1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * MTK NAND Flash controller driver.
4 * Copyright (C) 2016 MediaTek Inc.
5 * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
6 *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
7 */
8
9#include <linux/platform_device.h>
10#include <linux/dma-mapping.h>
11#include <linux/interrupt.h>
12#include <linux/delay.h>
13#include <linux/clk.h>
14#include <linux/mtd/rawnand.h>
15#include <linux/mtd/mtd.h>
16#include <linux/module.h>
17#include <linux/iopoll.h>
18#include <linux/of.h>
19#include <linux/of_device.h>
20#include "mtk_ecc.h"
21
22/* NAND controller register definition */
23#define NFI_CNFG		(0x00)
24#define		CNFG_AHB		BIT(0)
25#define		CNFG_READ_EN		BIT(1)
26#define		CNFG_DMA_BURST_EN	BIT(2)
27#define		CNFG_BYTE_RW		BIT(6)
28#define		CNFG_HW_ECC_EN		BIT(8)
29#define		CNFG_AUTO_FMT_EN	BIT(9)
30#define		CNFG_OP_CUST		(6 << 12)
31#define NFI_PAGEFMT		(0x04)
32#define		PAGEFMT_FDM_ECC_SHIFT	(12)
33#define		PAGEFMT_FDM_SHIFT	(8)
34#define		PAGEFMT_SEC_SEL_512	BIT(2)
35#define		PAGEFMT_512_2K		(0)
36#define		PAGEFMT_2K_4K		(1)
37#define		PAGEFMT_4K_8K		(2)
38#define		PAGEFMT_8K_16K		(3)
39/* NFI control */
40#define NFI_CON			(0x08)
41#define		CON_FIFO_FLUSH		BIT(0)
42#define		CON_NFI_RST		BIT(1)
43#define		CON_BRD			BIT(8)  /* burst  read */
44#define		CON_BWR			BIT(9)	/* burst  write */
45#define		CON_SEC_SHIFT		(12)
46/* Timming control register */
47#define NFI_ACCCON		(0x0C)
48#define NFI_INTR_EN		(0x10)
49#define		INTR_AHB_DONE_EN	BIT(6)
50#define NFI_INTR_STA		(0x14)
51#define NFI_CMD			(0x20)
52#define NFI_ADDRNOB		(0x30)
53#define NFI_COLADDR		(0x34)
54#define NFI_ROWADDR		(0x38)
55#define NFI_STRDATA		(0x40)
56#define		STAR_EN			(1)
57#define		STAR_DE			(0)
58#define NFI_CNRNB		(0x44)
59#define NFI_DATAW		(0x50)
60#define NFI_DATAR		(0x54)
61#define NFI_PIO_DIRDY		(0x58)
62#define		PIO_DI_RDY		(0x01)
63#define NFI_STA			(0x60)
64#define		STA_CMD			BIT(0)
65#define		STA_ADDR		BIT(1)
66#define		STA_BUSY		BIT(8)
67#define		STA_EMP_PAGE		BIT(12)
68#define		NFI_FSM_CUSTDATA	(0xe << 16)
69#define		NFI_FSM_MASK		(0xf << 16)
70#define NFI_ADDRCNTR		(0x70)
71#define		CNTR_MASK		GENMASK(16, 12)
72#define		ADDRCNTR_SEC_SHIFT	(12)
73#define		ADDRCNTR_SEC(val) \
74		(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
75#define NFI_STRADDR		(0x80)
76#define NFI_BYTELEN		(0x84)
77#define NFI_CSEL		(0x90)
78#define NFI_FDML(x)		(0xA0 + (x) * sizeof(u32) * 2)
79#define NFI_FDMM(x)		(0xA4 + (x) * sizeof(u32) * 2)
80#define NFI_FDM_MAX_SIZE	(8)
81#define NFI_FDM_MIN_SIZE	(1)
82#define NFI_DEBUG_CON1		(0x220)
83#define		STROBE_MASK		GENMASK(4, 3)
84#define		STROBE_SHIFT		(3)
85#define		MAX_STROBE_DLY		(3)
86#define NFI_MASTER_STA		(0x224)
87#define		MASTER_STA_MASK		(0x0FFF)
88#define NFI_EMPTY_THRESH	(0x23C)
89
90#define MTK_NAME		"mtk-nand"
91#define KB(x)			((x) * 1024UL)
92#define MB(x)			(KB(x) * 1024UL)
93
94#define MTK_TIMEOUT		(500000)
95#define MTK_RESET_TIMEOUT	(1000000)
96#define MTK_NAND_MAX_NSELS	(2)
97#define MTK_NFC_MIN_SPARE	(16)
98#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
99	((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
100	(tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
101
102struct mtk_nfc_caps {
103	const u8 *spare_size;
104	u8 num_spare_size;
105	u8 pageformat_spare_shift;
106	u8 nfi_clk_div;
107	u8 max_sector;
108	u32 max_sector_size;
109};
110
111struct mtk_nfc_bad_mark_ctl {
112	void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
113	u32 sec;
114	u32 pos;
115};
116
117/*
118 * FDM: region used to store free OOB data
119 */
120struct mtk_nfc_fdm {
121	u32 reg_size;
122	u32 ecc_size;
123};
124
125struct mtk_nfc_nand_chip {
126	struct list_head node;
127	struct nand_chip nand;
128
129	struct mtk_nfc_bad_mark_ctl bad_mark;
130	struct mtk_nfc_fdm fdm;
131	u32 spare_per_sector;
132
133	int nsels;
134	u8 sels[];
135	/* nothing after this field */
136};
137
138struct mtk_nfc_clk {
139	struct clk *nfi_clk;
140	struct clk *pad_clk;
141};
142
143struct mtk_nfc {
144	struct nand_controller controller;
145	struct mtk_ecc_config ecc_cfg;
146	struct mtk_nfc_clk clk;
147	struct mtk_ecc *ecc;
148
149	struct device *dev;
150	const struct mtk_nfc_caps *caps;
151	void __iomem *regs;
152
153	struct completion done;
154	struct list_head chips;
155
156	u8 *buffer;
157
158	unsigned long assigned_cs;
159};
160
161/*
162 * supported spare size of each IP.
