1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 */
6
7#include <linux/delay.h>
8#include <linux/slab.h>
9#include <linux/init.h>
10#include <linux/module.h>
11#include <linux/mtd/mtd.h>
12#include <linux/mtd/rawnand.h>
13#include <linux/mtd/partitions.h>
14#include <linux/interrupt.h>
15#include <linux/device.h>
16#include <linux/platform_device.h>
17#include <linux/clk.h>
18#include <linux/err.h>
19#include <linux/io.h>
20#include <linux/irq.h>
21#include <linux/completion.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/platform_data/mtd-mxc_nand.h>
25
26#define DRIVER_NAME "mxc_nand"
27
28/* Addresses for NFC registers */
29#define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
30#define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
31#define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
32#define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
33#define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
34#define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
35#define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
36#define NFC_V21_RSLTSPARE_AREA		(host->regs + 0x10)
37#define NFC_V1_V2_WRPROT		(host->regs + 0x12)
38#define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
39#define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
40#define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
41#define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
42#define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
43#define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
44#define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
45#define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
46#define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
47#define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
48#define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
49#define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
50#define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
51
52#define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
53#define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
54#define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
55#define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
56#define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
57#define NFC_V1_V2_CONFIG1_RST		(1 << 6)
58#define NFC_V1_V2_CONFIG1_CE		(1 << 7)
59#define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
60#define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
61#define NFC_V2_CONFIG1_FP_INT		(1 << 11)
62
63#define NFC_V1_V2_CONFIG2_INT		(1 << 15)
64
65/*
66 * Operation modes for the NFC. Valid for v1, v2 and v3
67 * type controllers.
68 */
69#define NFC_CMD				(1 << 0)
70#define NFC_ADDR			(1 << 1)
71#define NFC_INPUT			(1 << 2)
72#define NFC_OUTPUT			(1 << 3)
73#define NFC_ID				(1 << 4)
74#define NFC_STATUS			(1 << 5)
75
76#define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
77#define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
78
79#define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
80#define NFC_V3_CONFIG1_SP_EN		(1 << 0)
81#define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
82
83#define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
84
85#define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
86
87#define NFC_V3_WRPROT			(host->regs_ip + 0x0)
88#define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
89#define NFC_V3_WRPROT_LOCK		(1 << 1)
90#define NFC_V3_WRPROT_UNLOCK		(1 << 2)
91#define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
92
93#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
94
95#define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
96#define NFC_V3_CONFIG2_PS_512			(0 << 0)
97#define NFC_V3_CONFIG2_PS_2048			(1 << 0)
98#define NFC_V3_CONFIG2_PS_4096			(2 << 0)
99#define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
100#define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
101#define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
102#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
103#define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
104#define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
105#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
106#define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
107#define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
108#define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
109
110#define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
111#define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
112#define NFC_V3_CONFIG3_FW8			(1 << 3)
113#define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
114#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
115#define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
116#define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
117
118#define NFC_V3_IPC			(host->regs_ip + 0x2C)
119#define NFC_V3_IPC_CREQ			(1 << 0)
120#define NFC_V3_IPC_INT			(1 << 31)
121
122#define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
123
124struct mxc_nand_host;
125
126struct mxc_nand_devtype_data {
127	void (*preset)(struct mtd_info *);
128	int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
129			 int page);
130	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
131	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
132	void (*send_page)(struct mtd_info *, unsigned int);
133	void (*send_read_id)(struct mxc_nand_host *);
134	uint16_t (*get_dev_status)(struct mxc_nand_host *);
135	int (*check_int)(struct mxc_nand_host *);
136	void (*irq_control)(struct mxc_nand_host *, int);
137	u32 (*get_ecc_status)(struct mxc_nand_host *);
138	const struct mtd_ooblayout_ops *ooblayout;
139	void (*select_chip)(struct nand_chip *chip, int cs);
140	int (*setup_interface)(struct nand_chip *chip, int csline,
141			       const struct nand_interface_config *conf);
142	void (*enable_hwecc)(struct nand_chip *chip, bool enable);
143
144	/*
145	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
146	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
147	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
148	 */
149	int irqpending_quirk;
150	int needs_ip;
151
152	size_t regs_offset;
153	size_t spare0_offset;
154	size_t axi_offset;
155
156	int spare_len;
157	int eccbytes;
158	int eccsize;
159	int ppb_shift;
160};
161
162struct mxc_nand_host {
163	struct nand_chip	nand;
164	struct device		*dev;
165
166	void __iomem		*spare0;
167	void __iomem		*main_area0;
168
169	void __iomem		*base;
170	void __iomem		*regs;
171	void __iomem		*regs_axi;
172	void __iomem		*regs_ip;
173	int			status_request;
174	struct clk		*clk;
175	int			clk_act;
176	int			irq;
177	int			eccsize;
178	int			used_oobsize;
179	int			active_cs;
180
181	struct completion	op_completion;
182
183	uint8_t			*data_buf;
184	unsigned int		buf_start;
185
186	const struct mxc_nand_devtype_data *devtype_data;
187	struct mxc_nand_platform_data pdata;
188};
189
190static const char * const part_probes[] = {
191	"cmdlinepart", "RedBoot", "ofpart", NULL };
192
193static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
194{
195	int i;
196	u32 *t = trg;
197	const __iomem u32 *s = src;
198
199	for (i = 0; i < (size >> 2); i++)
200		*t++ = __raw_readl(s++);
201}
202
203static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
204{
205	int i;
206	u16 *t = trg;
207	const __iomem u16 *s = src;
208
209	/* We assume that src (IO) is always 32bit aligned */
210	if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
211		memcpy32_fromio(trg, src, size);
212		return;
213	}
214
215	for (i = 0; i < (size >> 1); i++)
216		*t++ = __raw_readw(s++);
217}
218
219static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
220{
221	/* __iowrite32_copy use 32bit size values so divide by 4 */
222	__iowrite32_copy(trg, src, size / 4);
223}
224
225static void memcpy16_toio(void __iomem *trg, const void *src, int size)
226{
227	int i;
228	__iomem u16 *t = trg;
229	const u16 *s = src;
230
231	/* We assume that trg (IO) is always 32bit aligned */
232	if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
233		memcpy32_toio(trg, src, size);
234		return;
235	}
236
237	for (i = 0; i < (size >> 1); i++)
238		__raw_writew(*s++, t++);
239}
240
241/*
242 * The controller splits a page into data chunks of 512 bytes + partial oob.
243 * There are writesize / 512 such chunks, the size of the partial oob parts is
244 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
245 * contains additionally the byte lost by rounding (if any).
246 * This function handles the needed shuffling between host->data_buf (which
247 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
248 * spare) and the NFC buffer.
