1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NXP LPC32XX NAND SLC driver
4 *
5 * Authors:
6 *    Kevin Wells <kevin.wells@nxp.com>
7 *    Roland Stigge <stigge@antcom.de>
8 *
9 * Copyright © 2011 NXP Semiconductors
10 * Copyright © 2012 Roland Stigge
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/mtd/partitions.h>
19#include <linux/clk.h>
20#include <linux/err.h>
21#include <linux/delay.h>
22#include <linux/io.h>
23#include <linux/mm.h>
24#include <linux/dma-mapping.h>
25#include <linux/dmaengine.h>
26#include <linux/mtd/nand_ecc.h>
27#include <linux/gpio.h>
28#include <linux/of.h>
29#include <linux/of_gpio.h>
30#include <linux/mtd/lpc32xx_slc.h>
31
32#define LPC32XX_MODNAME		"lpc32xx-nand"
33
34/**********************************************************************
35* SLC NAND controller register offsets
36**********************************************************************/
37
38#define SLC_DATA(x)		(x + 0x000)
39#define SLC_ADDR(x)		(x + 0x004)
40#define SLC_CMD(x)		(x + 0x008)
41#define SLC_STOP(x)		(x + 0x00C)
42#define SLC_CTRL(x)		(x + 0x010)
43#define SLC_CFG(x)		(x + 0x014)
44#define SLC_STAT(x)		(x + 0x018)
45#define SLC_INT_STAT(x)		(x + 0x01C)
46#define SLC_IEN(x)		(x + 0x020)
47#define SLC_ISR(x)		(x + 0x024)
48#define SLC_ICR(x)		(x + 0x028)
49#define SLC_TAC(x)		(x + 0x02C)
50#define SLC_TC(x)		(x + 0x030)
51#define SLC_ECC(x)		(x + 0x034)
52#define SLC_DMA_DATA(x)		(x + 0x038)
53
54/**********************************************************************
55* slc_ctrl register definitions
56**********************************************************************/
57#define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */
58#define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */
59#define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */
60
61/**********************************************************************
62* slc_cfg register definitions
63**********************************************************************/
64#define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */
65#define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
66#define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */
67#define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */
68#define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
69#define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */
70
71/**********************************************************************
72* slc_stat register definitions
73**********************************************************************/
74#define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */
75#define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */
76#define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */
77
78/**********************************************************************
79* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
80**********************************************************************/
81#define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */
82#define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */
83
84/**********************************************************************
85* slc_tac register definitions
86**********************************************************************/
87/* Computation of clock cycles on basis of controller and device clock rates */
88#define SLCTAC_CLOCKS(c, n, s)	(min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
89
90/* Clock setting for RDY write sample wait time in 2*n clocks */
91#define SLCTAC_WDR(n)		(((n) & 0xF) << 28)
92/* Write pulse width in clock cycles, 1 to 16 clocks */
93#define SLCTAC_WWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 24))
94/* Write hold time of control and data signals, 1 to 16 clocks */
95#define SLCTAC_WHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 20))
96/* Write setup time of control and data signals, 1 to 16 clocks */
97#define SLCTAC_WSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 16))
98/* Clock setting for RDY read sample wait time in 2*n clocks */
99#define SLCTAC_RDR(n)		(((n) & 0xF) << 12)
100/* Read pulse width in clock cycles, 1 to 16 clocks */
101#define SLCTAC_RWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 8))
102/* Read hold time of control and data signals, 1 to 16 clocks */
103#define SLCTAC_RHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 4))
104/* Read setup time of control and data signals, 1 to 16 clocks */
105#define SLCTAC_RSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 0))
106
107/**********************************************************************
108* slc_ecc register definitions
109**********************************************************************/
110/* ECC line party fetch macro */
111#define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF)
112#define SLCECC_TO_COLPAR(n)	((n) & 0x3F)
113
114/*
115 * DMA requires storage space for the DMA local buffer and the hardware ECC
116 * storage area. The DMA local buffer is only used if DMA mapping fails
117 * during runtime.
