1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
4 *
5 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
6 * Jason ported to M54418TWR and MVFA5 (VF610).
7 * Authors: Stefan Agner <stefan.agner@toradex.com>
8 *          Bill Pringlemeir <bpringlemeir@nbsps.com>
9 *          Shaohui Xie <b21989@freescale.com>
10 *          Jason Jin <Jason.jin@freescale.com>
11 *
12 * Based on original driver mpc5121_nfc.c.
13 *
14 * Limitations:
15 * - Untested on MPC5125 and M54418.
16 * - DMA and pipelining not used.
17 * - 2K pages or less.
18 * - HW ECC: Only 2K page with 64+ OOB.
19 * - HW ECC: Only 24 and 32-bit error correction implemented.
20 */
21
22#include <linux/module.h>
23#include <linux/bitops.h>
24#include <linux/clk.h>
25#include <linux/delay.h>
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/mtd/mtd.h>
30#include <linux/mtd/rawnand.h>
31#include <linux/mtd/partitions.h>
32#include <linux/of_device.h>
33#include <linux/platform_device.h>
34#include <linux/slab.h>
35#include <linux/swab.h>
36
37#define	DRV_NAME		"vf610_nfc"
38
39/* Register Offsets */
40#define NFC_FLASH_CMD1			0x3F00
41#define NFC_FLASH_CMD2			0x3F04
42#define NFC_COL_ADDR			0x3F08
43#define NFC_ROW_ADDR			0x3F0c
44#define NFC_ROW_ADDR_INC		0x3F14
45#define NFC_FLASH_STATUS1		0x3F18
46#define NFC_FLASH_STATUS2		0x3F1c
47#define NFC_CACHE_SWAP			0x3F28
48#define NFC_SECTOR_SIZE			0x3F2c
49#define NFC_FLASH_CONFIG		0x3F30
50#define NFC_IRQ_STATUS			0x3F38
51
52/* Addresses for NFC MAIN RAM BUFFER areas */
53#define NFC_MAIN_AREA(n)		((n) *  0x1000)
54
55#define PAGE_2K				0x0800
56#define OOB_64				0x0040
57#define OOB_MAX				0x0100
58
59/* NFC_CMD2[CODE] controller cycle bit masks */
60#define COMMAND_CMD_BYTE1		BIT(14)
61#define COMMAND_CAR_BYTE1		BIT(13)
62#define COMMAND_CAR_BYTE2		BIT(12)
63#define COMMAND_RAR_BYTE1		BIT(11)
64#define COMMAND_RAR_BYTE2		BIT(10)
65#define COMMAND_RAR_BYTE3		BIT(9)
66#define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) + 1)
67#define COMMAND_WRITE_DATA		BIT(8)
68#define COMMAND_CMD_BYTE2		BIT(7)
69#define COMMAND_RB_HANDSHAKE		BIT(6)
70#define COMMAND_READ_DATA		BIT(5)
71#define COMMAND_CMD_BYTE3		BIT(4)
72#define COMMAND_READ_STATUS		BIT(3)
73#define COMMAND_READ_ID			BIT(2)
74
75/* NFC ECC mode define */
76#define ECC_BYPASS			0
77#define ECC_45_BYTE			6
78#define ECC_60_BYTE			7
79
80/*** Register Mask and bit definitions */
81
82/* NFC_FLASH_CMD1 Field */
83#define CMD_BYTE2_MASK				0xFF000000
84#define CMD_BYTE2_SHIFT				24
85
86/* NFC_FLASH_CM2 Field */
87#define CMD_BYTE1_MASK				0xFF000000
88#define CMD_BYTE1_SHIFT				24
89#define CMD_CODE_MASK				0x00FFFF00
90#define CMD_CODE_SHIFT				8
91#define BUFNO_MASK				0x00000006
92#define BUFNO_SHIFT				1
93#define START_BIT				BIT(0)
94
95/* NFC_COL_ADDR Field */
96#define COL_ADDR_MASK				0x0000FFFF
97#define COL_ADDR_SHIFT				0
98#define COL_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
99
100/* NFC_ROW_ADDR Field */
101#define ROW_ADDR_MASK				0x00FFFFFF
102#define ROW_ADDR_SHIFT				0
103#define ROW_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
104
105#define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
106#define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
107#define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
108#define ROW_ADDR_CHIP_SEL_SHIFT			24
109
110/* NFC_FLASH_STATUS2 Field */
111#define STATUS_BYTE1_MASK			0x000000FF
112
113/* NFC_FLASH_CONFIG Field */
114#define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
115#define CONFIG_ECC_SRAM_ADDR_SHIFT		22
