1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for NAND MLC Controller in LPC32xx
4 *
5 * Author: Roland Stigge <stigge@antcom.de>
6 *
7 * Copyright © 2011 WORK Microwave GmbH
8 * Copyright © 2011, 2012 Roland Stigge
9 *
10 * NAND Flash Controller Operation:
11 * - Read: Auto Decode
12 * - Write: Auto Encode
13 * - Tested Page Sizes: 2048, 4096
14 */
15
16#include <linux/slab.h>
17#include <linux/module.h>
18#include <linux/platform_device.h>
19#include <linux/mtd/mtd.h>
20#include <linux/mtd/rawnand.h>
21#include <linux/mtd/partitions.h>
22#include <linux/clk.h>
23#include <linux/err.h>
24#include <linux/delay.h>
25#include <linux/completion.h>
26#include <linux/interrupt.h>
27#include <linux/of.h>
28#include <linux/of_gpio.h>
29#include <linux/mtd/lpc32xx_mlc.h>
30#include <linux/io.h>
31#include <linux/mm.h>
32#include <linux/dma-mapping.h>
33#include <linux/dmaengine.h>
34#include <linux/mtd/nand_ecc.h>
35
36#define DRV_NAME "lpc32xx_mlc"
37
38/**********************************************************************
39* MLC NAND controller register offsets
40**********************************************************************/
41
42#define MLC_BUFF(x)			(x + 0x00000)
43#define MLC_DATA(x)			(x + 0x08000)
44#define MLC_CMD(x)			(x + 0x10000)
45#define MLC_ADDR(x)			(x + 0x10004)
46#define MLC_ECC_ENC_REG(x)		(x + 0x10008)
47#define MLC_ECC_DEC_REG(x)		(x + 0x1000C)
48#define MLC_ECC_AUTO_ENC_REG(x)		(x + 0x10010)
49#define MLC_ECC_AUTO_DEC_REG(x)		(x + 0x10014)
50#define MLC_RPR(x)			(x + 0x10018)
51#define MLC_WPR(x)			(x + 0x1001C)
52#define MLC_RUBP(x)			(x + 0x10020)
53#define MLC_ROBP(x)			(x + 0x10024)
54#define MLC_SW_WP_ADD_LOW(x)		(x + 0x10028)
55#define MLC_SW_WP_ADD_HIG(x)		(x + 0x1002C)
56#define MLC_ICR(x)			(x + 0x10030)
57#define MLC_TIME_REG(x)			(x + 0x10034)
58#define MLC_IRQ_MR(x)			(x + 0x10038)
59#define MLC_IRQ_SR(x)			(x + 0x1003C)
60#define MLC_LOCK_PR(x)			(x + 0x10044)
61#define MLC_ISR(x)			(x + 0x10048)
62#define MLC_CEH(x)			(x + 0x1004C)
63
64/**********************************************************************
65* MLC_CMD bit definitions
66**********************************************************************/
67#define MLCCMD_RESET			0xFF
68
69/**********************************************************************
70* MLC_ICR bit definitions
71**********************************************************************/
72#define MLCICR_WPROT			(1 << 3)
73#define MLCICR_LARGEBLOCK		(1 << 2)
74#define MLCICR_LONGADDR			(1 << 1)
75#define MLCICR_16BIT			(1 << 0)  /* unsupported by LPC32x0! */
76
77/**********************************************************************
78* MLC_TIME_REG bit definitions
79**********************************************************************/
80#define MLCTIMEREG_TCEA_DELAY(n)	(((n) & 0x03) << 24)
81#define MLCTIMEREG_BUSY_DELAY(n)	(((n) & 0x1F) << 19)
82#define MLCTIMEREG_NAND_TA(n)		(((n) & 0x07) << 16)
83#define MLCTIMEREG_RD_HIGH(n)		(((n) & 0x0F) << 12)
84#define MLCTIMEREG_RD_LOW(n)		(((n) & 0x0F) << 8)
85#define MLCTIMEREG_WR_HIGH(n)		(((n) & 0x0F) << 4)
86#define MLCTIMEREG_WR_LOW(n)		(((n) & 0x0F) << 0)
87
88/**********************************************************************
89* MLC_IRQ_MR and MLC_IRQ_SR bit definitions
90**********************************************************************/
91#define MLCIRQ_NAND_READY		(1 << 5)
92#define MLCIRQ_CONTROLLER_READY		(1 << 4)
93#define MLCIRQ_DECODE_FAILURE		(1 << 3)
94#define MLCIRQ_DECODE_ERROR		(1 << 2)
95#define MLCIRQ_ECC_READY		(1 << 1)
96#define MLCIRQ_WRPROT_FAULT		(1 << 0)
97
98/**********************************************************************
99* MLC_LOCK_PR bit definitions
100**********************************************************************/
101#define MLCLOCKPR_MAGIC			0xA25E
102
103/**********************************************************************
104* MLC_ISR bit definitions
