1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Cadence NAND flash controller driver
4 *
5 * Copyright (C) 2019 Cadence
6 *
7 * Author: Piotr Sroka <piotrs@cadence.com>
8 */
9
10#include <linux/bitfield.h>
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/interrupt.h>
15#include <linux/module.h>
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/of_device.h>
19#include <linux/iopoll.h>
20#include <linux/slab.h>
21
22/*
23 * HPNFC can work in 3 modes:
24 * -  PIO - can work in master or slave DMA
25 * -  CDMA - needs Master DMA for accessing command descriptors.
26 * -  Generic mode - can use only slave DMA.
27 * CDMA and PIO modes can be used to execute only base commands.
28 * Generic mode can be used to execute any command
29 * on NAND flash memory. Driver uses CDMA mode for
30 * block erasing, page reading, page programing.
31 * Generic mode is used for executing rest of commands.
32 */
33
34#define MAX_ADDRESS_CYC		6
35#define MAX_ERASE_ADDRESS_CYC	3
36#define MAX_DATA_SIZE		0xFFFC
37#define DMA_DATA_SIZE_ALIGN	8
38
39/* Register definition. */
40/*
41 * Command register 0.
42 * Writing data to this register will initiate a new transaction
43 * of the NF controller.
44 */
45#define CMD_REG0			0x0000
46/* Command type field mask. */
47#define		CMD_REG0_CT		GENMASK(31, 30)
48/* Command type CDMA. */
49#define		CMD_REG0_CT_CDMA	0uL
50/* Command type generic. */
51#define		CMD_REG0_CT_GEN		3uL
52/* Command thread number field mask. */
53#define		CMD_REG0_TN		GENMASK(27, 24)
54
55/* Command register 2. */
56#define CMD_REG2			0x0008
57/* Command register 3. */
58#define CMD_REG3			0x000C
59/* Pointer register to select which thread status will be selected. */
60#define CMD_STATUS_PTR			0x0010
61/* Command status register for selected thread. */
62#define CMD_STATUS			0x0014
63
64/* Interrupt status register. */
65#define INTR_STATUS			0x0110
66#define		INTR_STATUS_SDMA_ERR	BIT(22)
67#define		INTR_STATUS_SDMA_TRIGG	BIT(21)
68#define		INTR_STATUS_UNSUPP_CMD	BIT(19)
69#define		INTR_STATUS_DDMA_TERR	BIT(18)
70#define		INTR_STATUS_CDMA_TERR	BIT(17)
71#define		INTR_STATUS_CDMA_IDL	BIT(16)
72
73/* Interrupt enable register. */
74#define INTR_ENABLE				0x0114
75#define		INTR_ENABLE_INTR_EN		BIT(31)
76#define		INTR_ENABLE_SDMA_ERR_EN		BIT(22)
77#define		INTR_ENABLE_SDMA_TRIGG_EN	BIT(21)
78#define		INTR_ENABLE_UNSUPP_CMD_EN	BIT(19)
79#define		INTR_ENABLE_DDMA_TERR_EN	BIT(18)
80#define		INTR_ENABLE_CDMA_TERR_EN	BIT(17)
81#define		INTR_ENABLE_CDMA_IDLE_EN	BIT(16)
82
83/* Controller internal state. */
84#define CTRL_STATUS				0x0118
85#define		CTRL_STATUS_INIT_COMP		BIT(9)
86#define		CTRL_STATUS_CTRL_BUSY		BIT(8)
87
88/* Command Engine threads state. */
89#define TRD_STATUS				0x0120
90
91/* Command Engine interrupt thread error status. */
92#define TRD_ERR_INT_STATUS			0x0128
93/* Command Engine interrupt thread error enable. */
94#define TRD_ERR_INT_STATUS_EN			0x0130
95/* Command Engine interrupt thread complete status. */
96#define TRD_COMP_INT_STATUS			0x0138
97
98/*
99 * Transfer config 0 register.
100 * Configures data transfer parameters.
101 */
102#define TRAN_CFG_0				0x0400
103/* Offset value from the beginning of the page. */
104#define		TRAN_CFG_0_OFFSET		GENMASK(31, 16)
105/* Numbers of sectors to transfer within singlNF device's page. */
106#define		TRAN_CFG_0_SEC_CNT		GENMASK(7, 0)
107
108/*
109 * Transfer config 1 register.
110 * Configures data transfer parameters.
111 */
112#define TRAN_CFG_1				0x0404
113/* Size of last data sector. */
114#define		TRAN_CFG_1_LAST_SEC_SIZE	GENMASK(31, 16)
115/* Size of not-last data sector. */
116#define		TRAN_CFG_1_SECTOR_SIZE		GENMASK(15, 0)
117
118/* ECC engine configuration register 0. */
119#define ECC_CONFIG_0				0x0428
120/* Correction strength. */
121#define		ECC_CONFIG_0_CORR_STR		GENMASK(10, 8)
122/* Enable erased pages detection mechanism. */
123#define		ECC_CONFIG_0_ERASE_DET_EN	BIT(1)
124/* Enable controller ECC check bits generation and correction. */
125#define		ECC_CONFIG_0_ECC_EN		BIT(0)
126
127/* ECC engine configuration register 1. */
128#define ECC_CONFIG_1				0x042C
129
130/* Multiplane settings register. */
131#define MULTIPLANE_CFG				0x0434
132/* Cache operation settings. */
133#define CACHE_CFG				0x0438
134
135/* DMA settings register. */
136#define DMA_SETINGS				0x043C
137/* Enable SDMA error report on access unprepared slave DMA interface. */
138#define		DMA_SETINGS_SDMA_ERR_RSP	BIT(17)
139
140/* Transferred data block size for the slave DMA module. */
141#define SDMA_SIZE				0x0440
142
143/* Thread number associated with transferred data block
144 * for the slave DMA module.
145 */
146#define SDMA_TRD_NUM				0x0444
147/* Thread number mask. */
148#define		SDMA_TRD_NUM_SDMA_TRD		GENMASK(2, 0)
149
150#define CONTROL_DATA_CTRL			0x0494
151/* Thread number mask. */
152#define		CONTROL_DATA_CTRL_SIZE		GENMASK(15, 0)
153
154#define CTRL_VERSION				0x800
155#define		CTRL_VERSION_REV		GENMASK(7, 0)
156
157/* Available hardware features of the controller. */
158#define CTRL_FEATURES				0x804
159/* Support for NV-DDR2/3 work mode. */
160#define		CTRL_FEATURES_NVDDR_2_3		BIT(28)
161/* Support for NV-DDR work mode. */
162#define		CTRL_FEATURES_NVDDR		BIT(27)
163/* Support for asynchronous work mode. */
164#define		CTRL_FEATURES_ASYNC		BIT(26)
165/* Support for asynchronous work mode. */
166#define		CTRL_FEATURES_N_BANKS		GENMASK(25, 24)
167/* Slave and Master DMA data width. */
168#define		CTRL_FEATURES_DMA_DWITH64	BIT(21)
169/* Availability of Control Data feature.*/
170#define		CTRL_FEATURES_CONTROL_DATA	BIT(10)
171
172/* BCH Engine identification register 0 - correction strengths. */
173#define BCH_CFG_0				0x838
174#define		BCH_CFG_0_CORR_CAP_0		GENMASK(7, 0)
175#define		BCH_CFG_0_CORR_CAP_1		GENMASK(15, 8)
176#define		BCH_CFG_0_CORR_CAP_2		GENMASK(23, 16)
177#define		BCH_CFG_0_CORR_CAP_3		GENMASK(31, 24)
178
179/* BCH Engine identification register 1 - correction strengths. */
180#define BCH_CFG_1				0x83C
181#define		BCH_CFG_1_CORR_CAP_4		GENMASK(7, 0)
182#define		BCH_CFG_1_CORR_CAP_5		GENMASK(15, 8)
183#define		BCH_CFG_1_CORR_CAP_6		GENMASK(23, 16)
184#define		BCH_CFG_1_CORR_CAP_7		GENMASK(31, 24)
185
186/* BCH Engine identification register 2 - sector sizes. */
187#define BCH_CFG_2				0x840
188#define		BCH_CFG_2_SECT_0		GENMASK(15, 0)
189#define		BCH_CFG_2_SECT_1		GENMASK(31, 16)
190
191/* BCH Engine identification register 3. */
192#define BCH_CFG_3				0x844
193#define		BCH_CFG_3_METADATA_SIZE		GENMASK(23, 16)
194
195/* Ready/Busy# line status. */
196#define RBN_SETINGS				0x1004
197
198/* Common settings. */
199#define COMMON_SET				0x1008
200/* 16 bit device connected to the NAND Flash interface. */
201#define		COMMON_SET_DEVICE_16BIT		BIT(8)
202
203/* Skip_bytes registers. */
204#define SKIP_BYTES_CONF				0x100C
205#define		SKIP_BYTES_MARKER_VALUE		GENMASK(31, 16)
206#define		SKIP_BYTES_NUM_OF_BYTES		GENMASK(7, 0)
207
208#define SKIP_BYTES_OFFSET			0x1010
209#define		 SKIP_BYTES_OFFSET_VALUE	GENMASK(23, 0)
210
211/* Timings configuration. */
212#define ASYNC_TOGGLE_TIMINGS			0x101c
213#define		ASYNC_TOGGLE_TIMINGS_TRH	GENMASK(28, 24)
214#define		ASYNC_TOGGLE_TIMINGS_TRP	GENMASK(20, 16)
215#define		ASYNC_TOGGLE_TIMINGS_TWH	GENMASK(12, 8)
216#define		ASYNC_TOGGLE_TIMINGS_TWP	GENMASK(4, 0)
217
218#define	TIMINGS0				0x1024
219#define		TIMINGS0_TADL			GENMASK(31, 24)
220#define		TIMINGS0_TCCS			GENMASK(23, 16)
221#define		TIMINGS0_TWHR			GENMASK(15, 8)
222#define		TIMINGS0_TRHW			GENMASK(7, 0)
223
224#define	TIMINGS1				0x1028
225#define		TIMINGS1_TRHZ			GENMASK(31, 24)
226#define		TIMINGS1_TWB			GENMASK(23, 16)
227#define		TIMINGS1_TVDLY			GENMASK(7, 0)
228
229#define	TIMINGS2				0x102c
230#define		TIMINGS2_TFEAT			GENMASK(25, 16)
231#define		TIMINGS2_CS_HOLD_TIME		GENMASK(13, 8)
232#define		TIMINGS2_CS_SETUP_TIME		GENMASK(5, 0)
233
234/* Configuration of the resynchronization of slave DLL of PHY. */
235#define DLL_PHY_CTRL				0x1034
236#define		DLL_PHY_CTRL_DLL_RST_N		BIT(24)
237#define		DLL_PHY_CTRL_EXTENDED_WR_MODE	BIT(17)
238#define		DLL_PHY_CTRL_EXTENDED_RD_MODE	BIT(16)
239#define		DLL_PHY_CTRL_RS_HIGH_WAIT_CNT	GENMASK(11, 8)
240#define		DLL_PHY_CTRL_RS_IDLE_CNT	GENMASK(7, 0)
241
242/* Register controlling DQ related timing. */
243#define PHY_DQ_TIMING				0x2000
244/* Register controlling DSQ related timing.  */
245#define PHY_DQS_TIMING				0x2004
246#define		PHY_DQS_TIMING_DQS_SEL_OE_END	GENMASK(3, 0)
247#define		PHY_DQS_TIMING_PHONY_DQS_SEL	BIT(16)
248#define		PHY_DQS_TIMING_USE_PHONY_DQS	BIT(20)
249
250/* Register controlling the gate and loopback control related timing. */
251#define PHY_GATE_LPBK_CTRL			0x2008
252#define		PHY_GATE_LPBK_CTRL_RDS		GENMASK(24, 19)
253
254/* Register holds the control for the master DLL logic. */
255#define PHY_DLL_MASTER_CTRL			0x200C
256#define		PHY_DLL_MASTER_CTRL_BYPASS_MODE	BIT(23)
257
258/* Register holds the control for the slave DLL logic. */
259#define PHY_DLL_SLAVE_CTRL			0x2010
260
261/* This register handles the global control settings for the PHY. */
262#define PHY_CTRL				0x2080
263#define		PHY_CTRL_SDR_DQS		BIT(14)
264#define		PHY_CTRL_PHONY_DQS		GENMASK(9, 4)
265
266/*
267 * This register handles the global control settings
268 * for the termination selects for reads.