249 */
250static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
251{
252	struct nand_chip *this = mtd_to_nand(mtd);
253	struct mxc_nand_host *host = nand_get_controller_data(this);
254	u16 i, oob_chunk_size;
255	u16 num_chunks = mtd->writesize / 512;
256
257	u8 *d = buf;
258	u8 __iomem *s = host->spare0;
259	u16 sparebuf_size = host->devtype_data->spare_len;
260
261	/* size of oob chunk for all but possibly the last one */
262	oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
263
264	if (bfrom) {
265		for (i = 0; i < num_chunks - 1; i++)
266			memcpy16_fromio(d + i * oob_chunk_size,
267					s + i * sparebuf_size,
268					oob_chunk_size);
269
270		/* the last chunk */
271		memcpy16_fromio(d + i * oob_chunk_size,
272				s + i * sparebuf_size,
273				host->used_oobsize - i * oob_chunk_size);
274	} else {
275		for (i = 0; i < num_chunks - 1; i++)
276			memcpy16_toio(&s[i * sparebuf_size],
277				      &d[i * oob_chunk_size],
278				      oob_chunk_size);
279
280		/* the last chunk */
281		memcpy16_toio(&s[i * sparebuf_size],
282			      &d[i * oob_chunk_size],
283			      host->used_oobsize - i * oob_chunk_size);
284	}
285}
286
287/*
288 * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
289 * the upper layers perform a read/write buf operation, the saved column address
290 * is used to index into the full page. So usually this function is called with
291 * column == 0 (unless no column cycle is needed indicated by column == -1)
292 */
293static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
294{
295	struct nand_chip *nand_chip = mtd_to_nand(mtd);
296	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
297
298	/* Write out column address, if necessary */
299	if (column != -1) {
300		host->devtype_data->send_addr(host, column & 0xff,
301					      page_addr == -1);
302		if (mtd->writesize > 512)
303			/* another col addr cycle for 2k page */
304			host->devtype_data->send_addr(host,
305						      (column >> 8) & 0xff,
306						      false);
307	}
308
309	/* Write out page address, if necessary */
310	if (page_addr != -1) {
311		/* paddr_0 - p_addr_7 */
312		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
313
314		if (mtd->writesize > 512) {
315			if (mtd->size >= 0x10000000) {
316				/* paddr_8 - paddr_15 */
317				host->devtype_data->send_addr(host,
318						(page_addr >> 8) & 0xff,
319						false);
320				host->devtype_data->send_addr(host,
321						(page_addr >> 16) & 0xff,
322						true);
323			} else
324				/* paddr_8 - paddr_15 */
325				host->devtype_data->send_addr(host,
326						(page_addr >> 8) & 0xff, true);
327		} else {
328			if (nand_chip->options & NAND_ROW_ADDR_3) {
329				/* paddr_8 - paddr_15 */
330				host->devtype_data->send_addr(host,
331						(page_addr >> 8) & 0xff,
332						false);
333				host->devtype_data->send_addr(host,
334						(page_addr >> 16) & 0xff,
335						true);
336			} else
337				/* paddr_8 - paddr_15 */
338				host->devtype_data->send_addr(host,
339						(page_addr >> 8) & 0xff, true);
340		}
341	}
342}
343
344static int check_int_v3(struct mxc_nand_host *host)
345{
346	uint32_t tmp;
347
348	tmp = readl(NFC_V3_IPC);
349	if (!(tmp & NFC_V3_IPC_INT))
350		return 0;
351
352	tmp &= ~NFC_V3_IPC_INT;
353	writel(tmp, NFC_V3_IPC);
354
355	return 1;
356}
357
358static int check_int_v1_v2(struct mxc_nand_host *host)
359{
360	uint32_t tmp;
361
362	tmp = readw(NFC_V1_V2_CONFIG2);
363	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
364		return 0;
365
366	if (!host->devtype_data->irqpending_quirk)
367		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
368
369	return 1;
370}
371
372static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
373{
374	uint16_t tmp;
375
376	tmp = readw(NFC_V1_V2_CONFIG1);
377
378	if (activate)
379		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
380	else
381		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
382
383	writew(tmp, NFC_V1_V2_CONFIG1);
384}
385
386static void irq_control_v3(struct mxc_nand_host *host, int activate)
387{
388	uint32_t tmp;
389
390	tmp = readl(NFC_V3_CONFIG2);
391
392	if (activate)
393		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
394	else
395		tmp |= NFC_V3_CONFIG2_INT_MSK;
396
397	writel(tmp, NFC_V3_CONFIG2);
398}
399
400static void irq_control(struct mxc_nand_host *host, int activate)
401{
402	if (host->devtype_data->irqpending_quirk) {
403		if (activate)
404			enable_irq(host->irq);
405		else
406			disable_irq_nosync(host->irq);
407	} else {
408		host->devtype_data->irq_control(host, activate);
409	}
410}
411
412static u32 get_ecc_status_v1(struct mxc_nand_host *host)
413{
414	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
415}
416
417static u32 get_ecc_status_v2(struct mxc_nand_host *host)
418{
419	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
420}
421
422static u32 get_ecc_status_v3(struct mxc_nand_host *host)
423{
424	return readl(NFC_V3_ECC_STATUS_RESULT);
425}
426
427static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
428{
429	struct mxc_nand_host *host = dev_id;
430
431	if (!host->devtype_data->check_int(host))
432		return IRQ_NONE;
433
434	irq_control(host, 0);
435
436	complete(&host->op_completion);
437
438	return IRQ_HANDLED;
439}
440
441/* This function polls the NANDFC to wait for the basic operation to
442 * complete by checking the INT bit of config2 register.
443 */
444static int wait_op_done(struct mxc_nand_host *host, int useirq)
445{
446	int ret = 0;
447
448	/*
449	 * If operation is already complete, don't bother to setup an irq or a
450	 * loop.