105**********************************************************************/
106#define MLCISR_DECODER_FAILURE		(1 << 6)
107#define MLCISR_ERRORS			((1 << 4) | (1 << 5))
108#define MLCISR_ERRORS_DETECTED		(1 << 3)
109#define MLCISR_ECC_READY		(1 << 2)
110#define MLCISR_CONTROLLER_READY		(1 << 1)
111#define MLCISR_NAND_READY		(1 << 0)
112
113/**********************************************************************
114* MLC_CEH bit definitions
115**********************************************************************/
116#define MLCCEH_NORMAL			(1 << 0)
117
118struct lpc32xx_nand_cfg_mlc {
119	uint32_t tcea_delay;
120	uint32_t busy_delay;
121	uint32_t nand_ta;
122	uint32_t rd_high;
123	uint32_t rd_low;
124	uint32_t wr_high;
125	uint32_t wr_low;
126	int wp_gpio;
127	struct mtd_partition *parts;
128	unsigned num_parts;
129};
130
131static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
132				 struct mtd_oob_region *oobregion)
133{
134	struct nand_chip *nand_chip = mtd_to_nand(mtd);
135
136	if (section >= nand_chip->ecc.steps)
137		return -ERANGE;
138
139	oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
140	oobregion->length = nand_chip->ecc.bytes;
141
142	return 0;
143}
144
145static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
146				  struct mtd_oob_region *oobregion)
147{
148	struct nand_chip *nand_chip = mtd_to_nand(mtd);
149
150	if (section >= nand_chip->ecc.steps)
151		return -ERANGE;
152
153	oobregion->offset = 16 * section;
154	oobregion->length = 16 - nand_chip->ecc.bytes;
155
156	return 0;
157}
158
159static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
160	.ecc = lpc32xx_ooblayout_ecc,
161	.free = lpc32xx_ooblayout_free,
162};
163
164static struct nand_bbt_descr lpc32xx_nand_bbt = {
165	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
166		   NAND_BBT_WRITE,
167	.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
168};
169
170static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
171	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
172		   NAND_BBT_WRITE,
173	.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
174};
175
176struct lpc32xx_nand_host {
177	struct platform_device	*pdev;
178	struct nand_chip	nand_chip;
179	struct lpc32xx_mlc_platform_data *pdata;
180	struct clk		*clk;
181	void __iomem		*io_base;
182	int			irq;
183	struct lpc32xx_nand_cfg_mlc	*ncfg;
184	struct completion       comp_nand;
185	struct completion       comp_controller;
186	uint32_t llptr;
187	/*
188	 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
189	 */
190	dma_addr_t		oob_buf_phy;
191	/*
192	 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
193	 */
194	uint8_t			*oob_buf;
195	/* Physical address of DMA base address */
196	dma_addr_t		io_base_phy;
197
198	struct completion	comp_dma;
199	struct dma_chan		*dma_chan;
200	struct dma_slave_config	dma_slave_config;
201	struct scatterlist	sgl;
202	uint8_t			*dma_buf;
203	uint8_t			*dummy_buf;
204	int			mlcsubpages; /* number of 512bytes-subpages */
205};
206
207/*
208 * Activate/Deactivate DMA Operation:
209 *
210 * Using the PL080 DMA Controller for transferring the 512 byte subpages
211 * instead of doing readl() / writel() in a loop slows it down significantly.
212 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
213 *
214 * - readl() of 128 x 32 bits in a loop: ~20us
215 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
216 * - DMA read of 512 bytes (32 bit, no bursts): ~100us
217 *
218 * This applies to the transfer itself. In the DMA case: only the
219 * wait_for_completion() (DMA setup _not_ included).
220 *
221 * Note that the 512 bytes subpage transfer is done directly from/to a
222 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
223 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
224 * controller transferring data between its internal buffer to/from the NAND
225 * chip.)
226 *
227 * Therefore, using the PL080 DMA is disabled by default, for now.