163 * order should be the same with the spare size bitfiled defination of
164 * register NFI_PAGEFMT.
165 */
166static const u8 spare_size_mt2701[] = {
167	16, 26, 27, 28, 32, 36, 40, 44,	48, 49, 50, 51, 52, 62, 63, 64
168};
169
170static const u8 spare_size_mt2712[] = {
171	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
172	74
173};
174
175static const u8 spare_size_mt7622[] = {
176	16, 26, 27, 28
177};
178
179static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
180{
181	return container_of(nand, struct mtk_nfc_nand_chip, nand);
182}
183
184static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
185{
186	return (u8 *)p + i * chip->ecc.size;
187}
188
189static inline u8 *oob_ptr(struct nand_chip *chip, int i)
190{
191	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
192	u8 *poi;
193
194	/* map the sector's FDM data to free oob:
195	 * the beginning of the oob area stores the FDM data of bad mark sectors
196	 */
197
198	if (i < mtk_nand->bad_mark.sec)
199		poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
200	else if (i == mtk_nand->bad_mark.sec)
201		poi = chip->oob_poi;
202	else
203		poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
204
205	return poi;
206}
207
208static inline int mtk_data_len(struct nand_chip *chip)
209{
210	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
211
212	return chip->ecc.size + mtk_nand->spare_per_sector;
213}
214
215static inline u8 *mtk_data_ptr(struct nand_chip *chip,  int i)
216{
217	struct mtk_nfc *nfc = nand_get_controller_data(chip);
218
219	return nfc->buffer + i * mtk_data_len(chip);
220}
221
222static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
223{
224	struct mtk_nfc *nfc = nand_get_controller_data(chip);
225
226	return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
227}
228
229static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
230{
231	writel(val, nfc->regs + reg);
232}
233
234static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
235{
236	writew(val, nfc->regs + reg);
237}
238
239static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
240{
241	writeb(val, nfc->regs + reg);
242}
243
244static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
245{
246	return readl_relaxed(nfc->regs + reg);
247}
248
249static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
250{
251	return readw_relaxed(nfc->regs + reg);
252}
253
254static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
255{
256	return readb_relaxed(nfc->regs + reg);
257}
258
259static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
260{
261	struct device *dev = nfc->dev;
262	u32 val;
263	int ret;
264
265	/* reset all registers and force the NFI master to terminate */
266	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
267
268	/* wait for the master to finish the last transaction */
269	ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
270				 !(val & MASTER_STA_MASK), 50,
271				 MTK_RESET_TIMEOUT);
272	if (ret)
273		dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
274			 NFI_MASTER_STA, val);
275
276	/* ensure any status register affected by the NFI master is reset */
277	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
278	nfi_writew(nfc, STAR_DE, NFI_STRDATA);
279}
280
281static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
282{
283	struct device *dev = nfc->dev;
284	u32 val;
285	int ret;
286
287	nfi_writel(nfc, command, NFI_CMD);
288
289	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
290					!(val & STA_CMD), 10,  MTK_TIMEOUT);
291	if (ret) {
292		dev_warn(dev, "nfi core timed out entering command mode\n");
293		return -EIO;
294	}
295
296	return 0;
297}
298
299static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
300{
301	struct device *dev = nfc->dev;
302	u32 val;
303	int ret;
304
305	nfi_writel(nfc, addr, NFI_COLADDR);
306	nfi_writel(nfc, 0, NFI_ROWADDR);
307	nfi_writew(nfc, 1, NFI_ADDRNOB);
308
309	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
310					!(val & STA_ADDR), 10, MTK_TIMEOUT);
311	if (ret) {
312		dev_warn(dev, "nfi core timed out entering address mode\n");
313		return -EIO;
314	}
315
316	return 0;
317}
318
319static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
320{
321	struct nand_chip *chip = mtd_to_nand(mtd);
322	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
323	struct mtk_nfc *nfc = nand_get_controller_data(chip);
324	u32 fmt, spare, i;
325
326	if (!mtd->writesize)
327		return 0;
328
329	spare = mtk_nand->spare_per_sector;
330
331	switch (mtd->writesize) {
332	case 512:
333		fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
334		break;
335	case KB(2):
336		if (chip->ecc.size == 512)
337			fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
338		else
339			fmt = PAGEFMT_512_2K;
340		break;
341	case KB(4):
342		if (chip->ecc.size == 512)
343			fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
344		else
345			fmt = PAGEFMT_2K_4K;
346		break;
347	case KB(8):
348		if (chip->ecc.size == 512)
349			fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
350		else
351			fmt = PAGEFMT_4K_8K;
352		break;
353	case KB(16):
354		fmt = PAGEFMT_8K_16K;
355		break;
356	default:
357		dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
358		return -EINVAL;
359	}
360
361	/*
362	 * the hardware will double the value for this eccsize, so we need to
363	 * halve it
364	 */
365	if (chip->ecc.size == 1024)
366		spare >>= 1;
367
368	for (i = 0; i < nfc->caps->num_spare_size; i++) {
369		if (nfc->caps->spare_size[i] == spare)
370			break;
371	}
372
373	if (i == nfc->caps->num_spare_size) {
374		dev_err(nfc->dev, "invalid spare size %d\n", spare);
375		return -EINVAL;
376	}
377
378	fmt |= i << nfc->caps->pageformat_spare_shift;
379
380	fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
381	fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
382	nfi_writel(nfc, fmt, NFI_PAGEFMT);
383
384	nfc->ecc_cfg.strength = chip->ecc.strength;
385	nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
386
387	return 0;
388}
389
390static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
391{
392	int rc;
393	u8 val;
394
395	rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