451	 */
452	if (host->devtype_data->check_int(host))
453		return 0;
454
455	if (useirq) {
456		unsigned long timeout;
457
458		reinit_completion(&host->op_completion);
459
460		irq_control(host, 1);
461
462		timeout = wait_for_completion_timeout(&host->op_completion, HZ);
463		if (!timeout && !host->devtype_data->check_int(host)) {
464			dev_dbg(host->dev, "timeout waiting for irq\n");
465			ret = -ETIMEDOUT;
466		}
467	} else {
468		int max_retries = 8000;
469		int done;
470
471		do {
472			udelay(1);
473
474			done = host->devtype_data->check_int(host);
475			if (done)
476				break;
477
478		} while (--max_retries);
479
480		if (!done) {
481			dev_dbg(host->dev, "timeout polling for completion\n");
482			ret = -ETIMEDOUT;
483		}
484	}
485
486	WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
487
488	return ret;
489}
490
491static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
492{
493	/* fill command */
494	writel(cmd, NFC_V3_FLASH_CMD);
495
496	/* send out command */
497	writel(NFC_CMD, NFC_V3_LAUNCH);
498
499	/* Wait for operation to complete */
500	wait_op_done(host, useirq);
501}
502
503/* This function issues the specified command to the NAND device and
504 * waits for completion. */
505static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
506{
507	dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
508
509	writew(cmd, NFC_V1_V2_FLASH_CMD);
510	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
511
512	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
513		int max_retries = 100;
514		/* Reset completion is indicated by NFC_CONFIG2 */
515		/* being set to 0 */
516		while (max_retries-- > 0) {
517			if (readw(NFC_V1_V2_CONFIG2) == 0) {
518				break;
519			}
520			udelay(1);
521		}
522		if (max_retries < 0)
523			dev_dbg(host->dev, "%s: RESET failed\n", __func__);
524	} else {
525		/* Wait for operation to complete */
526		wait_op_done(host, useirq);
527	}
528}
529
530static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
531{
532	/* fill address */
533	writel(addr, NFC_V3_FLASH_ADDR0);
534
535	/* send out address */
536	writel(NFC_ADDR, NFC_V3_LAUNCH);
537
538	wait_op_done(host, 0);
539}
540
541/* This function sends an address (or partial address) to the
542 * NAND device. The address is used to select the source/destination for
543 * a NAND command. */
544static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
545{
546	dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
547
548	writew(addr, NFC_V1_V2_FLASH_ADDR);
549	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
550
551	/* Wait for operation to complete */
552	wait_op_done(host, islast);
553}
554
555static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
556{
557	struct nand_chip *nand_chip = mtd_to_nand(mtd);
558	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
559	uint32_t tmp;
560
561	tmp = readl(NFC_V3_CONFIG1);
562	tmp &= ~(7 << 4);
563	writel(tmp, NFC_V3_CONFIG1);
564
565	/* transfer data from NFC ram to nand */
566	writel(ops, NFC_V3_LAUNCH);
567
568	wait_op_done(host, false);
569}
570
571static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
572{
573	struct nand_chip *nand_chip = mtd_to_nand(mtd);
574	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
575
576	/* NANDFC buffer 0 is used for page read/write */
577	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
578
579	writew(ops, NFC_V1_V2_CONFIG2);
580
581	/* Wait for operation to complete */
582	wait_op_done(host, true);
583}
584
585static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
586{
587	struct nand_chip *nand_chip = mtd_to_nand(mtd);
588	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
589	int bufs, i;
590
591	if (mtd->writesize > 512)
592		bufs = 4;
593	else
594		bufs = 1;
595
596	for (i = 0; i < bufs; i++) {
597
598		/* NANDFC buffer 0 is used for page read/write */
599		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
600
601		writew(ops, NFC_V1_V2_CONFIG2);
602
603		/* Wait for operation to complete */
604		wait_op_done(host, true);
605	}
606}
607
608static void send_read_id_v3(struct mxc_nand_host *host)
609{
610	/* Read ID into main buffer */
611	writel(NFC_ID, NFC_V3_LAUNCH);
612
613	wait_op_done(host, true);
614
615	memcpy32_fromio(host->data_buf, host->main_area0, 16);
616}
617
618/* Request the NANDFC to perform a read of the NAND device ID. */
619static void send_read_id_v1_v2(struct mxc_nand_host *host)
620{
621	/* NANDFC buffer 0 is used for device ID output */
622	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
623
624	writew(NFC_ID, NFC_V1_V2_CONFIG2);
625
626	/* Wait for operation to complete */
627	wait_op_done(host, true);
628
629	memcpy32_fromio(host->data_buf, host->main_area0, 16);
630}
631
632static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
633{
634	writew(NFC_STATUS, NFC_V3_LAUNCH);
635	wait_op_done(host, true);
636
637	return readl(NFC_V3_CONFIG1) >> 16;
638}
639
640/* This function requests the NANDFC to perform a read of the
641 * NAND device status and returns the current status. */
642static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
643{
644	void __iomem *main_buf = host->main_area0;
645	uint32_t store;
646	uint16_t ret;
647
648	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
649
650	/*
651	 * The device status is stored in main_area0. To
652	 * prevent corruption of the buffer save the value
653	 * and restore it afterwards.
654	 */
655	store = readl(main_buf);
656
657	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
658	wait_op_done(host, true);
659
660	ret = readw(main_buf);
661
662	writel(store, main_buf);
663
664	return ret;
665}
666
667static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
668{
669	struct mxc_nand_host *host = nand_get_controller_data(chip);
670	uint16_t config1;
671
672	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
673		return;
674
675	config1 = readw(NFC_V1_V2_CONFIG1);
676
677	if (enable)
678		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
679	else
680		config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
681
682	writew(config1, NFC_V1_V2_CONFIG1);
683}
684
685static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
686{
687	struct mxc_nand_host *host = nand_get_controller_data(chip);
688	uint32_t config2;
689
690	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
691		return;
692
693	config2 = readl(NFC_V3_CONFIG2);
694
695	if (enable)
696		config2 |= NFC_V3_CONFIG2_ECC_EN;
697	else
698		config2 &= ~NFC_V3_CONFIG2_ECC_EN;
699
700	writel(config2, NFC_V3_CONFIG2);
701}
702
703/* This functions is used by upper layer to checks if device is ready */
704static int mxc_nand_dev_ready(struct nand_chip *chip)
705{
706	/*
707	 * NFC handles R/B internally. Therefore, this function
708	 * always returns status as ready.
709	 */
710	return 1;
711}
712
713static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
714				 bool ecc, int page)
715{
716	struct mtd_info *mtd = nand_to_mtd(chip);
717	struct mxc_nand_host *host = nand_get_controller_data(chip);
718	unsigned int bitflips_corrected = 0;
719	int no_subpages;
720	int i;
721
722	host->devtype_data->enable_hwecc(chip, ecc);
723
724	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
725	mxc_do_addr_cycle(mtd, 0, page);
726
727	if (mtd->writesize > 512)
728		host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
729
730	no_subpages = mtd->writesize >> 9;
731
732	for (i = 0; i < no_subpages; i++) {
733		uint16_t ecc_stats;
734
735		/* NANDFC buffer 0 is used for page read/write */
736		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
737
738		writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
739
740		/* Wait for operation to complete */
741		wait_op_done(host, true);
742
743		ecc_stats = get_ecc_status_v1(host);
744
745		ecc_stats >>= 2;
746
747		if (buf && ecc) {
748			switch (ecc_stats & 0x3) {
749			case 0:
750			default:
751				break;
752			case 1:
753				mtd->ecc_stats.corrected++;
754				bitflips_corrected = 1;
755				break;
756			case 2:
757				mtd->ecc_stats.failed++;
758				break;
759			}
760		}
761	}
762
763	if (buf)
764		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
765	if (oob)
766		copy_spare(mtd, true, oob);
767
768	return bitflips_corrected;
769}
770
771static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
772				    void *oob, bool ecc, int page)
773{
774	struct mtd_info *mtd = nand_to_mtd(chip);
775	struct mxc_nand_host *host = nand_get_controller_data(chip);
776	unsigned int max_bitflips = 0;
777	u32 ecc_stat, err;
778	int no_subpages;
779	u8 ecc_bit_mask, err_limit;
780
781	host->devtype_data->enable_hwecc(chip, ecc);
782
783	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