228 *
229 */
230static int use_dma;
231
232static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
233{
234	uint32_t clkrate, tmp;
235
236	/* Reset MLC controller */
237	writel(MLCCMD_RESET, MLC_CMD(host->io_base));
238	udelay(1000);
239
240	/* Get base clock for MLC block */
241	clkrate = clk_get_rate(host->clk);
242	if (clkrate == 0)
243		clkrate = 104000000;
244
245	/* Unlock MLC_ICR
246	 * (among others, will be locked again automatically) */
247	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
248
249	/* Configure MLC Controller: Large Block, 5 Byte Address */
250	tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
251	writel(tmp, MLC_ICR(host->io_base));
252
253	/* Unlock MLC_TIME_REG
254	 * (among others, will be locked again automatically) */
255	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
256
257	/* Compute clock setup values, see LPC and NAND manual */
258	tmp = 0;
259	tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
260	tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
261	tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
262	tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
263	tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
264	tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
265	tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
266	writel(tmp, MLC_TIME_REG(host->io_base));
267
268	/* Enable IRQ for CONTROLLER_READY and NAND_READY */
269	writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
270			MLC_IRQ_MR(host->io_base));
271
272	/* Normal nCE operation: nCE controlled by controller */
273	writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
274}
275
276/*
277 * Hardware specific access to control lines
278 */
279static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
280				  unsigned int ctrl)
281{
282	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
283
284	if (cmd != NAND_CMD_NONE) {
285		if (ctrl & NAND_CLE)
286			writel(cmd, MLC_CMD(host->io_base));
287		else
288			writel(cmd, MLC_ADDR(host->io_base));
289	}
290}
291
292/*
293 * Read Device Ready (NAND device _and_ controller ready)
294 */
295static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
296{
297	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
298
299	if ((readb(MLC_ISR(host->io_base)) &
300	     (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
301	    (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
302		return  1;
303
304	return 0;
305}
306
307static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
308{
309	uint8_t sr;
310
311	/* Clear interrupt flag by reading status */
312	sr = readb(MLC_IRQ_SR(host->io_base));
313	if (sr & MLCIRQ_NAND_READY)
314		complete(&host->comp_nand);
315	if (sr & MLCIRQ_CONTROLLER_READY)
316		complete(&host->comp_controller);
317
318	return IRQ_HANDLED;
319}
320
321static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
322{
323	struct mtd_info *mtd = nand_to_mtd(chip);
324	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
325
326	if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
327		goto exit;
328
329	wait_for_completion(&host->comp_nand);
330
331	while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
332		/* Seems to be delayed sometimes by controller */
333		dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
334		cpu_relax();
335	}
336
337exit:
338	return NAND_STATUS_READY;
339}
340
341static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
342{
343	struct mtd_info *mtd = nand_to_mtd(chip);
344	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
345
346	if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
347		goto exit;
348
349	wait_for_completion(&host->comp_controller);
350
351	while (!(readb(MLC_ISR(host->io_base)) &
352		 MLCISR_CONTROLLER_READY)) {
353		dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
354		cpu_relax();
355	}
356
357exit:
358	return NAND_STATUS_READY;
359}
360
361static int lpc32xx_waitfunc(struct nand_chip *chip)
362{
363	lpc32xx_waitfunc_nand(chip);
364	lpc32xx_waitfunc_controller(chip);
365
366	return NAND_STATUS_READY;
367}
368
369/*
370 * Enable NAND write protect
371 */
372static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
373{
374	if (gpio_is_valid(host->ncfg->wp_gpio))
375		gpio_set_value(host->ncfg->wp_gpio, 0);
376}
377
378/*
379 * Disable NAND write protect
380 */
381static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
382{
383	if (gpio_is_valid(host->ncfg->wp_gpio))
384		gpio_set_value(host->ncfg->wp_gpio, 1);
385}
386
387static void lpc32xx_dma_complete_func(void *completion)
388{
389	complete(completion);
390}
391
392static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
393			    enum dma_transfer_direction dir)
394{
395	struct nand_chip *chip = mtd_to_nand(mtd);
396	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
397	struct dma_async_tx_descriptor *desc;
398	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
399	int res;
400
401	sg_init_one(&host->sgl, mem, len);
402
403	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
404			 DMA_BIDIRECTIONAL);
405	if (res != 1) {
406		dev_err(mtd->dev.parent, "Failed to map sg list\n");
407		return -ENXIO;
408	}
409	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
