18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * This file contains an ECC algorithm that detects and corrects 1 bit 48c2ecf20Sopenharmony_ci * errors in a 256 byte block of data. 58c2ecf20Sopenharmony_ci * 68c2ecf20Sopenharmony_ci * Copyright © 2008 Koninklijke Philips Electronics NV. 78c2ecf20Sopenharmony_ci * Author: Frans Meulenbroeks 88c2ecf20Sopenharmony_ci * 98c2ecf20Sopenharmony_ci * Completely replaces the previous ECC implementation which was written by: 108c2ecf20Sopenharmony_ci * Steven J. Hill (sjhill@realitydiluted.com) 118c2ecf20Sopenharmony_ci * Thomas Gleixner (tglx@linutronix.de) 128c2ecf20Sopenharmony_ci * 138c2ecf20Sopenharmony_ci * Information on how this algorithm works and how it was developed 148c2ecf20Sopenharmony_ci * can be found in Documentation/driver-api/mtd/nand_ecc.rst 158c2ecf20Sopenharmony_ci */ 168c2ecf20Sopenharmony_ci 178c2ecf20Sopenharmony_ci#include <linux/types.h> 188c2ecf20Sopenharmony_ci#include <linux/kernel.h> 198c2ecf20Sopenharmony_ci#include <linux/module.h> 208c2ecf20Sopenharmony_ci#include <linux/mtd/mtd.h> 218c2ecf20Sopenharmony_ci#include <linux/mtd/rawnand.h> 228c2ecf20Sopenharmony_ci#include <linux/mtd/nand_ecc.h> 238c2ecf20Sopenharmony_ci#include <asm/byteorder.h> 248c2ecf20Sopenharmony_ci 258c2ecf20Sopenharmony_ci/* 268c2ecf20Sopenharmony_ci * invparity is a 256 byte table that contains the odd parity 278c2ecf20Sopenharmony_ci * for each byte. So if the number of bits in a byte is even, 288c2ecf20Sopenharmony_ci * the array element is 1, and when the number of bits is odd 298c2ecf20Sopenharmony_ci * the array eleemnt is 0. 308c2ecf20Sopenharmony_ci */ 318c2ecf20Sopenharmony_cistatic const char invparity[256] = { 328c2ecf20Sopenharmony_ci 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 338c2ecf20Sopenharmony_ci 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 348c2ecf20Sopenharmony_ci 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 358c2ecf20Sopenharmony_ci 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 368c2ecf20Sopenharmony_ci 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 378c2ecf20Sopenharmony_ci 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 388c2ecf20Sopenharmony_ci 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 398c2ecf20Sopenharmony_ci 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 408c2ecf20Sopenharmony_ci 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 418c2ecf20Sopenharmony_ci 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 428c2ecf20Sopenharmony_ci 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 438c2ecf20Sopenharmony_ci 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 448c2ecf20Sopenharmony_ci 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 458c2ecf20Sopenharmony_ci 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 468c2ecf20Sopenharmony_ci 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 478c2ecf20Sopenharmony_ci 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 488c2ecf20Sopenharmony_ci}; 498c2ecf20Sopenharmony_ci 508c2ecf20Sopenharmony_ci/* 518c2ecf20Sopenharmony_ci * bitsperbyte contains the number of bits per byte 528c2ecf20Sopenharmony_ci * this is only used for testing and repairing parity 538c2ecf20Sopenharmony_ci * (a precalculated value slightly improves performance) 548c2ecf20Sopenharmony_ci */ 558c2ecf20Sopenharmony_cistatic const char bitsperbyte[256] = { 568c2ecf20Sopenharmony_ci 