784	mxc_do_addr_cycle(mtd, 0, page);
785
786	if (mtd->writesize > 512)
787		host->devtype_data->send_cmd(host,
788				NAND_CMD_READSTART, true);
789
790	host->devtype_data->send_page(mtd, NFC_OUTPUT);
791
792	if (buf)
793		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
794	if (oob)
795		copy_spare(mtd, true, oob);
796
797	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
798	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
799
800	no_subpages = mtd->writesize >> 9;
801
802	ecc_stat = host->devtype_data->get_ecc_status(host);
803
804	do {
805		err = ecc_stat & ecc_bit_mask;
806		if (err > err_limit) {
807			mtd->ecc_stats.failed++;
808		} else {
809			mtd->ecc_stats.corrected += err;
810			max_bitflips = max_t(unsigned int, max_bitflips, err);
811		}
812
813		ecc_stat >>= 4;
814	} while (--no_subpages);
815
816	return max_bitflips;
817}
818
819static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
820			      int oob_required, int page)
821{
822	struct mxc_nand_host *host = nand_get_controller_data(chip);
823	void *oob_buf;
824
825	if (oob_required)
826		oob_buf = chip->oob_poi;
827	else
828		oob_buf = NULL;
829
830	return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
831}
832
833static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
834				  int oob_required, int page)
835{
836	struct mxc_nand_host *host = nand_get_controller_data(chip);
837	void *oob_buf;
838
839	if (oob_required)
840		oob_buf = chip->oob_poi;
841	else
842		oob_buf = NULL;
843
844	return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
845}
846
847static int mxc_nand_read_oob(struct nand_chip *chip, int page)
848{
849	struct mxc_nand_host *host = nand_get_controller_data(chip);
850
851	return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
852					     page);
853}
854
855static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
856			       bool ecc, int page)
857{
858	struct mtd_info *mtd = nand_to_mtd(chip);
859	struct mxc_nand_host *host = nand_get_controller_data(chip);
860
861	host->devtype_data->enable_hwecc(chip, ecc);
862
863	host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
864	mxc_do_addr_cycle(mtd, 0, page);
865
866	memcpy32_toio(host->main_area0, buf, mtd->writesize);
867	copy_spare(mtd, false, chip->oob_poi);
868
869	host->devtype_data->send_page(mtd, NFC_INPUT);
870	host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
871	mxc_do_addr_cycle(mtd, 0, page);
872
873	return 0;
874}
875
876static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
877				   int oob_required, int page)
878{
879	return mxc_nand_write_page(chip, buf, true, page);
880}
881
882static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
883				   int oob_required, int page)
884{
885	return mxc_nand_write_page(chip, buf, false, page);
886}
887
888static int mxc_nand_write_oob(struct nand_chip *chip, int page)
889{
890	struct mtd_info *mtd = nand_to_mtd(chip);
891	struct mxc_nand_host *host = nand_get_controller_data(chip);
892
893	memset(host->data_buf, 0xff, mtd->writesize);
894
895	return mxc_nand_write_page(chip, host->data_buf, false, page);
896}
897
898static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
899{
900	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
901	uint8_t ret;
902
903	/* Check for status request */
904	if (host->status_request)
905		return host->devtype_data->get_dev_status(host) & 0xFF;
906
907	if (nand_chip->options & NAND_BUSWIDTH_16) {
908		/* only take the lower byte of each word */
909		ret = *(uint16_t *)(host->data_buf + host->buf_start);
910
911		host->buf_start += 2;
912	} else {
913		ret = *(uint8_t *)(host->data_buf + host->buf_start);
914		host->buf_start++;
915	}
916
917	dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
918	return ret;
919}
920
921/* Write data of length len to buffer buf. The data to be
922 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
923 * Operation by the NFC, the data is written to NAND Flash */
924static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
925			       int len)
926{
927	struct mtd_info *mtd = nand_to_mtd(nand_chip);
928	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
929	u16 col = host->buf_start;
930	int n = mtd->oobsize + mtd->writesize - col;
931
932	n = min(n, len);
933
934	memcpy(host->data_buf + col, buf, n);
935
936	host->buf_start += n;
937}
938
939/* Read the data buffer from the NAND Flash. To read the data from NAND
940 * Flash first the data output cycle is initiated by the NFC, which copies
941 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
942 */
943static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
944			      int len)
945{
946	struct mtd_info *mtd = nand_to_mtd(nand_chip);
947	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
948	u16 col = host->buf_start;
949	int n = mtd->oobsize + mtd->writesize - col;
950
951	n = min(n, len);
952
953	memcpy(buf, host->data_buf + col, n);
954
955	host->buf_start += n;
956}
957
958/* This function is used by upper layer for select and
959 * deselect of the NAND chip */
960static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
961{
962	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
963
964	if (chip == -1) {
965		/* Disable the NFC clock */
966		if (host->clk_act) {
967			clk_disable_unprepare(host->clk);
968			host->clk_act = 0;
969		}
970		return;
971	}
972
973	if (!host->clk_act) {
974		/* Enable the NFC clock */
975		clk_prepare_enable(host->clk);
976		host->clk_act = 1;
977	}
978}
979
980static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
981{
982	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
983
984	if (chip == -1) {
985		/* Disable the NFC clock */
986		if (host->clk_act) {
987			clk_disable_unprepare(host->clk);
988			host->clk_act = 0;
989		}
990		return;
991	}
992
993	if (!host->clk_act) {
994		/* Enable the NFC clock */
995		clk_prepare_enable(host->clk);
996		host->clk_act = 1;
997	}
998
999	host->active_cs = chip;
1000	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
1001}
1002
1003#define MXC_V1_ECCBYTES		5
1004
1005static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1006				struct mtd_oob_region *oobregion)
1007{
1008	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1009
1010	if (section >= nand_chip->ecc.steps)
1011		return -ERANGE;
1012
1013	oobregion->offset = (section * 16) + 6;
1014	oobregion->length = MXC_V1_ECCBYTES;
1015
1016	return 0;
1017}
1018
1019static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1020				 struct mtd_oob_region *oobregion)
1021{
1022	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1023
1024	if (section > nand_chip->ecc.steps)
1025		return -ERANGE;
1026
1027	if (!section) {
1028		if (mtd->writesize <= 512) {
1029			oobregion->offset = 0;
1030			oobregion->length = 5;
1031		} else {
1032			oobregion->offset = 2;
1033			oobregion->length = 4;
1034		}
1035	} else {
1036		oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1037		if (section < nand_chip->ecc.steps)
1038			oobregion->length = (section * 16) + 6 -
1039					    oobregion->offset;
1040		else
1041			oobregion->length = mtd->oobsize - oobregion->offset;
1042	}
1043
1044	return 0;
1045}
1046
1047static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1048	.ecc = mxc_v1_ooblayout_ecc,
1049	.free = mxc_v1_ooblayout_free,
1050};
1051
1052static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1053				struct mtd_oob_region *oobregion)
1054{
1055	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1056	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1057
1058	if (section >= nand_chip->ecc.steps)
1059		return -ERANGE;
1060
1061	oobregion->offset = (section * stepsize) + 7;
1062	oobregion->length = nand_chip->ecc.bytes;
1063
1064	return 0;
1065}
1066
1067static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1068				 struct mtd_oob_region *oobregion)
1069{
1070	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1071	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1072
1073	if (section >= nand_chip->ecc.steps)
1074		return -ERANGE;
1075
1076	if (!section) {
1077		if (mtd->writesize <= 512) {
1078			oobregion->offset = 0;
1079			oobregion->length = 5;
1080		} else {
1081			oobregion->offset = 2;
1082			oobregion->length = 4;
1083		}
1084	} else {
1085		oobregion->offset = section * stepsize;
1086		oobregion->length = 7;
1087	}
1088
1089	return 0;
1090}
1091
1092static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1093	.ecc = mxc_v2_ooblayout_ecc,
1094	.free = mxc_v2_ooblayout_free,
1095};
1096
1097/*
1098 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1099 * on how much oob the nand chip has. For 8bit ecc we need at least
1100 * 26 bytes of oob data per 512 byte block.
