18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Copyright © 2004-2008 Simtec Electronics
48c2ecf20Sopenharmony_ci *	http://armlinux.simtec.co.uk/
58c2ecf20Sopenharmony_ci *	Ben Dooks <ben@simtec.co.uk>
68c2ecf20Sopenharmony_ci *
78c2ecf20Sopenharmony_ci * Samsung S3C2410/S3C2440/S3C2412 NAND driver
88c2ecf20Sopenharmony_ci*/
98c2ecf20Sopenharmony_ci
108c2ecf20Sopenharmony_ci#define pr_fmt(fmt) "nand-s3c2410: " fmt
118c2ecf20Sopenharmony_ci
128c2ecf20Sopenharmony_ci#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
138c2ecf20Sopenharmony_ci#define DEBUG
148c2ecf20Sopenharmony_ci#endif
158c2ecf20Sopenharmony_ci
168c2ecf20Sopenharmony_ci#include <linux/module.h>
178c2ecf20Sopenharmony_ci#include <linux/types.h>
188c2ecf20Sopenharmony_ci#include <linux/kernel.h>
198c2ecf20Sopenharmony_ci#include <linux/string.h>
208c2ecf20Sopenharmony_ci#include <linux/io.h>
218c2ecf20Sopenharmony_ci#include <linux/ioport.h>
228c2ecf20Sopenharmony_ci#include <linux/platform_device.h>
238c2ecf20Sopenharmony_ci#include <linux/delay.h>
248c2ecf20Sopenharmony_ci#include <linux/err.h>
258c2ecf20Sopenharmony_ci#include <linux/slab.h>
268c2ecf20Sopenharmony_ci#include <linux/clk.h>
278c2ecf20Sopenharmony_ci#include <linux/cpufreq.h>
288c2ecf20Sopenharmony_ci#include <linux/of.h>
298c2ecf20Sopenharmony_ci#include <linux/of_device.h>
308c2ecf20Sopenharmony_ci
318c2ecf20Sopenharmony_ci#include <linux/mtd/mtd.h>
328c2ecf20Sopenharmony_ci#include <linux/mtd/rawnand.h>
338c2ecf20Sopenharmony_ci#include <linux/mtd/nand_ecc.h>
348c2ecf20Sopenharmony_ci#include <linux/mtd/partitions.h>
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_ci#include <linux/platform_data/mtd-nand-s3c2410.h>
378c2ecf20Sopenharmony_ci
388c2ecf20Sopenharmony_ci#define S3C2410_NFREG(x) (x)
398c2ecf20Sopenharmony_ci
408c2ecf20Sopenharmony_ci#define S3C2410_NFCONF		S3C2410_NFREG(0x00)
418c2ecf20Sopenharmony_ci#define S3C2410_NFCMD		S3C2410_NFREG(0x04)
428c2ecf20Sopenharmony_ci#define S3C2410_NFADDR		S3C2410_NFREG(0x08)
438c2ecf20Sopenharmony_ci#define S3C2410_NFDATA		S3C2410_NFREG(0x0C)
448c2ecf20Sopenharmony_ci#define S3C2410_NFSTAT		S3C2410_NFREG(0x10)
458c2ecf20Sopenharmony_ci#define S3C2410_NFECC		S3C2410_NFREG(0x14)
468c2ecf20Sopenharmony_ci#define S3C2440_NFCONT		S3C2410_NFREG(0x04)
478c2ecf20Sopenharmony_ci#define S3C2440_NFCMD		S3C2410_NFREG(0x08)
488c2ecf20Sopenharmony_ci#define S3C2440_NFADDR		S3C2410_NFREG(0x0C)
498c2ecf20Sopenharmony_ci#define S3C2440_NFDATA		S3C2410_NFREG(0x10)
508c2ecf20Sopenharmony_ci#define S3C2440_NFSTAT		S3C2410_NFREG(0x20)
518c2ecf20Sopenharmony_ci#define S3C2440_NFMECC0		S3C2410_NFREG(0x2C)
528c2ecf20Sopenharmony_ci#define S3C2412_NFSTAT		S3C2410_NFREG(0x28)
538c2ecf20Sopenharmony_ci#define S3C2412_NFMECC0		S3C2410_NFREG(0x34)
548c2ecf20Sopenharmony_ci#define S3C2410_NFCONF_EN		(1<<15)
558c2ecf20Sopenharmony_ci#define S3C2410_NFCONF_INITECC		(1<<12)
568c2ecf20Sopenharmony_ci#define S3C2410_NFCONF_nFCE		(1<<11)
578c2ecf20Sopenharmony_ci#define S3C2410_NFCONF_TACLS(x)		((x)<<8)
588c2ecf20Sopenharmony_ci#define S3C2410_NFCONF_TWRPH0(x)	((x)<<4)
598c2ecf20Sopenharmony_ci#define S3C2410_NFCONF_TWRPH1(x)	((x)<<0)
608c2ecf20Sopenharmony_ci#define S3C2410_NFSTAT_BUSY		(1<<0)
618c2ecf20Sopenharmony_ci#define S3C2440_NFCONF_TACLS(x)		((x)<<12)
628c2ecf20Sopenharmony_ci#define S3C2440_NFCONF_TWRPH0(x)	((x)<<8)
638c2ecf20Sopenharmony_ci#define S3C2440_NFCONF_TWRPH1(x)	((x)<<4)
648c2ecf20Sopenharmony_ci#define S3C2440_NFCONT_INITECC		(1<<4)
658c2ecf20Sopenharmony_ci#define S3C2440_NFCONT_nFCE		(1<<1)
668c2ecf20Sopenharmony_ci#define S3C2440_NFCONT_ENABLE		(1<<0)
678c2ecf20Sopenharmony_ci#define S3C2440_NFSTAT_READY		(1<<0)
688c2ecf20Sopenharmony_ci#define S3C2412_NFCONF_NANDBOOT		(1<<31)
698c2ecf20Sopenharmony_ci#define S3C2412_NFCONT_INIT_MAIN_ECC	(1<<5)
708c2ecf20Sopenharmony_ci#define S3C2412_NFCONT_nFCE0		(1<<1)
718c2ecf20Sopenharmony_ci#define S3C2412_NFSTAT_READY		(1<<0)
728c2ecf20Sopenharmony_ci
738c2ecf20Sopenharmony_ci/* new oob placement block for use with hardware ecc generation
748c2ecf20Sopenharmony_ci */
758c2ecf20Sopenharmony_cistatic int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
768c2ecf20Sopenharmony_ci				 struct mtd_oob_region *oobregion)
778c2ecf20Sopenharmony_ci{
788c2ecf20Sopenharmony_ci	if (section)
798c2ecf20Sopenharmony_ci		return -ERANGE;
808c2ecf20Sopenharmony_ci
818c2ecf20Sopenharmony_ci	oobregion->offset = 0;
828c2ecf20Sopenharmony_ci	oobregion->length = 3;
838c2ecf20Sopenharmony_ci
848c2ecf20Sopenharmony_ci	return 0;
858c2ecf20Sopenharmony_ci}
868c2ecf20Sopenharmony_ci
878c2ecf20Sopenharmony_cistatic int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
888c2ecf20Sopenharmony_ci				  struct mtd_oob_region *oobregion)
898c2ecf20Sopenharmony_ci{
908c2ecf20Sopenharmony_ci	if (section)
918c2ecf20Sopenharmony_ci		return -ERANGE;
928c2ecf20Sopenharmony_ci
938c2ecf20Sopenharmony_ci	oobregion->offset = 8;
948c2ecf20Sopenharmony_ci	oobregion->length = 8;
958c2ecf20Sopenharmony_ci
968c2ecf20Sopenharmony_ci	return 0;
978c2ecf20Sopenharmony_ci}
988c2ecf20Sopenharmony_ci
998c2ecf20Sopenharmony_cistatic const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
1008c2ecf20Sopenharmony_ci	.ecc = s3c2410_ooblayout_ecc,
1018c2ecf20Sopenharmony_ci	.free = s3c2410_ooblayout_free,
1028c2ecf20Sopenharmony_ci};
1038c2ecf20Sopenharmony_ci
1048c2ecf20Sopenharmony_ci/* controller and mtd information */
1058c2ecf20Sopenharmony_ci
1068c2ecf20Sopenharmony_cistruct s3c2410_nand_info;
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci/**
1098c2ecf20Sopenharmony_ci * struct s3c2410_nand_mtd - driver MTD structure
1108c2ecf20Sopenharmony_ci * @mtd: The MTD instance to pass to the MTD layer.
1118c2ecf20Sopenharmony_ci * @chip: The NAND chip information.
1128c2ecf20Sopenharmony_ci * @set: The platform information supplied for this set of NAND chips.
1138c2ecf20Sopenharmony_ci * @info: Link back to the hardware information.
1148c2ecf20Sopenharmony_ci*/
1158c2ecf20Sopenharmony_cistruct s3c2410_nand_mtd {
1168c2ecf20Sopenharmony_ci	struct nand_chip		chip;
1178c2ecf20Sopenharmony_ci	struct s3c2410_nand_set		*set;
1188c2ecf20Sopenharmony_ci	struct s3c2410_nand_info	*info;
1198c2ecf20Sopenharmony_ci};
1208c2ecf20Sopenharmony_ci
1218c2ecf20Sopenharmony_cienum s3c_cpu_type {
1228c2ecf20Sopenharmony_ci	TYPE_S3C2410,
1238c2ecf20Sopenharmony_ci	TYPE_S3C2412,
1248c2ecf20Sopenharmony_ci	TYPE_S3C2440,
1258c2ecf20Sopenharmony_ci};
1268c2ecf20Sopenharmony_ci
1278c2ecf20Sopenharmony_cienum s3c_nand_clk_state {
1288c2ecf20Sopenharmony_ci	CLOCK_DISABLE	= 0,
1298c2ecf20Sopenharmony_ci	CLOCK_ENABLE,
1308c2ecf20Sopenharmony_ci	CLOCK_SUSPEND,
1318c2ecf20Sopenharmony_ci};
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_ci/* overview of the s3c2410 nand state */
1348c2ecf20Sopenharmony_ci
1358c2ecf20Sopenharmony_ci/**
1368c2ecf20Sopenharmony_ci * struct s3c2410_nand_info - NAND controller state.
1378c2ecf20Sopenharmony_ci * @mtds: An array of MTD instances on this controoler.
1388c2ecf20Sopenharmony_ci * @platform: The platform data for this board.
1398c2ecf20Sopenharmony_ci * @device: The platform device we bound to.
1408c2ecf20Sopenharmony_ci * @clk: The clock resource for this controller.
1418c2ecf20Sopenharmony_ci * @regs: The area mapped for the hardware registers.