396				       val & PIO_DI_RDY, 10, MTK_TIMEOUT);
397	if (rc < 0)
398		dev_err(nfc->dev, "data not ready\n");
399}
400
401static inline u8 mtk_nfc_read_byte(struct nand_chip *chip)
402{
403	struct mtk_nfc *nfc = nand_get_controller_data(chip);
404	u32 reg;
405
406	/* after each byte read, the NFI_STA reg is reset by the hardware */
407	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
408	if (reg != NFI_FSM_CUSTDATA) {
409		reg = nfi_readw(nfc, NFI_CNFG);
410		reg |= CNFG_BYTE_RW | CNFG_READ_EN;
411		nfi_writew(nfc, reg, NFI_CNFG);
412
413		/*
414		 * set to max sector to allow the HW to continue reading over
415		 * unaligned accesses
416		 */
417		reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
418		nfi_writel(nfc, reg, NFI_CON);
419
420		/* trigger to fetch data */
421		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
422	}
423
424	mtk_nfc_wait_ioready(nfc);
425
426	return nfi_readb(nfc, NFI_DATAR);
427}
428
429static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
430{
431	int i;
432
433	for (i = 0; i < len; i++)
434		buf[i] = mtk_nfc_read_byte(chip);
435}
436
437static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte)
438{
439	struct mtk_nfc *nfc = nand_get_controller_data(chip);
440	u32 reg;
441
442	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
443
444	if (reg != NFI_FSM_CUSTDATA) {
445		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
446		nfi_writew(nfc, reg, NFI_CNFG);
447
448		reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
449		nfi_writel(nfc, reg, NFI_CON);
450
451		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
452	}
453
454	mtk_nfc_wait_ioready(nfc);
455	nfi_writeb(nfc, byte, NFI_DATAW);
456}
457
458static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
459{
460	int i;
461
462	for (i = 0; i < len; i++)
463		mtk_nfc_write_byte(chip, buf[i]);
464}
465
466static int mtk_nfc_exec_instr(struct nand_chip *chip,
467			      const struct nand_op_instr *instr)
468{
469	struct mtk_nfc *nfc = nand_get_controller_data(chip);
470	unsigned int i;
471	u32 status;
472
473	switch (instr->type) {
474	case NAND_OP_CMD_INSTR:
475		mtk_nfc_send_command(nfc, instr->ctx.cmd.opcode);
476		return 0;
477	case NAND_OP_ADDR_INSTR:
478		for (i = 0; i < instr->ctx.addr.naddrs; i++)
479			mtk_nfc_send_address(nfc, instr->ctx.addr.addrs[i]);
480		return 0;
481	case NAND_OP_DATA_IN_INSTR:
482		mtk_nfc_read_buf(chip, instr->ctx.data.buf.in,
483				 instr->ctx.data.len);
484		return 0;
485	case NAND_OP_DATA_OUT_INSTR:
486		mtk_nfc_write_buf(chip, instr->ctx.data.buf.out,
487				  instr->ctx.data.len);
488		return 0;
489	case NAND_OP_WAITRDY_INSTR:
490		return readl_poll_timeout(nfc->regs + NFI_STA, status,
491					  !(status & STA_BUSY), 20,
492					  instr->ctx.waitrdy.timeout_ms * 1000);
493	default:
494		break;
495	}
496
497	return -EINVAL;
498}
499
500static void mtk_nfc_select_target(struct nand_chip *nand, unsigned int cs)
501{
502	struct mtk_nfc *nfc = nand_get_controller_data(nand);
503	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
504
505	mtk_nfc_hw_runtime_config(nand_to_mtd(nand));
506
507	nfi_writel(nfc, mtk_nand->sels[cs], NFI_CSEL);
508}
509
510static int mtk_nfc_exec_op(struct nand_chip *chip,
511			   const struct nand_operation *op,
512			   bool check_only)
513{
514	struct mtk_nfc *nfc = nand_get_controller_data(chip);
515	unsigned int i;
516	int ret = 0;
517
518	if (check_only)
519		return 0;
520
521	mtk_nfc_hw_reset(nfc);
522	nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
523	mtk_nfc_select_target(chip, op->cs);
524
525	for (i = 0; i < op->ninstrs; i++) {
526		ret = mtk_nfc_exec_instr(chip, &op->instrs[i]);
527		if (ret)
528			break;
529	}
530
531	return ret;
532}
533
534static int mtk_nfc_setup_interface(struct nand_chip *chip, int csline,
535				   const struct nand_interface_config *conf)
536{
537	struct mtk_nfc *nfc = nand_get_controller_data(chip);
538	const struct nand_sdr_timings *timings;
539	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0;
540	u32 temp, tsel = 0;
541
542	timings = nand_get_sdr_timings(conf);
543	if (IS_ERR(timings))
544		return -ENOTSUPP;
545
546	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
547		return 0;
548
549	rate = clk_get_rate(nfc->clk.nfi_clk);
550	/* There is a frequency divider in some IPs */
551	rate /= nfc->caps->nfi_clk_div;
552
553	/* turn clock rate into KHZ */
554	rate /= 1000;
555
556	tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
557	tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
558	tpoecs &= 0xf;
559
560	tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
561	tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
562	tprecs &= 0x3f;
563
564	/* sdr interface has no tCR which means CE# low to RE# low */
565	tc2r = 0;
566
567	tw2r = timings->tWHR_min / 1000;
568	tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
569	tw2r = DIV_ROUND_UP(tw2r - 1, 2);
570	tw2r &= 0xf;
571
572	twh = max(timings->tREH_min, timings->tWH_min) / 1000;
573	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
574	twh &= 0xf;
575
576	/* Calculate real WE#/RE# hold time in nanosecond */
577	temp = (twh + 1) * 1000000 / rate;
578	/* nanosecond to picosecond */
579	temp *= 1000;
580
581	/*
582	 * WE# low level time should be expaned to meet WE# pulse time
583	 * and WE# cycle time at the same time.
584	 */
585	if (temp < timings->tWC_min)
586		twst = timings->tWC_min - temp;
587	twst = max(timings->tWP_min, twst) / 1000;
588	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
589	twst &= 0xf;
590
591	/*
592	 * RE# low level time should be expaned to meet RE# pulse time
593	 * and RE# cycle time at the same time.
594	 */
595	if (temp < timings->tRC_min)
596		trlt = timings->tRC_min - temp;
597	trlt = max(trlt, timings->tRP_min) / 1000;
598	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
599	trlt &= 0xf;
600
601	/* Calculate RE# pulse time in nanosecond. */
602	temp = (trlt + 1) * 1000000 / rate;
603	/* nanosecond to picosecond */
604	temp *= 1000;
605	/*
606	 * If RE# access time is bigger than RE# pulse time,
607	 * delay sampling data timing.