118 */
119#define LPC32XX_DMA_DATA_SIZE		4096
120#define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4)
121
122/* Number of bytes used for ECC stored in NAND per 256 bytes */
123#define LPC32XX_SLC_DEV_ECC_BYTES	3
124
125/*
126 * If the NAND base clock frequency can't be fetched, this frequency will be
127 * used instead as the base. This rate is used to setup the timing registers
128 * used for NAND accesses.
129 */
130#define LPC32XX_DEF_BUS_RATE		133250000
131
132/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
133#define LPC32XX_DMA_TIMEOUT		100
134
135/*
136 * NAND ECC Layout for small page NAND devices
137 * Note: For large and huge page devices, the default layouts are used
138 */
139static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
140				 struct mtd_oob_region *oobregion)
141{
142	if (section)
143		return -ERANGE;
144
145	oobregion->length = 6;
146	oobregion->offset = 10;
147
148	return 0;
149}
150
151static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
152				  struct mtd_oob_region *oobregion)
153{
154	if (section > 1)
155		return -ERANGE;
156
157	if (!section) {
158		oobregion->offset = 0;
159		oobregion->length = 4;
160	} else {
161		oobregion->offset = 6;
162		oobregion->length = 4;
163	}
164
165	return 0;
166}
167
168static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
169	.ecc = lpc32xx_ooblayout_ecc,
170	.free = lpc32xx_ooblayout_free,
171};
172
173static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
174static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
175
176/*
177 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
178 * Note: Large page devices used the default layout
179 */
180static struct nand_bbt_descr bbt_smallpage_main_descr = {
181	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
182		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
183	.offs =	0,
184	.len = 4,
185	.veroffs = 6,
186	.maxblocks = 4,
187	.pattern = bbt_pattern
188};
189
190static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
191	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
192		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
193	.offs =	0,
194	.len = 4,
195	.veroffs = 6,
196	.maxblocks = 4,
197	.pattern = mirror_pattern
198};
199
200/*
201 * NAND platform configuration structure
202 */
203struct lpc32xx_nand_cfg_slc {
204	uint32_t wdr_clks;
205	uint32_t wwidth;
206	uint32_t whold;
207	uint32_t wsetup;
208	uint32_t rdr_clks;
209	uint32_t rwidth;
210	uint32_t rhold;
211	uint32_t rsetup;
212	int wp_gpio;
213	struct mtd_partition *parts;
214	unsigned num_parts;
215};
216
217struct lpc32xx_nand_host {
218	struct nand_chip	nand_chip;
219	struct lpc32xx_slc_platform_data *pdata;
220	struct clk		*clk;
221	void __iomem		*io_base;
222	struct lpc32xx_nand_cfg_slc *ncfg;
223
224	struct completion	comp;
225	struct dma_chan		*dma_chan;
226	uint32_t		dma_buf_len;
227	struct dma_slave_config	dma_slave_config;
228	struct scatterlist	sgl;
229
230	/*
231	 * DMA and CPU addresses of ECC work area and data buffer
232	 */
233	uint32_t		*ecc_buf;
234	uint8_t			*data_buf;
235	dma_addr_t		io_base_dma;
236};
237
238static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
239{
240	uint32_t clkrate, tmp;
241
242	/* Reset SLC controller */
243	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
244	udelay(1000);
245
246	/* Basic setup */
247	writel(0, SLC_CFG(host->io_base));
248	writel(0, SLC_IEN(host->io_base));
249	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
250		SLC_ICR(host->io_base));
251
252	/* Get base clock for SLC block */
253	clkrate = clk_get_rate(host->clk);
254	if (clkrate == 0)
255		clkrate = LPC32XX_DEF_BUS_RATE;
256
257	/* Compute clock setup values */
258	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
259		SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
260		SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
261		SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
262		SLCTAC_RDR(host->ncfg->rdr_clks) |
263		SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
264		SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