1428c2ecf20Sopenharmony_ci * @sel_reg: Pointer to the register controlling the NAND selection.
1438c2ecf20Sopenharmony_ci * @sel_bit: The bit in @sel_reg to select the NAND chip.
1448c2ecf20Sopenharmony_ci * @mtd_count: The number of MTDs created from this controller.
1458c2ecf20Sopenharmony_ci * @save_sel: The contents of @sel_reg to be saved over suspend.
1468c2ecf20Sopenharmony_ci * @clk_rate: The clock rate from @clk.
1478c2ecf20Sopenharmony_ci * @clk_state: The current clock state.
1488c2ecf20Sopenharmony_ci * @cpu_type: The exact type of this controller.
1498c2ecf20Sopenharmony_ci */
1508c2ecf20Sopenharmony_cistruct s3c2410_nand_info {
1518c2ecf20Sopenharmony_ci	/* mtd info */
1528c2ecf20Sopenharmony_ci	struct nand_controller		controller;
1538c2ecf20Sopenharmony_ci	struct s3c2410_nand_mtd		*mtds;
1548c2ecf20Sopenharmony_ci	struct s3c2410_platform_nand	*platform;
1558c2ecf20Sopenharmony_ci
1568c2ecf20Sopenharmony_ci	/* device info */
1578c2ecf20Sopenharmony_ci	struct device			*device;
1588c2ecf20Sopenharmony_ci	struct clk			*clk;
1598c2ecf20Sopenharmony_ci	void __iomem			*regs;
1608c2ecf20Sopenharmony_ci	void __iomem			*sel_reg;
1618c2ecf20Sopenharmony_ci	int				sel_bit;
1628c2ecf20Sopenharmony_ci	int				mtd_count;
1638c2ecf20Sopenharmony_ci	unsigned long			save_sel;
1648c2ecf20Sopenharmony_ci	unsigned long			clk_rate;
1658c2ecf20Sopenharmony_ci	enum s3c_nand_clk_state		clk_state;
1668c2ecf20Sopenharmony_ci
1678c2ecf20Sopenharmony_ci	enum s3c_cpu_type		cpu_type;
1688c2ecf20Sopenharmony_ci
1698c2ecf20Sopenharmony_ci#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
1708c2ecf20Sopenharmony_ci	struct notifier_block	freq_transition;
1718c2ecf20Sopenharmony_ci#endif
1728c2ecf20Sopenharmony_ci};
1738c2ecf20Sopenharmony_ci
1748c2ecf20Sopenharmony_cistruct s3c24XX_nand_devtype_data {
1758c2ecf20Sopenharmony_ci	enum s3c_cpu_type type;
1768c2ecf20Sopenharmony_ci};
1778c2ecf20Sopenharmony_ci
1788c2ecf20Sopenharmony_cistatic const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
1798c2ecf20Sopenharmony_ci	.type = TYPE_S3C2410,
1808c2ecf20Sopenharmony_ci};
1818c2ecf20Sopenharmony_ci
1828c2ecf20Sopenharmony_cistatic const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
1838c2ecf20Sopenharmony_ci	.type = TYPE_S3C2412,
1848c2ecf20Sopenharmony_ci};
1858c2ecf20Sopenharmony_ci
1868c2ecf20Sopenharmony_cistatic const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
1878c2ecf20Sopenharmony_ci	.type = TYPE_S3C2440,
1888c2ecf20Sopenharmony_ci};
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_ci/* conversion functions */
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_cistatic struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
1938c2ecf20Sopenharmony_ci{
1948c2ecf20Sopenharmony_ci	return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
1958c2ecf20Sopenharmony_ci			    chip);
1968c2ecf20Sopenharmony_ci}
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_cistatic struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
1998c2ecf20Sopenharmony_ci{
2008c2ecf20Sopenharmony_ci	return s3c2410_nand_mtd_toours(mtd)->info;
2018c2ecf20Sopenharmony_ci}
2028c2ecf20Sopenharmony_ci
2038c2ecf20Sopenharmony_cistatic struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
2048c2ecf20Sopenharmony_ci{
2058c2ecf20Sopenharmony_ci	return platform_get_drvdata(dev);
2068c2ecf20Sopenharmony_ci}
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_cistatic struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
2098c2ecf20Sopenharmony_ci{
2108c2ecf20Sopenharmony_ci	return dev_get_platdata(&dev->dev);
2118c2ecf20Sopenharmony_ci}
2128c2ecf20Sopenharmony_ci
2138c2ecf20Sopenharmony_cistatic inline int allow_clk_suspend(struct s3c2410_nand_info *info)
2148c2ecf20Sopenharmony_ci{
2158c2ecf20Sopenharmony_ci#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
2168c2ecf20Sopenharmony_ci	return 1;
2178c2ecf20Sopenharmony_ci#else
2188c2ecf20Sopenharmony_ci	return 0;
2198c2ecf20Sopenharmony_ci#endif
2208c2ecf20Sopenharmony_ci}
2218c2ecf20Sopenharmony_ci
2228c2ecf20Sopenharmony_ci/**
2238c2ecf20Sopenharmony_ci * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
2248c2ecf20Sopenharmony_ci * @info: The controller instance.
2258c2ecf20Sopenharmony_ci * @new_state: State to which clock should be set.
2268c2ecf20Sopenharmony_ci */
2278c2ecf20Sopenharmony_cistatic void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
2288c2ecf20Sopenharmony_ci		enum s3c_nand_clk_state new_state)
2298c2ecf20Sopenharmony_ci{
2308c2ecf20Sopenharmony_ci	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
2318c2ecf20Sopenharmony_ci		return;
2328c2ecf20Sopenharmony_ci
2338c2ecf20Sopenharmony_ci	if (info->clk_state == CLOCK_ENABLE) {
2348c2ecf20Sopenharmony_ci		if (new_state != CLOCK_ENABLE)
2358c2ecf20Sopenharmony_ci			clk_disable_unprepare(info->clk);
2368c2ecf20Sopenharmony_ci	} else {
2378c2ecf20Sopenharmony_ci		if (new_state == CLOCK_ENABLE)
2388c2ecf20Sopenharmony_ci			clk_prepare_enable(info->clk);
2398c2ecf20Sopenharmony_ci	}
2408c2ecf20Sopenharmony_ci
2418c2ecf20Sopenharmony_ci	info->clk_state = new_state;
2428c2ecf20Sopenharmony_ci}
2438c2ecf20Sopenharmony_ci
2448c2ecf20Sopenharmony_ci/* timing calculations */
2458c2ecf20Sopenharmony_ci
2468c2ecf20Sopenharmony_ci#define NS_IN_KHZ 1000000
2478c2ecf20Sopenharmony_ci
2488c2ecf20Sopenharmony_ci/**
2498c2ecf20Sopenharmony_ci * s3c_nand_calc_rate - calculate timing data.
2508c2ecf20Sopenharmony_ci * @wanted: The cycle time in nanoseconds.
2518c2ecf20Sopenharmony_ci * @clk: The clock rate in kHz.
2528c2ecf20Sopenharmony_ci * @max: The maximum divider value.
2538c2ecf20Sopenharmony_ci *
2548c2ecf20Sopenharmony_ci * Calculate the timing value from the given parameters.
2558c2ecf20Sopenharmony_ci */
2568c2ecf20Sopenharmony_cistatic int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
2578c2ecf20Sopenharmony_ci{
2588c2ecf20Sopenharmony_ci	int result;
2598c2ecf20Sopenharmony_ci
2608c2ecf20Sopenharmony_ci	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
2618c2ecf20Sopenharmony_ci
2628c2ecf20Sopenharmony_ci	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
2638c2ecf20Sopenharmony_ci
2648c2ecf20Sopenharmony_ci	if (result > max) {
2658c2ecf20Sopenharmony_ci		pr_err("%d ns is too big for current clock rate %ld\n",
2668c2ecf20Sopenharmony_ci			wanted, clk);
2678c2ecf20Sopenharmony_ci		return -1;
2688c2ecf20Sopenharmony_ci	}
2698c2ecf20Sopenharmony_ci
2708c2ecf20Sopenharmony_ci	if (result < 1)
2718c2ecf20Sopenharmony_ci		result = 1;
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_ci	return result;
2748c2ecf20Sopenharmony_ci}
2758c2ecf20Sopenharmony_ci
2768c2ecf20Sopenharmony_ci#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
2778c2ecf20Sopenharmony_ci
2788c2ecf20Sopenharmony_ci/* controller setup */
2798c2ecf20Sopenharmony_ci
2808c2ecf20Sopenharmony_ci/**
2818c2ecf20Sopenharmony_ci * s3c2410_nand_setrate - setup controller timing information.
2828c2ecf20Sopenharmony_ci * @info: The controller instance.
2838c2ecf20Sopenharmony_ci *
2848c2ecf20Sopenharmony_ci * Given the information supplied by the platform, calculate and set
2858c2ecf20Sopenharmony_ci * the necessary timing registers in the hardware to generate the
2868c2ecf20Sopenharmony_ci * necessary timing cycles to the hardware.