410				       flags);
411	if (!desc) {
412		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
413		goto out1;
414	}
415
416	init_completion(&host->comp_dma);
417	desc->callback = lpc32xx_dma_complete_func;
418	desc->callback_param = &host->comp_dma;
419
420	dmaengine_submit(desc);
421	dma_async_issue_pending(host->dma_chan);
422
423	wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
424
425	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
426		     DMA_BIDIRECTIONAL);
427	return 0;
428out1:
429	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
430		     DMA_BIDIRECTIONAL);
431	return -ENXIO;
432}
433
434static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
435			     int oob_required, int page)
436{
437	struct mtd_info *mtd = nand_to_mtd(chip);
438	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
439	int i, j;
440	uint8_t *oobbuf = chip->oob_poi;
441	uint32_t mlc_isr;
442	int res;
443	uint8_t *dma_buf;
444	bool dma_mapped;
445
446	if ((void *)buf <= high_memory) {
447		dma_buf = buf;
448		dma_mapped = true;
449	} else {
450		dma_buf = host->dma_buf;
451		dma_mapped = false;
452	}
453
454	/* Writing Command and Address */
455	nand_read_page_op(chip, page, 0, NULL, 0);
456
457	/* For all sub-pages */
458	for (i = 0; i < host->mlcsubpages; i++) {
459		/* Start Auto Decode Command */
460		writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
461
462		/* Wait for Controller Ready */
463		lpc32xx_waitfunc_controller(chip);
464
465		/* Check ECC Error status */
466		mlc_isr = readl(MLC_ISR(host->io_base));
467		if (mlc_isr & MLCISR_DECODER_FAILURE) {
468			mtd->ecc_stats.failed++;
469			dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
470		} else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
471			mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
472		}
473
474		/* Read 512 + 16 Bytes */
475		if (use_dma) {
476			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
477					       DMA_DEV_TO_MEM);
478			if (res)
479				return res;
480		} else {
481			for (j = 0; j < (512 >> 2); j++) {
482				*((uint32_t *)(buf)) =
483					readl(MLC_BUFF(host->io_base));
484				buf += 4;
485			}
486		}
487		for (j = 0; j < (16 >> 2); j++) {
488			*((uint32_t *)(oobbuf)) =
489				readl(MLC_BUFF(host->io_base));
490			oobbuf += 4;
491		}
492	}
493
494	if (use_dma && !dma_mapped)
495		memcpy(buf, dma_buf, mtd->writesize);
496
497	return 0;
498}
499
500static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
501				       const uint8_t *buf, int oob_required,
502				       int page)
503{
504	struct mtd_info *mtd = nand_to_mtd(chip);
505	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
506	const uint8_t *oobbuf = chip->oob_poi;
507	uint8_t *dma_buf = (uint8_t *)buf;
508	int res;
509	int i, j;
510
511	if (use_dma && (void *)buf >= high_memory) {
512		dma_buf = host->dma_buf;
513		memcpy(dma_buf, buf, mtd->writesize);
514	}
515
516	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
517
518	for (i = 0; i < host->mlcsubpages; i++) {
519		/* Start Encode */
520		writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
521
522		/* Write 512 + 6 Bytes to Buffer */
523		if (use_dma) {
524			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
525					       DMA_MEM_TO_DEV);
526			if (res)
527				return res;
528		} else {
529			for (j = 0; j < (512 >> 2); j++) {
530				writel(*((uint32_t *)(buf)),
531				       MLC_BUFF(host->io_base));
532				buf += 4;
533			}
534		}
535		writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
536		oobbuf += 4;
537		writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
538		oobbuf += 12;
539
540		/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
541		writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
542
543		/* Wait for Controller Ready */
544		lpc32xx_waitfunc_controller(chip);
545	}
546
547	return nand_prog_page_end_op(chip);
548}
549
550static int lpc32xx_read_oob(struct nand_chip *chip, int page)
551{
552	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
553
554	/* Read whole page - necessary with MLC controller! */
555	lpc32xx_read_page(chip, host->dummy_buf, 1, page);
556
557	return 0;
558}
559
560static int lpc32xx_write_oob(struct nand_chip *chip, int page)
561{
562	/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
563	return 0;
564}
565
566/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
567static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
568{
569	/* Always enabled! */
570}
571
572static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
573{
574	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
575	dma_cap_mask_t mask;
576
577	if (!host->pdata || !host->pdata->dma_filter) {
578		dev_err(mtd->dev.parent, "no DMA platform data\n");
579		return -ENOENT;
580	}
581
582	dma_cap_zero(mask);
583	dma_cap_set(DMA_SLAVE, mask);
584	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
585					     "nand-mlc");
586	if (!host->dma_chan) {
587		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
588		return -EBUSY;
589	}
590
591	/*
592	 * Set direction to a sensible value even if the dmaengine driver
593	 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
594	 * driver criticizes it as "alien transfer direction".