116#define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
117#define CONFIG_DMA_REQ_BIT			BIT(20)
118#define CONFIG_ECC_MODE_MASK			0x000E0000
119#define CONFIG_ECC_MODE_SHIFT			17
120#define CONFIG_FAST_FLASH_BIT			BIT(16)
121#define CONFIG_16BIT				BIT(7)
122#define CONFIG_BOOT_MODE_BIT			BIT(6)
123#define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
124#define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
125#define CONFIG_PAGE_CNT_MASK			0xF
126#define CONFIG_PAGE_CNT_SHIFT			0
127
128/* NFC_IRQ_STATUS Field */
129#define IDLE_IRQ_BIT				BIT(29)
130#define IDLE_EN_BIT				BIT(20)
131#define CMD_DONE_CLEAR_BIT			BIT(18)
132#define IDLE_CLEAR_BIT				BIT(17)
133
134/*
135 * ECC status - seems to consume 8 bytes (double word). The documented
136 * status byte is located in the lowest byte of the second word (which is
137 * the 4th or 7th byte depending on endianness).
138 * Calculate an offset to store the ECC status at the end of the buffer.
139 */
140#define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)
141
142#define ECC_STATUS		0x4
143#define ECC_STATUS_MASK		0x80
144#define ECC_STATUS_ERR_COUNT	0x3F
145
146enum vf610_nfc_variant {
147	NFC_VFC610 = 1,
148};
149
150struct vf610_nfc {
151	struct nand_controller base;
152	struct nand_chip chip;
153	struct device *dev;
154	void __iomem *regs;
155	struct completion cmd_done;
156	/* Status and ID are in alternate locations. */
157	enum vf610_nfc_variant variant;
158	struct clk *clk;
159	/*
160	 * Indicate that user data is accessed (full page/oob). This is
161	 * useful to indicate the driver whether to swap byte endianness.
162	 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
163	 */
164	bool data_access;
165	u32 ecc_mode;
166};
167
168static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
169{
170	return container_of(chip, struct vf610_nfc, chip);
171}
172
173static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
174{
175	return readl(nfc->regs + reg);
176}
177
178static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
179{
180	writel(val, nfc->regs + reg);
181}
182
183static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
184{
185	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
186}
187
188static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
189{
190	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
191}
192
193static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
194				       u32 mask, u32 shift, u32 val)
195{
196	vf610_nfc_write(nfc, reg,
197			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
198}
199
200static inline bool vf610_nfc_kernel_is_little_endian(void)
201{
202#ifdef __LITTLE_ENDIAN
203	return true;
204#else
205	return false;
206#endif
207}
208
209/**
210 * Read accessor for internal SRAM buffer
211 * @dst: destination address in regular memory
212 * @src: source address in SRAM buffer
213 * @len: bytes to copy
214 * @fix_endian: Fix endianness if required
215 *
216 * Use this accessor for the internal SRAM buffers. On the ARM
217 * Freescale Vybrid SoC it's known that the driver can treat
218 * the SRAM buffer as if it's memory. Other platform might need
219 * to treat the buffers differently.
220 *
221 * The controller stores bytes from the NAND chip internally in big
222 * endianness. On little endian platforms such as Vybrid this leads
223 * to reversed byte order.
224 * For performance reason (and earlier probably due to unawareness)
225 * the driver avoids correcting endianness where it has control over
226 * write and read side (e.g. page wise data access).