2878c2ecf20Sopenharmony_ci */
2888c2ecf20Sopenharmony_cistatic int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
2898c2ecf20Sopenharmony_ci{
2908c2ecf20Sopenharmony_ci	struct s3c2410_platform_nand *plat = info->platform;
2918c2ecf20Sopenharmony_ci	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
2928c2ecf20Sopenharmony_ci	int tacls, twrph0, twrph1;
2938c2ecf20Sopenharmony_ci	unsigned long clkrate = clk_get_rate(info->clk);
2948c2ecf20Sopenharmony_ci	unsigned long set, cfg, mask;
2958c2ecf20Sopenharmony_ci	unsigned long flags;
2968c2ecf20Sopenharmony_ci
2978c2ecf20Sopenharmony_ci	/* calculate the timing information for the controller */
2988c2ecf20Sopenharmony_ci
2998c2ecf20Sopenharmony_ci	info->clk_rate = clkrate;
3008c2ecf20Sopenharmony_ci	clkrate /= 1000;	/* turn clock into kHz for ease of use */
3018c2ecf20Sopenharmony_ci
3028c2ecf20Sopenharmony_ci	if (plat != NULL) {
3038c2ecf20Sopenharmony_ci		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
3048c2ecf20Sopenharmony_ci		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
3058c2ecf20Sopenharmony_ci		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
3068c2ecf20Sopenharmony_ci	} else {
3078c2ecf20Sopenharmony_ci		/* default timings */
3088c2ecf20Sopenharmony_ci		tacls = tacls_max;
3098c2ecf20Sopenharmony_ci		twrph0 = 8;
3108c2ecf20Sopenharmony_ci		twrph1 = 8;
3118c2ecf20Sopenharmony_ci	}
3128c2ecf20Sopenharmony_ci
3138c2ecf20Sopenharmony_ci	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
3148c2ecf20Sopenharmony_ci		dev_err(info->device, "cannot get suitable timings\n");
3158c2ecf20Sopenharmony_ci		return -EINVAL;
3168c2ecf20Sopenharmony_ci	}
3178c2ecf20Sopenharmony_ci
3188c2ecf20Sopenharmony_ci	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
3198c2ecf20Sopenharmony_ci		tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
3208c2ecf20Sopenharmony_ci						twrph1, to_ns(twrph1, clkrate));
3218c2ecf20Sopenharmony_ci
3228c2ecf20Sopenharmony_ci	switch (info->cpu_type) {
3238c2ecf20Sopenharmony_ci	case TYPE_S3C2410:
3248c2ecf20Sopenharmony_ci		mask = (S3C2410_NFCONF_TACLS(3) |
3258c2ecf20Sopenharmony_ci			S3C2410_NFCONF_TWRPH0(7) |
3268c2ecf20Sopenharmony_ci			S3C2410_NFCONF_TWRPH1(7));
3278c2ecf20Sopenharmony_ci		set = S3C2410_NFCONF_EN;
3288c2ecf20Sopenharmony_ci		set |= S3C2410_NFCONF_TACLS(tacls - 1);
3298c2ecf20Sopenharmony_ci		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
3308c2ecf20Sopenharmony_ci		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
3318c2ecf20Sopenharmony_ci		break;
3328c2ecf20Sopenharmony_ci
3338c2ecf20Sopenharmony_ci	case TYPE_S3C2440:
3348c2ecf20Sopenharmony_ci	case TYPE_S3C2412:
3358c2ecf20Sopenharmony_ci		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
3368c2ecf20Sopenharmony_ci			S3C2440_NFCONF_TWRPH0(7) |
3378c2ecf20Sopenharmony_ci			S3C2440_NFCONF_TWRPH1(7));
3388c2ecf20Sopenharmony_ci
3398c2ecf20Sopenharmony_ci		set = S3C2440_NFCONF_TACLS(tacls - 1);
3408c2ecf20Sopenharmony_ci		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
3418c2ecf20Sopenharmony_ci		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
3428c2ecf20Sopenharmony_ci		break;
3438c2ecf20Sopenharmony_ci
3448c2ecf20Sopenharmony_ci	default:
3458c2ecf20Sopenharmony_ci		BUG();
3468c2ecf20Sopenharmony_ci	}
3478c2ecf20Sopenharmony_ci
3488c2ecf20Sopenharmony_ci	local_irq_save(flags);
3498c2ecf20Sopenharmony_ci
3508c2ecf20Sopenharmony_ci	cfg = readl(info->regs + S3C2410_NFCONF);
3518c2ecf20Sopenharmony_ci	cfg &= ~mask;
3528c2ecf20Sopenharmony_ci	cfg |= set;
3538c2ecf20Sopenharmony_ci	writel(cfg, info->regs + S3C2410_NFCONF);
3548c2ecf20Sopenharmony_ci
3558c2ecf20Sopenharmony_ci	local_irq_restore(flags);
3568c2ecf20Sopenharmony_ci
3578c2ecf20Sopenharmony_ci	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
3588c2ecf20Sopenharmony_ci
3598c2ecf20Sopenharmony_ci	return 0;
3608c2ecf20Sopenharmony_ci}
3618c2ecf20Sopenharmony_ci
3628c2ecf20Sopenharmony_ci/**
3638c2ecf20Sopenharmony_ci * s3c2410_nand_inithw - basic hardware initialisation
3648c2ecf20Sopenharmony_ci * @info: The hardware state.
3658c2ecf20Sopenharmony_ci *
3668c2ecf20Sopenharmony_ci * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
3678c2ecf20Sopenharmony_ci * to setup the hardware access speeds and set the controller to be enabled.
3688c2ecf20Sopenharmony_ci*/
3698c2ecf20Sopenharmony_cistatic int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
3708c2ecf20Sopenharmony_ci{
3718c2ecf20Sopenharmony_ci	int ret;
3728c2ecf20Sopenharmony_ci
3738c2ecf20Sopenharmony_ci	ret = s3c2410_nand_setrate(info);
3748c2ecf20Sopenharmony_ci	if (ret < 0)
3758c2ecf20Sopenharmony_ci		return ret;
3768c2ecf20Sopenharmony_ci
3778c2ecf20Sopenharmony_ci	switch (info->cpu_type) {
3788c2ecf20Sopenharmony_ci	case TYPE_S3C2410:
3798c2ecf20Sopenharmony_ci	default:
3808c2ecf20Sopenharmony_ci		break;
3818c2ecf20Sopenharmony_ci
3828c2ecf20Sopenharmony_ci	case TYPE_S3C2440:
3838c2ecf20Sopenharmony_ci	case TYPE_S3C2412:
3848c2ecf20Sopenharmony_ci		/* enable the controller and de-assert nFCE */
3858c2ecf20Sopenharmony_ci
3868c2ecf20Sopenharmony_ci		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
3878c2ecf20Sopenharmony_ci	}
3888c2ecf20Sopenharmony_ci
3898c2ecf20Sopenharmony_ci	return 0;
3908c2ecf20Sopenharmony_ci}
3918c2ecf20Sopenharmony_ci
3928c2ecf20Sopenharmony_ci/**
3938c2ecf20Sopenharmony_ci * s3c2410_nand_select_chip - select the given nand chip
3948c2ecf20Sopenharmony_ci * @this: NAND chip object.
3958c2ecf20Sopenharmony_ci * @chip: The chip number.
3968c2ecf20Sopenharmony_ci *
3978c2ecf20Sopenharmony_ci * This is called by the MTD layer to either select a given chip for the
3988c2ecf20Sopenharmony_ci * @mtd instance, or to indicate that the access has finished and the
3998c2ecf20Sopenharmony_ci * chip can be de-selected.
4008c2ecf20Sopenharmony_ci *
4018c2ecf20Sopenharmony_ci * The routine ensures that the nFCE line is correctly setup, and any
4028c2ecf20Sopenharmony_ci * platform specific selection code is called to route nFCE to the specific
4038c2ecf20Sopenharmony_ci * chip.
4048c2ecf20Sopenharmony_ci */
4058c2ecf20Sopenharmony_cistatic void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
4068c2ecf20Sopenharmony_ci{
4078c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info;
4088c2ecf20Sopenharmony_ci	struct s3c2410_nand_mtd *nmtd;
4098c2ecf20Sopenharmony_ci	unsigned long cur;
4108c2ecf20Sopenharmony_ci
4118c2ecf20Sopenharmony_ci	nmtd = nand_get_controller_data(this);
4128c2ecf20Sopenharmony_ci	info = nmtd->info;
4138c2ecf20Sopenharmony_ci
4148c2ecf20Sopenharmony_ci	if (chip != -1)
4158c2ecf20Sopenharmony_ci		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
4168c2ecf20Sopenharmony_ci
4178c2ecf20Sopenharmony_ci	cur = readl(info->sel_reg);
4188c2ecf20Sopenharmony_ci
4198c2ecf20Sopenharmony_ci	if (chip == -1) {
4208c2ecf20Sopenharmony_ci		cur |= info->sel_bit;
4218c2ecf20Sopenharmony_ci	} else {
4228c2ecf20Sopenharmony_ci		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
4238c2ecf20Sopenharmony_ci			dev_err(info->device, "invalid chip %d\n", chip);
4248c2ecf20Sopenharmony_ci			return;
4258c2ecf20Sopenharmony_ci		}
4268c2ecf20Sopenharmony_ci
4278c2ecf20Sopenharmony_ci		if (info->platform != NULL) {
4288c2ecf20Sopenharmony_ci			if (info->platform->select_chip != NULL)
4298c2ecf20Sopenharmony_ci				(info->platform->select_chip) (nmtd->set, chip);
4308c2ecf20Sopenharmony_ci		}
4318c2ecf20Sopenharmony_ci
4328c2ecf20Sopenharmony_ci		cur &= ~info->sel_bit;
4338c2ecf20Sopenharmony_ci	}
4348c2ecf20Sopenharmony_ci
4358c2ecf20Sopenharmony_ci	writel(cur, info->sel_reg);
4368c2ecf20Sopenharmony_ci
4378c2ecf20Sopenharmony_ci	if (chip == -1)
4388c2ecf20Sopenharmony_ci		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
4398c2ecf20Sopenharmony_ci}
4408c2ecf20Sopenharmony_ci
4418c2ecf20Sopenharmony_ci/* s3c2410_nand_hwcontrol
4428c2ecf20Sopenharmony_ci *
4438c2ecf20Sopenharmony_ci * Issue command and address cycles to the chip
4448c2ecf20Sopenharmony_ci*/
4458c2ecf20Sopenharmony_ci
4468c2ecf20Sopenharmony_cistatic void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
4478c2ecf20Sopenharmony_ci				   unsigned int ctrl)
4488c2ecf20Sopenharmony_ci{
4498c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
4508c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
4518c2ecf20Sopenharmony_ci
4528c2ecf20Sopenharmony_ci	if (cmd == NAND_CMD_NONE)
4538c2ecf20Sopenharmony_ci		return;
4548c2ecf20Sopenharmony_ci
4558c2ecf20Sopenharmony_ci	if (ctrl & NAND_CLE)
4568c2ecf20Sopenharmony_ci		writeb(cmd, info->regs + S3C2410_NFCMD);
4578c2ecf20Sopenharmony_ci	else
4588c2ecf20Sopenharmony_ci		writeb(cmd, info->regs + S3C2410_NFADDR);
4598c2ecf20Sopenharmony_ci}
4608c2ecf20Sopenharmony_ci
4618c2ecf20Sopenharmony_ci/* command and control functions */
4628c2ecf20Sopenharmony_ci
4638c2ecf20Sopenharmony_cistatic void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
4648c2ecf20Sopenharmony_ci				   unsigned int ctrl)
4658c2ecf20Sopenharmony_ci{
4668c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
4678c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
4688c2ecf20Sopenharmony_ci
4698c2ecf20Sopenharmony_ci	if (cmd == NAND_CMD_NONE)
4708c2ecf20Sopenharmony_ci		return;
4718c2ecf20Sopenharmony_ci
4728c2ecf20Sopenharmony_ci	if (ctrl & NAND_CLE)
4738c2ecf20Sopenharmony_ci		writeb(cmd, info->regs + S3C2440_NFCMD);
4748c2ecf20Sopenharmony_ci	else
4758c2ecf20Sopenharmony_ci		writeb(cmd, info->regs + S3C2440_NFADDR);
4768c2ecf20Sopenharmony_ci}
4778c2ecf20Sopenharmony_ci
4788c2ecf20Sopenharmony_ci/* s3c2410_nand_devready()
4798c2ecf20Sopenharmony_ci *
4808c2ecf20Sopenharmony_ci * returns 0 if the nand is busy, 1 if it is ready
4818c2ecf20Sopenharmony_ci*/
4828c2ecf20Sopenharmony_ci
4838c2ecf20Sopenharmony_cistatic int s3c2410_nand_devready(struct nand_chip *chip)
4848c2ecf20Sopenharmony_ci{
4858c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
4868c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
4878c2ecf20Sopenharmony_ci	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
4888c2ecf20Sopenharmony_ci}
4898c2ecf20Sopenharmony_ci
4908c2ecf20Sopenharmony_cistatic int s3c2440_nand_devready(struct nand_chip *chip)
4918c2ecf20Sopenharmony_ci{
4928c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
4938c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
4948c2ecf20Sopenharmony_ci	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
4958c2ecf20Sopenharmony_ci}
4968c2ecf20Sopenharmony_ci
4978c2ecf20Sopenharmony_cistatic int s3c2412_nand_devready(struct nand_chip *chip)
4988c2ecf20Sopenharmony_ci{
4998c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
5008c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
5018c2ecf20Sopenharmony_ci	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
5028c2ecf20Sopenharmony_ci}
5038c2ecf20Sopenharmony_ci
5048c2ecf20Sopenharmony_ci/* ECC handling functions */
5058c2ecf20Sopenharmony_ci
5068c2ecf20Sopenharmony_cistatic int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
5078c2ecf20Sopenharmony_ci				     u_char *read_ecc, u_char *calc_ecc)
5088c2ecf20Sopenharmony_ci{
5098c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
5108c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
5118c2ecf20Sopenharmony_ci	unsigned int diff0, diff1, diff2;
5128c2ecf20Sopenharmony_ci	unsigned int bit, byte;
5138c2ecf20Sopenharmony_ci
5148c2ecf20Sopenharmony_ci	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
5158c2ecf20Sopenharmony_ci
5168c2ecf20Sopenharmony_ci	diff0 = read_ecc[0] ^ calc_ecc[0];
5178c2ecf20Sopenharmony_ci	diff1 = read_ecc[1] ^ calc_ecc[1];
5188c2ecf20Sopenharmony_ci	diff2 = read_ecc[2] ^ calc_ecc[2];
5198c2ecf20Sopenharmony_ci
5208c2ecf20Sopenharmony_ci	pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
5218c2ecf20Sopenharmony_ci		 __func__, 3, read_ecc, 3, calc_ecc,
5228c2ecf20Sopenharmony_ci		 diff0, diff1, diff2);
5238c2ecf20Sopenharmony_ci
5248c2ecf20Sopenharmony_ci	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
5258c2ecf20Sopenharmony_ci		return 0;		/* ECC is ok */
5268c2ecf20Sopenharmony_ci
5278c2ecf20Sopenharmony_ci	/* sometimes people do not think about using the ECC, so check
5288c2ecf20Sopenharmony_ci	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
5298c2ecf20Sopenharmony_ci	 * the error, on the assumption that this is an un-eccd page.