595	 */
596	host->dma_slave_config.direction = DMA_DEV_TO_MEM;
597	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
598	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599	host->dma_slave_config.src_maxburst = 128;
600	host->dma_slave_config.dst_maxburst = 128;
601	/* DMA controller does flow control: */
602	host->dma_slave_config.device_fc = false;
603	host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
604	host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
605	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
606		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
607		goto out1;
608	}
609
610	return 0;
611out1:
612	dma_release_channel(host->dma_chan);
613	return -ENXIO;
614}
615
616static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
617{
618	struct lpc32xx_nand_cfg_mlc *ncfg;
619	struct device_node *np = dev->of_node;
620
621	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
622	if (!ncfg)
623		return NULL;
624
625	of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
626	of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
627	of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
628	of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
629	of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
630	of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
631	of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
632
633	if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
634	    !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
635	    !ncfg->wr_low) {
636		dev_err(dev, "chip parameters not specified correctly\n");
637		return NULL;
638	}
639
640	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
641
642	return ncfg;
643}
644
645static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
646{
647	struct mtd_info *mtd = nand_to_mtd(chip);
648	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
649	struct device *dev = &host->pdev->dev;
650
651	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
652		return 0;
653
654	host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
655	if (!host->dma_buf)
656		return -ENOMEM;
657
658	host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
659	if (!host->dummy_buf)
660		return -ENOMEM;
661
662	chip->ecc.size = 512;
663	chip->ecc.hwctl = lpc32xx_ecc_enable;
664	chip->ecc.read_page_raw = lpc32xx_read_page;
665	chip->ecc.read_page = lpc32xx_read_page;
666	chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
667	chip->ecc.write_page = lpc32xx_write_page_lowlevel;
668	chip->ecc.write_oob = lpc32xx_write_oob;
669	chip->ecc.read_oob = lpc32xx_read_oob;
670	chip->ecc.strength = 4;
671	chip->ecc.bytes = 10;
672
673	mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
674	host->mlcsubpages = mtd->writesize / 512;
675
676	return 0;
677}
678
679static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
680	.attach_chip = lpc32xx_nand_attach_chip,
681};
682
683/*
684 * Probe for NAND controller
685 */
686static int lpc32xx_nand_probe(struct platform_device *pdev)
687{
688	struct lpc32xx_nand_host *host;
689	struct mtd_info *mtd;
690	struct nand_chip *nand_chip;
691	struct resource *rc;
692	int res;
693
694	/* Allocate memory for the device structure (and zero it) */
695	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
696	if (!host)
697		return -ENOMEM;
698
699	host->pdev = pdev;
700
701	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
702	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
703	if (IS_ERR(host->io_base))
704		return PTR_ERR(host->io_base);
705
706	host->io_base_phy = rc->start;
707
708	nand_chip = &host->nand_chip;
709	mtd = nand_to_mtd(nand_chip);
710	if (pdev->dev.of_node)
711		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
712	if (!host->ncfg) {
713		dev_err(&pdev->dev,
714			"Missing or bad NAND config from device tree\n");
715		return -ENOENT;
716	}
717	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
718		return -EPROBE_DEFER;
719	if (gpio_is_valid(host->ncfg->wp_gpio) &&
720			gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
721		dev_err(&pdev->dev, "GPIO not available\n");
722		return -EBUSY;
723	}
724	lpc32xx_wp_disable(host);
725
726	host->pdata = dev_get_platdata(&pdev->dev);
727
728	/* link the private data structures */
729	nand_set_controller_data(nand_chip, host);
730	nand_set_flash_node(nand_chip, pdev->dev.of_node);
731	mtd->dev.parent = &pdev->dev;
732
733	/* Get NAND clock */
734	host->clk = clk_get(&pdev->dev, NULL);
735	if (IS_ERR(host->clk)) {
736		dev_err(&pdev->dev, "Clock initialization failure\n");
737		res = -ENOENT;
738		goto free_gpio;
739	}
740	res = clk_prepare_enable(host->clk);
741	if (res)
742		goto put_clk;
743
744	nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
745	nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
746	nand_chip->legacy.chip_delay = 25; /* us */
747	nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
748	nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
749
750	/* Init NAND controller */
751	lpc32xx_nand_setup(host);
752
753	platform_set_drvdata(pdev, host);
754
755	/* Initialize function pointers */
756	nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
757
758	nand_chip->options = NAND_NO_SUBPAGE_WRITE;
759	nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
760	nand_chip->bbt_td = &lpc32xx_nand_bbt;
761	nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
762
763	if (use_dma) {
764		res = lpc32xx_dma_setup(host);
765		if (res) {
766			res = -EIO;
767			goto unprepare_clk;
768		}
769	}
770
771	/* initially clear interrupt status */
772	readb(MLC_IRQ_SR(host->io_base));
773
774	init_completion(&host->comp_nand);
775	init_completion(&host->comp_controller);
776
777	host->irq = platform_get_irq(pdev, 0);
778	if (host->irq < 0) {
779		res = -EINVAL;
780		goto release_dma_chan;
781	}
782
783	if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
784			IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
785		dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
786		res = -ENXIO;
787		goto release_dma_chan;
788	}
789
790	/*
791	 * Scan to find existence of the device and get the type of NAND device:
792	 * SMALL block or LARGE block.