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 578c2ecf20Sopenharmony_ci 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 588c2ecf20Sopenharmony_ci 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 598c2ecf20Sopenharmony_ci 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 608c2ecf20Sopenharmony_ci 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 618c2ecf20Sopenharmony_ci 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 628c2ecf20Sopenharmony_ci 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 638c2ecf20Sopenharmony_ci 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 648c2ecf20Sopenharmony_ci 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 658c2ecf20Sopenharmony_ci 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 668c2ecf20Sopenharmony_ci 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 678c2ecf20Sopenharmony_ci 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 688c2ecf20Sopenharmony_ci 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 698c2ecf20Sopenharmony_ci 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 708c2ecf20Sopenharmony_ci 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 718c2ecf20Sopenharmony_ci 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 728c2ecf20Sopenharmony_ci}; 738c2ecf20Sopenharmony_ci 748c2ecf20Sopenharmony_ci/* 758c2ecf20Sopenharmony_ci * addressbits is a lookup table to filter out the bits from the xor-ed 768c2ecf20Sopenharmony_ci * ECC data that identify the faulty location. 778c2ecf20Sopenharmony_ci * this is only used for repairing parity 788c2ecf20Sopenharmony_ci * see the comments in nand_correct_data for more details 798c2ecf20Sopenharmony_ci */ 808c2ecf20Sopenharmony_cistatic const char addressbits[256] = { 818c2ecf20Sopenharmony_ci 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 828c2ecf20Sopenharmony_ci 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, 838c2ecf20Sopenharmony_ci 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 848c2ecf20Sopenharmony_ci 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, 858c2ecf20Sopenharmony_ci 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, 868c2ecf20Sopenharmony_ci 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, 878c2ecf20Sopenharmony_ci 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, 888c2ecf20Sopenharmony_ci 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, 898c2ecf20Sopenharmony_ci 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 908c2ecf20Sopenharmony_ci 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, 918c2ecf20Sopenharmony_ci 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 928c2ecf20Sopenharmony_ci 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, 938c2ecf20Sopenharmony_ci 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, 948c2ecf20Sopenharmony_ci 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, 958c2ecf20Sopenharmony_ci 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, 968c2ecf20Sopenharmony_ci 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, 978c2ecf20Sopenharmony_ci 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, 988c2ecf20Sopenharmony_ci 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, 998c2ecf20Sopenharmony_ci 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, 1008c2ecf20Sopenharmony_ci 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, 1018c2ecf20Sopenharmony_ci 