1101 */
1102static int get_eccsize(struct mtd_info *mtd)
1103{
1104	int oobbytes_per_512 = 0;
1105
1106	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1107
1108	if (oobbytes_per_512 < 26)
1109		return 4;
1110	else
1111		return 8;
1112}
1113
1114static void preset_v1(struct mtd_info *mtd)
1115{
1116	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1117	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1118	uint16_t config1 = 0;
1119
1120	if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
1121	    mtd->writesize)
1122		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1123
1124	if (!host->devtype_data->irqpending_quirk)
1125		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1126
1127	host->eccsize = 1;
1128
1129	writew(config1, NFC_V1_V2_CONFIG1);
1130	/* preset operation */
1131
1132	/* Unlock the internal RAM Buffer */
1133	writew(0x2, NFC_V1_V2_CONFIG);
1134
1135	/* Blocks to be unlocked */
1136	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1137	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1138
1139	/* Unlock Block Command for given address range */
1140	writew(0x4, NFC_V1_V2_WRPROT);
1141}
1142
1143static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
1144				       const struct nand_interface_config *conf)
1145{
1146	struct mxc_nand_host *host = nand_get_controller_data(chip);
1147	int tRC_min_ns, tRC_ps, ret;
1148	unsigned long rate, rate_round;
1149	const struct nand_sdr_timings *timings;
1150	u16 config1;
1151
1152	timings = nand_get_sdr_timings(conf);
1153	if (IS_ERR(timings))
1154		return -ENOTSUPP;
1155
1156	config1 = readw(NFC_V1_V2_CONFIG1);
1157
1158	tRC_min_ns = timings->tRC_min / 1000;
1159	rate = 1000000000 / tRC_min_ns;
1160
1161	/*
1162	 * For tRC < 30ns we have to use EDO mode. In this case the controller
1163	 * does one access per clock cycle. Otherwise the controller does one
1164	 * access in two clock cycles, thus we have to double the rate to the
1165	 * controller.
1166	 */
1167	if (tRC_min_ns < 30) {
1168		rate_round = clk_round_rate(host->clk, rate);
1169		config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1170		tRC_ps = 1000000000 / (rate_round / 1000);
1171	} else {
1172		rate *= 2;
1173		rate_round = clk_round_rate(host->clk, rate);
1174		config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1175		tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1176	}
1177
1178	/*
1179	 * The timing values compared against are from the i.MX25 Automotive
1180	 * datasheet, Table 50. NFC Timing Parameters
1181	 */
1182	if (timings->tCLS_min > tRC_ps - 1000 ||
1183	    timings->tCLH_min > tRC_ps - 2000 ||
1184	    timings->tCS_min > tRC_ps - 1000 ||
1185	    timings->tCH_min > tRC_ps - 2000 ||
1186	    timings->tWP_min > tRC_ps - 1500 ||
1187	    timings->tALS_min > tRC_ps ||
1188	    timings->tALH_min > tRC_ps - 3000 ||
1189	    timings->tDS_min > tRC_ps ||
1190	    timings->tDH_min > tRC_ps - 5000 ||
1191	    timings->tWC_min > 2 * tRC_ps ||
1192	    timings->tWH_min > tRC_ps - 2500 ||
1193	    timings->tRR_min > 6 * tRC_ps ||
1194	    timings->tRP_min > 3 * tRC_ps / 2 ||
1195	    timings->tRC_min > 2 * tRC_ps ||
1196	    timings->tREH_min > (tRC_ps / 2) - 2500) {
1197		dev_dbg(host->dev, "Timing out of bounds\n");
1198		return -EINVAL;
1199	}
1200
1201	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1202		return 0;
1203
1204	ret = clk_set_rate(host->clk, rate);
1205	if (ret)
1206		return ret;
1207
1208	writew(config1, NFC_V1_V2_CONFIG1);
1209
1210	dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1211		config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1212		"normal");
1213
1214	return 0;
1215}
1216
1217static void preset_v2(struct mtd_info *mtd)
1218{
1219	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1220	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1221	uint16_t config1 = 0;
1222
1223	config1 |= NFC_V2_CONFIG1_FP_INT;
1224
1225	if (!host->devtype_data->irqpending_quirk)
1226		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1227
1228	if (mtd->writesize) {
1229		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1230
1231		if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1232			config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1233
1234		host->eccsize = get_eccsize(mtd);
1235		if (host->eccsize == 4)
1236			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1237
1238		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1239	} else {
1240		host->eccsize = 1;
1241	}
1242
1243	writew(config1, NFC_V1_V2_CONFIG1);
1244	/* preset operation */
1245
1246	/* spare area size in 16-bit half-words */
1247	writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1248
1249	/* Unlock the internal RAM Buffer */
1250	writew(0x2, NFC_V1_V2_CONFIG);
1251
1252	/* Blocks to be unlocked */
1253	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1254	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1255	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1256	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1257	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1258	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1259	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1260	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1261
1262	/* Unlock Block Command for given address range */
1263	writew(0x4, NFC_V1_V2_WRPROT);
1264}
1265
1266static void preset_v3(struct mtd_info *mtd)
1267{
1268	struct nand_chip *chip = mtd_to_nand(mtd);
1269	struct mxc_nand_host *host = nand_get_controller_data(chip);
1270	uint32_t config2, config3;
1271	int i, addr_phases;
1272
1273	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1274	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1275
1276	/* Unlock the internal RAM Buffer */
1277	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1278			NFC_V3_WRPROT);
1279
1280	/* Blocks to be unlocked */
1281	for (i = 0; i < NAND_MAX_CHIPS; i++)
1282		writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1283
1284	writel(0, NFC_V3_IPC);
1285
1286	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1287		NFC_V3_CONFIG2_2CMD_PHASES |
1288		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1289		NFC_V3_CONFIG2_ST_CMD(0x70) |
1290		NFC_V3_CONFIG2_INT_MSK |
1291		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1292
1293	addr_phases = fls(chip->pagemask) >> 3;
1294
1295	if (mtd->writesize == 2048) {
1296		config2 |= NFC_V3_CONFIG2_PS_2048;
1297		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1298	} else if (mtd->writesize == 4096) {
1299		config2 |= NFC_V3_CONFIG2_PS_4096;
1300		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1301	} else {
1302		config2 |= NFC_V3_CONFIG2_PS_512;