5308c2ecf20Sopenharmony_ci	 */
5318c2ecf20Sopenharmony_ci	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
5328c2ecf20Sopenharmony_ci	    && info->platform->ignore_unset_ecc)
5338c2ecf20Sopenharmony_ci		return 0;
5348c2ecf20Sopenharmony_ci
5358c2ecf20Sopenharmony_ci	/* Can we correct this ECC (ie, one row and column change).
5368c2ecf20Sopenharmony_ci	 * Note, this is similar to the 256 error code on smartmedia */
5378c2ecf20Sopenharmony_ci
5388c2ecf20Sopenharmony_ci	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
5398c2ecf20Sopenharmony_ci	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
5408c2ecf20Sopenharmony_ci	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
5418c2ecf20Sopenharmony_ci		/* calculate the bit position of the error */
5428c2ecf20Sopenharmony_ci
5438c2ecf20Sopenharmony_ci		bit  = ((diff2 >> 3) & 1) |
5448c2ecf20Sopenharmony_ci		       ((diff2 >> 4) & 2) |
5458c2ecf20Sopenharmony_ci		       ((diff2 >> 5) & 4);
5468c2ecf20Sopenharmony_ci
5478c2ecf20Sopenharmony_ci		/* calculate the byte position of the error */
5488c2ecf20Sopenharmony_ci
5498c2ecf20Sopenharmony_ci		byte = ((diff2 << 7) & 0x100) |
5508c2ecf20Sopenharmony_ci		       ((diff1 << 0) & 0x80)  |
5518c2ecf20Sopenharmony_ci		       ((diff1 << 1) & 0x40)  |
5528c2ecf20Sopenharmony_ci		       ((diff1 << 2) & 0x20)  |
5538c2ecf20Sopenharmony_ci		       ((diff1 << 3) & 0x10)  |
5548c2ecf20Sopenharmony_ci		       ((diff0 >> 4) & 0x08)  |
5558c2ecf20Sopenharmony_ci		       ((diff0 >> 3) & 0x04)  |
5568c2ecf20Sopenharmony_ci		       ((diff0 >> 2) & 0x02)  |
5578c2ecf20Sopenharmony_ci		       ((diff0 >> 1) & 0x01);
5588c2ecf20Sopenharmony_ci
5598c2ecf20Sopenharmony_ci		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
5608c2ecf20Sopenharmony_ci			bit, byte);
5618c2ecf20Sopenharmony_ci
5628c2ecf20Sopenharmony_ci		dat[byte] ^= (1 << bit);
5638c2ecf20Sopenharmony_ci		return 1;
5648c2ecf20Sopenharmony_ci	}
5658c2ecf20Sopenharmony_ci
5668c2ecf20Sopenharmony_ci	/* if there is only one bit difference in the ECC, then
5678c2ecf20Sopenharmony_ci	 * one of only a row or column parity has changed, which
5688c2ecf20Sopenharmony_ci	 * means the error is most probably in the ECC itself */
5698c2ecf20Sopenharmony_ci
5708c2ecf20Sopenharmony_ci	diff0 |= (diff1 << 8);
5718c2ecf20Sopenharmony_ci	diff0 |= (diff2 << 16);
5728c2ecf20Sopenharmony_ci
5738c2ecf20Sopenharmony_ci	/* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
5748c2ecf20Sopenharmony_ci	if ((diff0 & (diff0 - 1)) == 0)
5758c2ecf20Sopenharmony_ci		return 1;
5768c2ecf20Sopenharmony_ci
5778c2ecf20Sopenharmony_ci	return -1;
5788c2ecf20Sopenharmony_ci}
5798c2ecf20Sopenharmony_ci
5808c2ecf20Sopenharmony_ci/* ECC functions
5818c2ecf20Sopenharmony_ci *
5828c2ecf20Sopenharmony_ci * These allow the s3c2410 and s3c2440 to use the controller's ECC
5838c2ecf20Sopenharmony_ci * generator block to ECC the data as it passes through]
5848c2ecf20Sopenharmony_ci*/
5858c2ecf20Sopenharmony_ci
5868c2ecf20Sopenharmony_cistatic void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
5878c2ecf20Sopenharmony_ci{
5888c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info;
5898c2ecf20Sopenharmony_ci	unsigned long ctrl;
5908c2ecf20Sopenharmony_ci
5918c2ecf20Sopenharmony_ci	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
5928c2ecf20Sopenharmony_ci	ctrl = readl(info->regs + S3C2410_NFCONF);
5938c2ecf20Sopenharmony_ci	ctrl |= S3C2410_NFCONF_INITECC;
5948c2ecf20Sopenharmony_ci	writel(ctrl, info->regs + S3C2410_NFCONF);
5958c2ecf20Sopenharmony_ci}
5968c2ecf20Sopenharmony_ci
5978c2ecf20Sopenharmony_cistatic void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
5988c2ecf20Sopenharmony_ci{
5998c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info;
6008c2ecf20Sopenharmony_ci	unsigned long ctrl;
6018c2ecf20Sopenharmony_ci
6028c2ecf20Sopenharmony_ci	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
6038c2ecf20Sopenharmony_ci	ctrl = readl(info->regs + S3C2440_NFCONT);
6048c2ecf20Sopenharmony_ci	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
6058c2ecf20Sopenharmony_ci	       info->regs + S3C2440_NFCONT);
6068c2ecf20Sopenharmony_ci}
6078c2ecf20Sopenharmony_ci
6088c2ecf20Sopenharmony_cistatic void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
6098c2ecf20Sopenharmony_ci{
6108c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info;
6118c2ecf20Sopenharmony_ci	unsigned long ctrl;
6128c2ecf20Sopenharmony_ci
6138c2ecf20Sopenharmony_ci	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
6148c2ecf20Sopenharmony_ci	ctrl = readl(info->regs + S3C2440_NFCONT);
6158c2ecf20Sopenharmony_ci	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
6168c2ecf20Sopenharmony_ci}
6178c2ecf20Sopenharmony_ci
6188c2ecf20Sopenharmony_cistatic int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
6198c2ecf20Sopenharmony_ci				      const u_char *dat, u_char *ecc_code)
6208c2ecf20Sopenharmony_ci{
6218c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
6228c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
6238c2ecf20Sopenharmony_ci
6248c2ecf20Sopenharmony_ci	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
6258c2ecf20Sopenharmony_ci	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
6268c2ecf20Sopenharmony_ci	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
6278c2ecf20Sopenharmony_ci
6288c2ecf20Sopenharmony_ci	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
6298c2ecf20Sopenharmony_ci
6308c2ecf20Sopenharmony_ci	return 0;
6318c2ecf20Sopenharmony_ci}
6328c2ecf20Sopenharmony_ci
6338c2ecf20Sopenharmony_cistatic int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
6348c2ecf20Sopenharmony_ci				      const u_char *dat, u_char *ecc_code)
6358c2ecf20Sopenharmony_ci{
6368c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
6378c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
6388c2ecf20Sopenharmony_ci	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
6398c2ecf20Sopenharmony_ci
6408c2ecf20Sopenharmony_ci	ecc_code[0] = ecc;
6418c2ecf20Sopenharmony_ci	ecc_code[1] = ecc >> 8;
6428c2ecf20Sopenharmony_ci	ecc_code[2] = ecc >> 16;
6438c2ecf20Sopenharmony_ci
6448c2ecf20Sopenharmony_ci	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
6458c2ecf20Sopenharmony_ci
6468c2ecf20Sopenharmony_ci	return 0;
6478c2ecf20Sopenharmony_ci}
6488c2ecf20Sopenharmony_ci
6498c2ecf20Sopenharmony_cistatic int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
6508c2ecf20Sopenharmony_ci				      const u_char *dat, u_char *ecc_code)
6518c2ecf20Sopenharmony_ci{
6528c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
6538c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
6548c2ecf20Sopenharmony_ci	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
6558c2ecf20Sopenharmony_ci
6568c2ecf20Sopenharmony_ci	ecc_code[0] = ecc;
6578c2ecf20Sopenharmony_ci	ecc_code[1] = ecc >> 8;
6588c2ecf20Sopenharmony_ci	ecc_code[2] = ecc >> 16;
6598c2ecf20Sopenharmony_ci
6608c2ecf20Sopenharmony_ci	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
6618c2ecf20Sopenharmony_ci
6628c2ecf20Sopenharmony_ci	return 0;
6638c2ecf20Sopenharmony_ci}
6648c2ecf20Sopenharmony_ci
6658c2ecf20Sopenharmony_ci/* over-ride the standard functions for a little more speed. We can
6668c2ecf20Sopenharmony_ci * use read/write block to move the data buffers to/from the controller
6678c2ecf20Sopenharmony_ci*/
6688c2ecf20Sopenharmony_ci
6698c2ecf20Sopenharmony_cistatic void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
6708c2ecf20Sopenharmony_ci{
6718c2ecf20Sopenharmony_ci	readsb(this->legacy.IO_ADDR_R, buf, len);
6728c2ecf20Sopenharmony_ci}
6738c2ecf20Sopenharmony_ci
6748c2ecf20Sopenharmony_cistatic void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
6758c2ecf20Sopenharmony_ci{
6768c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(this);
6778c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