265		SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
266	writel(tmp, SLC_TAC(host->io_base));
267}
268
269/*
270 * Hardware specific access to control lines
271 */
272static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
273				  unsigned int ctrl)
274{
275	uint32_t tmp;
276	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
277
278	/* Does CE state need to be changed? */
279	tmp = readl(SLC_CFG(host->io_base));
280	if (ctrl & NAND_NCE)
281		tmp |= SLCCFG_CE_LOW;
282	else
283		tmp &= ~SLCCFG_CE_LOW;
284	writel(tmp, SLC_CFG(host->io_base));
285
286	if (cmd != NAND_CMD_NONE) {
287		if (ctrl & NAND_CLE)
288			writel(cmd, SLC_CMD(host->io_base));
289		else
290			writel(cmd, SLC_ADDR(host->io_base));
291	}
292}
293
294/*
295 * Read the Device Ready pin
296 */
297static int lpc32xx_nand_device_ready(struct nand_chip *chip)
298{
299	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
300	int rdy = 0;
301
302	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
303		rdy = 1;
304
305	return rdy;
306}
307
308/*
309 * Enable NAND write protect
310 */
311static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
312{
313	if (gpio_is_valid(host->ncfg->wp_gpio))
314		gpio_set_value(host->ncfg->wp_gpio, 0);
315}
316
317/*
318 * Disable NAND write protect
319 */
320static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
321{
322	if (gpio_is_valid(host->ncfg->wp_gpio))
323		gpio_set_value(host->ncfg->wp_gpio, 1);
324}
325
326/*
327 * Prepares SLC for transfers with H/W ECC enabled
328 */
329static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
330{
331	/* Hardware ECC is enabled automatically in hardware as needed */
332}
333
334/*
335 * Calculates the ECC for the data
336 */
337static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
338				      const unsigned char *buf,
339				      unsigned char *code)
340{
341	/*
342	 * ECC is calculated automatically in hardware during syndrome read
343	 * and write operations, so it doesn't need to be calculated here.
344	 */
345	return 0;
346}
347
348/*
349 * Read a single byte from NAND device
350 */
351static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
352{
353	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
354
355	return (uint8_t)readl(SLC_DATA(host->io_base));
356}
357
358/*
359 * Simple device read without ECC
360 */
361static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
362{
363	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
364
365	/* Direct device read with no ECC */
366	while (len-- > 0)
367		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
368}
369
370/*
371 * Simple device write without ECC
372 */
373static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
374				   int len)
375{
376	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
377
378	/* Direct device write with no ECC */
379	while (len-- > 0)
380		writel((uint32_t)*buf++, SLC_DATA(host->io_base));
381}
382
383/*
384 * Read the OOB data from the device without ECC using FIFO method
385 */
386static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
387{
388	struct mtd_info *mtd = nand_to_mtd(chip);
389
390	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
391}
392
393/*
394 * Write the OOB data to the device without ECC using FIFO method
395 */
396static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
397{
398	struct mtd_info *mtd = nand_to_mtd(chip);
399
400	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
401				 mtd->oobsize);
402}
403
404/*
405 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
406 */
407static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
408{
409	int i;
410
411	for (i = 0; i < (count * 3); i += 3) {
412		uint32_t ce = ecc[i / 3];
413		ce = ~(ce << 2) & 0xFFFFFF;
414		spare[i + 2] = (uint8_t)(ce & 0xFF);
415		ce >>= 8;
416		spare[i + 1] = (uint8_t)(ce & 0xFF);
417		ce >>= 8;
418		spare[i] = (uint8_t)(ce & 0xFF);
419	}
420}
421
422static void lpc32xx_dma_complete_func(void *completion)
423{
424	complete(completion);
425}
426