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, 1028c2ecf20Sopenharmony_ci 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, 1038c2ecf20Sopenharmony_ci 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, 1048c2ecf20Sopenharmony_ci 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, 1058c2ecf20Sopenharmony_ci 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, 1068c2ecf20Sopenharmony_ci 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, 1078c2ecf20Sopenharmony_ci 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, 1088c2ecf20Sopenharmony_ci 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, 1098c2ecf20Sopenharmony_ci 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, 1108c2ecf20Sopenharmony_ci 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, 1118c2ecf20Sopenharmony_ci 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, 1128c2ecf20Sopenharmony_ci 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f 1138c2ecf20Sopenharmony_ci}; 1148c2ecf20Sopenharmony_ci 1158c2ecf20Sopenharmony_ci/** 1168c2ecf20Sopenharmony_ci * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte 1178c2ecf20Sopenharmony_ci * block 1188c2ecf20Sopenharmony_ci * @buf: input buffer with raw data 1198c2ecf20Sopenharmony_ci * @eccsize: data bytes per ECC step (256 or 512) 1208c2ecf20Sopenharmony_ci * @code: output buffer with ECC 1218c2ecf20Sopenharmony_ci * @sm_order: Smart Media byte ordering 1228c2ecf20Sopenharmony_ci */ 1238c2ecf20Sopenharmony_civoid __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize, 1248c2ecf20Sopenharmony_ci unsigned char *code, bool sm_order) 1258c2ecf20Sopenharmony_ci{ 1268c2ecf20Sopenharmony_ci int i; 1278c2ecf20Sopenharmony_ci const uint32_t *bp = (uint32_t *)buf; 1288c2ecf20Sopenharmony_ci /* 256 or 512 bytes/ecc */ 1298c2ecf20Sopenharmony_ci const uint32_t eccsize_mult = eccsize >> 8; 1308c2ecf20Sopenharmony_ci uint32_t cur; /* current value in buffer */ 1318c2ecf20Sopenharmony_ci /* rp0..rp15..rp17 are the various accumulated parities (per byte) */ 1328c2ecf20Sopenharmony_ci uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7; 1338c2ecf20Sopenharmony_ci uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16; 1348c2ecf20Sopenharmony_ci uint32_t rp17; 1358c2ecf20Sopenharmony_ci uint32_t par; /* the cumulative parity for all data */ 1368c2ecf20Sopenharmony_ci uint32_t tmppar; /* the cumulative parity for this iteration; 1378c2ecf20Sopenharmony_ci for rp12, rp14 and rp16 at the end of the 1388c2ecf20Sopenharmony_ci loop */ 1398c2ecf20Sopenharmony_ci 1408c2ecf20Sopenharmony_ci par = 0; 1418c2ecf20Sopenharmony_ci rp4 = 0; 1428c2ecf20Sopenharmony_ci rp6 = 0; 1438c2ecf20Sopenharmony_ci rp8 = 0; 1448c2ecf20Sopenharmony_ci rp10 = 0; 1458c2ecf20Sopenharmony_ci rp12 = 0; 1468c2ecf20Sopenharmony_ci rp14 = 0; 1478c2ecf20Sopenharmony_ci rp16 = 0; 1488c2ecf20Sopenharmony_ci 1498c2ecf20Sopenharmony_ci /* 1508c2ecf20Sopenharmony_ci * The loop is unrolled a number of times; 1518c2ecf20Sopenharmony_ci * This avoids if statements to decide on which rp value to update 1528c2ecf20Sopenharmony_ci * Also we process the data by longwords. 1538c2ecf20Sopenharmony_ci * Note: passing unaligned data might give a performance penalty. 1548c2ecf20Sopenharmony_ci * It is assumed that the buffers are aligned. 1558c2ecf20Sopenharmony_ci * tmppar is the cumulative sum of this iteration. 