6788c2ecf20Sopenharmony_ci
6798c2ecf20Sopenharmony_ci	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
6808c2ecf20Sopenharmony_ci
6818c2ecf20Sopenharmony_ci	/* cleanup if we've got less than a word to do */
6828c2ecf20Sopenharmony_ci	if (len & 3) {
6838c2ecf20Sopenharmony_ci		buf += len & ~3;
6848c2ecf20Sopenharmony_ci
6858c2ecf20Sopenharmony_ci		for (; len & 3; len--)
6868c2ecf20Sopenharmony_ci			*buf++ = readb(info->regs + S3C2440_NFDATA);
6878c2ecf20Sopenharmony_ci	}
6888c2ecf20Sopenharmony_ci}
6898c2ecf20Sopenharmony_ci
6908c2ecf20Sopenharmony_cistatic void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
6918c2ecf20Sopenharmony_ci				   int len)
6928c2ecf20Sopenharmony_ci{
6938c2ecf20Sopenharmony_ci	writesb(this->legacy.IO_ADDR_W, buf, len);
6948c2ecf20Sopenharmony_ci}
6958c2ecf20Sopenharmony_ci
6968c2ecf20Sopenharmony_cistatic void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
6978c2ecf20Sopenharmony_ci				   int len)
6988c2ecf20Sopenharmony_ci{
6998c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(this);
7008c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
7018c2ecf20Sopenharmony_ci
7028c2ecf20Sopenharmony_ci	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
7038c2ecf20Sopenharmony_ci
7048c2ecf20Sopenharmony_ci	/* cleanup any fractional write */
7058c2ecf20Sopenharmony_ci	if (len & 3) {
7068c2ecf20Sopenharmony_ci		buf += len & ~3;
7078c2ecf20Sopenharmony_ci
7088c2ecf20Sopenharmony_ci		for (; len & 3; len--, buf++)
7098c2ecf20Sopenharmony_ci			writeb(*buf, info->regs + S3C2440_NFDATA);
7108c2ecf20Sopenharmony_ci	}
7118c2ecf20Sopenharmony_ci}
7128c2ecf20Sopenharmony_ci
7138c2ecf20Sopenharmony_ci/* cpufreq driver support */
7148c2ecf20Sopenharmony_ci
7158c2ecf20Sopenharmony_ci#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
7168c2ecf20Sopenharmony_ci
7178c2ecf20Sopenharmony_cistatic int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
7188c2ecf20Sopenharmony_ci					  unsigned long val, void *data)
7198c2ecf20Sopenharmony_ci{
7208c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info;
7218c2ecf20Sopenharmony_ci	unsigned long newclk;
7228c2ecf20Sopenharmony_ci
7238c2ecf20Sopenharmony_ci	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
7248c2ecf20Sopenharmony_ci	newclk = clk_get_rate(info->clk);
7258c2ecf20Sopenharmony_ci
7268c2ecf20Sopenharmony_ci	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
7278c2ecf20Sopenharmony_ci	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
7288c2ecf20Sopenharmony_ci		s3c2410_nand_setrate(info);
7298c2ecf20Sopenharmony_ci	}
7308c2ecf20Sopenharmony_ci
7318c2ecf20Sopenharmony_ci	return 0;
7328c2ecf20Sopenharmony_ci}
7338c2ecf20Sopenharmony_ci
7348c2ecf20Sopenharmony_cistatic inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
7358c2ecf20Sopenharmony_ci{
7368c2ecf20Sopenharmony_ci	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
7378c2ecf20Sopenharmony_ci
7388c2ecf20Sopenharmony_ci	return cpufreq_register_notifier(&info->freq_transition,
7398c2ecf20Sopenharmony_ci					 CPUFREQ_TRANSITION_NOTIFIER);
7408c2ecf20Sopenharmony_ci}
7418c2ecf20Sopenharmony_ci
7428c2ecf20Sopenharmony_cistatic inline void
7438c2ecf20Sopenharmony_cis3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
7448c2ecf20Sopenharmony_ci{
7458c2ecf20Sopenharmony_ci	cpufreq_unregister_notifier(&info->freq_transition,
7468c2ecf20Sopenharmony_ci				    CPUFREQ_TRANSITION_NOTIFIER);
7478c2ecf20Sopenharmony_ci}
7488c2ecf20Sopenharmony_ci
7498c2ecf20Sopenharmony_ci#else
7508c2ecf20Sopenharmony_cistatic inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
7518c2ecf20Sopenharmony_ci{
7528c2ecf20Sopenharmony_ci	return 0;
7538c2ecf20Sopenharmony_ci}
7548c2ecf20Sopenharmony_ci
7558c2ecf20Sopenharmony_cistatic inline void
7568c2ecf20Sopenharmony_cis3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
7578c2ecf20Sopenharmony_ci{
7588c2ecf20Sopenharmony_ci}
7598c2ecf20Sopenharmony_ci#endif
7608c2ecf20Sopenharmony_ci
7618c2ecf20Sopenharmony_ci/* device management functions */
7628c2ecf20Sopenharmony_ci
7638c2ecf20Sopenharmony_cistatic int s3c24xx_nand_remove(struct platform_device *pdev)
7648c2ecf20Sopenharmony_ci{
7658c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = to_nand_info(pdev);
7668c2ecf20Sopenharmony_ci
7678c2ecf20Sopenharmony_ci	if (info == NULL)
7688c2ecf20Sopenharmony_ci		return 0;
7698c2ecf20Sopenharmony_ci
7708c2ecf20Sopenharmony_ci	s3c2410_nand_cpufreq_deregister(info);
7718c2ecf20Sopenharmony_ci
7728c2ecf20Sopenharmony_ci	/* Release all our mtds  and their partitions, then go through
7738c2ecf20Sopenharmony_ci	 * freeing the resources used
7748c2ecf20Sopenharmony_ci	 */
7758c2ecf20Sopenharmony_ci
7768c2ecf20Sopenharmony_ci	if (info->mtds != NULL) {
7778c2ecf20Sopenharmony_ci		struct s3c2410_nand_mtd *ptr = info->mtds;
7788c2ecf20Sopenharmony_ci		int mtdno;
7798c2ecf20Sopenharmony_ci
7808c2ecf20Sopenharmony_ci		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
7818c2ecf20Sopenharmony_ci			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
7828c2ecf20Sopenharmony_ci			WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip)));
7838c2ecf20Sopenharmony_ci			nand_cleanup(&ptr->chip);
7848c2ecf20Sopenharmony_ci		}
7858c2ecf20Sopenharmony_ci	}
7868c2ecf20Sopenharmony_ci
7878c2ecf20Sopenharmony_ci	/* free the common resources */
7888c2ecf20Sopenharmony_ci
7898c2ecf20Sopenharmony_ci	if (!IS_ERR(info->clk))
7908c2ecf20Sopenharmony_ci		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
7918c2ecf20Sopenharmony_ci
7928c2ecf20Sopenharmony_ci	return 0;
7938c2ecf20Sopenharmony_ci}
7948c2ecf20Sopenharmony_ci
7958c2ecf20Sopenharmony_cistatic int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
7968c2ecf20Sopenharmony_ci				      struct s3c2410_nand_mtd *mtd,
7978c2ecf20Sopenharmony_ci				      struct s3c2410_nand_set *set)
7988c2ecf20Sopenharmony_ci{
7998c2ecf20Sopenharmony_ci	if (set) {
8008c2ecf20Sopenharmony_ci		struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
8018c2ecf20Sopenharmony_ci
8028c2ecf20Sopenharmony_ci		mtdinfo->name = set->name;
8038c2ecf20Sopenharmony_ci
8048c2ecf20Sopenharmony_ci		return mtd_device_register(mtdinfo, set->partitions,
8058c2ecf20Sopenharmony_ci					   set->nr_partitions);
8068c2ecf20Sopenharmony_ci	}
8078c2ecf20Sopenharmony_ci
8088c2ecf20Sopenharmony_ci	return -ENODEV;
8098c2ecf20Sopenharmony_ci}
8108c2ecf20Sopenharmony_ci
8118c2ecf20Sopenharmony_cistatic int s3c2410_nand_setup_interface(struct nand_chip *chip, int csline,
8128c2ecf20Sopenharmony_ci					const struct nand_interface_config *conf)
8138c2ecf20Sopenharmony_ci{
8148c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
8158c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
8168c2ecf20Sopenharmony_ci	struct s3c2410_platform_nand *pdata = info->platform;
8178c2ecf20Sopenharmony_ci	const struct nand_sdr_timings *timings;
8188c2ecf20Sopenharmony_ci	int tacls;
8198c2ecf20Sopenharmony_ci
8208c2ecf20Sopenharmony_ci	timings = nand_get_sdr_timings(conf);
8218c2ecf20Sopenharmony_ci	if (IS_ERR(timings))
8228c2ecf20Sopenharmony_ci		return -ENOTSUPP;
8238c2ecf20Sopenharmony_ci
8248c2ecf20Sopenharmony_ci	tacls = timings->tCLS_min - timings->tWP_min;
8258c2ecf20Sopenharmony_ci	if (tacls < 0)
8268c2ecf20Sopenharmony_ci		tacls = 0;
8278c2ecf20Sopenharmony_ci
8288c2ecf20Sopenharmony_ci	pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
8298c2ecf20Sopenharmony_ci	pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
8308c2ecf20Sopenharmony_ci	pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
8318c2ecf20Sopenharmony_ci
8328c2ecf20Sopenharmony_ci	return s3c2410_nand_setrate(info);
8338c2ecf20Sopenharmony_ci}
8348c2ecf20Sopenharmony_ci
8358c2ecf20Sopenharmony_ci/**
8368c2ecf20Sopenharmony_ci * s3c2410_nand_init_chip - initialise a single instance of an chip
8378c2ecf20Sopenharmony_ci * @info: The base NAND controller the chip is on.
