAPS_READ_FAST |
7658c2ecf20Sopenharmony_ci			SNOR_HWCAPS_PP,
7668c2ecf20Sopenharmony_ci	};
7678c2ecf20Sopenharmony_ci	const struct aspeed_smc_info *info = controller->info;
7688c2ecf20Sopenharmony_ci	struct device *dev = controller->dev;
7698c2ecf20Sopenharmony_ci	struct device_node *child;
7708c2ecf20Sopenharmony_ci	unsigned int cs;
7718c2ecf20Sopenharmony_ci	int ret = -ENODEV;
7728c2ecf20Sopenharmony_ci
7738c2ecf20Sopenharmony_ci	for_each_available_child_of_node(np, child) {
7748c2ecf20Sopenharmony_ci		struct aspeed_smc_chip *chip;
7758c2ecf20Sopenharmony_ci		struct spi_nor *nor;
7768c2ecf20Sopenharmony_ci		struct mtd_info *mtd;
7778c2ecf20Sopenharmony_ci
7788c2ecf20Sopenharmony_ci		/* This driver does not support NAND or NOR flash devices. */
7798c2ecf20Sopenharmony_ci		if (!of_device_is_compatible(child, "jedec,spi-nor"))
7808c2ecf20Sopenharmony_ci			continue;
7818c2ecf20Sopenharmony_ci
7828c2ecf20Sopenharmony_ci		ret = of_property_read_u32(child, "reg", &cs);
7838c2ecf20Sopenharmony_ci		if (ret) {
7848c2ecf20Sopenharmony_ci			dev_err(dev, "Couldn't not read chip select.\n");
7858c2ecf20Sopenharmony_ci			break;
7868c2ecf20Sopenharmony_ci		}
7878c2ecf20Sopenharmony_ci
7888c2ecf20Sopenharmony_ci		if (cs >= info->nce) {
7898c2ecf20Sopenharmony_ci			dev_err(dev, "Chip select %d out of range.\n",
7908c2ecf20Sopenharmony_ci				cs);
7918c2ecf20Sopenharmony_ci			ret = -ERANGE;
7928c2ecf20Sopenharmony_ci			break;
7938c2ecf20Sopenharmony_ci		}
7948c2ecf20Sopenharmony_ci
7958c2ecf20Sopenharmony_ci		if (controller->chips[cs]) {
7968c2ecf20Sopenharmony_ci			dev_err(dev, "Chip select %d already in use by %s\n",
7978c2ecf20Sopenharmony_ci				cs, dev_name(controller->chips[cs]->nor.dev));
7988c2ecf20Sopenharmony_ci			ret = -EBUSY;
7998c2ecf20Sopenharmony_ci			break;
8008c2ecf20Sopenharmony_ci		}
8018c2ecf20Sopenharmony_ci
8028c2ecf20Sopenharmony_ci		chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
8038c2ecf20Sopenharmony_ci		if (!chip) {
8048c2ecf20Sopenharmony_ci			ret = -ENOMEM;
8058c2ecf20Sopenharmony_ci			break;
8068c2ecf20Sopenharmony_ci		}
8078c2ecf20Sopenharmony_ci
8088c2ecf20Sopenharmony_ci		chip->controller = controller;
8098c2ecf20Sopenharmony_ci		chip->ctl = controller->regs + info->ctl0 + cs * 4;
8108c2ecf20Sopenharmony_ci		chip->cs = cs;
8118c2ecf20Sopenharmony_ci
8128c2ecf20Sopenharmony_ci		nor = &chip->nor;
8138c2ecf20Sopenharmony_ci		mtd = &nor->mtd;
8148c2ecf20Sopenharmony_ci
8158c2ecf20Sopenharmony_ci		nor->dev = dev;
8168c2ecf20Sopenharmony_ci		nor->priv = chip;
8178c2ecf20Sopenharmony_ci		spi_nor_set_flash_node(nor, child);
8188c2ecf20Sopenharmony_ci		nor->controller_ops = &aspeed_smc_controller_ops;
8198c2ecf20Sopenharmony_ci
8208c2ecf20Sopenharmony_ci		ret = aspeed_smc_chip_setup_init(chip, r);
8218c2ecf20Sopenharmony_ci		if (ret)
8228c2ecf20Sopenharmony_ci			break;
8238c2ecf20Sopenharmony_ci
8248c2ecf20Sopenharmony_ci		/*
8258c2ecf20Sopenharmony_ci		 * TODO: Add support for Dual and Quad SPI protocols
8268c2ecf20Sopenharmony_ci		 * attach when board support is present as determined
8278c2ecf20Sopenharmony_ci		 * by of property.