793	 */
794	nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
795	res = nand_scan(nand_chip, 1);
796	if (res)
797		goto free_irq;
798
799	mtd->name = DRV_NAME;
800
801	res = mtd_device_register(mtd, host->ncfg->parts,
802				  host->ncfg->num_parts);
803	if (res)
804		goto cleanup_nand;
805
806	return 0;
807
808cleanup_nand:
809	nand_cleanup(nand_chip);
810free_irq:
811	free_irq(host->irq, host);
812release_dma_chan:
813	if (use_dma)
814		dma_release_channel(host->dma_chan);
815unprepare_clk:
816	clk_disable_unprepare(host->clk);
817put_clk:
818	clk_put(host->clk);
819free_gpio:
820	lpc32xx_wp_enable(host);
821	gpio_free(host->ncfg->wp_gpio);
822
823	return res;
824}
825
826/*
827 * Remove NAND device
828 */
829static int lpc32xx_nand_remove(struct platform_device *pdev)
830{
831	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
832	struct nand_chip *chip = &host->nand_chip;
833	int ret;
834
835	ret = mtd_device_unregister(nand_to_mtd(chip));
836	WARN_ON(ret);
837	nand_cleanup(chip);
838
839	free_irq(host->irq, host);
840	if (use_dma)
841		dma_release_channel(host->dma_chan);
842
843	clk_disable_unprepare(host->clk);
844	clk_put(host->clk);
845
846	lpc32xx_wp_enable(host);
847	gpio_free(host->ncfg->wp_gpio);
848
849	return 0;
850}
851
852#ifdef CONFIG_PM
853static int lpc32xx_nand_resume(struct platform_device *pdev)
854{
855	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
856	int ret;
857
858	/* Re-enable NAND clock */
859	ret = clk_prepare_enable(host->clk);
860	if (ret)
861		return ret;
862
863	/* Fresh init of NAND controller */
864	lpc32xx_nand_setup(host);
865
866	/* Disable write protect */
867	lpc32xx_wp_disable(host);
868
869	return 0;
870}
871
872static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
873{
874	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
875
876	/* Enable write protect for safety */
877	lpc32xx_wp_enable(host);
878
879	/* Disable clock */
880	clk_disable_unprepare(host->clk);
881	return 0;
882}
883
884#else
885#define lpc32xx_nand_resume NULL
886#define lpc32xx_nand_suspend NULL
887#endif
888
889static const struct of_device_id lpc32xx_nand_match[] = {
890	{ .compatible = "nxp,lpc3220-mlc" },
891	{ /* sentinel */ },
892};
893MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
894
895static struct platform_driver lpc32xx_nand_driver = {
896	.probe		= lpc32xx_nand_probe,
897	.remove		= lpc32xx_nand_remove,
898	.resume		= lpc32xx_nand_resume,
899	.suspend	= lpc32xx_nand_suspend,
900	.driver		= {
901		.name	= DRV_NAME,
902		.of_match_table = lpc32xx_nand_match,
903	},
904};
905
906module_platform_driver(lpc32xx_nand_driver);
907
908MODULE_LICENSE("GPL");
909MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
910MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");
911