8388c2ecf20Sopenharmony_ci * @nmtd: The new controller MTD instance to fill in.
8398c2ecf20Sopenharmony_ci * @set: The information passed from the board specific platform data.
8408c2ecf20Sopenharmony_ci *
8418c2ecf20Sopenharmony_ci * Initialise the given @nmtd from the information in @info and @set. This
8428c2ecf20Sopenharmony_ci * readies the structure for use with the MTD layer functions by ensuring
8438c2ecf20Sopenharmony_ci * all pointers are setup and the necessary control routines selected.
8448c2ecf20Sopenharmony_ci */
8458c2ecf20Sopenharmony_cistatic void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
8468c2ecf20Sopenharmony_ci				   struct s3c2410_nand_mtd *nmtd,
8478c2ecf20Sopenharmony_ci				   struct s3c2410_nand_set *set)
8488c2ecf20Sopenharmony_ci{
8498c2ecf20Sopenharmony_ci	struct device_node *np = info->device->of_node;
8508c2ecf20Sopenharmony_ci	struct nand_chip *chip = &nmtd->chip;
8518c2ecf20Sopenharmony_ci	void __iomem *regs = info->regs;
8528c2ecf20Sopenharmony_ci
8538c2ecf20Sopenharmony_ci	nand_set_flash_node(chip, set->of_node);
8548c2ecf20Sopenharmony_ci
8558c2ecf20Sopenharmony_ci	chip->legacy.write_buf    = s3c2410_nand_write_buf;
8568c2ecf20Sopenharmony_ci	chip->legacy.read_buf     = s3c2410_nand_read_buf;
8578c2ecf20Sopenharmony_ci	chip->legacy.select_chip  = s3c2410_nand_select_chip;
8588c2ecf20Sopenharmony_ci	chip->legacy.chip_delay   = 50;
8598c2ecf20Sopenharmony_ci	nand_set_controller_data(chip, nmtd);
8608c2ecf20Sopenharmony_ci	chip->options	   = set->options;
8618c2ecf20Sopenharmony_ci	chip->controller   = &info->controller;
8628c2ecf20Sopenharmony_ci
8638c2ecf20Sopenharmony_ci	/*
8648c2ecf20Sopenharmony_ci	 * let's keep behavior unchanged for legacy boards booting via pdata and
8658c2ecf20Sopenharmony_ci	 * auto-detect timings only when booting with a device tree.
8668c2ecf20Sopenharmony_ci	 */
8678c2ecf20Sopenharmony_ci	if (!np)
8688c2ecf20Sopenharmony_ci		chip->options |= NAND_KEEP_TIMINGS;
8698c2ecf20Sopenharmony_ci
8708c2ecf20Sopenharmony_ci	switch (info->cpu_type) {
8718c2ecf20Sopenharmony_ci	case TYPE_S3C2410:
8728c2ecf20Sopenharmony_ci		chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
8738c2ecf20Sopenharmony_ci		info->sel_reg   = regs + S3C2410_NFCONF;
8748c2ecf20Sopenharmony_ci		info->sel_bit	= S3C2410_NFCONF_nFCE;
8758c2ecf20Sopenharmony_ci		chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
8768c2ecf20Sopenharmony_ci		chip->legacy.dev_ready = s3c2410_nand_devready;
8778c2ecf20Sopenharmony_ci		break;
8788c2ecf20Sopenharmony_ci
8798c2ecf20Sopenharmony_ci	case TYPE_S3C2440:
8808c2ecf20Sopenharmony_ci		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
8818c2ecf20Sopenharmony_ci		info->sel_reg   = regs + S3C2440_NFCONT;
8828c2ecf20Sopenharmony_ci		info->sel_bit	= S3C2440_NFCONT_nFCE;
8838c2ecf20Sopenharmony_ci		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
8848c2ecf20Sopenharmony_ci		chip->legacy.dev_ready = s3c2440_nand_devready;
8858c2ecf20Sopenharmony_ci		chip->legacy.read_buf  = s3c2440_nand_read_buf;
8868c2ecf20Sopenharmony_ci		chip->legacy.write_buf	= s3c2440_nand_write_buf;
8878c2ecf20Sopenharmony_ci		break;
8888c2ecf20Sopenharmony_ci
8898c2ecf20Sopenharmony_ci	case TYPE_S3C2412:
8908c2ecf20Sopenharmony_ci		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
8918c2ecf20Sopenharmony_ci		info->sel_reg   = regs + S3C2440_NFCONT;
8928c2ecf20Sopenharmony_ci		info->sel_bit	= S3C2412_NFCONT_nFCE0;
8938c2ecf20Sopenharmony_ci		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
8948c2ecf20Sopenharmony_ci		chip->legacy.dev_ready = s3c2412_nand_devready;
8958c2ecf20Sopenharmony_ci
8968c2ecf20Sopenharmony_ci		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
8978c2ecf20Sopenharmony_ci			dev_info(info->device, "System booted from NAND\n");
8988c2ecf20Sopenharmony_ci
8998c2ecf20Sopenharmony_ci		break;
9008c2ecf20Sopenharmony_ci	}
9018c2ecf20Sopenharmony_ci
9028c2ecf20Sopenharmony_ci	chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
9038c2ecf20Sopenharmony_ci
9048c2ecf20Sopenharmony_ci	nmtd->info	   = info;
9058c2ecf20Sopenharmony_ci	nmtd->set	   = set;
9068c2ecf20Sopenharmony_ci
9078c2ecf20Sopenharmony_ci	chip->ecc.engine_type = info->platform->engine_type;
9088c2ecf20Sopenharmony_ci
9098c2ecf20Sopenharmony_ci	/*
9108c2ecf20Sopenharmony_ci	 * If you use u-boot BBT creation code, specifying this flag will
9118c2ecf20Sopenharmony_ci	 * let the kernel fish out the BBT from the NAND.
9128c2ecf20Sopenharmony_ci	 */
9138c2ecf20Sopenharmony_ci	if (set->flash_bbt)
9148c2ecf20Sopenharmony_ci		chip->bbt_options |= NAND_BBT_USE_FLASH;
9158c2ecf20Sopenharmony_ci}
9168c2ecf20Sopenharmony_ci
9178c2ecf20Sopenharmony_ci/**
9188c2ecf20Sopenharmony_ci * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
9198c2ecf20Sopenharmony_ci * @chip: The NAND chip
9208c2ecf20Sopenharmony_ci *
9218c2ecf20Sopenharmony_ci * This hook is called by the core after the identification of the NAND chip,
9228c2ecf20Sopenharmony_ci * once the relevant per-chip information is up to date.. This call ensure that
9238c2ecf20Sopenharmony_ci * we update the internal state accordingly.
9248c2ecf20Sopenharmony_ci *
9258c2ecf20Sopenharmony_ci * The internal state is currently limited to the ECC state information.
9268c2ecf20Sopenharmony_ci*/
9278c2ecf20Sopenharmony_cistatic int s3c2410_nand_attach_chip(struct nand_chip *chip)
9288c2ecf20Sopenharmony_ci{
9298c2ecf20Sopenharmony_ci	struct mtd_info *mtd = nand_to_mtd(chip);
9308c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
9318c2ecf20Sopenharmony_ci
9328c2ecf20Sopenharmony_ci	switch (chip->ecc.engine_type) {
9338c2ecf20Sopenharmony_ci
9348c2ecf20Sopenharmony_ci	case NAND_ECC_ENGINE_TYPE_NONE:
9358c2ecf20Sopenharmony_ci		dev_info(info->device, "ECC disabled\n");
9368c2ecf20Sopenharmony_ci		break;
9378c2ecf20Sopenharmony_ci
9388c2ecf20Sopenharmony_ci	case NAND_ECC_ENGINE_TYPE_SOFT:
9398c2ecf20Sopenharmony_ci		/*
9408c2ecf20Sopenharmony_ci		 * This driver expects Hamming based ECC when engine_type is set
9418c2ecf20Sopenharmony_ci		 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
9428c2ecf20Sopenharmony_ci		 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field
9438c2ecf20Sopenharmony_ci		 * to s3c2410_platform_nand.