227 */
228static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
229					  size_t len, bool fix_endian)
230{
231	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
232		unsigned int i;
233
234		for (i = 0; i < len; i += 4) {
235			u32 val = swab32(__raw_readl(src + i));
236
237			memcpy(dst + i, &val, min(sizeof(val), len - i));
238		}
239	} else {
240		memcpy_fromio(dst, src, len);
241	}
242}
243
244/**
245 * Write accessor for internal SRAM buffer
246 * @dst: destination address in SRAM buffer
247 * @src: source address in regular memory
248 * @len: bytes to copy
249 * @fix_endian: Fix endianness if required
250 *
251 * Use this accessor for the internal SRAM buffers. On the ARM
252 * Freescale Vybrid SoC it's known that the driver can treat
253 * the SRAM buffer as if it's memory. Other platform might need
254 * to treat the buffers differently.
255 *
256 * The controller stores bytes from the NAND chip internally in big
257 * endianness. On little endian platforms such as Vybrid this leads
258 * to reversed byte order.
259 * For performance reason (and earlier probably due to unawareness)
260 * the driver avoids correcting endianness where it has control over
261 * write and read side (e.g. page wise data access).
262 */
263static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
264					size_t len, bool fix_endian)
265{
266	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
267		unsigned int i;
268
269		for (i = 0; i < len; i += 4) {
270			u32 val;
271
272			memcpy(&val, src + i, min(sizeof(val), len - i));
273			__raw_writel(swab32(val), dst + i);
274		}
275	} else {
276		memcpy_toio(dst, src, len);
277	}
278}
279
280/* Clear flags for upcoming command */
281static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
282{
283	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
284
285	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
286	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
287}
288
289static void vf610_nfc_done(struct vf610_nfc *nfc)
290{
291	unsigned long timeout = msecs_to_jiffies(100);
292
293	/*
294	 * Barrier is needed after this write. This write need
295	 * to be done before reading the next register the first
296	 * time.
297	 * vf610_nfc_set implicates such a barrier by using writel
298	 * to write to the register.
299	 */
300	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
301	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
302
303	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
304		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
305
306	vf610_nfc_clear_status(nfc);
307}
308
309static irqreturn_t vf610_nfc_irq(int irq, void *data)
310{
311	struct vf610_nfc *nfc = data;
312
313	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
314	complete(&nfc->cmd_done);
315
316	return IRQ_HANDLED;
317}
318
319static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
320{
321	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
322			    CONFIG_ECC_MODE_MASK,
323			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
324}
325
326static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
327				 u32 cmd1, u32 cmd2, u32 trfr_sz)
328{
329	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
330			    COL_ADDR_SHIFT, col);
331
332	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
333			    ROW_ADDR_SHIFT, row);
334
335	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
336	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
337	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
338
339	dev_dbg(nfc->dev,
340		"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
341		col, row, cmd1, cmd2, trfr_sz);
342
343	vf610_nfc_done(nfc);
344}
345
346static inline const struct nand_op_instr *
347vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
348{
349	if (*op_id + 1 >= subop->ninstrs)
350		return NULL;
351
352	(*op_id)++;
353
354	return &subop->instrs[*op_id];
355}
356
357static int vf610_nfc_cmd(struct nand_chip *chip,
358			 const struct nand_subop *subop)
359{
360	const struct nand_op_instr *instr;
361	struct vf610_nfc *nfc = chip_to_nfc(chip);
362	int op_id = -1, trfr_sz = 0, offset = 0;
363	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
364	bool force8bit = false;
365
366	/*
367	 * Some ops are optional, but the hardware requires the operations
368	 * to be in this exact order.
369	 * The op parser enforces the order and makes sure that there isn't
370	 * a read and write element in a single operation.