1303		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1304	}
1305
1306	if (mtd->writesize) {
1307		if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1308			config2 |= NFC_V3_CONFIG2_ECC_EN;
1309
1310		config2 |= NFC_V3_CONFIG2_PPB(
1311				ffs(mtd->erasesize / mtd->writesize) - 6,
1312				host->devtype_data->ppb_shift);
1313		host->eccsize = get_eccsize(mtd);
1314		if (host->eccsize == 8)
1315			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1316	}
1317
1318	writel(config2, NFC_V3_CONFIG2);
1319
1320	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1321			NFC_V3_CONFIG3_NO_SDMA |
1322			NFC_V3_CONFIG3_RBB_MODE |
1323			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1324			NFC_V3_CONFIG3_ADD_OP(0);
1325
1326	if (!(chip->options & NAND_BUSWIDTH_16))
1327		config3 |= NFC_V3_CONFIG3_FW8;
1328
1329	writel(config3, NFC_V3_CONFIG3);
1330
1331	writel(0, NFC_V3_DELAY_LINE);
1332}
1333
1334/* Used by the upper layer to write command to NAND Flash for
1335 * different operations to be carried out on NAND Flash */
1336static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1337			     int column, int page_addr)
1338{
1339	struct mtd_info *mtd = nand_to_mtd(nand_chip);
1340	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1341
1342	dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1343	      command, column, page_addr);
1344
1345	/* Reset command state information */
1346	host->status_request = false;
1347
1348	/* Command pre-processing step */
1349	switch (command) {
1350	case NAND_CMD_RESET:
1351		host->devtype_data->preset(mtd);
1352		host->devtype_data->send_cmd(host, command, false);
1353		break;
1354
1355	case NAND_CMD_STATUS:
1356		host->buf_start = 0;
1357		host->status_request = true;
1358
1359		host->devtype_data->send_cmd(host, command, true);
1360		WARN_ONCE(column != -1 || page_addr != -1,
1361			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1362			  command, column, page_addr);
1363		mxc_do_addr_cycle(mtd, column, page_addr);
1364		break;
1365
1366	case NAND_CMD_READID:
1367		host->devtype_data->send_cmd(host, command, true);
1368		mxc_do_addr_cycle(mtd, column, page_addr);
1369		host->devtype_data->send_read_id(host);
1370		host->buf_start = 0;
1371		break;
1372
1373	case NAND_CMD_ERASE1:
1374	case NAND_CMD_ERASE2:
1375		host->devtype_data->send_cmd(host, command, false);
1376		WARN_ONCE(column != -1,
1377			  "Unexpected column value (cmd=%u, col=%d)\n",
1378			  command, column);
1379		mxc_do_addr_cycle(mtd, column, page_addr);
1380
1381		break;
1382	case NAND_CMD_PARAM:
1383		host->devtype_data->send_cmd(host, command, false);
1384		mxc_do_addr_cycle(mtd, column, page_addr);
1385		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1386		memcpy32_fromio(host->data_buf, host->main_area0, 512);
1387		host->buf_start = 0;
1388		break;
1389	default:
1390		WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1391			  command);
1392		break;
1393	}
1394}
1395
1396static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1397				 u8 *subfeature_param)
1398{
1399	struct mtd_info *mtd = nand_to_mtd(chip);
1400	struct mxc_nand_host *host = nand_get_controller_data(chip);
1401	int i;
1402
1403	host->buf_start = 0;
1404
1405	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1406		chip->legacy.write_byte(chip, subfeature_param[i]);
1407
1408	memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1409	host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1410	mxc_do_addr_cycle(mtd, addr, -1);
1411	host->devtype_data->send_page(mtd, NFC_INPUT);
1412
1413	return 0;
1414}
1415
1416static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1417				 u8 *subfeature_param)
1418{
1419	struct mtd_info *mtd = nand_to_mtd(chip);
1420	struct mxc_nand_host *host = nand_get_controller_data(chip);
1421	int i;
1422
1423	host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1424	mxc_do_addr_cycle(mtd, addr, -1);
1425	host->devtype_data->send_page(mtd, NFC_OUTPUT);
1426	memcpy32_fromio(host->data_buf, host->main_area0, 512);
1427	host->buf_start = 0;
1428
1429	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1430		*subfeature_param++ = chip->legacy.read_byte(chip);
1431
1432	return 0;
1433}
1434
1435/*
1436 * The generic flash bbt descriptors overlap with our ecc
1437 * hardware, so define some i.MX specific ones.
1438 */
1439static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1440static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1441
1442static struct nand_bbt_descr bbt_main_descr = {
1443	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1444	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1445	.offs = 0,
1446	.len = 4,
1447	.veroffs = 4,
1448	.maxblocks = 4,
1449	.pattern = bbt_pattern,
1450};
1451
1452static struct nand_bbt_descr bbt_mirror_descr = {
1453	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1454	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1455	.offs = 0,
1456	.len = 4,
1457	.veroffs = 4,
1458	.maxblocks = 4,
1459	.pattern = mirror_pattern,
1460};
1461
1462/* v1 + irqpending_quirk: i.MX21 */
1463static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1464	.preset = preset_v1,
1465	.read_page = mxc_nand_read_page_v1,
1466	.send_cmd = send_cmd_v1_v2,
1467	.send_addr = send_addr_v1_v2,
1468	.send_page = send_page_v1,
1469	.send_read_id = send_read_id_v1_v2,
1470	.get_dev_status = get_dev_status_v1_v2,
1471	.check_int = check_int_v1_v2,
1472	.irq_control = irq_control_v1_v2,
1473	.get_ecc_status = get_ecc_status_v1,
1474	.ooblayout = &mxc_v1_ooblayout_ops,
1475	.select_chip = mxc_nand_select_chip_v1_v3,
1476	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1477	.irqpending_quirk = 1,
1478	.needs_ip = 0,
1479	.regs_offset = 0xe00,
1480	.spare0_offset = 0x800,
1481	.spare_len = 16,
1482	.eccbytes = 3,
1483	.eccsize = 1,
1484};
1485
1486/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1487static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1488	.preset = preset_v1,
1489	.read_page = mxc_nand_read_page_v1,
1490	.send_cmd = send_cmd_v1_v2,
1491	.send_addr = send_addr_v1_v2,
1492	.send_page = send_page_v1,
1493	.send_read_id = send_read_id_v1_v2,
1494	.get_dev_status = get_dev_status_v1_v2,
1495	.check_int = check_int_v1_v2,
1496	.irq_control = irq_control_v1_v2,
1497	.get_ecc_status = get_ecc_status_v1,
1498	.ooblayout = &mxc_v1_ooblayout_ops,
1499	.select_chip = mxc_nand_select_chip_v1_v3,
1500	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1501	.irqpending_quirk = 0,
1502	.needs_ip = 0,
1503	.regs_offset = 0xe00,
1504	.spare0_offset = 0x800,
1505	.axi_offset = 0,
1506	.spare_len = 16,
1507	.eccbytes = 3,
1508	.eccsize = 1,
1509};
1510
1511/* v21: i.MX25, i.MX35 */