9448c2ecf20Sopenharmony_ci		 */
9458c2ecf20Sopenharmony_ci		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
9468c2ecf20Sopenharmony_ci		dev_info(info->device, "soft ECC\n");
9478c2ecf20Sopenharmony_ci		break;
9488c2ecf20Sopenharmony_ci
9498c2ecf20Sopenharmony_ci	case NAND_ECC_ENGINE_TYPE_ON_HOST:
9508c2ecf20Sopenharmony_ci		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
9518c2ecf20Sopenharmony_ci		chip->ecc.correct   = s3c2410_nand_correct_data;
9528c2ecf20Sopenharmony_ci		chip->ecc.strength  = 1;
9538c2ecf20Sopenharmony_ci
9548c2ecf20Sopenharmony_ci		switch (info->cpu_type) {
9558c2ecf20Sopenharmony_ci		case TYPE_S3C2410:
9568c2ecf20Sopenharmony_ci			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
9578c2ecf20Sopenharmony_ci			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
9588c2ecf20Sopenharmony_ci			break;
9598c2ecf20Sopenharmony_ci
9608c2ecf20Sopenharmony_ci		case TYPE_S3C2412:
9618c2ecf20Sopenharmony_ci			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
9628c2ecf20Sopenharmony_ci			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
9638c2ecf20Sopenharmony_ci			break;
9648c2ecf20Sopenharmony_ci
9658c2ecf20Sopenharmony_ci		case TYPE_S3C2440:
9668c2ecf20Sopenharmony_ci			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
9678c2ecf20Sopenharmony_ci			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
9688c2ecf20Sopenharmony_ci			break;
9698c2ecf20Sopenharmony_ci		}
9708c2ecf20Sopenharmony_ci
9718c2ecf20Sopenharmony_ci		dev_dbg(info->device, "chip %p => page shift %d\n",
9728c2ecf20Sopenharmony_ci			chip, chip->page_shift);
9738c2ecf20Sopenharmony_ci
9748c2ecf20Sopenharmony_ci		/* change the behaviour depending on whether we are using
9758c2ecf20Sopenharmony_ci		 * the large or small page nand device */
9768c2ecf20Sopenharmony_ci		if (chip->page_shift > 10) {
9778c2ecf20Sopenharmony_ci			chip->ecc.size	    = 256;
9788c2ecf20Sopenharmony_ci			chip->ecc.bytes	    = 3;
9798c2ecf20Sopenharmony_ci		} else {
9808c2ecf20Sopenharmony_ci			chip->ecc.size	    = 512;
9818c2ecf20Sopenharmony_ci			chip->ecc.bytes	    = 3;
9828c2ecf20Sopenharmony_ci			mtd_set_ooblayout(nand_to_mtd(chip),
9838c2ecf20Sopenharmony_ci					  &s3c2410_ooblayout_ops);
9848c2ecf20Sopenharmony_ci		}
9858c2ecf20Sopenharmony_ci
9868c2ecf20Sopenharmony_ci		dev_info(info->device, "hardware ECC\n");
9878c2ecf20Sopenharmony_ci		break;
9888c2ecf20Sopenharmony_ci
9898c2ecf20Sopenharmony_ci	default:
9908c2ecf20Sopenharmony_ci		dev_err(info->device, "invalid ECC mode!\n");
9918c2ecf20Sopenharmony_ci		return -EINVAL;
9928c2ecf20Sopenharmony_ci	}
9938c2ecf20Sopenharmony_ci
9948c2ecf20Sopenharmony_ci	if (chip->bbt_options & NAND_BBT_USE_FLASH)
9958c2ecf20Sopenharmony_ci		chip->options |= NAND_SKIP_BBTSCAN;
9968c2ecf20Sopenharmony_ci
9978c2ecf20Sopenharmony_ci	return 0;
9988c2ecf20Sopenharmony_ci}
9998c2ecf20Sopenharmony_ci
10008c2ecf20Sopenharmony_cistatic const struct nand_controller_ops s3c24xx_nand_controller_ops = {
10018c2ecf20Sopenharmony_ci	.attach_chip = s3c2410_nand_attach_chip,
10028c2ecf20Sopenharmony_ci	.setup_interface = s3c2410_nand_setup_interface,
10038c2ecf20Sopenharmony_ci};
10048c2ecf20Sopenharmony_ci
10058c2ecf20Sopenharmony_cistatic const struct of_device_id s3c24xx_nand_dt_ids[] = {
10068c2ecf20Sopenharmony_ci	{
10078c2ecf20Sopenharmony_ci		.compatible = "samsung,s3c2410-nand",
10088c2ecf20Sopenharmony_ci		.data = &s3c2410_nand_devtype_data,
10098c2ecf20Sopenharmony_ci	}, {
10108c2ecf20Sopenharmony_ci		/* also compatible with s3c6400 */
10118c2ecf20Sopenharmony_ci		.compatible = "samsung,s3c2412-nand",
10128c2ecf20Sopenharmony_ci		.data = &s3c2412_nand_devtype_data,
10138c2ecf20Sopenharmony_ci	}, {
10148c2ecf20Sopenharmony_ci		.compatible = "samsung,s3c2440-nand",
10158c2ecf20Sopenharmony_ci		.data = &s3c2440_nand_devtype_data,
10168c2ecf20Sopenharmony_ci	},
10178c2ecf20Sopenharmony_ci	{ /* sentinel */ }
10188c2ecf20Sopenharmony_ci};
10198c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
10208c2ecf20Sopenharmony_ci
10218c2ecf20Sopenharmony_cistatic int s3c24xx_nand_probe_dt(struct platform_device *pdev)
10228c2ecf20Sopenharmony_ci{
10238c2ecf20Sopenharmony_ci	const struct s3c24XX_nand_devtype_data *devtype_data;
10248c2ecf20Sopenharmony_ci	struct s3c2410_platform_nand *pdata;
10258c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
10268c2ecf20Sopenharmony_ci	struct device_node *np = pdev->dev.of_node, *child;
10278c2ecf20Sopenharmony_ci	struct s3c2410_nand_set *sets;
10288c2ecf20Sopenharmony_ci
10298c2ecf20Sopenharmony_ci	devtype_data = of_device_get_match_data(&pdev->dev);
10308c2ecf20Sopenharmony_ci	if (!devtype_data)
10318c2ecf20Sopenharmony_ci		return -ENODEV;
10328c2ecf20Sopenharmony_ci
10338c2ecf20Sopenharmony_ci	info->cpu_type = devtype_data->type;
10348c2ecf20Sopenharmony_ci
10358c2ecf20Sopenharmony_ci	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
10368c2ecf20Sopenharmony_ci	if (!pdata)
10378c2ecf20Sopenharmony_ci		return -ENOMEM;
10388c2ecf20Sopenharmony_ci
10398c2ecf20Sopenharmony_ci	pdev->dev.platform_data = pdata;
10408c2ecf20Sopenharmony_ci
10418c2ecf20Sopenharmony_ci	pdata->nr_sets = of_get_child_count(np);
10428c2ecf20Sopenharmony_ci	if (!pdata->nr_sets)
10438c2ecf20Sopenharmony_ci		return 0;
10448c2ecf20Sopenharmony_ci
10458c2ecf20Sopenharmony_ci	sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
10468c2ecf20Sopenharmony_ci			    GFP_KERNEL);
10478c2ecf20Sopenharmony_ci	if (!sets)
10488c2ecf20Sopenharmony_ci		return -ENOMEM;
10498c2ecf20Sopenharmony_ci
10508c2ecf20Sopenharmony_ci	pdata->sets = sets;
10518c2ecf20Sopenharmony_ci
10528c2ecf20Sopenharmony_ci	for_each_available_child_of_node(np, child) {
10538c2ecf20Sopenharmony_ci		sets->name = (char *)child->name;
10548c2ecf20Sopenharmony_ci		sets->of_node = child;
10558c2ecf20Sopenharmony_ci		sets->nr_chips = 1;
10568c2ecf20Sopenharmony_ci
10578c2ecf20Sopenharmony_ci		of_node_get(child);
10588c2ecf20Sopenharmony_ci
10598c2ecf20Sopenharmony_ci		sets++;
10608c2ecf20Sopenharmony_ci	}
10618c2ecf20Sopenharmony_ci
10628c2ecf20Sopenharmony_ci	return 0;
10638c2ecf20Sopenharmony_ci}
10648c2ecf20Sopenharmony_ci
10658c2ecf20Sopenharmony_cistatic int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
10668c2ecf20Sopenharmony_ci{
10678c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
10688c2ecf20Sopenharmony_ci
10698c2ecf20Sopenharmony_ci	info->cpu_type = platform_get_device_id(pdev)->driver_data;
10708c2ecf20Sopenharmony_ci
10718c2ecf20Sopenharmony_ci	return 0;
10728c2ecf20Sopenharmony_ci}
10738c2ecf20Sopenharmony_ci
10748c2ecf20Sopenharmony_ci/* s3c24xx_nand_probe
10758c2ecf20Sopenharmony_ci *
10768c2ecf20Sopenharmony_ci * called by device layer when it finds a device matching
10778c2ecf20Sopenharmony_ci * one our driver can handled. This code checks to see if
10788c2ecf20Sopenharmony_ci * it can allocate all necessary resources then calls the
10798c2ecf20Sopenharmony_ci * nand layer to look for devices
10808c2ecf20Sopenharmony_ci*/
10818c2ecf20Sopenharmony_cistatic int s3c24xx_nand_probe(struct platform_device *pdev)
10828c2ecf20Sopenharmony_ci{
10838c2ecf20Sopenharmony_ci	struct s3c2410_platform_nand *plat;
10848c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info;
10858c2ecf20Sopenharmony_ci	struct s3c2410_nand_mtd *nmtd;
10868c2ecf20Sopenharmony_ci	struct s3c2410_nand_set *sets;
10878c2ecf20Sopenharmony_ci	struct resource *res;
10888c2ecf20Sopenharmony_ci	int err = 0;
10898c2ecf20Sopenharmony_ci	int size;
10908c2ecf20Sopenharmony_ci	int nr_sets;
10918c2ecf20Sopenharmony_ci	int setno;
10928c2ecf20Sopenharmony_ci
10938c2ecf20Sopenharmony_ci	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
10948c2ecf20Sopenharmony_ci	if (info == NULL) {
10958c2ecf20Sopenharmony_ci		err = -ENOMEM;
10968c2ecf20Sopenharmony_ci		goto exit_error;
10978c2ecf20Sopenharmony_ci	}
10988c2ecf20Sopenharmony_ci
10998c2ecf20Sopenharmony_ci	platform_set_drvdata(pdev, info);
11008c2ecf20Sopenharmony_ci
11018c2ecf20Sopenharmony_ci	nand_controller_init(&info->controller);
11028c2ecf20Sopenharmony_ci	info->controller.ops = &s3c24xx_nand_controller_ops;
11038c2ecf20Sopenharmony_ci
11048c2ecf20Sopenharmony_ci	/* get the clock source and enable it */
11058c2ecf20Sopenharmony_ci
11068c2ecf20Sopenharmony_ci	info->clk = devm_clk_get(&pdev->dev, "nand");
11078c2ecf20Sopenharmony_ci	if (IS_ERR(info->clk)) {
11088c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "failed to get clock\n");
11098c2ecf20Sopenharmony_ci		err = -ENOENT;
11108c2ecf20Sopenharmony_ci		goto exit_error;
11118c2ecf20Sopenharmony_ci	}
11128c2ecf20Sopenharmony_ci
11138c2ecf20Sopenharmony_ci	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
11148c2ecf20Sopenharmony_ci
11158c2ecf20Sopenharmony_ci	if (pdev->dev.of_node)