427static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
428			    void *mem, int len, enum dma_transfer_direction dir)
429{
430	struct nand_chip *chip = mtd_to_nand(mtd);
431	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
432	struct dma_async_tx_descriptor *desc;
433	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
434	int res;
435
436	host->dma_slave_config.direction = dir;
437	host->dma_slave_config.src_addr = dma;
438	host->dma_slave_config.dst_addr = dma;
439	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
440	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
441	host->dma_slave_config.src_maxburst = 4;
442	host->dma_slave_config.dst_maxburst = 4;
443	/* DMA controller does flow control: */
444	host->dma_slave_config.device_fc = false;
445	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
446		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
447		return -ENXIO;
448	}
449
450	sg_init_one(&host->sgl, mem, len);
451
452	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
453			 DMA_BIDIRECTIONAL);
454	if (res != 1) {
455		dev_err(mtd->dev.parent, "Failed to map sg list\n");
456		return -ENXIO;
457	}
458	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
459				       flags);
460	if (!desc) {
461		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
462		goto out1;
463	}
464
465	init_completion(&host->comp);
466	desc->callback = lpc32xx_dma_complete_func;
467	desc->callback_param = &host->comp;
468
469	dmaengine_submit(desc);
470	dma_async_issue_pending(host->dma_chan);
471
472	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
473
474	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
475		     DMA_BIDIRECTIONAL);
476
477	return 0;
478out1:
479	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
480		     DMA_BIDIRECTIONAL);
481	return -ENXIO;
482}
483
484/*
485 * DMA read/write transfers with ECC support
486 */
487static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
488			int read)
489{
490	struct nand_chip *chip = mtd_to_nand(mtd);
491	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
492	int i, status = 0;
493	unsigned long timeout;
494	int res;
495	enum dma_transfer_direction dir =
496		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
497	uint8_t *dma_buf;
498	bool dma_mapped;
499
500	if ((void *)buf <= high_memory) {
501		dma_buf = buf;
502		dma_mapped = true;
503	} else {
504		dma_buf = host->data_buf;
505		dma_mapped = false;
506		if (!read)
507			memcpy(host->data_buf, buf, mtd->writesize);
508	}
509
510	if (read) {
511		writel(readl(SLC_CFG(host->io_base)) |
512		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
513		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
514	} else {
515		writel((readl(SLC_CFG(host->io_base)) |
516			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
517		       ~SLCCFG_DMA_DIR,
518			SLC_CFG(host->io_base));
519	}
520
521	/* Clear initial ECC */
522	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
523
524	/* Transfer size is data area only */
525	writel(mtd->writesize, SLC_TC(host->io_base));
526
527	/* Start transfer in the NAND controller */
528	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
529	       SLC_CTRL(host->io_base));
530
531	for (i = 0; i < chip->ecc.steps; i++) {
532		/* Data */
533		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
534				       dma_buf + i * chip->ecc.size,
535				       mtd->writesize / chip->ecc.steps, dir);
536		if (res)
537			return res;
538
539		/* Always _read_ ECC */
540		if (i == chip->ecc.steps - 1)
541			break;
542		if (!read) /* ECC availability delayed on write */
543			udelay(10);
544		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
545				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
546		if (res)
547			return res;
548	}
549
550	/*
551	 * According to NXP, the DMA can be finished here, but the NAND
552	 * controller may still have buffered data. After porting to using the
553	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
554	 * appears to be always true, according to tests. Keeping the check for
555	 * safety reasons for now.