1568c2ecf20Sopenharmony_ci * needed for calculating rp12, rp14, rp16 and par 1578c2ecf20Sopenharmony_ci * also used as a performance improvement for rp6, rp8 and rp10 1588c2ecf20Sopenharmony_ci */ 1598c2ecf20Sopenharmony_ci for (i = 0; i < eccsize_mult << 2; i++) { 1608c2ecf20Sopenharmony_ci cur = *bp++; 1618c2ecf20Sopenharmony_ci tmppar = cur; 1628c2ecf20Sopenharmony_ci rp4 ^= cur; 1638c2ecf20Sopenharmony_ci cur = *bp++; 1648c2ecf20Sopenharmony_ci tmppar ^= cur; 1658c2ecf20Sopenharmony_ci rp6 ^= tmppar; 1668c2ecf20Sopenharmony_ci cur = *bp++; 1678c2ecf20Sopenharmony_ci tmppar ^= cur; 1688c2ecf20Sopenharmony_ci rp4 ^= cur; 1698c2ecf20Sopenharmony_ci cur = *bp++; 1708c2ecf20Sopenharmony_ci tmppar ^= cur; 1718c2ecf20Sopenharmony_ci rp8 ^= tmppar; 1728c2ecf20Sopenharmony_ci 1738c2ecf20Sopenharmony_ci cur = *bp++; 1748c2ecf20Sopenharmony_ci tmppar ^= cur; 1758c2ecf20Sopenharmony_ci rp4 ^= cur; 1768c2ecf20Sopenharmony_ci rp6 ^= cur; 1778c2ecf20Sopenharmony_ci cur = *bp++; 1788c2ecf20Sopenharmony_ci tmppar ^= cur; 1798c2ecf20Sopenharmony_ci rp6 ^= cur; 1808c2ecf20Sopenharmony_ci cur = *bp++; 1818c2ecf20Sopenharmony_ci tmppar ^= cur; 1828c2ecf20Sopenharmony_ci rp4 ^= cur; 1838c2ecf20Sopenharmony_ci cur = *bp++; 1848c2ecf20Sopenharmony_ci tmppar ^= cur; 1858c2ecf20Sopenharmony_ci rp10 ^= tmppar; 1868c2ecf20Sopenharmony_ci 1878c2ecf20Sopenharmony_ci cur = *bp++; 1888c2ecf20Sopenharmony_ci tmppar ^= cur; 1898c2ecf20Sopenharmony_ci rp4 ^= cur; 1908c2ecf20Sopenharmony_ci rp6 ^= cur; 1918c2ecf20Sopenharmony_ci rp8 ^= cur; 1928c2ecf20Sopenharmony_ci cur = *bp++; 1938c2ecf20Sopenharmony_ci tmppar ^= cur; 1948c2ecf20Sopenharmony_ci rp6 ^= cur; 1958c2ecf20Sopenharmony_ci rp8 ^= cur; 1968c2ecf20Sopenharmony_ci cur = *bp++; 1978c2ecf20Sopenharmony_ci tmppar ^= cur; 1988c2ecf20Sopenharmony_ci rp4 ^= cur; 1998c2ecf20Sopenharmony_ci rp8 ^= cur; 2008c2ecf20Sopenharmony_ci cur = *bp++; 2018c2ecf20Sopenharmony_ci tmppar ^= cur; 2028c2ecf20Sopenharmony_ci rp8 ^= cur; 2038c2ecf20Sopenharmony_ci 2048c2ecf20Sopenharmony_ci cur = *bp++; 2058c2ecf20Sopenharmony_ci tmppar ^= cur; 2068c2ecf20Sopenharmony_ci rp4 ^= cur; 2078c2ecf20Sopenharmony_ci rp6 ^= cur; 2088c2ecf20Sopenharmony_ci cur = *bp++; 2098c2ecf20Sopenharmony_ci tmppar ^= cur; 2108c2ecf20Sopenharmony_ci rp6 ^= cur; 2118c2ecf20Sopenharmony_ci cur = *bp++; 2128c2ecf20Sopenharmony_ci tmppar ^= cur; 2138c2ecf20Sopenharmony_ci rp4 ^= cur; 2148c2ecf20Sopenharmony_ci cur = *bp++; 2158c2ecf20Sopenharmony_ci tmppar ^= cur; 2168c2ecf20Sopenharmony_ci 2178c2ecf20Sopenharmony_ci par ^= tmppar; 2188c2ecf20Sopenharmony_ci if ((i & 0x1) == 0) 2198c2ecf20Sopenharmony_ci rp12 ^= tmppar; 2208c2ecf20Sopenharmony_ci if ((i & 0x2) == 0) 2218c2ecf20Sopenharmony_ci rp14 ^= tmppar; 2228c2ecf20Sopenharmony_ci if (eccsize_mult == 2 && (i & 0x4) == 0) 2238c2ecf20Sopenharmony_ci rp16 ^= tmppar; 2248c2ecf20Sopenharmony_ci } 2258c2ecf20Sopenharmony_ci 2268c2ecf20Sopenharmony_ci /* 2278c2ecf20Sopenharmony_ci * handle the fact that we use longword operations 2288c2ecf20Sopenharmony_ci * we'll bring rp4..rp14..rp16 back to single byte entities by 2298c2ecf20Sopenharmony_ci * shifting and xoring first fold the upper and lower 16 bits, 2308c2ecf20Sopenharmony_ci * then the upper and lower 8 bits. 2318c2ecf20Sopenharmony_ci */ 2328c2ecf20Sopenharmony_ci rp4 ^= (rp4 >> 16); 2338c2ecf20Sopenharmony_ci rp4 ^= (rp4 >> 8); 2348c2ecf20Sopenharmony_ci rp4 &= 0xff; 2358c2ecf20Sopenharmony_ci rp6 ^= (rp6 >> 16); 