11168c2ecf20Sopenharmony_ci		err = s3c24xx_nand_probe_dt(pdev);
11178c2ecf20Sopenharmony_ci	else
11188c2ecf20Sopenharmony_ci		err = s3c24xx_nand_probe_pdata(pdev);
11198c2ecf20Sopenharmony_ci
11208c2ecf20Sopenharmony_ci	if (err)
11218c2ecf20Sopenharmony_ci		goto exit_error;
11228c2ecf20Sopenharmony_ci
11238c2ecf20Sopenharmony_ci	plat = to_nand_plat(pdev);
11248c2ecf20Sopenharmony_ci
11258c2ecf20Sopenharmony_ci	/* allocate and map the resource */
11268c2ecf20Sopenharmony_ci
11278c2ecf20Sopenharmony_ci	/* currently we assume we have the one resource */
11288c2ecf20Sopenharmony_ci	res = pdev->resource;
11298c2ecf20Sopenharmony_ci	size = resource_size(res);
11308c2ecf20Sopenharmony_ci
11318c2ecf20Sopenharmony_ci	info->device	= &pdev->dev;
11328c2ecf20Sopenharmony_ci	info->platform	= plat;
11338c2ecf20Sopenharmony_ci
11348c2ecf20Sopenharmony_ci	info->regs = devm_ioremap_resource(&pdev->dev, res);
11358c2ecf20Sopenharmony_ci	if (IS_ERR(info->regs)) {
11368c2ecf20Sopenharmony_ci		err = PTR_ERR(info->regs);
11378c2ecf20Sopenharmony_ci		goto exit_error;
11388c2ecf20Sopenharmony_ci	}
11398c2ecf20Sopenharmony_ci
11408c2ecf20Sopenharmony_ci	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
11418c2ecf20Sopenharmony_ci
11428c2ecf20Sopenharmony_ci	if (!plat->sets || plat->nr_sets < 1) {
11438c2ecf20Sopenharmony_ci		err = -EINVAL;
11448c2ecf20Sopenharmony_ci		goto exit_error;
11458c2ecf20Sopenharmony_ci	}
11468c2ecf20Sopenharmony_ci
11478c2ecf20Sopenharmony_ci	sets = plat->sets;
11488c2ecf20Sopenharmony_ci	nr_sets = plat->nr_sets;
11498c2ecf20Sopenharmony_ci
11508c2ecf20Sopenharmony_ci	info->mtd_count = nr_sets;
11518c2ecf20Sopenharmony_ci
11528c2ecf20Sopenharmony_ci	/* allocate our information */
11538c2ecf20Sopenharmony_ci
11548c2ecf20Sopenharmony_ci	size = nr_sets * sizeof(*info->mtds);
11558c2ecf20Sopenharmony_ci	info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
11568c2ecf20Sopenharmony_ci	if (info->mtds == NULL) {
11578c2ecf20Sopenharmony_ci		err = -ENOMEM;
11588c2ecf20Sopenharmony_ci		goto exit_error;
11598c2ecf20Sopenharmony_ci	}
11608c2ecf20Sopenharmony_ci
11618c2ecf20Sopenharmony_ci	/* initialise all possible chips */
11628c2ecf20Sopenharmony_ci
11638c2ecf20Sopenharmony_ci	nmtd = info->mtds;
11648c2ecf20Sopenharmony_ci
11658c2ecf20Sopenharmony_ci	for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
11668c2ecf20Sopenharmony_ci		struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
11678c2ecf20Sopenharmony_ci
11688c2ecf20Sopenharmony_ci		pr_debug("initialising set %d (%p, info %p)\n",
11698c2ecf20Sopenharmony_ci			 setno, nmtd, info);
11708c2ecf20Sopenharmony_ci
11718c2ecf20Sopenharmony_ci		mtd->dev.parent = &pdev->dev;
11728c2ecf20Sopenharmony_ci		s3c2410_nand_init_chip(info, nmtd, sets);
11738c2ecf20Sopenharmony_ci
11748c2ecf20Sopenharmony_ci		err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
11758c2ecf20Sopenharmony_ci		if (err)
11768c2ecf20Sopenharmony_ci			goto exit_error;
11778c2ecf20Sopenharmony_ci
11788c2ecf20Sopenharmony_ci		s3c2410_nand_add_partition(info, nmtd, sets);
11798c2ecf20Sopenharmony_ci	}
11808c2ecf20Sopenharmony_ci
11818c2ecf20Sopenharmony_ci	/* initialise the hardware */
11828c2ecf20Sopenharmony_ci	err = s3c2410_nand_inithw(info);
11838c2ecf20Sopenharmony_ci	if (err != 0)
11848c2ecf20Sopenharmony_ci		goto exit_error;
11858c2ecf20Sopenharmony_ci
11868c2ecf20Sopenharmony_ci	err = s3c2410_nand_cpufreq_register(info);
11878c2ecf20Sopenharmony_ci	if (err < 0) {
11888c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "failed to init cpufreq support\n");
11898c2ecf20Sopenharmony_ci		goto exit_error;
11908c2ecf20Sopenharmony_ci	}
11918c2ecf20Sopenharmony_ci
11928c2ecf20Sopenharmony_ci	if (allow_clk_suspend(info)) {
11938c2ecf20Sopenharmony_ci		dev_info(&pdev->dev, "clock idle support enabled\n");
11948c2ecf20Sopenharmony_ci		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
11958c2ecf20Sopenharmony_ci	}
11968c2ecf20Sopenharmony_ci
11978c2ecf20Sopenharmony_ci	return 0;
11988c2ecf20Sopenharmony_ci
11998c2ecf20Sopenharmony_ci exit_error:
12008c2ecf20Sopenharmony_ci	s3c24xx_nand_remove(pdev);
12018c2ecf20Sopenharmony_ci
12028c2ecf20Sopenharmony_ci	if (err == 0)
12038c2ecf20Sopenharmony_ci		err = -EINVAL;
12048c2ecf20Sopenharmony_ci	return err;
12058c2ecf20Sopenharmony_ci}
12068c2ecf20Sopenharmony_ci
12078c2ecf20Sopenharmony_ci/* PM Support */
12088c2ecf20Sopenharmony_ci#ifdef CONFIG_PM
12098c2ecf20Sopenharmony_ci
12108c2ecf20Sopenharmony_cistatic int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
12118c2ecf20Sopenharmony_ci{
12128c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
12138c2ecf20Sopenharmony_ci
12148c2ecf20Sopenharmony_ci	if (info) {
12158c2ecf20Sopenharmony_ci		info->save_sel = readl(info->sel_reg);
12168c2ecf20Sopenharmony_ci
12178c2ecf20Sopenharmony_ci		/* For the moment, we must ensure nFCE is high during
12188c2ecf20Sopenharmony_ci		 * the time we are suspended. This really should be
12198c2ecf20Sopenharmony_ci		 * handled by suspending the MTDs we are using, but
12208c2ecf20Sopenharmony_ci		 * that is currently not the case. */
12218c2ecf20Sopenharmony_ci
12228c2ecf20Sopenharmony_ci		writel(info->save_sel | info->sel_bit, info->sel_reg);
12238c2ecf20Sopenharmony_ci
12248c2ecf20Sopenharmony_ci		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
12258c2ecf20Sopenharmony_ci	}
12268c2ecf20Sopenharmony_ci
12278c2ecf20Sopenharmony_ci	return 0;
12288c2ecf20Sopenharmony_ci}
12298c2ecf20Sopenharmony_ci
12308c2ecf20Sopenharmony_cistatic int s3c24xx_nand_resume(struct platform_device *dev)
12318c2ecf20Sopenharmony_ci{
12328c2ecf20Sopenharmony_ci	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
12338c2ecf20Sopenharmony_ci	unsigned long sel;
12348c2ecf20Sopenharmony_ci
12358c2ecf20Sopenharmony_ci	if (info) {
12368c2ecf20Sopenharmony_ci		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
12378c2ecf20Sopenharmony_ci		s3c2410_nand_inithw(info);
12388c2ecf20Sopenharmony_ci
12398c2ecf20Sopenharmony_ci		/* Restore the state of the nFCE line. */
12408c2ecf20Sopenharmony_ci
12418c2ecf20Sopenharmony_ci		sel = readl(info->sel_reg);
12428c2ecf20Sopenharmony_ci		sel &= ~info->sel_bit;
12438c2ecf20Sopenharmony_ci		sel |= info->save_sel & info->sel_bit;
12448c2ecf20Sopenharmony_ci		writel(sel, info->sel_reg);
12458c2ecf20Sopenharmony_ci
12468c2ecf20Sopenharmony_ci		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
12478c2ecf20Sopenharmony_ci	}
12488c2ecf20Sopenharmony_ci
12498c2ecf20Sopenharmony_ci	return 0;
12508c2ecf20Sopenharmony_ci}
12518c2ecf20Sopenharmony_ci
12528c2ecf20Sopenharmony_ci#else
12538c2ecf20Sopenharmony_ci#define s3c24xx_nand_suspend NULL
12548c2ecf20Sopenharmony_ci#define s3c24xx_nand_resume NULL
12558c2ecf20Sopenharmony_ci#endif
12568c2ecf20Sopenharmony_ci
12578c2ecf20Sopenharmony_ci/* driver device registration */
12588c2ecf20Sopenharmony_ci
12598c2ecf20Sopenharmony_cistatic const struct platform_device_id s3c24xx_driver_ids[] = {
12608c2ecf20Sopenharmony_ci	{
12618c2ecf20Sopenharmony_ci		.name		= "s3c2410-nand",
12628c2ecf20Sopenharmony_ci		.driver_data	= TYPE_S3C2410,
12638c2ecf20Sopenharmony_ci	}, {
12648c2ecf20Sopenharmony_ci		.name		= "s3c2440-nand",
12658c2ecf20Sopenharmony_ci		.driver_data	= TYPE_S3C2440,
12668c2ecf20Sopenharmony_ci	}, {
12678c2ecf20Sopenharmony_ci		.name		= "s3c2412-nand",
12688c2ecf20Sopenharmony_ci		.driver_data	= TYPE_S3C2412,
12698c2ecf20Sopenharmony_ci	}, {
12708c2ecf20Sopenharmony_ci		.name		= "s3c6400-nand",
12718c2ecf20Sopenharmony_ci		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
12728c2ecf20Sopenharmony_ci	},
12738c2ecf20Sopenharmony_ci	{ }
12748c2ecf20Sopenharmony_ci};
12758c2ecf20Sopenharmony_ci
12768c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
12778c2ecf20Sopenharmony_ci
12788c2ecf20Sopenharmony_cistatic struct platform_driver s3c24xx_nand_driver = {
12798c2ecf20Sopenharmony_ci	.probe		= s3c24xx_nand_probe,
12808c2ecf20Sopenharmony_ci	.remove		= s3c24xx_nand_remove,
12818c2ecf20Sopenharmony_ci	.suspend	= s3c24xx_nand_suspend,
12828c2ecf20Sopenharmony_ci	.resume		= s3c24xx_nand_resume,
12838c2ecf20Sopenharmony_ci	.id_table	= s3c24xx_driver_ids,
12848c2ecf20Sopenharmony_ci	.driver		= {
12858c2ecf20Sopenharmony_ci		.name	= "s3c24xx-nand",
12868c2ecf20Sopenharmony_ci		.of_match_table = s3c24xx_nand_dt_ids,
12878c2ecf20Sopenharmony_ci	},
12888c2ecf20Sopenharmony_ci};
12898c2ecf20Sopenharmony_ci
12908c2ecf20Sopenharmony_cimodule_platform_driver(s3c24xx_nand_driver);
12918c2ecf20Sopenharmony_ci
12928c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL");
12938c2ecf20Sopenharmony_ciMODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
12948c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1295