556	 */
557	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
558		dev_warn(mtd->dev.parent, "FIFO not empty!\n");
559		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
560		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
561		       time_before(jiffies, timeout))
562			cpu_relax();
563		if (!time_before(jiffies, timeout)) {
564			dev_err(mtd->dev.parent, "FIFO held data too long\n");
565			status = -EIO;
566		}
567	}
568
569	/* Read last calculated ECC value */
570	if (!read)
571		udelay(10);
572	host->ecc_buf[chip->ecc.steps - 1] =
573		readl(SLC_ECC(host->io_base));
574
575	/* Flush DMA */
576	dmaengine_terminate_all(host->dma_chan);
577
578	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
579	    readl(SLC_TC(host->io_base))) {
580		/* Something is left in the FIFO, something is wrong */
581		dev_err(mtd->dev.parent, "DMA FIFO failure\n");
582		status = -EIO;
583	}
584
585	/* Stop DMA & HW ECC */
586	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
587	       SLC_CTRL(host->io_base));
588	writel(readl(SLC_CFG(host->io_base)) &
589	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
590		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
591
592	if (!dma_mapped && read)
593		memcpy(buf, host->data_buf, mtd->writesize);
594
595	return status;
596}
597
598/*
599 * Read the data and OOB data from the device, use ECC correction with the
600 * data, disable ECC for the OOB data
601 */
602static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
603					   int oob_required, int page)
604{
605	struct mtd_info *mtd = nand_to_mtd(chip);
606	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
607	struct mtd_oob_region oobregion = { };
608	int stat, i, status, error;
609	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
610
611	/* Issue read command */
612	nand_read_page_op(chip, page, 0, NULL, 0);
613
614	/* Read data and oob, calculate ECC */
615	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
616
617	/* Get OOB data */
618	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
619
620	/* Convert to stored ECC format */
621	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
622
623	/* Pointer to ECC data retrieved from NAND spare area */
624	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
625	if (error)
626		return error;
627
628	oobecc = chip->oob_poi + oobregion.offset;
629
630	for (i = 0; i < chip->ecc.steps; i++) {
631		stat = chip->ecc.correct(chip, buf, oobecc,
632					 &tmpecc[i * chip->ecc.bytes]);
633		if (stat < 0)
634			mtd->ecc_stats.failed++;
635		else
636			mtd->ecc_stats.corrected += stat;
637
638		buf += chip->ecc.size;
639		oobecc += chip->ecc.bytes;
640	}
641
642	return status;
643}
644
645/*
646 * Read the data and OOB data from the device, no ECC correction with the
647 * data or OOB data
648 */
649static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
650					       uint8_t *buf, int oob_required,
651					       int page)
652{
653	struct mtd_info *mtd = nand_to_mtd(chip);
654
655	/* Issue read command */
656	nand_read_page_op(chip, page, 0, NULL, 0);
657
658	/* Raw reads can just use the FIFO interface */
659	chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
660	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
661
662	return 0;
663}
664
665/*
666 * Write the data and OOB data to the device, use ECC with the data,
667 * disable ECC for the OOB data
668 */
669static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
670					    const uint8_t *buf,
671					    int oob_required, int page)
672{
673	struct mtd_info *mtd = nand_to_mtd(chip);
674	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
675	struct mtd_oob_region oobregion = { };
676	uint8_t *pb;
677	int error;
678
679	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
680
681	/* Write data, calculate ECC on outbound data */
682	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
683	if (error)
684		return error;
685
686	/*
687	 * The calculated ECC needs some manual work done to it before
688	 * committing it to NAND. Process the calculated ECC and place
689	 * the resultant values directly into the OOB buffer. */
690	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
691	if (error)
692		return error;
693
694	pb = chip->oob_poi + oobregion.offset;
695	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
696
697	/* Write ECC data to device */
698	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
699
700	return nand_prog_page_end_op(chip);
701}
702
703/*
704 * Write the data and OOB data to the device, no ECC correction with the
705 * data or OOB data
706 */
707static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
708						const uint8_t *buf,
709						int oob_required, int page)
710{
711	struct mtd_info *mtd = nand_to_mtd(chip);
712
713	/* Raw writes can just use the FIFO interface */
714	nand_prog_page_begin_op(chip, page, 0, buf,
715				chip->ecc.size * chip->ecc.steps);
716	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
717
718	return nand_prog_page_end_op(chip);
719}
720
721static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
722{
723	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
724	dma_cap_mask_t mask;
725
726	if (!host->pdata || !host->pdata->dma_filter) {
727		dev_err(mtd->dev.parent, "no DMA platform data\n");
728		return -ENOENT;
729	}
730
731	dma_cap_zero(mask);
732	dma_cap_set(DMA_SLAVE, mask);
733	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
734					     "nand-slc");
735	if (!host->dma_chan) {
736		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
737		return -EBUSY;
738	}
739
740	return 0;
741}
742
743static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
744{
745	struct lpc32xx_nand_cfg_slc *ncfg;
746	struct device_node *np = dev->of_node;
747
748	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
749	if (!ncfg)
750		return NULL;
751
752	of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
753	of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
754	of_property_read_u32(np, "nxp,whold", &ncfg->whold);
755	of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
756	of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
757	of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
758	of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
759	of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
760
761	if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
762	    !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
763	    !ncfg->rhold || !ncfg->rsetup) {
764		dev_err(dev, "chip parameters not specified correctly\n");
765		return NULL;
766	}
767
768	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
769
770	return ncfg;
771}
772
773static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
774{
775	struct mtd_info *mtd = nand_to_mtd(chip);
776	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
777
778	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
779		return 0;
780
781	/* OOB and ECC CPU and DMA work areas */
782	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
783
784	/*
785	 * Small page FLASH has a unique OOB layout, but large and huge
786	 * page FLASH use the standard layout. Small page FLASH uses a
787	 * custom BBT marker layout.