2368c2ecf20Sopenharmony_ci rp6 ^= (rp6 >> 8); 2378c2ecf20Sopenharmony_ci rp6 &= 0xff; 2388c2ecf20Sopenharmony_ci rp8 ^= (rp8 >> 16); 2398c2ecf20Sopenharmony_ci rp8 ^= (rp8 >> 8); 2408c2ecf20Sopenharmony_ci rp8 &= 0xff; 2418c2ecf20Sopenharmony_ci rp10 ^= (rp10 >> 16); 2428c2ecf20Sopenharmony_ci rp10 ^= (rp10 >> 8); 2438c2ecf20Sopenharmony_ci rp10 &= 0xff; 2448c2ecf20Sopenharmony_ci rp12 ^= (rp12 >> 16); 2458c2ecf20Sopenharmony_ci rp12 ^= (rp12 >> 8); 2468c2ecf20Sopenharmony_ci rp12 &= 0xff; 2478c2ecf20Sopenharmony_ci rp14 ^= (rp14 >> 16); 2488c2ecf20Sopenharmony_ci rp14 ^= (rp14 >> 8); 2498c2ecf20Sopenharmony_ci rp14 &= 0xff; 2508c2ecf20Sopenharmony_ci if (eccsize_mult == 2) { 2518c2ecf20Sopenharmony_ci rp16 ^= (rp16 >> 16); 2528c2ecf20Sopenharmony_ci rp16 ^= (rp16 >> 8); 2538c2ecf20Sopenharmony_ci rp16 &= 0xff; 2548c2ecf20Sopenharmony_ci } 2558c2ecf20Sopenharmony_ci 2568c2ecf20Sopenharmony_ci /* 2578c2ecf20Sopenharmony_ci * we also need to calculate the row parity for rp0..rp3 2588c2ecf20Sopenharmony_ci * This is present in par, because par is now 2598c2ecf20Sopenharmony_ci * rp3 rp3 rp2 rp2 in little endian and 2608c2ecf20Sopenharmony_ci * rp2 rp2 rp3 rp3 in big endian 2618c2ecf20Sopenharmony_ci * as well as 2628c2ecf20Sopenharmony_ci * rp1 rp0 rp1 rp0 in little endian and 2638c2ecf20Sopenharmony_ci * rp0 rp1 rp0 rp1 in big endian 2648c2ecf20Sopenharmony_ci * First calculate rp2 and rp3 2658c2ecf20Sopenharmony_ci */ 2668c2ecf20Sopenharmony_ci#ifdef __BIG_ENDIAN 2678c2ecf20Sopenharmony_ci rp2 = (par >> 16); 2688c2ecf20Sopenharmony_ci rp2 ^= (rp2 >> 8); 2698c2ecf20Sopenharmony_ci rp2 &= 0xff; 2708c2ecf20Sopenharmony_ci rp3 = par & 0xffff; 2718c2ecf20Sopenharmony_ci rp3 ^= (rp3 >> 8); 2728c2ecf20Sopenharmony_ci rp3 &= 0xff; 2738c2ecf20Sopenharmony_ci#else 2748c2ecf20Sopenharmony_ci rp3 = (par >> 16); 2758c2ecf20Sopenharmony_ci rp3 ^= (rp3 >> 8); 2768c2ecf20Sopenharmony_ci rp3 &= 0xff; 2778c2ecf20Sopenharmony_ci rp2 = par & 0xffff; 2788c2ecf20Sopenharmony_ci rp2 ^= (rp2 >> 8); 2798c2ecf20Sopenharmony_ci rp2 &= 0xff; 2808c2ecf20Sopenharmony_ci#endif 2818c2ecf20Sopenharmony_ci 2828c2ecf20Sopenharmony_ci /* reduce par to 16 bits then calculate rp1 and rp0 */ 2838c2ecf20Sopenharmony_ci par ^= (par >> 16); 2848c2ecf20Sopenharmony_ci#ifdef __BIG_ENDIAN 2858c2ecf20Sopenharmony_ci rp0 = (par >> 8) & 0xff; 2868c2ecf20Sopenharmony_ci rp1 = (par & 0xff); 2878c2ecf20Sopenharmony_ci#else 2888c2ecf20Sopenharmony_ci rp1 = (par >> 8) & 0xff; 2898c2ecf20Sopenharmony_ci rp0 = (par & 0xff); 2908c2ecf20Sopenharmony_ci#endif 2918c2ecf20Sopenharmony_ci 2928c2ecf20Sopenharmony_ci /* finally reduce par to 8 bits */ 2938c2ecf20Sopenharmony_ci par ^= (par >> 8); 2948c2ecf20Sopenharmony_ci par &= 0xff; 2958c2ecf20Sopenharmony_ci 2968c2ecf20Sopenharmony_ci /* 2978c2ecf20Sopenharmony_ci * and calculate rp5..rp15..rp17 2988c2ecf20Sopenharmony_ci * note that par = rp4 ^ rp5 and due to the commutative property 2998c2ecf20Sopenharmony_ci * of the ^ operator we can say: 3008c2ecf20Sopenharmony_ci * rp5 = (par ^ rp4); 3018c2ecf20Sopenharmony_ci * The & 0xff seems superfluous, but benchmarking learned that 3028c2ecf20Sopenharmony_ci * leaving it out gives slightly worse results. No idea why, probably 3038c2ecf20Sopenharmony_ci * it has to do with the way the pipeline in pentium is organized. 