8288c2ecf20Sopenharmony_ci		 */
8298c2ecf20Sopenharmony_ci		ret = spi_nor_scan(nor, NULL, &hwcaps);
8308c2ecf20Sopenharmony_ci		if (ret)
8318c2ecf20Sopenharmony_ci			break;
8328c2ecf20Sopenharmony_ci
8338c2ecf20Sopenharmony_ci		ret = aspeed_smc_chip_setup_finish(chip);
8348c2ecf20Sopenharmony_ci		if (ret)
8358c2ecf20Sopenharmony_ci			break;
8368c2ecf20Sopenharmony_ci
8378c2ecf20Sopenharmony_ci		ret = mtd_device_register(mtd, NULL, 0);
8388c2ecf20Sopenharmony_ci		if (ret)
8398c2ecf20Sopenharmony_ci			break;
8408c2ecf20Sopenharmony_ci
8418c2ecf20Sopenharmony_ci		controller->chips[cs] = chip;
8428c2ecf20Sopenharmony_ci	}
8438c2ecf20Sopenharmony_ci
8448c2ecf20Sopenharmony_ci	if (ret) {
8458c2ecf20Sopenharmony_ci		of_node_put(child);
8468c2ecf20Sopenharmony_ci		aspeed_smc_unregister(controller);
8478c2ecf20Sopenharmony_ci	}
8488c2ecf20Sopenharmony_ci
8498c2ecf20Sopenharmony_ci	return ret;
8508c2ecf20Sopenharmony_ci}
8518c2ecf20Sopenharmony_ci
8528c2ecf20Sopenharmony_cistatic int aspeed_smc_probe(struct platform_device *pdev)
8538c2ecf20Sopenharmony_ci{
8548c2ecf20Sopenharmony_ci	struct device_node *np = pdev->dev.of_node;
8558c2ecf20Sopenharmony_ci	struct device *dev = &pdev->dev;
8568c2ecf20Sopenharmony_ci	struct aspeed_smc_controller *controller;
8578c2ecf20Sopenharmony_ci	const struct of_device_id *match;
8588c2ecf20Sopenharmony_ci	const struct aspeed_smc_info *info;
8598c2ecf20Sopenharmony_ci	struct resource *res;
8608c2ecf20Sopenharmony_ci	int ret;
8618c2ecf20Sopenharmony_ci
8628c2ecf20Sopenharmony_ci	match = of_match_device(aspeed_smc_matches, &pdev->dev);
8638c2ecf20Sopenharmony_ci	if (!match || !match->data)
8648c2ecf20Sopenharmony_ci		return -ENODEV;
8658c2ecf20Sopenharmony_ci	info = match->data;
8668c2ecf20Sopenharmony_ci
8678c2ecf20Sopenharmony_ci	controller = devm_kzalloc(&pdev->dev,
8688c2ecf20Sopenharmony_ci				  struct_size(controller, chips, info->nce),
8698c2ecf20Sopenharmony_ci				  GFP_KERNEL);
8708c2ecf20Sopenharmony_ci	if (!controller)
8718c2ecf20Sopenharmony_ci		return -ENOMEM;
8728c2ecf20Sopenharmony_ci	controller->info = info;
8738c2ecf20Sopenharmony_ci	controller->dev = dev;
8748c2ecf20Sopenharmony_ci
8758c2ecf20Sopenharmony_ci	mutex_init(&controller->mutex);
8768c2ecf20Sopenharmony_ci	platform_set_drvdata(pdev, controller);
8778c2ecf20Sopenharmony_ci
8788c2ecf20Sopenharmony_ci	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
8798c2ecf20Sopenharmony_ci	controller->regs = devm_ioremap_resource(dev, res);
8808c2ecf20Sopenharmony_ci	if (IS_ERR(controller->regs))
8818c2ecf20Sopenharmony_ci		return PTR_ERR(controller->regs);
8828c2ecf20Sopenharmony_ci
8838c2ecf20Sopenharmony_ci	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
8848c2ecf20Sopenharmony_ci	controller->ahb_base = devm_ioremap_resource(dev, res);
8858c2ecf20Sopenharmony_ci	if (IS_ERR(controller->ahb_base))
8868c2ecf20Sopenharmony_ci		return PTR_ERR(controller->ahb_base);
8878c2ecf20Sopenharmony_ci
8888c2ecf20Sopenharmony_ci	controller->ahb_window_size = resource_size(res);
8898c2ecf20Sopenharmony_ci
8908c2ecf20Sopenharmony_ci	ret = aspeed_smc_setup_flash(controller, np, res);
8918c2ecf20Sopenharmony_ci	if (ret)
8928c2ecf20Sopenharmony_ci		dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
8938c2ecf20Sopenharmony_ci
8948c2ecf20Sopenharmony_ci	return ret;
8958c2ecf20Sopenharmony_ci}
8968c2ecf20Sopenharmony_ci
8978c2ecf20Sopenharmony_cistatic struct platform_driver aspeed_smc_driver = {
8988c2ecf20Sopenharmony_ci	.probe = aspeed_smc_probe,
8998c2ecf20Sopenharmony_ci	.remove = aspeed_smc_remove,
9008c2ecf20Sopenharmony_ci	.driver = {
9018c2ecf20Sopenharmony_ci		.name = DEVICE_NAME,
9028c2ecf20Sopenharmony_ci		.of_match_table = aspeed_smc_matches,
9038c2ecf20Sopenharmony_ci	}
9048c2ecf20Sopenharmony_ci};
9058c2ecf20Sopenharmony_ci
9068c2ecf20Sopenharmony_cimodule_platform_driver(aspeed_smc_driver);
9078c2ecf20Sopenharmony_ci
9088c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
9098c2ecf20Sopenharmony_ciMODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
9108c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2");
911