269 */
270#define PHY_TSEL				0x2084
271
272/* Generic command layout. */
273#define GCMD_LAY_CS			GENMASK_ULL(11, 8)
274/*
275 * This bit informs the minicotroller if it has to wait for tWB
276 * after sending the last CMD/ADDR/DATA in the sequence.
277 */
278#define GCMD_LAY_TWB			BIT_ULL(6)
279/* Type of generic instruction. */
280#define GCMD_LAY_INSTR			GENMASK_ULL(5, 0)
281
282/* Generic CMD sequence type. */
283#define		GCMD_LAY_INSTR_CMD	0
284/* Generic ADDR sequence type. */
285#define		GCMD_LAY_INSTR_ADDR	1
286/* Generic data transfer sequence type. */
287#define		GCMD_LAY_INSTR_DATA	2
288
289/* Input part of generic command type of input is command. */
290#define GCMD_LAY_INPUT_CMD		GENMASK_ULL(23, 16)
291
292/* Generic command address sequence - address fields. */
293#define GCMD_LAY_INPUT_ADDR		GENMASK_ULL(63, 16)
294/* Generic command address sequence - address size. */
295#define GCMD_LAY_INPUT_ADDR_SIZE	GENMASK_ULL(13, 11)
296
297/* Transfer direction field of generic command data sequence. */
298#define GCMD_DIR			BIT_ULL(11)
299/* Read transfer direction of generic command data sequence. */
300#define		GCMD_DIR_READ		0
301/* Write transfer direction of generic command data sequence. */
302#define		GCMD_DIR_WRITE		1
303
304/* ECC enabled flag of generic command data sequence - ECC enabled. */
305#define GCMD_ECC_EN			BIT_ULL(12)
306/* Generic command data sequence - sector size. */
307#define GCMD_SECT_SIZE			GENMASK_ULL(31, 16)
308/* Generic command data sequence - sector count. */
309#define GCMD_SECT_CNT			GENMASK_ULL(39, 32)
310/* Generic command data sequence - last sector size. */
311#define GCMD_LAST_SIZE			GENMASK_ULL(55, 40)
312
313/* CDMA descriptor fields. */
314/* Erase command type of CDMA descriptor. */
315#define CDMA_CT_ERASE		0x1000
316/* Program page command type of CDMA descriptor. */
317#define CDMA_CT_WR		0x2100
318/* Read page command type of CDMA descriptor. */
319#define CDMA_CT_RD		0x2200
320
321/* Flash pointer memory shift. */
322#define CDMA_CFPTR_MEM_SHIFT	24
323/* Flash pointer memory mask. */
324#define CDMA_CFPTR_MEM		GENMASK(26, 24)
325
326/*
327 * Command DMA descriptor flags. If set causes issue interrupt after
328 * the completion of descriptor processing.
329 */
330#define CDMA_CF_INT		BIT(8)
331/*
332 * Command DMA descriptor flags - the next descriptor
333 * address field is valid and descriptor processing should continue.
334 */
335#define CDMA_CF_CONT		BIT(9)
336/* DMA master flag of command DMA descriptor. */
337#define CDMA_CF_DMA_MASTER	BIT(10)
338
339/* Operation complete status of command descriptor. */
340#define CDMA_CS_COMP		BIT(15)
341/* Operation complete status of command descriptor. */
342/* Command descriptor status - operation fail. */
343#define CDMA_CS_FAIL		BIT(14)
344/* Command descriptor status - page erased. */
345#define CDMA_CS_ERP		BIT(11)
346/* Command descriptor status - timeout occurred. */
347#define CDMA_CS_TOUT		BIT(10)
348/*
349 * Maximum amount of correction applied to one ECC sector.
350 * It is part of command descriptor status.
351 */
352#define CDMA_CS_MAXERR		GENMASK(9, 2)
353/* Command descriptor status - uncorrectable ECC error. */
354#define CDMA_CS_UNCE		BIT(1)
355/* Command descriptor status - descriptor error. */
356#define CDMA_CS_ERR		BIT(0)
357
358/* Status of operation - OK. */
359#define STAT_OK			0
360/* Status of operation - FAIL. */
361#define STAT_FAIL		2
362/* Status of operation - uncorrectable ECC error. */
363#define STAT_ECC_UNCORR		3
364/* Status of operation - page erased. */
365#define STAT_ERASED		5
366/* Status of operation - correctable ECC error. */
367#define STAT_ECC_CORR		6
368/* Status of operation - unsuspected state. */
369#define STAT_UNKNOWN		7
370/* Status of operation - operation is not completed yet. */
371#define STAT_BUSY		0xFF
372
373#define BCH_MAX_NUM_CORR_CAPS		8
374#define BCH_MAX_NUM_SECTOR_SIZES	2
375
376struct cadence_nand_timings {
377	u32 async_toggle_timings;
378	u32 timings0;
379	u32 timings1;
380	u32 timings2;
381	u32 dll_phy_ctrl;
382	u32 phy_ctrl;
383	u32 phy_dqs_timing;
384	u32 phy_gate_lpbk_ctrl;
385};
386
387/* Command DMA descriptor. */
388struct cadence_nand_cdma_desc {
389	/* Next descriptor address. */
390	u64 next_pointer;
391
392	/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
393	u32 flash_pointer;
394	/*field appears in HPNFC version 13*/
395	u16 bank;
396	u16 rsvd0;
397
398	/* Operation the controller needs to perform. */
399	u16 command_type;
400	u16 rsvd1;
401	/* Flags for operation of this command. */
402	u16 command_flags;
403	u16 rsvd2;
404
405	/* System/host memory address required for data DMA commands. */
406	u64 memory_pointer;
407
408	/* Status of operation. */
409	u32 status;
410	u32 rsvd3;
411
412	/* Address pointer to sync buffer location. */
413	u64 sync_flag_pointer;
414
415	/* Controls the buffer sync mechanism. */
416	u32 sync_arguments;
417	u32 rsvd4;
418
419	/* Control data pointer. */
420	u64 ctrl_data_ptr;
421};
422
423/* Interrupt status. */
424struct cadence_nand_irq_status {
425	/* Thread operation complete status. */
426	u32 trd_status;
427	/* Thread operation error. */
428	u32 trd_error;
429	/* Controller status. */
430	u32 status;
431};
432
433/* Cadence NAND flash controller capabilities get from driver data. */
434struct cadence_nand_dt_devdata {
435	/* Skew value of the output signals of the NAND Flash interface. */
436	u32 if_skew;
437	/* It informs if slave DMA interface is connected to DMA engine. */
438	unsigned int has_dma:1;
439};
440
441/* Cadence NAND flash controller capabilities read from registers. */
442struct cdns_nand_caps {
443	/* Maximum number of banks supported by hardware. */
444	u8 max_banks;
445	/* Slave and Master DMA data width in bytes (4 or 8). */
446	u8 data_dma_width;
447	/* Control Data feature supported. */
448	bool data_control_supp;
449	/* Is PHY type DLL. */
450	bool is_phy_type_dll;
451};
452
453struct cdns_nand_ctrl {
454	struct device *dev;
455	struct nand_controller controller;
456	struct cadence_nand_cdma_desc *cdma_desc;
457	/* IP capability. */
458	const struct cadence_nand_dt_devdata *caps1;
459	struct cdns_nand_caps caps2;
460	u8 ctrl_rev;
461	dma_addr_t dma_cdma_desc;
462	u8 *buf;
463	u32 buf_size;
464	u8 curr_corr_str_idx;
465
466	/* Register interface. */
467	void __iomem *reg;
468
469	struct {
470		void __iomem *virt;
471		dma_addr_t dma;
472	} io;
473
474	int irq;
475	/* Interrupts that have happened. */
476	struct cadence_nand_irq_status irq_status;
477	/* Interrupts we are waiting for. */
478	struct cadence_nand_irq_status irq_mask;
479	struct completion complete;
480	/* Protect irq_mask and irq_status. */
481	spinlock_t irq_lock;
482
483	int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
484	struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
485	struct nand_ecc_caps ecc_caps;
486
487	int curr_trans_type;
488
489	struct dma_chan *dmac;
490
491	u32 nf_clk_rate;
492	/*
493	 * Estimated Board delay. The value includes the total
494	 * round trip delay for the signals and is used for deciding on values
495	 * associated with data read capture.
496	 */
497	u32 board_delay;
498
499	struct nand_chip *selected_chip;
500
501	unsigned long assigned_cs;
502	struct list_head chips;
503	u8 bch_metadata_size;
504};
505
506struct cdns_nand_chip {
507	struct cadence_nand_timings timings;
508	struct nand_chip chip;
509	u8 nsels;
510	struct list_head node;
511
512	/*
513	 * part of oob area of NAND flash memory page.
514	 * This part is available for user to read or write.