371	 */
372	instr = vf610_get_next_instr(subop, &op_id);
373	if (!instr)
374		return -EINVAL;
375
376	if (instr && instr->type == NAND_OP_CMD_INSTR) {
377		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
378		code |= COMMAND_CMD_BYTE1;
379
380		instr = vf610_get_next_instr(subop, &op_id);
381	}
382
383	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
384		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
385		int i = nand_subop_get_addr_start_off(subop, op_id);
386
387		for (; i < naddrs; i++) {
388			u8 val = instr->ctx.addr.addrs[i];
389
390			if (i < 2)
391				col |= COL_ADDR(i, val);
392			else
393				row |= ROW_ADDR(i - 2, val);
394		}
395		code |= COMMAND_NADDR_BYTES(naddrs);
396
397		instr = vf610_get_next_instr(subop, &op_id);
398	}
399
400	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
401		trfr_sz = nand_subop_get_data_len(subop, op_id);
402		offset = nand_subop_get_data_start_off(subop, op_id);
403		force8bit = instr->ctx.data.force_8bit;
404
405		/*
406		 * Don't fix endianness on page access for historical reasons.
407		 * See comment in vf610_nfc_wr_to_sram
408		 */
409		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
410				     instr->ctx.data.buf.out + offset,
411				     trfr_sz, !nfc->data_access);
412		code |= COMMAND_WRITE_DATA;
413
414		instr = vf610_get_next_instr(subop, &op_id);
415	}
416
417	if (instr && instr->type == NAND_OP_CMD_INSTR) {
418		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
419		code |= COMMAND_CMD_BYTE2;
420
421		instr = vf610_get_next_instr(subop, &op_id);
422	}
423
424	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
425		code |= COMMAND_RB_HANDSHAKE;
426
427		instr = vf610_get_next_instr(subop, &op_id);
428	}
429
430	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
431		trfr_sz = nand_subop_get_data_len(subop, op_id);
432		offset = nand_subop_get_data_start_off(subop, op_id);
433		force8bit = instr->ctx.data.force_8bit;
434
435		code |= COMMAND_READ_DATA;
436	}
437
438	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
439		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
440
441	cmd2 |= code << CMD_CODE_SHIFT;
442
443	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
444
445	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
446		/*
447		 * Don't fix endianness on page access for historical reasons.
448		 * See comment in vf610_nfc_rd_from_sram
449		 */
450		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
451				       nfc->regs + NFC_MAIN_AREA(0) + offset,
452				       trfr_sz, !nfc->data_access);
453	}
454
455	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
456		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
457
458	return 0;
459}
460
461static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
462	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
463		NAND_OP_PARSER_PAT_CMD_ELEM(true),
464		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
465		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
466		NAND_OP_PARSER_PAT_CMD_ELEM(true),
467		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
468	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
469		NAND_OP_PARSER_PAT_CMD_ELEM(true),
470		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
471		NAND_OP_PARSER_PAT_CMD_ELEM(true),
472		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
473		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
474	);
475
476/*
477 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
478 */
479static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
480{
481	struct vf610_nfc *nfc = chip_to_nfc(chip);
482	u32 tmp;
483
484	/* Vybrid only (MPC5125 would have full RB and four CS) */
485	if (nfc->variant != NFC_VFC610)
486		return;
487
488	tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
489	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
490	tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
491	tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
492
493	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
494}
495
496static int vf610_nfc_exec_op(struct nand_chip *chip,
497			     const struct nand_operation *op,
498			     bool check_only)
499{
500	if (!check_only)
501		vf610_nfc_select_target(chip, op->cs);
502
503	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
504				      check_only);
505}
506
507static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
508					 uint8_t *oob, int page)
509{
510	struct vf610_nfc *nfc = chip_to_nfc(chip);
511	struct mtd_info *mtd = nand_to_mtd(chip);
512	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
513	u8 ecc_status;
514	u8 ecc_count;
515	int flips_threshold = nfc->chip.ecc.strength / 2;
516
517	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
518	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
519
520	if (!(ecc_status & ECC_STATUS_MASK))
521		return ecc_count;
522
523	nfc->data_access = true;
524	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
525	nfc->data_access = false;
526
527	/*
528	 * On an erased page, bit count (including OOB) should be zero or
529	 * at least less then half of the ECC strength.