608	 */
609	if (temp < timings->tREA_max) {
610		tsel = timings->tREA_max / 1000;
611		tsel = DIV_ROUND_UP(tsel * rate, 1000000);
612		tsel -= (trlt + 1);
613		if (tsel > MAX_STROBE_DLY) {
614			trlt += tsel - MAX_STROBE_DLY;
615			tsel = MAX_STROBE_DLY;
616		}
617	}
618	temp = nfi_readl(nfc, NFI_DEBUG_CON1);
619	temp &= ~STROBE_MASK;
620	temp |= tsel << STROBE_SHIFT;
621	nfi_writel(nfc, temp, NFI_DEBUG_CON1);
622
623	/*
624	 * ACCON: access timing control register
625	 * -------------------------------------
626	 * 31:28: tpoecs, minimum required time for CS post pulling down after
627	 *        accessing the device
628	 * 27:22: tprecs, minimum required time for CS pre pulling down before
629	 *        accessing the device
630	 * 21:16: tc2r, minimum required time from NCEB low to NREB low
631	 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
632	 * 11:08: twh, write enable hold time
633	 * 07:04: twst, write wait states
634	 * 03:00: trlt, read wait states
635	 */
636	trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
637	nfi_writel(nfc, trlt, NFI_ACCCON);
638
639	return 0;
640}
641
642static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
643{
644	struct mtk_nfc *nfc = nand_get_controller_data(chip);
645	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
646	int size = chip->ecc.size + mtk_nand->fdm.reg_size;
647
648	nfc->ecc_cfg.mode = ECC_DMA_MODE;
649	nfc->ecc_cfg.op = ECC_ENCODE;
650
651	return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
652}
653
654static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
655{
656	/* nop */
657}
658
659static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
660{
661	struct nand_chip *chip = mtd_to_nand(mtd);
662	struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
663	u32 bad_pos = nand->bad_mark.pos;
664
665	if (raw)
666		bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
667	else
668		bad_pos += nand->bad_mark.sec * chip->ecc.size;
669
670	swap(chip->oob_poi[0], buf[bad_pos]);
671}
672
673static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
674				  u32 len, const u8 *buf)
675{
676	struct nand_chip *chip = mtd_to_nand(mtd);
677	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
678	struct mtk_nfc *nfc = nand_get_controller_data(chip);
679	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
680	u32 start, end;
681	int i, ret;
682
683	start = offset / chip->ecc.size;
684	end = DIV_ROUND_UP(offset + len, chip->ecc.size);
685
686	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
687	for (i = 0; i < chip->ecc.steps; i++) {
688		memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
689		       chip->ecc.size);
690
691		if (start > i || i >= end)
692			continue;
693
694		if (i == mtk_nand->bad_mark.sec)
695			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
696
697		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
698
699		/* program the CRC back to the OOB */
700		ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
701		if (ret < 0)
702			return ret;
703	}
704
705	return 0;
706}
707
708static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
709{
710	struct nand_chip *chip = mtd_to_nand(mtd);
711	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
712	struct mtk_nfc *nfc = nand_get_controller_data(chip);
713	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
714	u32 i;
715
716	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
717	for (i = 0; i < chip->ecc.steps; i++) {
718		if (buf)
719			memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
720			       chip->ecc.size);
721
722		if (i == mtk_nand->bad_mark.sec)
723			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
724
725		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
726	}
727}
728
729static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
730				    u32 sectors)
731{
732	struct mtk_nfc *nfc = nand_get_controller_data(chip);
733	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
734	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
735	u32 vall, valm;
736	u8 *oobptr;
737	int i, j;
738
739	for (i = 0; i < sectors; i++) {
740		oobptr = oob_ptr(chip, start + i);
741		vall = nfi_readl(nfc, NFI_FDML(i));
742		valm = nfi_readl(nfc, NFI_FDMM(i));
743
744		for (j = 0; j < fdm->reg_size; j++)
745			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
746	}
747}
748
749static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
750{
751	struct mtk_nfc *nfc = nand_get_controller_data(chip);
752	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
753	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
754	u32 vall, valm;
755	u8 *oobptr;
756	int i, j;
757
758	for (i = 0; i < chip->ecc.steps; i++) {
759		oobptr = oob_ptr(chip, i);
760		vall = 0;
761		valm = 0;
762		for (j = 0; j < 8; j++) {
763			if (j < 4)
764				vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
765						<< (j * 8);
766			else
767				valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
768						<< ((j - 4) * 8);
769		}
770		nfi_writel(nfc, vall, NFI_FDML(i));
771		nfi_writel(nfc, valm, NFI_FDMM(i));
772	}
773}
774
775static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
776				 const u8 *buf, int page, int len)
777{
778	struct mtk_nfc *nfc = nand_get_controller_data(chip);
779	struct device *dev = nfc->dev;
780	dma_addr_t addr;
781	u32 reg;
782	int ret;
783
784	addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
785	ret = dma_mapping_error(nfc->dev, addr);
786	if (ret) {
787		dev_err(nfc->dev, "dma mapping error\n");
788		return -EINVAL;
789	}
790
791	reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
792	nfi_writew(nfc, reg, NFI_CNFG);
793
794	nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
795	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
796	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
797
798	init_completion(&nfc->done);
799
800	reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
801	nfi_writel(nfc, reg, NFI_CON);
802	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
803
804	ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
805	if (!ret) {
806		dev_err(dev, "program ahb done timeout\n");
807		nfi_writew(nfc, 0, NFI_INTR_EN);
808		ret = -ETIMEDOUT;
809		goto timeout;
810	}
811
812	ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
813					ADDRCNTR_SEC(reg) >= chip->ecc.steps,
814					10, MTK_TIMEOUT);
815	if (ret)
816		dev_err(dev, "hwecc write timeout\n");
817
818timeout:
819
820	dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
821	nfi_writel(nfc, 0, NFI_CON);
822
823	return ret;
824}
825
826static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
827			      const u8 *buf, int page, int raw)
828{
829	struct mtk_nfc *nfc = nand_get_controller_data(chip);
830	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
831	size_t len;
832	const u8 *bufpoi;
833	u32 reg;
834	int ret;
835
836	mtk_nfc_select_target(chip, chip->cur_cs);