515	 */
516	u32 avail_oob_size;
517
518	/* Sector size. There are few sectors per mtd->writesize */
519	u32 sector_size;
520	u32 sector_count;
521
522	/* Offset of BBM. */
523	u8 bbm_offs;
524	/* Number of bytes reserved for BBM. */
525	u8 bbm_len;
526	/* ECC strength index. */
527	u8 corr_str_idx;
528
529	u8 cs[];
530};
531
532struct ecc_info {
533	int (*calc_ecc_bytes)(int step_size, int strength);
534	int max_step_size;
535};
536
537static inline struct
538cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
539{
540	return container_of(chip, struct cdns_nand_chip, chip);
541}
542
543static inline struct
544cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
545{
546	return container_of(controller, struct cdns_nand_ctrl, controller);
547}
548
549static bool
550cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
551			u32 buf_len)
552{
553	u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
554
555	return buf && virt_addr_valid(buf) &&
556		likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
557		likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
558}
559
560static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
561				       u32 reg_offset, u32 timeout_us,
562				       u32 mask, bool is_clear)
563{
564	u32 val;
565	int ret;
566
567	ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
568					 val, !(val & mask) == is_clear,
569					 10, timeout_us);
570
571	if (ret < 0) {
572		dev_err(cdns_ctrl->dev,
573			"Timeout while waiting for reg %x with mask %x is clear %d\n",
574			reg_offset, mask, is_clear);
575	}
576
577	return ret;
578}
579
580static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
581				       bool enable)
582{
583	u32 reg;
584
585	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
586					1000000,
587					CTRL_STATUS_CTRL_BUSY, true))
588		return -ETIMEDOUT;
589
590	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
591
592	if (enable)
593		reg |= ECC_CONFIG_0_ECC_EN;
594	else
595		reg &= ~ECC_CONFIG_0_ECC_EN;
596
597	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
598
599	return 0;
600}
601
602static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
603					  u8 corr_str_idx)
604{
605	u32 reg;
606
607	if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
608		return;
609
610	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
611	reg &= ~ECC_CONFIG_0_CORR_STR;
612	reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
613	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
614
615	cdns_ctrl->curr_corr_str_idx = corr_str_idx;
616}
617
618static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
619					     u8 strength)
620{
621	int i, corr_str_idx = -1;
622
623	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
624		if (cdns_ctrl->ecc_strengths[i] == strength) {
625			corr_str_idx = i;
626			break;
627		}
628	}
629
630	return corr_str_idx;
631}
632
633static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
634					    u16 marker_value)
635{
636	u32 reg;
637
638	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
639					1000000,
640					CTRL_STATUS_CTRL_BUSY, true))
641		return -ETIMEDOUT;
642
643	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
644	reg &= ~SKIP_BYTES_MARKER_VALUE;
645	reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
646			  marker_value);
647
648	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
649
650	return 0;
651}
652
653static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
654					    u8 num_of_bytes,
655					    u32 offset_value,
656					    int enable)
657{
658	u32 reg, skip_bytes_offset;
659
660	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
661					1000000,
662					CTRL_STATUS_CTRL_BUSY, true))
663		return -ETIMEDOUT;
664
665	if (!enable) {
666		num_of_bytes = 0;
667		offset_value = 0;
668	}
669
670	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
671	reg &= ~SKIP_BYTES_NUM_OF_BYTES;
672	reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
673			  num_of_bytes);
674	skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
675				       offset_value);
676
677	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
678	writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
679
680	return 0;
681}
682
683/* Functions enables/disables hardware detection of erased data */
684static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
685					     bool enable,
686					     u8 bitflips_threshold)
687{
688	u32 reg;
689
690	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
691
692	if (enable)
693		reg |= ECC_CONFIG_0_ERASE_DET_EN;
694	else
695		reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
696
697	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
698	writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
699}
700
701static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
702					   bool bit_bus16)
703{
704	u32 reg;
705
706	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
707					1000000,
708					CTRL_STATUS_CTRL_BUSY, true))
709		return -ETIMEDOUT;
710
711	reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
712
713	if (!bit_bus16)
714		reg &= ~COMMON_SET_DEVICE_16BIT;
715	else
716		reg |= COMMON_SET_DEVICE_16BIT;
717	writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
718
719	return 0;
720}
721
722static void
723cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
724			     struct cadence_nand_irq_status *irq_status)
725{
726	writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
727	writel_relaxed(irq_status->trd_status,
728		       cdns_ctrl->reg + TRD_COMP_INT_STATUS);
729	writel_relaxed(irq_status->trd_error,
730		       cdns_ctrl->reg + TRD_ERR_INT_STATUS);
731}
732
733static void
734cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
735			     struct cadence_nand_irq_status *irq_status)
736{
737	irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
738	irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
739					       + TRD_COMP_INT_STATUS);
740	irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
741					      + TRD_ERR_INT_STATUS);
742}
743
744static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
745			struct cadence_nand_irq_status *irq_status)
746{
747	cadence_nand_read_int_status(cdns_ctrl, irq_status);
748
749	return irq_status->status || irq_status->trd_status ||
750		irq_status->trd_error;
751}
752
753static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
754{
755	unsigned long flags;
756
757	spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
758	memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
759	memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
760	spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
761}
762
763/*
764 * This is the interrupt service routine. It handles all interrupts
765 * sent to this device.
766 */
767static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
768{
769	struct cdns_nand_ctrl *cdns_ctrl = dev_id;
770	struct cadence_nand_irq_status irq_status;
771	irqreturn_t result = IRQ_NONE;
772
773	spin_lock(&cdns_ctrl->irq_lock);
774
775	if (irq_detected(cdns_ctrl, &irq_status)) {
776		/* Handle interrupt. */
777		/* First acknowledge it. */
778		cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
779		/* Status in the device context for someone to read. */
780		cdns_ctrl->irq_status.status |= irq_status.status;
781		cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
782		cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
783		/* Notify anyone who cares that it happened. */
784		complete(&cdns_ctrl->complete);
785		/* Tell the OS that we've handled this. */
786		result = IRQ_HANDLED;
787	}
788	spin_unlock(&cdns_ctrl->irq_lock);
789
790	return result;
791}
792
793static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
794				      struct cadence_nand_irq_status *irq_mask)
795{
796	writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
797		       cdns_ctrl->reg + INTR_ENABLE);
798
799	writel_relaxed(irq_mask->trd_error,
800		       cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
801}
802
803static void
804cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
805			  struct cadence_nand_irq_status *irq_mask,
806			  struct cadence_nand_irq_status *irq_status)
807{
808	unsigned long timeout = msecs_to_jiffies(10000);
809	unsigned long time_left;
810
811	time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
812						timeout);
813
814	*irq_status = cdns_ctrl->irq_status;
815	if (time_left == 0) {
816		/* Timeout error. */
817		dev_err(cdns_ctrl->dev, "timeout occurred:\n");
818		dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
819			irq_status->status, irq_mask->status);
820		dev_err(cdns_ctrl->dev,
821			"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
822			irq_status->trd_status, irq_mask->trd_status);
823		dev_err(cdns_ctrl->dev,
824			"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
825			irq_status->trd_error, irq_mask->trd_error);
826	}
827}
828
829/* Execute generic command on NAND controller. */
830static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
831					 u8 chip_nr,
832					 u64 mini_ctrl_cmd)
833{
834	u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
835
836	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
837	mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
838	mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
839
840	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
841					1000000,
842					CTRL_STATUS_CTRL_BUSY, true))
843		return -ETIMEDOUT;
844
845	cadence_nand_reset_irq(cdns_ctrl);
846
847	writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
848	writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
849
850	/* Select generic command. */
851	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
852	/* Thread number. */
853	reg |= FIELD_PREP(CMD_REG0_TN, 0);
854
855	/* Issue command. */
856	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
857
858	return 0;
859}
860
861/* Wait for data on slave DMA interface. */
862static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
863				     u8 *out_sdma_trd,
864				     u32 *out_sdma_size)
865{
866	struct cadence_nand_irq_status irq_mask, irq_status;
867
868	irq_mask.trd_status = 0;
869	irq_mask.trd_error = 0;
870	irq_mask.status = INTR_STATUS_SDMA_TRIGG
871		| INTR_STATUS_SDMA_ERR
872		| INTR_STATUS_UNSUPP_CMD;
873
874	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
875	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
876	if (irq_status.status == 0) {
877		dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
878		return -ETIMEDOUT;
879	}
880
881	if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
882		*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
883		*out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
884		*out_sdma_trd =
885			FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
886	} else {
887		dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
888			irq_status.status);
889		return -EIO;
890	}
891
892	return 0;
893}
894
895static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
896{
897	u32  reg;
898
899	reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
900
901	cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
902
903	if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
904		cdns_ctrl->caps2.data_dma_width = 8;
905	else
906		cdns_ctrl->caps2.data_dma_width = 4;
907
908	if (reg & CTRL_FEATURES_CONTROL_DATA)
909		cdns_ctrl->caps2.data_control_supp = true;
910
911	if (reg & (CTRL_FEATURES_NVDDR_2_3
912		   | CTRL_FEATURES_NVDDR))
913		cdns_ctrl->caps2.is_phy_type_dll = true;
914}
915
916/* Prepare CDMA descriptor. */
917static void
918cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
919			       char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
920				   dma_addr_t ctrl_data_ptr, u16 ctype)
921{
922	struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
923
924	memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
925
926	/* Set fields for one descriptor. */
927	cdma_desc->flash_pointer = flash_ptr;
928	if (cdns_ctrl->ctrl_rev >= 13)
929		cdma_desc->bank = nf_mem;
930	else
931		cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
932
933	cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
934	cdma_desc->command_flags  |= CDMA_CF_INT;
935
936	cdma_desc->memory_pointer = mem_ptr;
937	cdma_desc->status = 0;
938	cdma_desc->sync_flag_pointer = 0;
939	cdma_desc->sync_arguments = 0;
940
941	cdma_desc->command_type = ctype;
942	cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
943}
944
945static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
946					u32 desc_status)
947{
948	if (desc_status & CDMA_CS_ERP)
949		return STAT_ERASED;
950
951	if (desc_status & CDMA_CS_UNCE)
952		return STAT_ECC_UNCORR;
953
954	if (desc_status & CDMA_CS_ERR) {
955		dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
956		return STAT_FAIL;
957	}
958
959	if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
960		return STAT_ECC_CORR;
961
962	return STAT_FAIL;
963}
964
965static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
966{
967	struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
968	u8 status = STAT_BUSY;
969
970	if (desc_ptr->status & CDMA_CS_FAIL) {
971		status = cadence_nand_check_desc_error(cdns_ctrl,
972						       desc_ptr->status);
973		dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
974	} else if (desc_ptr->status & CDMA_CS_COMP) {
975		/* Descriptor finished with no errors. */
976		if (desc_ptr->command_flags & CDMA_CF_CONT) {
977			dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
978			status = STAT_UNKNOWN;
979		} else {
980			/* Last descriptor.  */
981			status = STAT_OK;
982		}
983	}
984
985	return status;
986}
987
988static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
989				  u8 thread)
990{
991	u32 reg;
992	int status;
993
994	/* Wait for thread ready. */
995	status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
996					     1000000,
997					     BIT(thread), true);
998	if (status)
999		return status;
1000
1001	cadence_nand_reset_irq(cdns_ctrl);
1002	reinit_completion(&cdns_ctrl->complete);
1003
1004	writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1005		       cdns_ctrl->reg + CMD_REG2);
1006	writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1007
1008	/* Select CDMA mode. */
1009	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1010	/* Thread number. */
1011	reg |= FIELD_PREP(CMD_REG0_TN, thread);
1012	/* Issue command. */
1013	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1014
1015	return 0;
1016}
1017
1018/* Send SDMA command and wait for finish. */
1019static u32
1020cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1021				u8 thread)
1022{
1023	struct cadence_nand_irq_status irq_mask, irq_status = {0};
1024	int status;
1025
1026	irq_mask.trd_status = BIT(thread);
1027	irq_mask.trd_error = BIT(thread);
1028	irq_mask.status = INTR_STATUS_CDMA_TERR;
1029
1030	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1031
1032	status = cadence_nand_cdma_send(cdns_ctrl, thread);
1033	if (status)
1034		return status;
1035
1036	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1037
1038	if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1039	    irq_status.trd_error == 0) {
1040		dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1041		return -ETIMEDOUT;
1042	}
1043	if (irq_status.status & irq_mask.status) {
1044		dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1045		return -EIO;
1046	}
1047
1048	return 0;
1049}
1050
1051/*
1052 * ECC size depends on configured ECC strength and on maximum supported
1053 * ECC step size.