530	 */
531	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
532					   mtd->oobsize, NULL, 0,
533					   flips_threshold);
534}
535
536static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
537			       u32 *row)
538{
539	*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
540	*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
541
542	if (chip->options & NAND_ROW_ADDR_3) {
543		*row |= ROW_ADDR(2, page >> 16);
544		*code |= COMMAND_RAR_BYTE3;
545	}
546}
547
548static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
549			       int oob_required, int page)
550{
551	struct vf610_nfc *nfc = chip_to_nfc(chip);
552	struct mtd_info *mtd = nand_to_mtd(chip);
553	int trfr_sz = mtd->writesize + mtd->oobsize;
554	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
555	int stat;
556
557	vf610_nfc_select_target(chip, chip->cur_cs);
558
559	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
560	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
561
562	vf610_nfc_fill_row(chip, page, &code, &row);
563
564	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
565	code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
566
567	cmd2 |= code << CMD_CODE_SHIFT;
568
569	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
570	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
571	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
572
573	/*
574	 * Don't fix endianness on page access for historical reasons.
575	 * See comment in vf610_nfc_rd_from_sram
576	 */
577	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
578			       mtd->writesize, false);
579	if (oob_required)
580		vf610_nfc_rd_from_sram(chip->oob_poi,
581				       nfc->regs + NFC_MAIN_AREA(0) +
582						   mtd->writesize,
583				       mtd->oobsize, false);
584
585	stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
586
587	if (stat < 0) {
588		mtd->ecc_stats.failed++;
589		return 0;
590	} else {
591		mtd->ecc_stats.corrected += stat;
592		return stat;
593	}
594}
595
596static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
597				int oob_required, int page)
598{
599	struct vf610_nfc *nfc = chip_to_nfc(chip);
600	struct mtd_info *mtd = nand_to_mtd(chip);
601	int trfr_sz = mtd->writesize + mtd->oobsize;
602	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
603	u8 status;
604	int ret;
605
606	vf610_nfc_select_target(chip, chip->cur_cs);
607
608	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
609	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
610
611	vf610_nfc_fill_row(chip, page, &code, &row);
612
613	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
614	code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
615
616	/*
617	 * Don't fix endianness on page access for historical reasons.
618	 * See comment in vf610_nfc_wr_to_sram
619	 */
620	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
621			     mtd->writesize, false);
622
623	code |= COMMAND_RB_HANDSHAKE;
624	cmd2 |= code << CMD_CODE_SHIFT;
625
626	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
627	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
628	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
629
630	ret = nand_status_op(chip, &status);
631	if (ret)
632		return ret;
633
634	if (status & NAND_STATUS_FAIL)
635		return -EIO;
636
637	return 0;
638}
639
640static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
641				   int oob_required, int page)
642{
643	struct vf610_nfc *nfc = chip_to_nfc(chip);
644	int ret;
645
646	nfc->data_access = true;
647	ret = nand_read_page_raw(chip, buf, oob_required, page);
648	nfc->data_access = false;
649
650	return ret;
651}
652
653static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
654				    int oob_required, int page)
655{
656	struct vf610_nfc *nfc = chip_to_nfc(chip);
657	struct mtd_info *mtd = nand_to_mtd(chip);
658	int ret;
659
660	nfc->data_access = true;
661	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
662	if (!ret && oob_required)
663		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
664					 false);
665	nfc->data_access = false;
666