788	 */
789	if (mtd->writesize <= 512)
790		mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
791
792	chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
793	/* These sizes remain the same regardless of page size */
794	chip->ecc.size = 256;
795	chip->ecc.strength = 1;
796	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
797	chip->ecc.prepad = 0;
798	chip->ecc.postpad = 0;
799	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
800	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
801	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
802	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
803	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
804	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
805	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
806	chip->ecc.correct = nand_correct_data;
807	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
808
809	/*
810	 * Use a custom BBT marker setup for small page FLASH that
811	 * won't interfere with the ECC layout. Large and huge page
812	 * FLASH use the standard layout.
813	 */
814	if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
815	    mtd->writesize <= 512) {
816		chip->bbt_td = &bbt_smallpage_main_descr;
817		chip->bbt_md = &bbt_smallpage_mirror_descr;
818	}
819
820	return 0;
821}
822
823static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
824	.attach_chip = lpc32xx_nand_attach_chip,
825};
826
827/*
828 * Probe for NAND controller
829 */
830static int lpc32xx_nand_probe(struct platform_device *pdev)
831{
832	struct lpc32xx_nand_host *host;
833	struct mtd_info *mtd;
834	struct nand_chip *chip;
835	struct resource *rc;
836	int res;
837
838	/* Allocate memory for the device structure (and zero it) */
839	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
840	if (!host)
841		return -ENOMEM;
842
843	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
844	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
845	if (IS_ERR(host->io_base))
846		return PTR_ERR(host->io_base);
847
848	host->io_base_dma = rc->start;
849	if (pdev->dev.of_node)
850		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
851	if (!host->ncfg) {
852		dev_err(&pdev->dev,
853			"Missing or bad NAND config from device tree\n");
854		return -ENOENT;
855	}
856	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
857		return -EPROBE_DEFER;
858	if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
859			host->ncfg->wp_gpio, "NAND WP")) {
860		dev_err(&pdev->dev, "GPIO not available\n");
861		return -EBUSY;
862	}
863	lpc32xx_wp_disable(host);
864
865	host->pdata = dev_get_platdata(&pdev->dev);
866
867	chip = &host->nand_chip;
868	mtd = nand_to_mtd(chip);
869	nand_set_controller_data(chip, host);
870	nand_set_flash_node(chip, pdev->dev.of_node);
871	mtd->owner = THIS_MODULE;
872	mtd->dev.parent = &pdev->dev;
873
874	/* Get NAND clock */
875	host->clk = devm_clk_get(&pdev->dev, NULL);
876	if (IS_ERR(host->clk)) {
877		dev_err(&pdev->dev, "Clock failure\n");
878		res = -ENOENT;
879		goto enable_wp;
880	}
881	res = clk_prepare_enable(host->clk);
882	if (res)
883		goto enable_wp;
884
885	/* Set NAND IO addresses and command/ready functions */
886	chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
887	chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
888	chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
889	chip->legacy.dev_ready = lpc32xx_nand_device_ready;
890	chip->legacy.chip_delay = 20; /* 20us command delay time */
891
892	/* Init NAND controller */
893	lpc32xx_nand_setup(host);
894
895	platform_set_drvdata(pdev, host);
896
897	/* NAND callbacks for LPC32xx SLC hardware */