1054 */
1055static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1056{
1057	int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1058
1059	return ALIGN(nbytes, 2);
1060}
1061
1062#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1063	static int \
1064	cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1065						    int strength)\
1066	{\
1067		return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1068	}
1069
1070CADENCE_NAND_CALC_ECC_BYTES(256)
1071CADENCE_NAND_CALC_ECC_BYTES(512)
1072CADENCE_NAND_CALC_ECC_BYTES(1024)
1073CADENCE_NAND_CALC_ECC_BYTES(2048)
1074CADENCE_NAND_CALC_ECC_BYTES(4096)
1075
1076/* Function reads BCH capabilities. */
1077static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1078{
1079	struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1080	int max_step_size = 0, nstrengths, i;
1081	u32 reg;
1082
1083	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
1084	cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
1085	if (cdns_ctrl->bch_metadata_size < 4) {
1086		dev_err(cdns_ctrl->dev,
1087			"Driver needs at least 4 bytes of BCH meta data\n");
1088		return -EIO;
1089	}
1090
1091	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1092	cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1093	cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1094	cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1095	cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1096
1097	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1098	cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1099	cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1100	cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1101	cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1102
1103	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1104	cdns_ctrl->ecc_stepinfos[0].stepsize =
1105		FIELD_GET(BCH_CFG_2_SECT_0, reg);
1106
1107	cdns_ctrl->ecc_stepinfos[1].stepsize =
1108		FIELD_GET(BCH_CFG_2_SECT_1, reg);
1109
1110	nstrengths = 0;
1111	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1112		if (cdns_ctrl->ecc_strengths[i] != 0)
1113			nstrengths++;
1114	}
1115
1116	ecc_caps->nstepinfos = 0;
1117	for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1118		/* ECC strengths are common for all step infos. */
1119		cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1120		cdns_ctrl->ecc_stepinfos[i].strengths =
1121			cdns_ctrl->ecc_strengths;
1122
1123		if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1124			ecc_caps->nstepinfos++;
1125
1126		if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1127			max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1128	}
1129	ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1130
1131	switch (max_step_size) {
1132	case 256:
1133		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1134		break;
1135	case 512:
1136		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1137		break;
1138	case 1024:
1139		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1140		break;
1141	case 2048:
1142		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1143		break;
1144	case 4096:
1145		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1146		break;
1147	default:
1148		dev_err(cdns_ctrl->dev,
1149			"Unsupported sector size(ecc step size) %d\n",
1150			max_step_size);
1151		return -EIO;
1152	}
1153
1154	return 0;
1155}
1156
1157/* Hardware initialization. */
1158static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1159{
1160	int status;
1161	u32 reg;
1162
1163	status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1164					     1000000,
1165					     CTRL_STATUS_INIT_COMP, false);
1166	if (status)
1167		return status;
1168
1169	reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1170	cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1171
1172	dev_info(cdns_ctrl->dev,
1173		 "%s: cadence nand controller version reg %x\n",
1174		 __func__, reg);
1175
1176	/* Disable cache and multiplane. */
1177	writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1178	writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1179
1180	/* Clear all interrupts. */
1181	writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1182
1183	cadence_nand_get_caps(cdns_ctrl);
1184	if (cadence_nand_read_bch_caps(cdns_ctrl))
1185		return -EIO;
1186
1187	/*
1188	 * Set IO width access to 8.
1189	 * It is because during SW device discovering width access
1190	 * is expected to be 8.
1191	 */
1192	status = cadence_nand_set_access_width16(cdns_ctrl, false);
1193
1194	return status;
1195}
1196
1197#define TT_MAIN_OOB_AREAS	2
1198#define TT_RAW_PAGE		3
1199#define TT_BBM			4
1200#define TT_MAIN_OOB_AREA_EXT	5
1201
1202/* Prepare size of data to transfer. */
1203static void
1204cadence_nand_prepare_data_size(struct nand_chip *chip,
1205			       int transfer_type)
1206{
1207	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1208	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1209	struct mtd_info *mtd = nand_to_mtd(chip);
1210	u32 sec_size = 0, offset = 0, sec_cnt = 1;
1211	u32 last_sec_size = cdns_chip->sector_size;
1212	u32 data_ctrl_size = 0;
1213	u32 reg = 0;
1214
1215	if (cdns_ctrl->curr_trans_type == transfer_type)
1216		return;
1217
1218	switch (transfer_type) {
1219	case TT_MAIN_OOB_AREA_EXT:
1220		sec_cnt = cdns_chip->sector_count;
1221		sec_size = cdns_chip->sector_size;
1222		data_ctrl_size = cdns_chip->avail_oob_size;
1223		break;
1224	case TT_MAIN_OOB_AREAS:
1225		sec_cnt = cdns_chip->sector_count;
1226		last_sec_size = cdns_chip->sector_size
1227			+ cdns_chip->avail_oob_size;
1228		sec_size = cdns_chip->sector_size;
1229		break;
1230	case TT_RAW_PAGE:
1231		last_sec_size = mtd->writesize + mtd->oobsize;
1232		break;
1233	case TT_BBM:
1234		offset = mtd->writesize + cdns_chip->bbm_offs;
1235		last_sec_size = 8;
1236		break;
1237	}
1238
1239	reg = 0;
1240	reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1241	reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1242	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1243
1244	reg = 0;
1245	reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1246	reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1247	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1248
1249	if (cdns_ctrl->caps2.data_control_supp) {
1250		reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1251		reg &= ~CONTROL_DATA_CTRL_SIZE;
1252		reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1253		writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1254	}
1255
1256	cdns_ctrl->curr_trans_type = transfer_type;
1257}
1258
1259static int
1260cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1261			   int page, void *buf, void *ctrl_dat, u32 buf_size,
1262			   u32 ctrl_dat_size, enum dma_data_direction dir,
1263			   bool with_ecc)
1264{
1265	dma_addr_t dma_buf, dma_ctrl_dat = 0;
1266	u8 thread_nr = chip_nr;
1267	int status;
1268	u16 ctype;
1269
1270	if (dir == DMA_FROM_DEVICE)
1271		ctype = CDMA_CT_RD;
1272	else
1273		ctype = CDMA_CT_WR;
1274
1275	cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1276
1277	dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1278	if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1279		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1280		return -EIO;
1281	}
1282
1283	if (ctrl_dat && ctrl_dat_size) {
1284		dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1285					      ctrl_dat_size, dir);
1286		if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1287			dma_unmap_single(cdns_ctrl->dev, dma_buf,
1288					 buf_size, dir);
1289			dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1290			return -EIO;
1291		}
1292	}
1293
1294	cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1295				       dma_buf, dma_ctrl_dat, ctype);
1296
1297	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1298
1299	dma_unmap_single(cdns_ctrl->dev, dma_buf,
1300			 buf_size, dir);
1301
1302	if (ctrl_dat && ctrl_dat_size)
1303		dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1304				 ctrl_dat_size, dir);
1305	if (status)
1306		return status;
1307
1308	return cadence_nand_cdma_finish(cdns_ctrl);
1309}
1310
1311static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1312				     struct cadence_nand_timings *t)
1313{
1314	writel_relaxed(t->async_toggle_timings,
1315		       cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1316	writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1317	writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1318	writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1319
1320	if (cdns_ctrl->caps2.is_phy_type_dll)
1321		writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1322
1323	writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1324
1325	if (cdns_ctrl->caps2.is_phy_type_dll) {
1326		writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1327		writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1328		writel_relaxed(t->phy_dqs_timing,
1329			       cdns_ctrl->reg + PHY_DQS_TIMING);
1330		writel_relaxed(t->phy_gate_lpbk_ctrl,
1331			       cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1332		writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1333			       cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1334		writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1335	}
1336}
1337
1338static int cadence_nand_select_target(struct nand_chip *chip)
1339{
1340	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1341	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1342
1343	if (chip == cdns_ctrl->selected_chip)
1344		return 0;
1345
1346	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1347					1000000,
1348					CTRL_STATUS_CTRL_BUSY, true))
1349		return -ETIMEDOUT;
1350
1351	cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1352
1353	cadence_nand_set_ecc_strength(cdns_ctrl,
1354				      cdns_chip->corr_str_idx);
1355
1356	cadence_nand_set_erase_detection(cdns_ctrl, true,
1357					 chip->ecc.strength);
1358
1359	cdns_ctrl->curr_trans_type = -1;
1360	cdns_ctrl->selected_chip = chip;
1361
1362	return 0;
1363}
1364
1365static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1366{
1367	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1368	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1369	int status;
1370	u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1371
1372	cadence_nand_cdma_desc_prepare(cdns_ctrl,
1373				       cdns_chip->cs[chip->cur_cs],
1374				       page, 0, 0,
1375				       CDMA_CT_ERASE);
1376	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1377	if (status) {
1378		dev_err(cdns_ctrl->dev, "erase operation failed\n");
1379		return -EIO;
1380	}
1381
1382	status = cadence_nand_cdma_finish(cdns_ctrl);
1383	if (status)
1384		return status;
1385
1386	return 0;
1387}
1388
1389static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1390{
1391	int status;
1392	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1393	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1394	struct mtd_info *mtd = nand_to_mtd(chip);
1395
1396	cadence_nand_prepare_data_size(chip, TT_BBM);
1397
1398	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1399
1400	/*
1401	 * Read only bad block marker from offset
1402	 * defined by a memory manufacturer.
1403	 */
1404	status = cadence_nand_cdma_transfer(cdns_ctrl,
1405					    cdns_chip->cs[chip->cur_cs],
1406					    page, cdns_ctrl->buf, NULL,
1407					    mtd->oobsize,
1408					    0, DMA_FROM_DEVICE, false);
1409	if (status) {
1410		dev_err(cdns_ctrl->dev, "read BBM failed\n");
1411		return -EIO;
1412	}
1413
1414	memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1415
1416	return 0;
1417}
1418
1419static int cadence_nand_write_page(struct nand_chip *chip,
1420				   const u8 *buf, int oob_required,
1421				   int page)
1422{
1423	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1424	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1425	struct mtd_info *mtd = nand_to_mtd(chip);
1426	int status;
1427	u16 marker_val = 0xFFFF;
1428
1429	status = cadence_nand_select_target(chip);
1430	if (status)
1431		return status;
1432
1433	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1434					 mtd->writesize
1435					 + cdns_chip->bbm_offs,
1436					 1);
1437
1438	if (oob_required) {
1439		marker_val = *(u16 *)(chip->oob_poi
1440				      + cdns_chip->bbm_offs);
1441	} else {
1442		/* Set oob data to 0xFF. */
1443		memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1444		       cdns_chip->avail_oob_size);
1445	}
1446
1447	cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1448
1449	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1450
1451	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1452	    cdns_ctrl->caps2.data_control_supp) {
1453		u8 *oob;
1454
1455		if (oob_required)
1456			oob = chip->oob_poi;
1457		else
1458			oob = cdns_ctrl->buf + mtd->writesize;
1459
1460		status = cadence_nand_cdma_transfer(cdns_ctrl,
1461						    cdns_chip->cs[chip->cur_cs],
1462						    page, (void *)buf, oob,
1463						    mtd->writesize,
1464						    cdns_chip->avail_oob_size,
1465						    DMA_TO_DEVICE, true);
1466		if (status) {
1467			dev_err(cdns_ctrl->dev, "write page failed\n");
1468			return -EIO;
1469		}
1470
1471		return 0;
1472	}
1473
1474	if (oob_required) {
1475		/* Transfer the data to the oob area. */
1476		memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1477		       cdns_chip->avail_oob_size);
1478	}
1479
1480	memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1481
1482	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1483
1484	return cadence_nand_cdma_transfer(cdns_ctrl,
1485					  cdns_chip->cs[chip->cur_cs],
1486					  page, cdns_ctrl->buf, NULL,
1487					  mtd->writesize
1488					  + cdns_chip->avail_oob_size,
1489					  0, DMA_TO_DEVICE, true);
1490}
1491
1492static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1493{
1494	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1495	struct mtd_info *mtd = nand_to_mtd(chip);
1496
1497	memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1498
1499	return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1500}
1501
1502static int cadence_nand_write_page_raw(struct nand_chip *chip,
1503				       const u8 *buf, int oob_required,
1504				       int page)
1505{
1506	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1507	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1508	struct mtd_info *mtd = nand_to_mtd(chip);
1509	int writesize = mtd->writesize;
1510	int oobsize = mtd->oobsize;
1511	int ecc_steps = chip->ecc.steps;
1512	int ecc_size = chip->ecc.size;
1513	int ecc_bytes = chip->ecc.bytes;
1514	void *tmp_buf = cdns_ctrl->buf;
1515	int oob_skip = cdns_chip->bbm_len;
1516	size_t size = writesize + oobsize;
1517	int i, pos, len;
1518	int status = 0;
1519
1520	status = cadence_nand_select_target(chip);
1521	if (status)
1522		return status;
1523
1524	/*
1525	 * Fill the buffer with 0xff first except the full page transfer.