1512static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1513	.preset = preset_v2,
1514	.read_page = mxc_nand_read_page_v2_v3,
1515	.send_cmd = send_cmd_v1_v2,
1516	.send_addr = send_addr_v1_v2,
1517	.send_page = send_page_v2,
1518	.send_read_id = send_read_id_v1_v2,
1519	.get_dev_status = get_dev_status_v1_v2,
1520	.check_int = check_int_v1_v2,
1521	.irq_control = irq_control_v1_v2,
1522	.get_ecc_status = get_ecc_status_v2,
1523	.ooblayout = &mxc_v2_ooblayout_ops,
1524	.select_chip = mxc_nand_select_chip_v2,
1525	.setup_interface = mxc_nand_v2_setup_interface,
1526	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1527	.irqpending_quirk = 0,
1528	.needs_ip = 0,
1529	.regs_offset = 0x1e00,
1530	.spare0_offset = 0x1000,
1531	.axi_offset = 0,
1532	.spare_len = 64,
1533	.eccbytes = 9,
1534	.eccsize = 0,
1535};
1536
1537/* v3.2a: i.MX51 */
1538static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1539	.preset = preset_v3,
1540	.read_page = mxc_nand_read_page_v2_v3,
1541	.send_cmd = send_cmd_v3,
1542	.send_addr = send_addr_v3,
1543	.send_page = send_page_v3,
1544	.send_read_id = send_read_id_v3,
1545	.get_dev_status = get_dev_status_v3,
1546	.check_int = check_int_v3,
1547	.irq_control = irq_control_v3,
1548	.get_ecc_status = get_ecc_status_v3,
1549	.ooblayout = &mxc_v2_ooblayout_ops,
1550	.select_chip = mxc_nand_select_chip_v1_v3,
1551	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1552	.irqpending_quirk = 0,
1553	.needs_ip = 1,
1554	.regs_offset = 0,
1555	.spare0_offset = 0x1000,
1556	.axi_offset = 0x1e00,
1557	.spare_len = 64,
1558	.eccbytes = 0,
1559	.eccsize = 0,
1560	.ppb_shift = 7,
1561};
1562
1563/* v3.2b: i.MX53 */
1564static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1565	.preset = preset_v3,
1566	.read_page = mxc_nand_read_page_v2_v3,
1567	.send_cmd = send_cmd_v3,
1568	.send_addr = send_addr_v3,
1569	.send_page = send_page_v3,
1570	.send_read_id = send_read_id_v3,
1571	.get_dev_status = get_dev_status_v3,
1572	.check_int = check_int_v3,
1573	.irq_control = irq_control_v3,
1574	.get_ecc_status = get_ecc_status_v3,
1575	.ooblayout = &mxc_v2_ooblayout_ops,
1576	.select_chip = mxc_nand_select_chip_v1_v3,
1577	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1578	.irqpending_quirk = 0,
1579	.needs_ip = 1,
1580	.regs_offset = 0,
1581	.spare0_offset = 0x1000,
1582	.axi_offset = 0x1e00,
1583	.spare_len = 64,
1584	.eccbytes = 0,
1585	.eccsize = 0,
1586	.ppb_shift = 8,
1587};
1588
1589static inline int is_imx21_nfc(struct mxc_nand_host *host)
1590{
1591	return host->devtype_data == &imx21_nand_devtype_data;
1592}
1593
1594static inline int is_imx27_nfc(struct mxc_nand_host *host)
1595{
1596	return host->devtype_data == &imx27_nand_devtype_data;
1597}
1598
1599static inline int is_imx25_nfc(struct mxc_nand_host *host)
1600{
1601	return host->devtype_data == &imx25_nand_devtype_data;
1602}
1603
1604static inline int is_imx51_nfc(struct mxc_nand_host *host)
1605{
1606	return host->devtype_data == &imx51_nand_devtype_data;
1607}
1608
1609static inline int is_imx53_nfc(struct mxc_nand_host *host)
1610{
1611	return host->devtype_data == &imx53_nand_devtype_data;
1612}
1613
1614static const struct platform_device_id mxcnd_devtype[] = {
1615	{
1616		.name = "imx21-nand",
1617		.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1618	}, {
1619		.name = "imx27-nand",
1620		.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1621	}, {
1622		.name = "imx25-nand",
1623		.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1624	}, {
1625		.name = "imx51-nand",
1626		.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1627	}, {
1628		.name = "imx53-nand",
1629		.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1630	}, {
1631		/* sentinel */
1632	}
1633};
1634MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1635
1636#ifdef CONFIG_OF
1637static const struct of_device_id mxcnd_dt_ids[] = {
1638	{
1639		.compatible = "fsl,imx21-nand",
1640		.data = &imx21_nand_devtype_data,
1641	}, {
1642		.compatible = "fsl,imx27-nand",
1643		.data = &imx27_nand_devtype_data,
1644	}, {
1645		.compatible = "fsl,imx25-nand",
1646		.data = &imx25_nand_devtype_data,
1647	}, {
1648		.compatible = "fsl,imx51-nand",
1649		.data = &imx51_nand_devtype_data,
1650	}, {
1651		.compatible = "fsl,imx53-nand",
1652		.data = &imx53_nand_devtype_data,
1653	},
1654	{ /* sentinel */ }
1655};
1656MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1657
1658static int mxcnd_probe_dt(struct mxc_nand_host *host)
1659{
1660	struct device_node *np = host->dev->of_node;
1661	const struct of_device_id *of_id =
1662		of_match_device(mxcnd_dt_ids, host->dev);
1663
1664	if (!np)
1665		return 1;
1666
1667	host->devtype_data = of_id->data;
1668
1669	return 0;
1670}
1671#else
1672static int mxcnd_probe_dt(struct mxc_nand_host *host)
1673{
1674	return 1;
1675}
1676#endif
1677
1678static int mxcnd_attach_chip(struct nand_chip *chip)
1679{
1680	struct mtd_info *mtd = nand_to_mtd(chip);
1681	struct mxc_nand_host *host = nand_get_controller_data(chip);
1682	struct device *dev = mtd->dev.parent;
1683
1684	chip->ecc.bytes = host->devtype_data->eccbytes;
1685	host->eccsize = host->devtype_data->eccsize;
1686	chip->ecc.size = 512;
1687	mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1688
1689	switch (chip->ecc.engine_type) {
1690	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1691		chip->ecc.read_page = mxc_nand_read_page;
1692		chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1693		chip->ecc.read_oob = mxc_nand_read_oob;
1694		chip->ecc.write_page = mxc_nand_write_page_ecc;
1695		chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1696		chip->ecc.write_oob = mxc_nand_write_oob;
1697		break;
1698
1699	case NAND_ECC_ENGINE_TYPE_SOFT:
1700		break;
1701
1702	default:
1703		return -EINVAL;
1704	}
1705
1706	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1707		chip->bbt_td = &bbt_main_descr;
1708		chip->bbt_md = &bbt_mirror_descr;
1709	}
1710
1711	/* Allocate the right size buffer now */
1712	devm_kfree(dev, (void *)host->data_buf);
1713	host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1714				      GFP_KERNEL);
1715	if (!host->data_buf)
1716		return -ENOMEM;
1717
1718	/* Call preset again, with correct writesize chip time */
1719	host->devtype_data->preset(mtd);
1720
1721	if (!chip->ecc.bytes) {
1722		if (host->eccsize == 8)
1723			chip->ecc.bytes = 18;
1724		else if (host->eccsize == 4)
1725			chip->ecc.bytes = 9;
1726	}
1727
1728	/*
1729	 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1730	 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1731	 * into copying invalid data to/from the spare IO buffer, as this
1732	 * might cause ECC data corruption when doing sub-page write to a
1733	 * partially written page.