837	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
838
839	if (!raw) {
840		/* OOB => FDM: from register,  ECC: from HW */
841		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
842		nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
843
844		nfc->ecc_cfg.op = ECC_ENCODE;
845		nfc->ecc_cfg.mode = ECC_NFI_MODE;
846		ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
847		if (ret) {
848			/* clear NFI config */
849			reg = nfi_readw(nfc, NFI_CNFG);
850			reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
851			nfi_writew(nfc, reg, NFI_CNFG);
852
853			return ret;
854		}
855
856		memcpy(nfc->buffer, buf, mtd->writesize);
857		mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
858		bufpoi = nfc->buffer;
859
860		/* write OOB into the FDM registers (OOB area in MTK NAND) */
861		mtk_nfc_write_fdm(chip);
862	} else {
863		bufpoi = buf;
864	}
865
866	len = mtd->writesize + (raw ? mtd->oobsize : 0);
867	ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
868
869	if (!raw)
870		mtk_ecc_disable(nfc->ecc);
871
872	if (ret)
873		return ret;
874
875	return nand_prog_page_end_op(chip);
876}
877
878static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
879				    int oob_on, int page)
880{
881	return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
882}
883
884static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
885				  int oob_on, int pg)
886{
887	struct mtd_info *mtd = nand_to_mtd(chip);
888	struct mtk_nfc *nfc = nand_get_controller_data(chip);
889
890	mtk_nfc_format_page(mtd, buf);
891	return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
892}
893
894static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
895				       u32 data_len, const u8 *buf,
896				       int oob_on, int page)
897{
898	struct mtd_info *mtd = nand_to_mtd(chip);
899	struct mtk_nfc *nfc = nand_get_controller_data(chip);
900	int ret;
901
902	ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
903	if (ret < 0)
904		return ret;
905
906	/* use the data in the private buffer (now with FDM and CRC) */
907	return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
908}
909
910static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
911{
912	return mtk_nfc_write_page_raw(chip, NULL, 1, page);
913}
914
915static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start,
916				    u32 sectors)
917{
918	struct nand_chip *chip = mtd_to_nand(mtd);
919	struct mtk_nfc *nfc = nand_get_controller_data(chip);
920	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
921	struct mtk_ecc_stats stats;
922	u32 reg_size = mtk_nand->fdm.reg_size;
923	int rc, i;
924
925	rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
926	if (rc) {
927		memset(buf, 0xff, sectors * chip->ecc.size);
928		for (i = 0; i < sectors; i++)
929			memset(oob_ptr(chip, start + i), 0xff, reg_size);
930		return 0;
931	}
932
933	mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
934	mtd->ecc_stats.corrected += stats.corrected;
935	mtd->ecc_stats.failed += stats.failed;
936
937	return stats.bitflips;
938}
939
940static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
941				u32 data_offs, u32 readlen,
942				u8 *bufpoi, int page, int raw)
943{
944	struct mtk_nfc *nfc = nand_get_controller_data(chip);
945	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
946	u32 spare = mtk_nand->spare_per_sector;
947	u32 column, sectors, start, end, reg;
948	dma_addr_t addr;
949	int bitflips = 0;
950	size_t len;
951	u8 *buf;
952	int rc;
953
954	mtk_nfc_select_target(chip, chip->cur_cs);
955	start = data_offs / chip->ecc.size;
956	end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
957
958	sectors = end - start;
959	column = start * (chip->ecc.size + spare);
960
961	len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
962	buf = bufpoi + start * chip->ecc.size;
963
964	nand_read_page_op(chip, page, column, NULL, 0);
965
966	addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
967	rc = dma_mapping_error(nfc->dev, addr);
968	if (rc) {
969		dev_err(nfc->dev, "dma mapping error\n");
970
971		return -EINVAL;
972	}
973
974	reg = nfi_readw(nfc, NFI_CNFG);
975	reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
976	if (!raw) {
977		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
978		nfi_writew(nfc, reg, NFI_CNFG);
979
980		nfc->ecc_cfg.mode = ECC_NFI_MODE;
981		nfc->ecc_cfg.sectors = sectors;
982		nfc->ecc_cfg.op = ECC_DECODE;
983		rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
984		if (rc) {
985			dev_err(nfc->dev, "ecc enable\n");
986			/* clear NFI_CNFG */
987			reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
988				CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
989			nfi_writew(nfc, reg, NFI_CNFG);
990			dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
991
992			return rc;
993		}
994	} else {
995		nfi_writew(nfc, reg, NFI_CNFG);
996	}
997
998	nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
999	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
1000	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
1001
1002	init_completion(&nfc->done);
1003	reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
1004	nfi_writel(nfc, reg, NFI_CON);
1005	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
1006
1007	rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
1008	if (!rc)
1009		dev_warn(nfc->dev, "read ahb/dma done timeout\n");
1010
1011	rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
1012				       ADDRCNTR_SEC(reg) >= sectors, 10,
1013				       MTK_TIMEOUT);
1014	if (rc < 0) {
1015		dev_err(nfc->dev, "subpage done timeout\n");
1016		bitflips = -EIO;
1017	} else if (!raw) {
1018		rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
1019		bitflips = rc < 0 ? -ETIMEDOUT :
1020			mtk_nfc_update_ecc_stats(mtd, buf, start, sectors);
1021		mtk_nfc_read_fdm(chip, start, sectors);
1022	}
1023
1024	dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
1025
1026	if (raw)
1027		goto done;
1028
1029	mtk_ecc_disable(nfc->ecc);
1030
1031	if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
1032		mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
1033done:
1034	nfi_writel(nfc, 0, NFI_CON);
1035
1036	return bitflips;
1037}
1038
1039static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off,
1040				      u32 len, u8 *p, int pg)
1041{
1042	return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg,
1043				    0);
1044}
1045
1046static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
1047				   int pg)
1048{
1049	struct mtd_info *mtd = nand_to_mtd(chip);
1050
1051	return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
1052}
1053
1054static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
1055				 int page)
1056{
1057	struct mtd_info *mtd = nand_to_mtd(chip);
1058	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1059	struct mtk_nfc *nfc = nand_get_controller_data(chip);
1060	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1061	int i, ret;