1526	 * This simplifies the logic.
1527	 */
1528	if (!buf || !oob_required)
1529		memset(tmp_buf, 0xff, size);
1530
1531	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1532
1533	/* Arrange the buffer for syndrome payload/ecc layout. */
1534	if (buf) {
1535		for (i = 0; i < ecc_steps; i++) {
1536			pos = i * (ecc_size + ecc_bytes);
1537			len = ecc_size;
1538
1539			if (pos >= writesize)
1540				pos += oob_skip;
1541			else if (pos + len > writesize)
1542				len = writesize - pos;
1543
1544			memcpy(tmp_buf + pos, buf, len);
1545			buf += len;
1546			if (len < ecc_size) {
1547				len = ecc_size - len;
1548				memcpy(tmp_buf + writesize + oob_skip, buf,
1549				       len);
1550				buf += len;
1551			}
1552		}
1553	}
1554
1555	if (oob_required) {
1556		const u8 *oob = chip->oob_poi;
1557		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1558			(cdns_chip->sector_size + chip->ecc.bytes)
1559			+ cdns_chip->sector_size + oob_skip;
1560
1561		/* BBM at the beginning of the OOB area. */
1562		memcpy(tmp_buf + writesize, oob, oob_skip);
1563
1564		/* OOB free. */
1565		memcpy(tmp_buf + oob_data_offset, oob,
1566		       cdns_chip->avail_oob_size);
1567		oob += cdns_chip->avail_oob_size;
1568
1569		/* OOB ECC. */
1570		for (i = 0; i < ecc_steps; i++) {
1571			pos = ecc_size + i * (ecc_size + ecc_bytes);
1572			if (i == (ecc_steps - 1))
1573				pos += cdns_chip->avail_oob_size;
1574
1575			len = ecc_bytes;
1576
1577			if (pos >= writesize)
1578				pos += oob_skip;
1579			else if (pos + len > writesize)
1580				len = writesize - pos;
1581
1582			memcpy(tmp_buf + pos, oob, len);
1583			oob += len;
1584			if (len < ecc_bytes) {
1585				len = ecc_bytes - len;
1586				memcpy(tmp_buf + writesize + oob_skip, oob,
1587				       len);
1588				oob += len;
1589			}
1590		}
1591	}
1592
1593	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1594
1595	return cadence_nand_cdma_transfer(cdns_ctrl,
1596					  cdns_chip->cs[chip->cur_cs],
1597					  page, cdns_ctrl->buf, NULL,
1598					  mtd->writesize +
1599					  mtd->oobsize,
1600					  0, DMA_TO_DEVICE, false);
1601}
1602
1603static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1604				      int page)
1605{
1606	return cadence_nand_write_page_raw(chip, NULL, true, page);
1607}
1608
1609static int cadence_nand_read_page(struct nand_chip *chip,
1610				  u8 *buf, int oob_required, int page)
1611{
1612	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1613	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1614	struct mtd_info *mtd = nand_to_mtd(chip);
1615	int status = 0;
1616	int ecc_err_count = 0;
1617
1618	status = cadence_nand_select_target(chip);
1619	if (status)
1620		return status;
1621
1622	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1623					 mtd->writesize
1624					 + cdns_chip->bbm_offs, 1);
1625
1626	/*
1627	 * If data buffer can be accessed by DMA and data_control feature
1628	 * is supported then transfer data and oob directly.
1629	 */
1630	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1631	    cdns_ctrl->caps2.data_control_supp) {
1632		u8 *oob;
1633
1634		if (oob_required)
1635			oob = chip->oob_poi;
1636		else
1637			oob = cdns_ctrl->buf + mtd->writesize;
1638
1639		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1640		status = cadence_nand_cdma_transfer(cdns_ctrl,
1641						    cdns_chip->cs[chip->cur_cs],
1642						    page, buf, oob,
1643						    mtd->writesize,
1644						    cdns_chip->avail_oob_size,
1645						    DMA_FROM_DEVICE, true);
1646	/* Otherwise use bounce buffer. */
1647	} else {
1648		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1649		status = cadence_nand_cdma_transfer(cdns_ctrl,
1650						    cdns_chip->cs[chip->cur_cs],
1651						    page, cdns_ctrl->buf,
1652						    NULL, mtd->writesize
1653						    + cdns_chip->avail_oob_size,
1654						    0, DMA_FROM_DEVICE, true);
1655
1656		memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1657		if (oob_required)
1658			memcpy(chip->oob_poi,
1659			       cdns_ctrl->buf + mtd->writesize,
1660			       mtd->oobsize);
1661	}
1662
1663	switch (status) {
1664	case STAT_ECC_UNCORR:
1665		mtd->ecc_stats.failed++;
1666		ecc_err_count++;
1667		break;
1668	case STAT_ECC_CORR:
1669		ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1670					  cdns_ctrl->cdma_desc->status);
1671		mtd->ecc_stats.corrected += ecc_err_count;
1672		break;
1673	case STAT_ERASED:
1674	case STAT_OK:
1675		break;
1676	default:
1677		dev_err(cdns_ctrl->dev, "read page failed\n");
1678		return -EIO;
1679	}
1680
1681	if (oob_required)
1682		if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1683			return -EIO;
1684
1685	return ecc_err_count;
1686}
1687
1688/* Reads OOB data from the device. */
1689static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1690{
1691	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1692
1693	return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1694}
1695
1696static int cadence_nand_read_page_raw(struct nand_chip *chip,
1697				      u8 *buf, int oob_required, int page)
1698{
1699	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1700	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1701	struct mtd_info *mtd = nand_to_mtd(chip);
1702	int oob_skip = cdns_chip->bbm_len;
1703	int writesize = mtd->writesize;
1704	int ecc_steps = chip->ecc.steps;
1705	int ecc_size = chip->ecc.size;
1706	int ecc_bytes = chip->ecc.bytes;
1707	void *tmp_buf = cdns_ctrl->buf;
1708	int i, pos, len;
1709	int status = 0;
1710
1711	status = cadence_nand_select_target(chip);
1712	if (status)
1713		return status;
1714
1715	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1716
1717	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1718	status = cadence_nand_cdma_transfer(cdns_ctrl,
1719					    cdns_chip->cs[chip->cur_cs],
1720					    page, cdns_ctrl->buf, NULL,
1721					    mtd->writesize
1722					    + mtd->oobsize,
1723					    0, DMA_FROM_DEVICE, false);
1724
1725	switch (status) {
1726	case STAT_ERASED:
1727	case STAT_OK:
1728		break;
1729	default:
1730		dev_err(cdns_ctrl->dev, "read raw page failed\n");
1731		return -EIO;
1732	}
1733
1734	/* Arrange the buffer for syndrome payload/ecc layout. */
1735	if (buf) {
1736		for (i = 0; i < ecc_steps; i++) {
1737			pos = i * (ecc_size + ecc_bytes);
1738			len = ecc_size;
1739
1740			if (pos >= writesize)
1741				pos += oob_skip;
1742			else if (pos + len > writesize)
1743				len = writesize - pos;
1744
1745			memcpy(buf, tmp_buf + pos, len);
1746			buf += len;
1747			if (len < ecc_size) {
1748				len = ecc_size - len;
1749				memcpy(buf, tmp_buf + writesize + oob_skip,
1750				       len);
1751				buf += len;
1752			}
1753		}
1754	}
1755
1756	if (oob_required) {
1757		u8 *oob = chip->oob_poi;
1758		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1759			(cdns_chip->sector_size + chip->ecc.bytes)
1760			+ cdns_chip->sector_size + oob_skip;
1761
1762		/* OOB free. */
1763		memcpy(oob, tmp_buf + oob_data_offset,
1764		       cdns_chip->avail_oob_size);
1765
1766		/* BBM at the beginning of the OOB area. */
1767		memcpy(oob, tmp_buf + writesize, oob_skip);
1768
1769		oob += cdns_chip->avail_oob_size;
1770
1771		/* OOB ECC */
1772		for (i = 0; i < ecc_steps; i++) {
1773			pos = ecc_size + i * (ecc_size + ecc_bytes);
1774			len = ecc_bytes;
1775
1776			if (i == (ecc_steps - 1))
1777				pos += cdns_chip->avail_oob_size;
1778
1779			if (pos >= writesize)
1780				pos += oob_skip;
1781			else if (pos + len > writesize)
1782				len = writesize - pos;
1783
1784			memcpy(oob, tmp_buf + pos, len);
1785			oob += len;
1786			if (len < ecc_bytes) {
1787				len = ecc_bytes - len;
1788				memcpy(oob, tmp_buf + writesize + oob_skip,
1789				       len);
1790				oob += len;
1791			}
1792		}
1793	}
1794
1795	return 0;
1796}
1797
1798static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1799				     int page)
1800{
1801	return cadence_nand_read_page_raw(chip, NULL, true, page);
1802}
1803
1804static void cadence_nand_slave_dma_transfer_finished(void *data)
1805{
1806	struct completion *finished = data;
1807
1808	complete(finished);
1809}
1810
1811static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1812					   void *buf,
1813					   dma_addr_t dev_dma, size_t len,
1814					   enum dma_data_direction dir)
1815{
1816	DECLARE_COMPLETION_ONSTACK(finished);
1817	struct dma_chan *chan;
1818	struct dma_device *dma_dev;
1819	dma_addr_t src_dma, dst_dma, buf_dma;
1820	struct dma_async_tx_descriptor *tx;
1821	dma_cookie_t cookie;
1822
1823	chan = cdns_ctrl->dmac;
1824	dma_dev = chan->device;
1825
1826	buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1827	if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1828		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1829		goto err;
1830	}
1831
1832	if (dir == DMA_FROM_DEVICE) {
1833		src_dma = cdns_ctrl->io.dma;
1834		dst_dma = buf_dma;
1835	} else {
1836		src_dma = buf_dma;
1837		dst_dma = cdns_ctrl->io.dma;
1838	}
1839
1840	tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1841				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1842	if (!tx) {
1843		dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1844		goto err_unmap;
1845	}
1846
1847	tx->callback = cadence_nand_slave_dma_transfer_finished;
1848	tx->callback_param = &finished;
1849
1850	cookie = dmaengine_submit(tx);
1851	if (dma_submit_error(cookie)) {
1852		dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1853		goto err_unmap;
1854	}
1855
1856	dma_async_issue_pending(cdns_ctrl->dmac);
1857	wait_for_completion(&finished);
1858
1859	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1860
1861	return 0;
1862
1863err_unmap:
1864	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1865
1866err:
1867	dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1868
1869	return -EIO;
1870}
1871
1872static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1873				 u8 *buf, int len)
1874{
1875	u8 thread_nr = 0;
1876	u32 sdma_size;
1877	int status;
1878
1879	/* Wait until slave DMA interface is ready to data transfer. */
1880	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1881	if (status)
1882		return status;
1883
1884	if (!cdns_ctrl->caps1->has_dma) {
1885		int len_in_words = len >> 2;
1886
1887		/* read alingment data */
1888		ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1889		if (sdma_size > len) {
1890			/* read rest data from slave DMA interface if any */
1891			ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
1892				     sdma_size / 4 - len_in_words);
1893			/* copy rest of data */
1894			memcpy(buf + (len_in_words << 2), cdns_ctrl->buf,
1895			       len - (len_in_words << 2));
1896		}
1897		return 0;
1898	}
1899
1900	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1901		status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1902							 cdns_ctrl->io.dma,
1903							 len, DMA_FROM_DEVICE);
1904		if (status == 0)
1905			return 0;
1906
1907		dev_warn(cdns_ctrl->dev,
1908			 "Slave DMA transfer failed. Try again using bounce buffer.");
1909	}
1910
1911	/* If DMA transfer is not possible or failed then use bounce buffer. */
1912	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1913						 cdns_ctrl->io.dma,
1914						 sdma_size, DMA_FROM_DEVICE);
1915
1916	if (status) {
1917		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1918		return status;
1919	}
1920
1921	memcpy(buf, cdns_ctrl->buf, len);
1922
1923	return 0;
1924}
1925
1926static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1927				  const u8 *buf, int len)
1928{
1929	u8 thread_nr = 0;
1930	u32 sdma_size;
1931	int status;
1932
1933	/* Wait until slave DMA interface is ready to data transfer. */
1934	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1935	if (status)
1936		return status;
1937
1938	if (!cdns_ctrl->caps1->has_dma) {
1939		int len_in_words = len >> 2;
1940
1941		iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1942		if (sdma_size > len) {
1943			/* copy rest of data */
1944			memcpy(cdns_ctrl->buf, buf + (len_in_words << 2),
1945			       len - (len_in_words << 2));
1946			/* write all expected by nand controller data */
1947			iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
1948				      sdma_size / 4 - len_in_words);
1949		}
1950
1951		return 0;
1952	}