1734	 */
1735	host->used_oobsize = min(mtd->oobsize, 218U);
1736
1737	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1738		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1739			chip->ecc.strength = 1;
1740		else
1741			chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1742	}
1743
1744	return 0;
1745}
1746
1747static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
1748				 const struct nand_interface_config *conf)
1749{
1750	struct mxc_nand_host *host = nand_get_controller_data(chip);
1751
1752	return host->devtype_data->setup_interface(chip, chipnr, conf);
1753}
1754
1755static const struct nand_controller_ops mxcnd_controller_ops = {
1756	.attach_chip = mxcnd_attach_chip,
1757	.setup_interface = mxcnd_setup_interface,
1758};
1759
1760static int mxcnd_probe(struct platform_device *pdev)
1761{
1762	struct nand_chip *this;
1763	struct mtd_info *mtd;
1764	struct mxc_nand_host *host;
1765	struct resource *res;
1766	int err = 0;
1767
1768	/* Allocate memory for MTD device structure and private data */
1769	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1770			GFP_KERNEL);
1771	if (!host)
1772		return -ENOMEM;
1773
1774	/* allocate a temporary buffer for the nand_scan_ident() */
1775	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1776	if (!host->data_buf)
1777		return -ENOMEM;
1778
1779	host->dev = &pdev->dev;
1780	/* structures must be linked */
1781	this = &host->nand;
1782	mtd = nand_to_mtd(this);
1783	mtd->dev.parent = &pdev->dev;
1784	mtd->name = DRIVER_NAME;
1785
1786	/* 50 us command delay time */
1787	this->legacy.chip_delay = 5;
1788
1789	nand_set_controller_data(this, host);
1790	nand_set_flash_node(this, pdev->dev.of_node),
1791	this->legacy.dev_ready = mxc_nand_dev_ready;
1792	this->legacy.cmdfunc = mxc_nand_command;
1793	this->legacy.read_byte = mxc_nand_read_byte;
1794	this->legacy.write_buf = mxc_nand_write_buf;
1795	this->legacy.read_buf = mxc_nand_read_buf;
1796	this->legacy.set_features = mxc_nand_set_features;
1797	this->legacy.get_features = mxc_nand_get_features;
1798
1799	host->clk = devm_clk_get(&pdev->dev, NULL);
1800	if (IS_ERR(host->clk))
1801		return PTR_ERR(host->clk);
1802
1803	err = mxcnd_probe_dt(host);
1804	if (err > 0) {
1805		struct mxc_nand_platform_data *pdata =
1806					dev_get_platdata(&pdev->dev);
1807		if (pdata) {
1808			host->pdata = *pdata;
1809			host->devtype_data = (struct mxc_nand_devtype_data *)
1810						pdev->id_entry->driver_data;
1811		} else {
1812			err = -ENODEV;
1813		}
1814	}
1815	if (err < 0)
1816		return err;
1817
1818	if (!host->devtype_data->setup_interface)
1819		this->options |= NAND_KEEP_TIMINGS;
1820
1821	if (host->devtype_data->needs_ip) {
1822		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1823		host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1824		if (IS_ERR(host->regs_ip))
1825			return PTR_ERR(host->regs_ip);
1826
1827		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1828	} else {
1829		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1830	}
1831
1832	host->base = devm_ioremap_resource(&pdev->dev, res);
1833	if (IS_ERR(host->base))
1834		return PTR_ERR(host->base);
1835
1836	host->main_area0 = host->base;
1837
1838	if (host->devtype_data->regs_offset)
1839		host->regs = host->base + host->devtype_data->regs_offset;
1840	host->spare0 = host->base + host->devtype_data->spare0_offset;
1841	if (host->devtype_data->axi_offset)
1842		host->regs_axi = host->base + host->devtype_data->axi_offset;
1843
1844	this->legacy.select_chip = host->devtype_data->select_chip;
1845
1846	/* NAND bus width determines access functions used by upper layer */
1847	if (host->pdata.width == 2)
1848		this->options |= NAND_BUSWIDTH_16;
1849
1850	/* update flash based bbt */
1851	if (host->pdata.flash_bbt)
1852		this->bbt_options |= NAND_BBT_USE_FLASH;
1853
1854	init_completion(&host->op_completion);
1855
1856	host->irq = platform_get_irq(pdev, 0);
1857	if (host->irq < 0)
1858		return host->irq;
1859
1860	/*
1861	 * Use host->devtype_data->irq_control() here instead of irq_control()
1862	 * because we must not disable_irq_nosync without having requested the
1863	 * irq.
1864	 */
1865	host->devtype_data->irq_control(host, 0);
1866
1867	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1868			0, DRIVER_NAME, host);
1869	if (err)
1870		return err;
1871
1872	err = clk_prepare_enable(host->clk);
1873	if (err)
1874		return err;
1875	host->clk_act = 1;
1876
1877	/*
1878	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1879	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1880	 * on this machine.
1881	 */
1882	if (host->devtype_data->irqpending_quirk) {
1883		disable_irq_nosync(host->irq);
1884		host->devtype_data->irq_control(host, 1);
1885	}
1886
1887	/* Scan the NAND device */
1888	this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1889	err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1890	if (err)
1891		goto escan;
1892
1893	/* Register the partitions */
1894	err = mtd_device_parse_register(mtd, part_probes, NULL,
1895					host->pdata.parts,
1896					host->pdata.nr_parts);
1897	if (err)
1898		goto cleanup_nand;
1899
1900	platform_set_drvdata(pdev, host);
1901
1902	return 0;
1903
1904cleanup_nand:
1905	nand_cleanup(this);
1906escan:
1907	if (host->clk_act)
1908		clk_disable_unprepare(host->clk);
1909
1910	return err;
1911}
1912
1913static int mxcnd_remove(struct platform_device *pdev)
1914{
1915	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1916	struct nand_chip *chip = &host->nand;
1917	int ret;
1918
1919	ret = mtd_device_unregister(nand_to_mtd(chip));
1920	WARN_ON(ret);
1921	nand_cleanup(chip);
1922	if (host->clk_act)
1923		clk_disable_unprepare(host->clk);
1924
1925	return 0;
1926}
1927
1928static struct platform_driver mxcnd_driver = {
1929	.driver = {
1930		   .name = DRIVER_NAME,
1931		   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1932	},
1933	.id_table = mxcnd_devtype,
1934	.probe = mxcnd_probe,
1935	.remove = mxcnd_remove,
1936};
1937module_platform_driver(mxcnd_driver);
1938
1939MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1940MODULE_DESCRIPTION("MXC NAND MTD driver");
1941MODULE_LICENSE("GPL");
1942