3048c2ecf20Sopenharmony_ci */ 3058c2ecf20Sopenharmony_ci rp5 = (par ^ rp4) & 0xff; 3068c2ecf20Sopenharmony_ci rp7 = (par ^ rp6) & 0xff; 3078c2ecf20Sopenharmony_ci rp9 = (par ^ rp8) & 0xff; 3088c2ecf20Sopenharmony_ci rp11 = (par ^ rp10) & 0xff; 3098c2ecf20Sopenharmony_ci rp13 = (par ^ rp12) & 0xff; 3108c2ecf20Sopenharmony_ci rp15 = (par ^ rp14) & 0xff; 3118c2ecf20Sopenharmony_ci if (eccsize_mult == 2) 3128c2ecf20Sopenharmony_ci rp17 = (par ^ rp16) & 0xff; 3138c2ecf20Sopenharmony_ci 3148c2ecf20Sopenharmony_ci /* 3158c2ecf20Sopenharmony_ci * Finally calculate the ECC bits. 3168c2ecf20Sopenharmony_ci * Again here it might seem that there are performance optimisations 3178c2ecf20Sopenharmony_ci * possible, but benchmarks showed that on the system this is developed 3188c2ecf20Sopenharmony_ci * the code below is the fastest 3198c2ecf20Sopenharmony_ci */ 3208c2ecf20Sopenharmony_ci if (sm_order) { 3218c2ecf20Sopenharmony_ci code[0] = (invparity[rp7] << 7) | (invparity[rp6] << 6) | 3228c2ecf20Sopenharmony_ci (invparity[rp5] << 5) | (invparity[rp4] << 4) | 3238c2ecf20Sopenharmony_ci (invparity[rp3] << 3) | (invparity[rp2] << 2) | 3248c2ecf20Sopenharmony_ci (invparity[rp1] << 1) | (invparity[rp0]); 3258c2ecf20Sopenharmony_ci code[1] = (invparity[rp15] << 7) | (invparity[rp14] << 6) | 3268c2ecf20Sopenharmony_ci (invparity[rp13] << 5) | (invparity[rp12] << 4) | 3278c2ecf20Sopenharmony_ci (invparity[rp11] << 3) | (invparity[rp10] << 2) | 3288c2ecf20Sopenharmony_ci (invparity[rp9] << 1) | (invparity[rp8]); 3298c2ecf20Sopenharmony_ci } else { 3308c2ecf20Sopenharmony_ci code[1] = (invparity[rp7] << 7) | (invparity[rp6] << 6) | 3318c2ecf20Sopenharmony_ci (invparity[rp5] << 5) | (invparity[rp4] << 4) | 3328c2ecf20Sopenharmony_ci (invparity[rp3] << 3) | (invparity[rp2] << 2) | 3338c2ecf20Sopenharmony_ci (invparity[rp1] << 1) | (invparity[rp0]); 3348c2ecf20Sopenharmony_ci code[0] = (invparity[rp15] << 7) | (invparity[rp14] << 6) | 3358c2ecf20Sopenharmony_ci (invparity[rp13] << 5) | (invparity[rp12] << 4) | 3368c2ecf20Sopenharmony_ci (invparity[rp11] << 3) | (invparity[rp10] << 2) | 3378c2ecf20Sopenharmony_ci (invparity[rp9] << 1) | (invparity[rp8]); 3388c2ecf20Sopenharmony_ci } 3398c2ecf20Sopenharmony_ci 3408c2ecf20Sopenharmony_ci if (eccsize_mult == 1) 3418c2ecf20Sopenharmony_ci code[2] = 3428c2ecf20Sopenharmony_ci (invparity[par & 0xf0] << 7) | 3438c2ecf20Sopenharmony_ci (invparity[par & 0x0f] << 6) | 3448c2ecf20Sopenharmony_ci (invparity[par & 0xcc] << 5) | 3458c2ecf20Sopenharmony_ci (invparity[par & 0x33] << 4) | 3468c2ecf20Sopenharmony_ci (invparity[par & 0xaa] << 3) | 3478c2ecf20Sopenharmony_ci (invparity[par & 0x55] << 2) | 3488c2ecf20Sopenharmony_ci 3; 3498c2ecf20Sopenharmony_ci else 3508c2ecf20Sopenharmony_ci code[2] = 3518c2ecf20Sopenharmony_ci (invparity[par & 0xf0] << 7) | 3528c2ecf20Sopenharmony_ci (invparity[par & 0x0f] << 6) | 3538c2ecf20Sopenharmony_ci (invparity[par & 0xcc] << 5) | 3548c2ecf20Sopenharmony_ci (invparity[par & 0x33] << 4) | 3558c2ecf20Sopenharmony_ci (invparity[par & 0xaa] << 3) | 3568c2ecf20Sopenharmony_ci (invparity[par & 0x55] << 2) | 3578c2ecf20Sopenharmony_ci (invparity[rp17] << 1) | 3588c2ecf20Sopenharmony_ci (invparity[rp16] << 0); 3598c2ecf20Sopenharmony_ci} 3608c2ecf20Sopenharmony_ciEXPORT_SYMBOL(__nand_calculate_ecc); 3618c2ecf20Sopenharmony_ci 3628c2ecf20Sopenharmony_ci/** 3638c2ecf20Sopenharmony_ci * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte 3648c2ecf20Sopenharmony_ci * block 3658c2ecf20Sopenharmony_ci * @chip: NAND chip