1953
1954	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1955		status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
1956							 cdns_ctrl->io.dma,
1957							 len, DMA_TO_DEVICE);
1958		if (status == 0)
1959			return 0;
1960
1961		dev_warn(cdns_ctrl->dev,
1962			 "Slave DMA transfer failed. Try again using bounce buffer.");
1963	}
1964
1965	/* If DMA transfer is not possible or failed then use bounce buffer. */
1966	memcpy(cdns_ctrl->buf, buf, len);
1967
1968	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1969						 cdns_ctrl->io.dma,
1970						 sdma_size, DMA_TO_DEVICE);
1971
1972	if (status)
1973		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1974
1975	return status;
1976}
1977
1978static int cadence_nand_force_byte_access(struct nand_chip *chip,
1979					  bool force_8bit)
1980{
1981	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1982	int status;
1983
1984	/*
1985	 * Callers of this function do not verify if the NAND is using a 16-bit
1986	 * an 8-bit bus for normal operations, so we need to take care of that
1987	 * here by leaving the configuration unchanged if the NAND does not have
1988	 * the NAND_BUSWIDTH_16 flag set.
1989	 */
1990	if (!(chip->options & NAND_BUSWIDTH_16))
1991		return 0;
1992
1993	status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
1994
1995	return status;
1996}
1997
1998static int cadence_nand_cmd_opcode(struct nand_chip *chip,
1999				   const struct nand_subop *subop)
2000{
2001	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2002	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2003	const struct nand_op_instr *instr;
2004	unsigned int op_id = 0;
2005	u64 mini_ctrl_cmd = 0;
2006	int ret;
2007
2008	instr = &subop->instrs[op_id];
2009
2010	if (instr->delay_ns > 0)
2011		mini_ctrl_cmd |= GCMD_LAY_TWB;
2012
2013	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2014				    GCMD_LAY_INSTR_CMD);
2015	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2016				    instr->ctx.cmd.opcode);
2017
2018	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2019					    cdns_chip->cs[chip->cur_cs],
2020					    mini_ctrl_cmd);
2021	if (ret)
2022		dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2023			instr->ctx.cmd.opcode);
2024
2025	return ret;
2026}
2027
2028static int cadence_nand_cmd_address(struct nand_chip *chip,
2029				    const struct nand_subop *subop)
2030{
2031	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2032	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2033	const struct nand_op_instr *instr;
2034	unsigned int op_id = 0;
2035	u64 mini_ctrl_cmd = 0;
2036	unsigned int offset, naddrs;
2037	u64 address = 0;
2038	const u8 *addrs;
2039	int ret;
2040	int i;
2041
2042	instr = &subop->instrs[op_id];
2043
2044	if (instr->delay_ns > 0)
2045		mini_ctrl_cmd |= GCMD_LAY_TWB;
2046
2047	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2048				    GCMD_LAY_INSTR_ADDR);
2049
2050	offset = nand_subop_get_addr_start_off(subop, op_id);
2051	naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2052	addrs = &instr->ctx.addr.addrs[offset];
2053
2054	for (i = 0; i < naddrs; i++)
2055		address |= (u64)addrs[i] << (8 * i);
2056
2057	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2058				    address);
2059	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2060				    naddrs - 1);
2061
2062	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2063					    cdns_chip->cs[chip->cur_cs],
2064					    mini_ctrl_cmd);
2065	if (ret)
2066		dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2067
2068	return ret;
2069}
2070
2071static int cadence_nand_cmd_erase(struct nand_chip *chip,
2072				  const struct nand_subop *subop)
2073{
2074	unsigned int op_id;
2075
2076	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2077		int i;
2078		const struct nand_op_instr *instr = NULL;
2079		unsigned int offset, naddrs;
2080		const u8 *addrs;
2081		u32 page = 0;
2082
2083		instr = &subop->instrs[1];
2084		offset = nand_subop_get_addr_start_off(subop, 1);
2085		naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2086		addrs = &instr->ctx.addr.addrs[offset];
2087
2088		for (i = 0; i < naddrs; i++)
2089			page |= (u32)addrs[i] << (8 * i);
2090
2091		return cadence_nand_erase(chip, page);
2092	}
2093
2094	/*
2095	 * If it is not an erase operation then handle operation
2096	 * by calling exec_op function.
2097	 */
2098	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2099		int ret;
2100		const struct nand_operation nand_op = {
2101			.cs = chip->cur_cs,
2102			.instrs =  &subop->instrs[op_id],
2103			.ninstrs = 1};
2104		ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2105		if (ret)
2106			return ret;
2107	}
2108
2109	return 0;
2110}
2111
2112static int cadence_nand_cmd_data(struct nand_chip *chip,
2113				 const struct nand_subop *subop)
2114{
2115	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2116	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2117	const struct nand_op_instr *instr;
2118	unsigned int offset, op_id = 0;
2119	u64 mini_ctrl_cmd = 0;
2120	int len = 0;
2121	int ret;
2122
2123	instr = &subop->instrs[op_id];
2124
2125	if (instr->delay_ns > 0)
2126		mini_ctrl_cmd |= GCMD_LAY_TWB;
2127
2128	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2129				    GCMD_LAY_INSTR_DATA);
2130
2131	if (instr->type == NAND_OP_DATA_OUT_INSTR)
2132		mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2133					    GCMD_DIR_WRITE);
2134
2135	len = nand_subop_get_data_len(subop, op_id);
2136	offset = nand_subop_get_data_start_off(subop, op_id);
2137	mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2138	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2139	if (instr->ctx.data.force_8bit) {
2140		ret = cadence_nand_force_byte_access(chip, true);
2141		if (ret) {
2142			dev_err(cdns_ctrl->dev,
2143				"cannot change byte access generic data cmd failed\n");
2144			return ret;
2145		}
2146	}
2147
2148	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2149					    cdns_chip->cs[chip->cur_cs],
2150					    mini_ctrl_cmd);
2151	if (ret) {
2152		dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2153		return ret;
2154	}
2155
2156	if (instr->type == NAND_OP_DATA_IN_INSTR) {
2157		void *buf = instr->ctx.data.buf.in + offset;
2158
2159		ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2160	} else {
2161		const void *buf = instr->ctx.data.buf.out + offset;
2162
2163		ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2164	}
2165
2166	if (ret) {
2167		dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2168		return ret;
2169	}
2170
2171	if (instr->ctx.data.force_8bit) {
2172		ret = cadence_nand_force_byte_access(chip, false);
2173		if (ret) {
2174			dev_err(cdns_ctrl->dev,
2175				"cannot change byte access generic data cmd failed\n");
2176		}
2177	}
2178
2179	return ret;
2180}
2181
2182static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2183				    const struct nand_subop *subop)
2184{
2185	int status;
2186	unsigned int op_id = 0;
2187	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2188	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2189	const struct nand_op_instr *instr = &subop->instrs[op_id];
2190	u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2191
2192	status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2193					     timeout_us,
2194					     BIT(cdns_chip->cs[chip->cur_cs]),
2195					     false);
2196	return status;
2197}
2198
2199static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2200	NAND_OP_PARSER_PATTERN(
2201		cadence_nand_cmd_erase,
2202		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2203		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2204		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2205		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2206	NAND_OP_PARSER_PATTERN(
2207		cadence_nand_cmd_opcode,
2208		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2209	NAND_OP_PARSER_PATTERN(
2210		cadence_nand_cmd_address,
2211		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2212	NAND_OP_PARSER_PATTERN(
2213		cadence_nand_cmd_data,
2214		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2215	NAND_OP_PARSER_PATTERN(
2216		cadence_nand_cmd_data,
2217		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2218	NAND_OP_PARSER_PATTERN(
2219		cadence_nand_cmd_waitrdy,
2220		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2221	);
2222
2223static int cadence_nand_exec_op(struct nand_chip *chip,
2224				const struct nand_operation *op,
2225				bool check_only)
2226{
2227	if (!check_only) {
2228		int status = cadence_nand_select_target(chip);
2229
2230		if (status)
2231			return status;
2232	}
2233
2234	return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2235				      check_only);
2236}
2237
2238static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2239				       struct mtd_oob_region *oobregion)
2240{
2241	struct nand_chip *chip = mtd_to_nand(mtd);
2242	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2243
2244	if (section)
2245		return -ERANGE;
2246
2247	oobregion->offset = cdns_chip->bbm_len;
2248	oobregion->length = cdns_chip->avail_oob_size
2249		- cdns_chip->bbm_len;
2250
2251	return 0;
2252}
2253
2254static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2255				      struct mtd_oob_region *oobregion)
2256{
2257	struct nand_chip *chip = mtd_to_nand(mtd);
2258	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2259
2260	if (section)
2261		return -ERANGE;
2262
2263	oobregion->offset = cdns_chip->avail_oob_size;
2264	oobregion->length = chip->ecc.total;
2265
2266	return 0;
2267}
2268
2269static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2270	.free = cadence_nand_ooblayout_free,
2271	.ecc = cadence_nand_ooblayout_ecc,
2272};
2273
2274static int calc_cycl(u32 timing, u32 clock)
2275{
2276	if (timing == 0 || clock == 0)
2277		return 0;
2278
2279	if ((timing % clock) > 0)
2280		return timing / clock;
2281	else
2282		return timing / clock - 1;
2283}
2284
2285/* Calculate max data valid window. */
2286static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2287				u32 board_delay_skew_min, u32 ext_mode)
2288{
2289	if (ext_mode == 0)
2290		clk_period /= 2;
2291
2292	return (trp_cnt + 1) * clk_period + trhoh_min +
2293		board_delay_skew_min;
2294}
2295
2296/* Calculate data valid window. */
2297static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2298			    u32 trea_max, u32 ext_mode)
2299{
2300	if (ext_mode == 0)
2301		clk_period /= 2;
2302
2303	return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2304}
2305
2306static int
2307cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
2308			     const struct nand_interface_config *conf)
2309{
2310	const struct nand_sdr_timings *sdr;
2311	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2312	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2313	struct cadence_nand_timings *t = &cdns_chip->timings;
2314	u32 reg;
2315	u32 board_delay = cdns_ctrl->board_delay;
2316	u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2317					    cdns_ctrl->nf_clk_rate);
2318	u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2319	u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2320	u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2321	u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2322	u32 if_skew = cdns_ctrl->caps1->if_skew;
2323	u32 board_delay_skew_min = board_delay - if_skew;
2324	u32 board_delay_skew_max = board_delay + if_skew;
2325	u32 dqs_sampl_res, phony_dqs_mod;
2326	u32 tdvw, tdvw_min, tdvw_max;
2327	u32 ext_rd_mode, ext_wr_mode;
2328	u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2329	u32 sampling_point;
2330
2331	sdr = nand_get_sdr_timings(conf);
2332	if (IS_ERR(sdr))
2333		return PTR_ERR(sdr);
2334
2335	memset(t, 0, sizeof(*t));
2336	/* Sampling point calculation. */
2337
2338	if (cdns_ctrl->caps2.is_phy_type_dll)
2339		phony_dqs_mod = 2;
2340	else
2341		phony_dqs_mod = 1;
2342
2343	dqs_sampl_res = clk_period / phony_dqs_mod;
2344
2345	tdvw_min = sdr->tREA_max + board_delay_skew_max;
2346	/*
2347	 * The idea of those calculation is to get the optimum value
2348	 * for tRP and tRH timings. If it is NOT possible to sample data
2349	 * with optimal tRP/tRH settings, the parameters will be extended.