667	if (ret)
668		return ret;
669
670	return nand_prog_page_end_op(chip);
671}
672
673static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
674{
675	struct vf610_nfc *nfc = chip_to_nfc(chip);
676	int ret;
677
678	nfc->data_access = true;
679	ret = nand_read_oob_std(chip, page);
680	nfc->data_access = false;
681
682	return ret;
683}
684
685static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
686{
687	struct mtd_info *mtd = nand_to_mtd(chip);
688	struct vf610_nfc *nfc = chip_to_nfc(chip);
689	int ret;
690
691	nfc->data_access = true;
692	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
693				      chip->oob_poi, mtd->oobsize);
694	nfc->data_access = false;
695
696	if (ret)
697		return ret;
698
699	return nand_prog_page_end_op(chip);
700}
701
702static const struct of_device_id vf610_nfc_dt_ids[] = {
703	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
704	{ /* sentinel */ }
705};
706MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
707
708static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
709{
710	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
711	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
712	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
713	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
714	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
715	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
716	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
717
718	/* Disable virtual pages, only one elementary transfer unit */
719	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
720			    CONFIG_PAGE_CNT_SHIFT, 1);
721}
722
723static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
724{
725	if (nfc->chip.options & NAND_BUSWIDTH_16)
726		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
727	else
728		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
729
730	if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
731		/* Set ECC status offset in SRAM */
732		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
733				    CONFIG_ECC_SRAM_ADDR_MASK,
734				    CONFIG_ECC_SRAM_ADDR_SHIFT,
735				    ECC_SRAM_ADDR >> 3);
736
737		/* Enable ECC status in SRAM */
738		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
739	}
740}
741
742static int vf610_nfc_attach_chip(struct nand_chip *chip)
743{
744	struct mtd_info *mtd = nand_to_mtd(chip);
745	struct vf610_nfc *nfc = chip_to_nfc(chip);
746
747	vf610_nfc_init_controller(nfc);
748
749	/* Bad block options. */
750	if (chip->bbt_options & NAND_BBT_USE_FLASH)
751		chip->bbt_options |= NAND_BBT_NO_OOB;
752
753	/* Single buffer only, max 256 OOB minus ECC status */
754	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
755		dev_err(nfc->dev, "Unsupported flash page size\n");
756		return -ENXIO;
757	}
758
759	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
760		return 0;
761
762	if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
763		dev_err(nfc->dev, "Unsupported flash with hwecc\n");
764		return -ENXIO;
765	}
766
767	if (chip->ecc.size != mtd->writesize) {
768		dev_err(nfc->dev, "Step size needs to be page size\n");
769		return -ENXIO;
770	}
771
772	/* Only 64 byte ECC layouts known */
773	if (mtd->oobsize > 64)
774		mtd->oobsize = 64;
775
776	/* Use default large page ECC layout defined in NAND core */
777	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
778	if (chip->ecc.strength == 32) {
779		nfc->ecc_mode = ECC_60_BYTE;
780		chip->ecc.bytes = 60;
781	} else if (chip->ecc.strength == 24) {
782		nfc->ecc_mode = ECC_45_BYTE;
783		chip->ecc.bytes = 45;
784	} else {
785		dev_err(nfc->dev, "Unsupported ECC strength\n");
786		return -ENXIO;
787	}
788
789	chip->ecc.read_page = vf610_nfc_read_page;
790	chip->ecc.write_page = vf610_nfc_write_page;
791	chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
792	chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
793	chip->ecc.read_oob = vf610_nfc_read_oob;
794	chip->ecc.write_oob = vf610_nfc_write_oob;
795
796	chip->ecc.size = PAGE_2K;
797
798	return 0;
799}
800
801static const struct nand_controller_ops vf610_nfc_controller_ops = {