898	chip->legacy.read_byte = lpc32xx_nand_read_byte;
899	chip->legacy.read_buf = lpc32xx_nand_read_buf;
900	chip->legacy.write_buf = lpc32xx_nand_write_buf;
901
902	/*
903	 * Allocate a large enough buffer for a single huge page plus
904	 * extra space for the spare area and ECC storage area
905	 */
906	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
907	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
908				      GFP_KERNEL);
909	if (host->data_buf == NULL) {
910		res = -ENOMEM;
911		goto unprepare_clk;
912	}
913
914	res = lpc32xx_nand_dma_setup(host);
915	if (res) {
916		res = -EIO;
917		goto unprepare_clk;
918	}
919
920	/* Find NAND device */
921	chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
922	res = nand_scan(chip, 1);
923	if (res)
924		goto release_dma;
925
926	mtd->name = "nxp_lpc3220_slc";
927	res = mtd_device_register(mtd, host->ncfg->parts,
928				  host->ncfg->num_parts);
929	if (res)
930		goto cleanup_nand;
931
932	return 0;
933
934cleanup_nand:
935	nand_cleanup(chip);
936release_dma:
937	dma_release_channel(host->dma_chan);
938unprepare_clk:
939	clk_disable_unprepare(host->clk);
940enable_wp:
941	lpc32xx_wp_enable(host);
942
943	return res;
944}
945
946/*
947 * Remove NAND device.
948 */
949static int lpc32xx_nand_remove(struct platform_device *pdev)
950{
951	uint32_t tmp;
952	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
953	struct nand_chip *chip = &host->nand_chip;
954	int ret;
955
956	ret = mtd_device_unregister(nand_to_mtd(chip));
957	WARN_ON(ret);
958	nand_cleanup(chip);
959	dma_release_channel(host->dma_chan);
960
961	/* Force CE high */
962	tmp = readl(SLC_CTRL(host->io_base));
963	tmp &= ~SLCCFG_CE_LOW;
964	writel(tmp, SLC_CTRL(host->io_base));
965
966	clk_disable_unprepare(host->clk);
967	lpc32xx_wp_enable(host);
968
969	return 0;
970}
971
972#ifdef CONFIG_PM
973static int lpc32xx_nand_resume(struct platform_device *pdev)
974{
975	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
976	int ret;
977
978	/* Re-enable NAND clock */
979	ret = clk_prepare_enable(host->clk);
980	if (ret)
981		return ret;
982
983	/* Fresh init of NAND controller */
984	lpc32xx_nand_setup(host);
985
986	/* Disable write protect */
987	lpc32xx_wp_disable(host);
988
989	return 0;
990}
991
992static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
993{
994	uint32_t tmp;
995	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
996
997	/* Force CE high */
998	tmp = readl(SLC_CTRL(host->io_base));
999	tmp &= ~SLCCFG_CE_LOW;
1000	writel(tmp, SLC_CTRL(host->io_base));
1001
1002	/* Enable write protect for safety */
1003	lpc32xx_wp_enable(host);
1004
1005	/* Disable clock */
1006	clk_disable_unprepare(host->clk);
1007
1008	return 0;
1009}
1010
1011#else
1012#define lpc32xx_nand_resume NULL
1013#define lpc32xx_nand_suspend NULL
1014#endif
1015
1016static const struct of_device_id lpc32xx_nand_match[] = {
1017	{ .compatible = "nxp,lpc3220-slc" },
1018	{ /* sentinel */ },
1019};
1020MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1021
1022static struct platform_driver lpc32xx_nand_driver = {
1023	.probe		= lpc32xx_nand_probe,
1024	.remove		= lpc32xx_nand_remove,
1025	.resume		= lpc32xx_nand_resume,
1026	.suspend	= lpc32xx_nand_suspend,
1027	.driver		= {
1028		.name	= LPC32XX_MODNAME,
1029		.of_match_table = lpc32xx_nand_match,
1030	},
1031};
1032
1033module_platform_driver(lpc32xx_nand_driver);
1034
1035MODULE_LICENSE("GPL");
1036MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1037MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1038MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
1039