2350	 * If clk_period is 50ns (the lowest value) this condition is met
2351	 * for asynchronous timing modes 1, 2, 3, 4 and 5.
2352	 * If clk_period is 20ns the condition is met only
2353	 * for asynchronous timing mode 5.
2354	 */
2355	if (sdr->tRC_min <= clk_period &&
2356	    sdr->tRP_min <= (clk_period / 2) &&
2357	    sdr->tREH_min <= (clk_period / 2)) {
2358		/* Performance mode. */
2359		ext_rd_mode = 0;
2360		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2361				 sdr->tREA_max, ext_rd_mode);
2362		tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2363					 board_delay_skew_min,
2364					 ext_rd_mode);
2365		/*
2366		 * Check if data valid window and sampling point can be found
2367		 * and is not on the edge (ie. we have hold margin).
2368		 * If not extend the tRP timings.
2369		 */
2370		if (tdvw > 0) {
2371			if (tdvw_max <= tdvw_min ||
2372			    (tdvw_max % dqs_sampl_res) == 0) {
2373				/*
2374				 * No valid sampling point so the RE pulse need
2375				 * to be widen widening by half clock cycle.
2376				 */
2377				ext_rd_mode = 1;
2378			}
2379		} else {
2380			/*
2381			 * There is no valid window
2382			 * to be able to sample data the tRP need to be widen.
2383			 * Very safe calculations are performed here.
2384			 */
2385			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2386				   + dqs_sampl_res) / clk_period;
2387			ext_rd_mode = 1;
2388		}
2389
2390	} else {
2391		/* Extended read mode. */
2392		u32 trh;
2393
2394		ext_rd_mode = 1;
2395		trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2396		trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2397		if (sdr->tREH_min >= trh)
2398			trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2399		else
2400			trh_cnt = calc_cycl(trh, clk_period);
2401
2402		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2403				 sdr->tREA_max, ext_rd_mode);
2404		/*
2405		 * Check if data valid window and sampling point can be found
2406		 * or if it is at the edge check if previous is valid
2407		 * - if not extend the tRP timings.
2408		 */
2409		if (tdvw > 0) {
2410			tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2411						 sdr->tRHOH_min,
2412						 board_delay_skew_min,
2413						 ext_rd_mode);
2414
2415			if ((((tdvw_max / dqs_sampl_res)
2416			      * dqs_sampl_res) <= tdvw_min) ||
2417			    (((tdvw_max % dqs_sampl_res) == 0) &&
2418			     (((tdvw_max / dqs_sampl_res - 1)
2419			       * dqs_sampl_res) <= tdvw_min))) {
2420				/*
2421				 * Data valid window width is lower than
2422				 * sampling resolution and do not hit any
2423				 * sampling point to be sure the sampling point
2424				 * will be found the RE low pulse width will be
2425				 *  extended by one clock cycle.
2426				 */
2427				trp_cnt = trp_cnt + 1;
2428			}
2429		} else {
2430			/*
2431			 * There is no valid window to be able to sample data.
2432			 * The tRP need to be widen.
2433			 * Very safe calculations are performed here.
2434			 */
2435			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2436				   + dqs_sampl_res) / clk_period;
2437		}
2438	}
2439
2440	tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2441				 sdr->tRHOH_min,
2442				 board_delay_skew_min, ext_rd_mode);
2443
2444	if (sdr->tWC_min <= clk_period &&
2445	    (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2446	    (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2447		ext_wr_mode = 0;
2448	} else {
2449		u32 twh;
2450
2451		ext_wr_mode = 1;
2452		twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2453		if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2454			twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2455					    clk_period);
2456
2457		twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2458		if (sdr->tWH_min >= twh)
2459			twh = sdr->tWH_min;
2460
2461		twh_cnt = calc_cycl(twh + if_skew, clk_period);
2462	}
2463
2464	reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2465	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2466	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2467	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2468	t->async_toggle_timings = reg;
2469	dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2470
2471	tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2472	tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2473	twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2474	trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2475	reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2476
2477	/*
2478	 * If timing exceeds delay field in timing register
2479	 * then use maximum value.
2480	 */
2481	if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2482		reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2483	else
2484		reg |= TIMINGS0_TCCS;
2485
2486	reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2487	reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2488	t->timings0 = reg;
2489	dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2490
2491	/* The following is related to single signal so skew is not needed. */
2492	trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2493	trhz_cnt = trhz_cnt + 1;
2494	twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2495	/*
2496	 * Because of the two stage syncflop the value must be increased by 3
2497	 * first value is related with sync, second value is related
2498	 * with output if delay.
2499	 */
2500	twb_cnt = twb_cnt + 3 + 5;
2501	/*
2502	 * The following is related to the we edge of the random data input
2503	 * sequence so skew is not needed.
2504	 */
2505	tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2506	reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2507	reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2508	reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2509	t->timings1 = reg;
2510	dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2511
2512	tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2513	if (tfeat_cnt < twb_cnt)
2514		tfeat_cnt = twb_cnt;
2515
2516	tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2517	tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2518
2519	reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2520	reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2521	reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2522	t->timings2 = reg;
2523	dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2524
2525	if (cdns_ctrl->caps2.is_phy_type_dll) {
2526		reg = DLL_PHY_CTRL_DLL_RST_N;
2527		if (ext_wr_mode)
2528			reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2529		if (ext_rd_mode)
2530			reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2531
2532		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2533		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2534		t->dll_phy_ctrl = reg;
2535		dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2536	}
2537
2538	/* Sampling point calculation. */
2539	if ((tdvw_max % dqs_sampl_res) > 0)
2540		sampling_point = tdvw_max / dqs_sampl_res;
2541	else
2542		sampling_point = (tdvw_max / dqs_sampl_res - 1);
2543
2544	if (sampling_point * dqs_sampl_res > tdvw_min) {
2545		dll_phy_dqs_timing =
2546			FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2547		dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2548		phony_dqs_timing = sampling_point / phony_dqs_mod;
2549
2550		if ((sampling_point % 2) > 0) {
2551			dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2552			if ((tdvw_max % dqs_sampl_res) == 0)
2553				/*
2554				 * Calculation for sampling point at the edge
2555				 * of data and being odd number.