802	.attach_chip = vf610_nfc_attach_chip,
803	.exec_op = vf610_nfc_exec_op,
804
805};
806
807static int vf610_nfc_probe(struct platform_device *pdev)
808{
809	struct vf610_nfc *nfc;
810	struct resource *res;
811	struct mtd_info *mtd;
812	struct nand_chip *chip;
813	struct device_node *child;
814	const struct of_device_id *of_id;
815	int err;
816	int irq;
817
818	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
819	if (!nfc)
820		return -ENOMEM;
821
822	nfc->dev = &pdev->dev;
823	chip = &nfc->chip;
824	mtd = nand_to_mtd(chip);
825
826	mtd->owner = THIS_MODULE;
827	mtd->dev.parent = nfc->dev;
828	mtd->name = DRV_NAME;
829
830	irq = platform_get_irq(pdev, 0);
831	if (irq <= 0)
832		return -EINVAL;
833
834	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
835	nfc->regs = devm_ioremap_resource(nfc->dev, res);
836	if (IS_ERR(nfc->regs))
837		return PTR_ERR(nfc->regs);
838
839	nfc->clk = devm_clk_get(&pdev->dev, NULL);
840	if (IS_ERR(nfc->clk))
841		return PTR_ERR(nfc->clk);
842
843	err = clk_prepare_enable(nfc->clk);
844	if (err) {
845		dev_err(nfc->dev, "Unable to enable clock!\n");
846		return err;
847	}
848
849	of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
850	if (!of_id) {
851		err = -ENODEV;
852		goto err_disable_clk;
853	}
854
855	nfc->variant = (enum vf610_nfc_variant)of_id->data;
856
857	for_each_available_child_of_node(nfc->dev->of_node, child) {
858		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
859
860			if (nand_get_flash_node(chip)) {
861				dev_err(nfc->dev,
862					"Only one NAND chip supported!\n");
863				err = -EINVAL;
864				of_node_put(child);
865				goto err_disable_clk;
866			}
867
868			nand_set_flash_node(chip, child);
869		}
870	}
871
872	if (!nand_get_flash_node(chip)) {
873		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
874		err = -ENODEV;
875		goto err_disable_clk;
876	}
877
878	chip->options |= NAND_NO_SUBPAGE_WRITE;
879
880	init_completion(&nfc->cmd_done);
881
882	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
883	if (err) {
884		dev_err(nfc->dev, "Error requesting IRQ!\n");
885		goto err_disable_clk;
886	}
887
888	vf610_nfc_preinit_controller(nfc);
889
890	nand_controller_init(&nfc->base);
891	nfc->base.ops = &vf610_nfc_controller_ops;
892	chip->controller = &nfc->base;
893
894	/* Scan the NAND chip */
895	err = nand_scan(chip, 1);
896	if (err)
897		goto err_disable_clk;
898
899	platform_set_drvdata(pdev, nfc);
900
901	/* Register device in MTD */
902	err = mtd_device_register(mtd, NULL, 0);
903	if (err)
904		goto err_cleanup_nand;
905	return 0;
906
907err_cleanup_nand:
908	nand_cleanup(chip);
909err_disable_clk:
910	clk_disable_unprepare(nfc->clk);
911	return err;
912}
913
914static int vf610_nfc_remove(struct platform_device *pdev)
915{
916	struct vf610_nfc *nfc = platform_get_drvdata(pdev);
917	struct nand_chip *chip = &nfc->chip;
918	int ret;
919
920	ret = mtd_device_unregister(nand_to_mtd(chip));
921	WARN_ON(ret);
922	nand_cleanup(chip);
923	clk_disable_unprepare(nfc->clk);
924	return 0;
925}
926
927#ifdef CONFIG_PM_SLEEP
928static int vf610_nfc_suspend(struct device *dev)
929{
930	struct vf610_nfc *nfc = dev_get_drvdata(dev);
931
932	clk_disable_unprepare(nfc->clk);
933	return 0;
934}
935
936static int vf610_nfc_resume(struct device *dev)
937{
938	struct vf610_nfc *nfc = dev_get_drvdata(dev);
939	int err;
940
941	err = clk_prepare_enable(nfc->clk);
942	if (err)
943		return err;
944
945	vf610_nfc_preinit_controller(nfc);
946	vf610_nfc_init_controller(nfc);
947	return 0;
948}
949#endif
950
951static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
952
953static struct platform_driver vf610_nfc_driver = {
954	.driver		= {
955		.name	= DRV_NAME,
956		.of_match_table = vf610_nfc_dt_ids,
957		.pm	= &vf610_nfc_pm_ops,
958	},
959	.probe		= vf610_nfc_probe,
960	.remove		= vf610_nfc_remove,
961};
962
963module_platform_driver(vf610_nfc_driver);
964
965MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
966MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
967MODULE_LICENSE("GPL");
968