object 3668c2ecf20Sopenharmony_ci * @buf: input buffer with raw data 3678c2ecf20Sopenharmony_ci * @code: output buffer with ECC 3688c2ecf20Sopenharmony_ci */ 3698c2ecf20Sopenharmony_ciint nand_calculate_ecc(struct nand_chip *chip, const unsigned char *buf, 3708c2ecf20Sopenharmony_ci unsigned char *code) 3718c2ecf20Sopenharmony_ci{ 3728c2ecf20Sopenharmony_ci bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER; 3738c2ecf20Sopenharmony_ci 3748c2ecf20Sopenharmony_ci __nand_calculate_ecc(buf, chip->ecc.size, code, sm_order); 3758c2ecf20Sopenharmony_ci 3768c2ecf20Sopenharmony_ci return 0; 3778c2ecf20Sopenharmony_ci} 3788c2ecf20Sopenharmony_ciEXPORT_SYMBOL(nand_calculate_ecc); 3798c2ecf20Sopenharmony_ci 3808c2ecf20Sopenharmony_ci/** 3818c2ecf20Sopenharmony_ci * __nand_correct_data - [NAND Interface] Detect and correct bit error(s) 3828c2ecf20Sopenharmony_ci * @buf: raw data read from the chip 3838c2ecf20Sopenharmony_ci * @read_ecc: ECC from the chip 3848c2ecf20Sopenharmony_ci * @calc_ecc: the ECC calculated from raw data 3858c2ecf20Sopenharmony_ci * @eccsize: data bytes per ECC step (256 or 512) 3868c2ecf20Sopenharmony_ci * @sm_order: Smart Media byte order 3878c2ecf20Sopenharmony_ci * 3888c2ecf20Sopenharmony_ci * Detect and correct a 1 bit error for eccsize byte block 3898c2ecf20Sopenharmony_ci */ 3908c2ecf20Sopenharmony_ciint __nand_correct_data(unsigned char *buf, 3918c2ecf20Sopenharmony_ci unsigned char *read_ecc, unsigned char *calc_ecc, 3928c2ecf20Sopenharmony_ci unsigned int eccsize, bool sm_order) 3938c2ecf20Sopenharmony_ci{ 3948c2ecf20Sopenharmony_ci unsigned char b0, b1, b2, bit_addr; 3958c2ecf20Sopenharmony_ci unsigned int byte_addr; 3968c2ecf20Sopenharmony_ci /* 256 or 512 bytes/ecc */ 3978c2ecf20Sopenharmony_ci const uint32_t eccsize_mult = eccsize >> 8; 3988c2ecf20Sopenharmony_ci 3998c2ecf20Sopenharmony_ci /* 4008c2ecf20Sopenharmony_ci * b0 to b2 indicate which bit is faulty (if any) 4018c2ecf20Sopenharmony_ci * we might need the xor result more than once, 4028c2ecf20Sopenharmony_ci * so keep them in a local var 4038c2ecf20Sopenharmony_ci */ 4048c2ecf20Sopenharmony_ci if (sm_order) { 4058c2ecf20Sopenharmony_ci b0 = read_ecc[0] ^ calc_ecc[0]; 4068c2ecf20Sopenharmony_ci b1 = read_ecc[1] ^ calc_ecc[1]; 4078c2ecf20Sopenharmony_ci } else { 4088c2ecf20Sopenharmony_ci b0 = read_ecc[1] ^ calc_ecc[1]; 4098c2ecf20Sopenharmony_ci b1 = read_ecc[0] ^ calc_ecc[0]; 4108c2ecf20Sopenharmony_ci } 4118c2ecf20Sopenharmony_ci 4128c2ecf20Sopenharmony_ci b2 = read_ecc[2] ^ calc_ecc[2]; 4138c2ecf20Sopenharmony_ci 4148c2ecf20Sopenharmony_ci /* check if there are any bitfaults */ 4158c2ecf20Sopenharmony_ci 4168c2ecf20Sopenharmony_ci /* repeated if statements are slightly more efficient than switch ... */ 4178c2ecf20Sopenharmony_ci /* ordered in order of likelihood */ 4188c2ecf20Sopenharmony_ci 4198c2ecf20Sopenharmony_ci if ((b0 | b1 | b2) == 0) 4208c2ecf20Sopenharmony_ci return 0; /* no error */ 4218c2ecf20Sopenharmony_ci 4228c2ecf20Sopenharmony_ci if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) && 4238c2ecf20Sopenharmony_ci (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) && 4248c2ecf20Sopenharmony_ci ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) || 4258c2ecf20Sopenharmony_ci (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) { 4268c2ecf20Sopenharmony_ci /* single bit error */ 4278c2ecf20Sopenharmony_ci /* 4288c2ecf20Sopenharmony_ci * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty 4298c2ecf20Sopenharmony_ci * byte, cp 5/3/1 indicate the faulty bit. 4308c2ecf20Sopenharmony_ci * A lookup table (called addressbits) is used to filter 4318c2ecf20Sopenharmony_ci * the bits from the byte they are in. 4328c2ecf20Sopenharmony_ci * A marginal optimisation is possible by having three 4338c2ecf20Sopenharmony_ci * different lookup tables. 