1062
1063	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
1064	ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
1065				   page, 1);
1066	if (ret < 0)
1067		return ret;
1068
1069	for (i = 0; i < chip->ecc.steps; i++) {
1070		memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
1071
1072		if (i == mtk_nand->bad_mark.sec)
1073			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
1074
1075		if (buf)
1076			memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1077			       chip->ecc.size);
1078	}
1079
1080	return ret;
1081}
1082
1083static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page)
1084{
1085	return mtk_nfc_read_page_raw(chip, NULL, 1, page);
1086}
1087
1088static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1089{
1090	/*
1091	 * CNRNB: nand ready/busy register
1092	 * -------------------------------
1093	 * 7:4: timeout register for polling the NAND busy/ready signal
1094	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
1095	 */
1096	nfi_writew(nfc, 0xf1, NFI_CNRNB);
1097	nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1098
1099	mtk_nfc_hw_reset(nfc);
1100
1101	nfi_readl(nfc, NFI_INTR_STA);
1102	nfi_writel(nfc, 0, NFI_INTR_EN);
1103}
1104
1105static irqreturn_t mtk_nfc_irq(int irq, void *id)
1106{
1107	struct mtk_nfc *nfc = id;
1108	u16 sta, ien;
1109
1110	sta = nfi_readw(nfc, NFI_INTR_STA);
1111	ien = nfi_readw(nfc, NFI_INTR_EN);
1112
1113	if (!(sta & ien))
1114		return IRQ_NONE;
1115
1116	nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1117	complete(&nfc->done);
1118
1119	return IRQ_HANDLED;
1120}
1121
1122static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
1123{
1124	int ret;
1125
1126	ret = clk_prepare_enable(clk->nfi_clk);
1127	if (ret) {
1128		dev_err(dev, "failed to enable nfi clk\n");
1129		return ret;
1130	}
1131
1132	ret = clk_prepare_enable(clk->pad_clk);
1133	if (ret) {
1134		dev_err(dev, "failed to enable pad clk\n");
1135		clk_disable_unprepare(clk->nfi_clk);
1136		return ret;
1137	}
1138
1139	return 0;
1140}
1141
1142static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
1143{
1144	clk_disable_unprepare(clk->nfi_clk);
1145	clk_disable_unprepare(clk->pad_clk);
1146}
1147
1148static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1149				  struct mtd_oob_region *oob_region)
1150{
1151	struct nand_chip *chip = mtd_to_nand(mtd);
1152	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1153	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1154	u32 eccsteps;
1155
1156	eccsteps = mtd->writesize / chip->ecc.size;
1157
1158	if (section >= eccsteps)
1159		return -ERANGE;
1160
1161	oob_region->length = fdm->reg_size - fdm->ecc_size;
1162	oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1163
1164	return 0;
1165}
1166
1167static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1168				 struct mtd_oob_region *oob_region)
1169{
1170	struct nand_chip *chip = mtd_to_nand(mtd);
1171	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1172	u32 eccsteps;
1173
1174	if (section)
1175		return -ERANGE;
1176
1177	eccsteps = mtd->writesize / chip->ecc.size;
1178	oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1179	oob_region->length = mtd->oobsize - oob_region->offset;
1180
1181	return 0;
1182}
1183
1184static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1185	.free = mtk_nfc_ooblayout_free,
1186	.ecc = mtk_nfc_ooblayout_ecc,
1187};
1188
1189static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1190{
1191	struct nand_chip *nand = mtd_to_nand(mtd);
1192	struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1193	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1194	u32 ecc_bytes;
1195
1196	ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
1197				 mtk_ecc_get_parity_bits(nfc->ecc), 8);
1198
1199	fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1200	if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1201		fdm->reg_size = NFI_FDM_MAX_SIZE;
1202
1203	/* bad block mark storage */
1204	fdm->ecc_size = 1;
1205}
1206
1207static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1208				     struct mtd_info *mtd)
1209{
1210	struct nand_chip *nand = mtd_to_nand(mtd);
1211
1212	if (mtd->writesize == 512) {
1213		bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1214	} else {
1215		bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1216		bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1217		bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1218	}
1219}
1220
1221static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1222{
1223	struct nand_chip *nand = mtd_to_nand(mtd);
1224	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1225	const u8 *spare = nfc->caps->spare_size;
1226	u32 eccsteps, i, closest_spare = 0;
1227
1228	eccsteps = mtd->writesize / nand->ecc.size;
1229	*sps = mtd->oobsize / eccsteps;
1230
1231	if (nand->ecc.size == 1024)
1232		*sps >>= 1;
1233
1234	if (*sps < MTK_NFC_MIN_SPARE)
1235		return -EINVAL;
1236
1237	for (i = 0; i < nfc->caps->num_spare_size; i++) {
1238		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1239			closest_spare = i;
1240			if (*sps == spare[i])
1241				break;
1242		}
1243	}
1244
1245	*sps = spare[closest_spare];
1246
1247	if (nand->ecc.size == 1024)
1248		*sps <<= 1;
1249
1250	return 0;
1251}
1252
1253static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1254{
1255	struct nand_chip *nand = mtd_to_nand(mtd);
1256	const struct nand_ecc_props *requirements =
1257		nanddev_get_ecc_requirements(&nand->base);
1258	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1259	u32 spare;
1260	int free, ret;
1261
1262	/* support only ecc hw mode */
1263	if (nand->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1264		dev_err(dev, "ecc.engine_type not supported\n");
1265		return -EINVAL;
1266	}
1267
1268	/* if optional dt settings not present */
1269	if (!nand->ecc.size || !nand->ecc.strength) {
1270		/* use datasheet requirements */
1271		nand->ecc.strength = requirements->strength;
1272		nand->ecc.size = requirements->step_size;
1273
1274		/*
1275		 * align eccstrength and eccsize
1276		 * this controller only supports 512 and 1024 sizes
1277		 */
1278		if (nand->ecc.size < 1024) {
1279			if (mtd->writesize > 512 &&
1280			    nfc->caps->max_sector_size > 512) {
1281				nand->ecc.size = 1024;
1282				nand->ecc.strength <<= 1;
1283			} else {
1284				nand->ecc.size = 512;
1285			}
1286		} else {
1287			nand->ecc.size = 1024;
1288		}
1289
1290		ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1291		if (ret)
1292			return ret;
1293
1294		/* calculate oob bytes except ecc parity data */
1295		free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
1296			+ 7) >> 3;
1297		free = spare - free;
1298
1299		/*
1300		 * enhance ecc strength if oob left is bigger than max FDM size
1301		 * or reduce ecc strength if oob size is not enough for ecc
1302		 * parity data.
1303		 */
1304		if (free > NFI_FDM_MAX_SIZE) {
1305			spare -= NFI_FDM_MAX_SIZE;
1306			nand->ecc.strength = (spare << 3) /
1307					     mtk_ecc_get_parity_bits(nfc->ecc);
1308		} else if (free < 0) {
1309			spare -= NFI_FDM_MIN_SIZE;
1310			nand->ecc.strength = (spare << 3) /
1311					     mtk_ecc_get_parity_bits(nfc->ecc);
1312		}
1313	}
1314
1315	mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1316
1317	dev_info(dev, "eccsize %d eccstrength %d\n",
1318		 nand->ecc.size, nand->ecc.strength);
1319
1320	return 0;
1321}
1322
1323static int mtk_nfc_attach_chip(struct nand_chip *chip)
1324{
1325	struct mtd_info *mtd = nand_to_mtd(chip);
1326	struct device *dev = mtd->dev.parent;
1327	struct mtk_nfc *nfc = nand_get_controller_data(chip);
1328	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1329	int len;
1330	int ret;
1331
1332	if (chip->options & NAND_BUSWIDTH_16) {
1333		dev_err(dev, "16bits buswidth not supported");
1334		return -EINVAL;
1335	}
1336
1337	/* store bbt magic in page, cause OOB is not protected */
1338	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1339		chip->bbt_options |= NAND_BBT_NO_OOB;
1340
1341	ret = mtk_nfc_ecc_init(dev, mtd);
1342	if (ret)
1343		return ret;
1344
1345	ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
1346	if (ret)
1347		return ret;
1348
1349	mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
1350	mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
1351
1352	len = mtd->writesize + mtd->oobsize;
1353	nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1354	if (!nfc->buffer)
1355		return  -ENOMEM;
1356
1357	return 0;
1358}
1359
1360static const struct nand_controller_ops mtk_nfc_controller_ops = {
1361	.attach_chip = mtk_nfc_attach_chip,
1362	.setup_interface = mtk_nfc_setup_interface,
1363	.exec_op = mtk_nfc_exec_op,
1364};
1365
1366static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1367				  struct device_node *np)
1368{
1369	struct mtk_nfc_nand_chip *chip;
1370	struct nand_chip *nand;
1371	struct mtd_info *mtd;
1372	int nsels;
1373	u32 tmp;
1374	int ret;
1375	int i;
1376
1377	if (!of_get_property(np, "reg", &nsels))
1378		return -ENODEV;
1379
1380	nsels /= sizeof(u32);
1381	if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1382		dev_err(dev, "invalid reg property size %d\n", nsels);
1383		return -EINVAL;
1384	}
1385
1386	chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1387			    GFP_KERNEL);
1388	if (!chip)
1389		return -ENOMEM;
1390
1391	chip->nsels = nsels;
1392	for (i = 0; i < nsels; i++) {
1393		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1394		if (ret) {
1395			dev_err(dev, "reg property failure : %d\n", ret);
1396			return ret;
1397		}
1398
1399		if (tmp >= MTK_NAND_MAX_NSELS) {
1400			dev_err(dev, "invalid CS: %u\n", tmp);
1401			return -EINVAL;
1402		}
1403
1404		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1405			dev_err(dev, "CS %u already assigned\n", tmp);
1406			return -EINVAL;
1407		}
1408
1409		chip->sels[i] = tmp;
1410	}
1411
1412	nand = &chip->nand;
1413	nand->controller = &nfc->controller;
1414
1415	nand_set_flash_node(nand, np);
1416	nand_set_controller_data(nand, nfc);
1417
1418	nand->options |= NAND_USES_DMA | NAND_SUBPAGE_READ;
1419
1420	/* set default mode in case dt entry is missing */
1421	nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1422
1423	nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1424	nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1425	nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1426	nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1427	nand->ecc.write_oob = mtk_nfc_write_oob_std;
1428
1429	nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1430	nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1431	nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1432	nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1433	nand->ecc.read_oob = mtk_nfc_read_oob_std;
1434
1435	mtd = nand_to_mtd(nand);
1436	mtd->owner = THIS_MODULE;
1437	mtd->dev.parent = dev;
1438	mtd->name = MTK_NAME;
1439	mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1440
1441	mtk_nfc_hw_init(nfc);
1442
1443	ret = nand_scan(nand, nsels);
1444	if (ret)
1445		return ret;
1446
1447	ret = mtd_device_register(mtd, NULL, 0);
1448	if (ret) {
1449		dev_err(dev, "mtd parse partition error\n");
1450		nand_cleanup(nand);
1451		return ret;
1452	}
1453
1454	list_add_tail(&chip->node, &nfc->chips);
1455
1456	return 0;
1457}
1458
1459static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1460{
1461	struct device_node *np = dev->of_node;
1462	struct device_node *nand_np;
1463	int ret;
1464
1465	for_each_child_of_node(np, nand_np) {
1466		ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1467		if (ret) {
1468			of_node_put(nand_np);
1469			return ret;
1470		}
1471	}
1472
1473	return 0;
1474}
1475
1476static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1477	.spare_size = spare_size_mt2701,
1478	.num_spare_size = 16,
1479	.pageformat_spare_shift = 4,
1480	.nfi_clk_div = 1,
1481	.max_sector = 16,
1482	.max_sector_size = 1024,
1483};
1484