4348c2ecf20Sopenharmony_ci * One as we have now (for b0), one for b2 4358c2ecf20Sopenharmony_ci * (that would avoid the >> 1), and one for b1 (with all values 4368c2ecf20Sopenharmony_ci * << 4). However it was felt that introducing two more tables 4378c2ecf20Sopenharmony_ci * hardly justify the gain. 4388c2ecf20Sopenharmony_ci * 4398c2ecf20Sopenharmony_ci * The b2 shift is there to get rid of the lowest two bits. 4408c2ecf20Sopenharmony_ci * We could also do addressbits[b2] >> 1 but for the 4418c2ecf20Sopenharmony_ci * performance it does not make any difference 4428c2ecf20Sopenharmony_ci */ 4438c2ecf20Sopenharmony_ci if (eccsize_mult == 1) 4448c2ecf20Sopenharmony_ci byte_addr = (addressbits[b1] << 4) + addressbits[b0]; 4458c2ecf20Sopenharmony_ci else 4468c2ecf20Sopenharmony_ci byte_addr = (addressbits[b2 & 0x3] << 8) + 4478c2ecf20Sopenharmony_ci (addressbits[b1] << 4) + addressbits[b0]; 4488c2ecf20Sopenharmony_ci bit_addr = addressbits[b2 >> 2]; 4498c2ecf20Sopenharmony_ci /* flip the bit */ 4508c2ecf20Sopenharmony_ci buf[byte_addr] ^= (1 << bit_addr); 4518c2ecf20Sopenharmony_ci return 1; 4528c2ecf20Sopenharmony_ci 4538c2ecf20Sopenharmony_ci } 4548c2ecf20Sopenharmony_ci /* count nr of bits; use table lookup, faster than calculating it */ 4558c2ecf20Sopenharmony_ci if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) 4568c2ecf20Sopenharmony_ci return 1; /* error in ECC data; no action needed */ 4578c2ecf20Sopenharmony_ci 4588c2ecf20Sopenharmony_ci pr_err("%s: uncorrectable ECC error\n", __func__); 4598c2ecf20Sopenharmony_ci return -EBADMSG; 4608c2ecf20Sopenharmony_ci} 4618c2ecf20Sopenharmony_ciEXPORT_SYMBOL(__nand_correct_data); 4628c2ecf20Sopenharmony_ci 4638c2ecf20Sopenharmony_ci/** 4648c2ecf20Sopenharmony_ci * nand_correct_data - [NAND Interface] Detect and correct bit error(s) 4658c2ecf20Sopenharmony_ci * @chip: NAND chip object 4668c2ecf20Sopenharmony_ci * @buf: raw data read from the chip 4678c2ecf20Sopenharmony_ci * @read_ecc: ECC from the chip 4688c2ecf20Sopenharmony_ci * @calc_ecc: the ECC calculated from raw data 4698c2ecf20Sopenharmony_ci * 4708c2ecf20Sopenharmony_ci * Detect and correct a 1 bit error for 256/512 byte block 4718c2ecf20Sopenharmony_ci */ 4728c2ecf20Sopenharmony_ciint nand_correct_data(struct nand_chip *chip, unsigned char *buf, 4738c2ecf20Sopenharmony_ci unsigned char *read_ecc, unsigned char *calc_ecc) 4748c2ecf20Sopenharmony_ci{ 4758c2ecf20Sopenharmony_ci bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER; 4768c2ecf20Sopenharmony_ci 4778c2ecf20Sopenharmony_ci return __nand_correct_data(buf, read_ecc, calc_ecc, chip->ecc.size, 4788c2ecf20Sopenharmony_ci sm_order); 4798c2ecf20Sopenharmony_ci} 4808c2ecf20Sopenharmony_ciEXPORT_SYMBOL(nand_correct_data); 4818c2ecf20Sopenharmony_ci 4828c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL"); 4838c2ecf20Sopenharmony_ciMODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>"); 4848c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("Generic NAND ECC support"); 485