1485static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1486	.spare_size = spare_size_mt2712,
1487	.num_spare_size = 19,
1488	.pageformat_spare_shift = 16,
1489	.nfi_clk_div = 2,
1490	.max_sector = 16,
1491	.max_sector_size = 1024,
1492};
1493
1494static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
1495	.spare_size = spare_size_mt7622,
1496	.num_spare_size = 4,
1497	.pageformat_spare_shift = 4,
1498	.nfi_clk_div = 1,
1499	.max_sector = 8,
1500	.max_sector_size = 512,
1501};
1502
1503static const struct of_device_id mtk_nfc_id_table[] = {
1504	{
1505		.compatible = "mediatek,mt2701-nfc",
1506		.data = &mtk_nfc_caps_mt2701,
1507	}, {
1508		.compatible = "mediatek,mt2712-nfc",
1509		.data = &mtk_nfc_caps_mt2712,
1510	}, {
1511		.compatible = "mediatek,mt7622-nfc",
1512		.data = &mtk_nfc_caps_mt7622,
1513	},
1514	{}
1515};
1516MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1517
1518static int mtk_nfc_probe(struct platform_device *pdev)
1519{
1520	struct device *dev = &pdev->dev;
1521	struct device_node *np = dev->of_node;
1522	struct mtk_nfc *nfc;
1523	struct resource *res;
1524	int ret, irq;
1525
1526	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1527	if (!nfc)
1528		return -ENOMEM;
1529
1530	nand_controller_init(&nfc->controller);
1531	INIT_LIST_HEAD(&nfc->chips);
1532	nfc->controller.ops = &mtk_nfc_controller_ops;
1533
1534	/* probe defer if not ready */
1535	nfc->ecc = of_mtk_ecc_get(np);
1536	if (IS_ERR(nfc->ecc))
1537		return PTR_ERR(nfc->ecc);
1538	else if (!nfc->ecc)
1539		return -ENODEV;
1540
1541	nfc->caps = of_device_get_match_data(dev);
1542	nfc->dev = dev;
1543
1544	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1545	nfc->regs = devm_ioremap_resource(dev, res);
1546	if (IS_ERR(nfc->regs)) {
1547		ret = PTR_ERR(nfc->regs);
1548		goto release_ecc;
1549	}
1550
1551	nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
1552	if (IS_ERR(nfc->clk.nfi_clk)) {
1553		dev_err(dev, "no clk\n");
1554		ret = PTR_ERR(nfc->clk.nfi_clk);
1555		goto release_ecc;
1556	}
1557
1558	nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
1559	if (IS_ERR(nfc->clk.pad_clk)) {
1560		dev_err(dev, "no pad clk\n");
1561		ret = PTR_ERR(nfc->clk.pad_clk);
1562		goto release_ecc;
1563	}
1564
1565	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1566	if (ret)
1567		goto release_ecc;
1568
1569	irq = platform_get_irq(pdev, 0);
1570	if (irq < 0) {
1571		ret = -EINVAL;
1572		goto clk_disable;
1573	}
1574
1575	ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1576	if (ret) {
1577		dev_err(dev, "failed to request nfi irq\n");
1578		goto clk_disable;
1579	}
1580
1581	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1582	if (ret) {
1583		dev_err(dev, "failed to set dma mask\n");
1584		goto clk_disable;
1585	}
1586
1587	platform_set_drvdata(pdev, nfc);
1588
1589	ret = mtk_nfc_nand_chips_init(dev, nfc);
1590	if (ret) {
1591		dev_err(dev, "failed to init nand chips\n");
1592		goto clk_disable;
1593	}
1594
1595	return 0;
1596
1597clk_disable:
1598	mtk_nfc_disable_clk(&nfc->clk);
1599
1600release_ecc:
1601	mtk_ecc_release(nfc->ecc);
1602
1603	return ret;
1604}
1605
1606static int mtk_nfc_remove(struct platform_device *pdev)
1607{
1608	struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1609	struct mtk_nfc_nand_chip *mtk_chip;
1610	struct nand_chip *chip;
1611	int ret;
1612
1613	while (!list_empty(&nfc->chips)) {
1614		mtk_chip = list_first_entry(&nfc->chips,
1615					    struct mtk_nfc_nand_chip, node);
1616		chip = &mtk_chip->nand;
1617		ret = mtd_device_unregister(nand_to_mtd(chip));
1618		WARN_ON(ret);
1619		nand_cleanup(chip);
1620		list_del(&mtk_chip->node);
1621	}
1622
1623	mtk_ecc_release(nfc->ecc);
1624	mtk_nfc_disable_clk(&nfc->clk);
1625
1626	return 0;
1627}
1628
1629#ifdef CONFIG_PM_SLEEP
1630static int mtk_nfc_suspend(struct device *dev)
1631{
1632	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1633
1634	mtk_nfc_disable_clk(&nfc->clk);
1635
1636	return 0;
1637}
1638
1639static int mtk_nfc_resume(struct device *dev)
1640{
1641	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1642	struct mtk_nfc_nand_chip *chip;
1643	struct nand_chip *nand;
1644	int ret;
1645	u32 i;
1646
1647	udelay(200);
1648
1649	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1650	if (ret)
1651		return ret;
1652
1653	/* reset NAND chip if VCC was powered off */
1654	list_for_each_entry(chip, &nfc->chips, node) {
1655		nand = &chip->nand;
1656		for (i = 0; i < chip->nsels; i++)
1657			nand_reset(nand, i);
1658	}
1659
1660	return 0;
1661}
1662
1663static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1664#endif
1665
1666static struct platform_driver mtk_nfc_driver = {
1667	.probe  = mtk_nfc_probe,
1668	.remove = mtk_nfc_remove,
1669	.driver = {
1670		.name  = MTK_NAME,
1671		.of_match_table = mtk_nfc_id_table,
1672#ifdef CONFIG_PM_SLEEP
1673		.pm = &mtk_nfc_pm_ops,
1674#endif
1675	},
1676};
1677
1678module_platform_driver(mtk_nfc_driver);
1679
1680MODULE_LICENSE("Dual MIT/GPL");
1681MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1682MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
1683