2556				 */
2557				phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2558					/ phony_dqs_mod - 1;
2559
2560			if (!cdns_ctrl->caps2.is_phy_type_dll)
2561				phony_dqs_timing--;
2562
2563		} else {
2564			phony_dqs_timing--;
2565		}
2566		rd_del_sel = phony_dqs_timing + 3;
2567	} else {
2568		dev_warn(cdns_ctrl->dev,
2569			 "ERROR : cannot find valid sampling point\n");
2570	}
2571
2572	reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2573	if (cdns_ctrl->caps2.is_phy_type_dll)
2574		reg  |= PHY_CTRL_SDR_DQS;
2575	t->phy_ctrl = reg;
2576	dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2577
2578	if (cdns_ctrl->caps2.is_phy_type_dll) {
2579		dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2580		dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2581		dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2582			dll_phy_dqs_timing);
2583		t->phy_dqs_timing = dll_phy_dqs_timing;
2584
2585		reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2586		dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2587			reg);
2588		t->phy_gate_lpbk_ctrl = reg;
2589
2590		dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2591			PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2592		dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2593	}
2594
2595	return 0;
2596}
2597
2598static int cadence_nand_attach_chip(struct nand_chip *chip)
2599{
2600	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2601	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2602	u32 ecc_size;
2603	struct mtd_info *mtd = nand_to_mtd(chip);
2604	int ret;
2605
2606	if (chip->options & NAND_BUSWIDTH_16) {
2607		ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2608		if (ret)
2609			return ret;
2610	}
2611
2612	chip->bbt_options |= NAND_BBT_USE_FLASH;
2613	chip->bbt_options |= NAND_BBT_NO_OOB;
2614	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2615
2616	chip->options |= NAND_NO_SUBPAGE_WRITE;
2617
2618	cdns_chip->bbm_offs = chip->badblockpos;
2619	cdns_chip->bbm_offs &= ~0x01;
2620	/* this value should be even number */
2621	cdns_chip->bbm_len = 2;
2622
2623	ret = nand_ecc_choose_conf(chip,
2624				   &cdns_ctrl->ecc_caps,
2625				   mtd->oobsize - cdns_chip->bbm_len);
2626	if (ret) {
2627		dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2628		return ret;
2629	}
2630
2631	dev_dbg(cdns_ctrl->dev,
2632		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2633		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2634
2635	/* Error correction configuration. */
2636	cdns_chip->sector_size = chip->ecc.size;
2637	cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2638	ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2639
2640	cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2641
2642	if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
2643		cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
2644
2645	if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2646	    > mtd->oobsize)
2647		cdns_chip->avail_oob_size -= 4;
2648
2649	ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2650	if (ret < 0)
2651		return -EINVAL;
2652
2653	cdns_chip->corr_str_idx = (u8)ret;
2654
2655	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2656					1000000,
2657					CTRL_STATUS_CTRL_BUSY, true))
2658		return -ETIMEDOUT;
2659
2660	cadence_nand_set_ecc_strength(cdns_ctrl,
2661				      cdns_chip->corr_str_idx);
2662
2663	cadence_nand_set_erase_detection(cdns_ctrl, true,
2664					 chip->ecc.strength);
2665
2666	/* Override the default read operations. */
2667	chip->ecc.read_page = cadence_nand_read_page;
2668	chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2669	chip->ecc.write_page = cadence_nand_write_page;
2670	chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2671	chip->ecc.read_oob = cadence_nand_read_oob;
2672	chip->ecc.write_oob = cadence_nand_write_oob;
2673	chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2674	chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2675
2676	if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2677		cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2678
2679	/* Is 32-bit DMA supported? */
2680	ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2681	if (ret) {
2682		dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2683		return ret;
2684	}
2685
2686	mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2687
2688	return 0;
2689}
2690
2691static const struct nand_controller_ops cadence_nand_controller_ops = {
2692	.attach_chip = cadence_nand_attach_chip,
2693	.exec_op = cadence_nand_exec_op,
2694	.setup_interface = cadence_nand_setup_interface,
2695};
2696
2697static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2698				  struct device_node *np)
2699{
2700	struct cdns_nand_chip *cdns_chip;
2701	struct mtd_info *mtd;
2702	struct nand_chip *chip;
2703	int nsels, ret, i;
2704	u32 cs;
2705
2706	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2707	if (nsels <= 0) {
2708		dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2709		return -EINVAL;
2710	}
2711
2712	/* Allocate the nand chip structure. */
2713	cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2714				 (nsels * sizeof(u8)),
2715				 GFP_KERNEL);
2716	if (!cdns_chip) {
2717		dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2718		return -ENOMEM;
2719	}
2720
2721	cdns_chip->nsels = nsels;
2722
2723	for (i = 0; i < nsels; i++) {
2724		/* Retrieve CS id. */
2725		ret = of_property_read_u32_index(np, "reg", i, &cs);
2726		if (ret) {
2727			dev_err(cdns_ctrl->dev,
2728				"could not retrieve reg property: %d\n",
2729				ret);
2730			return ret;
2731		}
2732
2733		if (cs >= cdns_ctrl->caps2.max_banks) {
2734			dev_err(cdns_ctrl->dev,
2735				"invalid reg value: %u (max CS = %d)\n",
2736				cs, cdns_ctrl->caps2.max_banks);
2737			return -EINVAL;
2738		}
2739
2740		if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2741			dev_err(cdns_ctrl->dev,
2742				"CS %d already assigned\n", cs);
2743			return -EINVAL;
2744		}
2745
2746		cdns_chip->cs[i] = cs;
2747	}
2748
2749	chip = &cdns_chip->chip;
2750	chip->controller = &cdns_ctrl->controller;
2751	nand_set_flash_node(chip, np);
2752
2753	mtd = nand_to_mtd(chip);
2754	mtd->dev.parent = cdns_ctrl->dev;
2755
2756	/*
2757	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2758	 * in the DT node, this entry will be overwritten in nand_scan_ident().
2759	 */
2760	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2761
2762	ret = nand_scan(chip, cdns_chip->nsels);
2763	if (ret) {
2764		dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2765		return ret;
2766	}
2767
2768	ret = mtd_device_register(mtd, NULL, 0);
2769	if (ret) {
2770		dev_err(cdns_ctrl->dev,
2771			"failed to register mtd device: %d\n", ret);
2772		nand_cleanup(chip);
2773		return ret;
2774	}
2775
2776	list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2777
2778	return 0;
2779}
2780
2781static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2782{
2783	struct cdns_nand_chip *entry, *temp;
2784	struct nand_chip *chip;
2785	int ret;
2786
2787	list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2788		chip = &entry->chip;
2789		ret = mtd_device_unregister(nand_to_mtd(chip));
2790		WARN_ON(ret);
2791		nand_cleanup(chip);
2792		list_del(&entry->node);
2793	}
2794}
2795
2796static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2797{
2798	struct device_node *np = cdns_ctrl->dev->of_node;
2799	struct device_node *nand_np;
2800	int max_cs = cdns_ctrl->caps2.max_banks;
2801	int nchips, ret;
2802
2803	nchips = of_get_child_count(np);
2804
2805	if (nchips > max_cs) {
2806		dev_err(cdns_ctrl->dev,
2807			"too many NAND chips: %d (max = %d CS)\n",
2808			nchips, max_cs);
2809		return -EINVAL;
2810	}
2811
2812	for_each_child_of_node(np, nand_np) {
2813		ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2814		if (ret) {
2815			of_node_put(nand_np);
2816			cadence_nand_chips_cleanup(cdns_ctrl);
2817			return ret;
2818		}
2819	}
2820
2821	return 0;
2822}
2823
2824static void
2825cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2826{
2827	/* Disable interrupts. */
2828	writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2829}
2830
2831static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2832{
2833	dma_cap_mask_t mask;
2834	int ret;
2835
2836	cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2837						  sizeof(*cdns_ctrl->cdma_desc),
2838						  &cdns_ctrl->dma_cdma_desc,
2839						  GFP_KERNEL);
2840	if (!cdns_ctrl->dma_cdma_desc)
2841		return -ENOMEM;
2842
2843	cdns_ctrl->buf_size = SZ_16K;
2844	cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2845	if (!cdns_ctrl->buf) {
2846		ret = -ENOMEM;
2847		goto free_buf_desc;
2848	}
2849
2850	if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2851			     IRQF_SHARED, "cadence-nand-controller",
2852			     cdns_ctrl)) {
2853		dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2854		ret = -ENODEV;
2855		goto free_buf;
2856	}
2857
2858	spin_lock_init(&cdns_ctrl->irq_lock);
2859	init_completion(&cdns_ctrl->complete);
2860
2861	ret = cadence_nand_hw_init(cdns_ctrl);
2862	if (ret)
2863		goto disable_irq;
2864
2865	dma_cap_zero(mask);
2866	dma_cap_set(DMA_MEMCPY, mask);
2867
2868	if (cdns_ctrl->caps1->has_dma) {
2869		cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2870		if (!cdns_ctrl->dmac) {
2871			dev_err(cdns_ctrl->dev,
2872				"Unable to get a DMA channel\n");
2873			ret = -EBUSY;
2874			goto disable_irq;
2875		}
2876	}
2877
2878	nand_controller_init(&cdns_ctrl->controller);
2879	INIT_LIST_HEAD(&cdns_ctrl->chips);
2880
2881	cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2882	cdns_ctrl->curr_corr_str_idx = 0xFF;
2883
2884	ret = cadence_nand_chips_init(cdns_ctrl);
2885	if (ret) {
2886		dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2887			ret);
2888		goto dma_release_chnl;
2889	}
2890
2891	kfree(cdns_ctrl->buf);
2892	cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2893	if (!cdns_ctrl->buf) {
2894		ret = -ENOMEM;
2895		goto dma_release_chnl;
2896	}
2897
2898	return 0;
2899
2900dma_release_chnl:
2901	if (cdns_ctrl->dmac)
2902		dma_release_channel(cdns_ctrl->dmac);
2903
2904disable_irq:
2905	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2906
2907free_buf:
2908	kfree(cdns_ctrl->buf);
2909
2910free_buf_desc:
2911	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2912			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2913
2914	return ret;
2915}
2916
2917/* Driver exit point. */
2918static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2919{
2920	cadence_nand_chips_cleanup(cdns_ctrl);
2921	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2922	kfree(cdns_ctrl->buf);
2923	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2924			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2925
2926	if (cdns_ctrl->dmac)
2927		dma_release_channel(cdns_ctrl->dmac);
2928}
2929
2930struct cadence_nand_dt {
2931	struct cdns_nand_ctrl cdns_ctrl;
2932	struct clk *clk;
2933};
2934
2935static const struct cadence_nand_dt_devdata cadence_nand_default = {
2936	.if_skew = 0,
2937	.has_dma = 1,
2938};
2939
2940static const struct of_device_id cadence_nand_dt_ids[] = {
2941	{
2942		.compatible = "cdns,hp-nfc",
2943		.data = &cadence_nand_default
2944	}, {}
2945};
2946
2947MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2948
2949static int cadence_nand_dt_probe(struct platform_device *ofdev)
2950{
2951	struct resource *res;
2952	struct cadence_nand_dt *dt;
2953	struct cdns_nand_ctrl *cdns_ctrl;
2954	int ret;
2955	const struct of_device_id *of_id;
2956	const struct cadence_nand_dt_devdata *devdata;
2957	u32 val;
2958
2959	of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
2960	if (of_id) {
2961		ofdev->id_entry = of_id->data;
2962		devdata = of_id->data;
2963	} else {
2964		pr_err("Failed to find the right device id.\n");
2965		return -ENOMEM;
2966	}
2967
2968	dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
2969	if (!dt)
2970		return -ENOMEM;
2971
2972	cdns_ctrl = &dt->cdns_ctrl;
2973	cdns_ctrl->caps1 = devdata;
2974
2975	cdns_ctrl->dev = &ofdev->dev;
2976	cdns_ctrl->irq = platform_get_irq(ofdev, 0);
2977	if (cdns_ctrl->irq < 0)
2978		return cdns_ctrl->irq;
2979
2980	dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
2981
2982	cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
2983	if (IS_ERR(cdns_ctrl->reg))
2984		return PTR_ERR(cdns_ctrl->reg);
2985
2986	cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
2987	if (IS_ERR(cdns_ctrl->io.virt))
2988		return PTR_ERR(cdns_ctrl->io.virt);
2989	cdns_ctrl->io.dma = res->start;
2990
2991	dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
2992	if (IS_ERR(dt->clk))
2993		return PTR_ERR(dt->clk);
2994
2995	cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
2996
2997	ret = of_property_read_u32(ofdev->dev.of_node,
2998				   "cdns,board-delay-ps", &val);
2999	if (ret) {
3000		val = 4830;
3001		dev_info(cdns_ctrl->dev,
3002			 "missing cdns,board-delay-ps property, %d was set\n",
3003			 val);
3004	}
3005	cdns_ctrl->board_delay = val;
3006
3007	ret = cadence_nand_init(cdns_ctrl);
3008	if (ret)
3009		return ret;
3010
3011	platform_set_drvdata(ofdev, dt);
3012	return 0;
3013}
3014
3015static int cadence_nand_dt_remove(struct platform_device *ofdev)
3016{
3017	struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3018
3019	cadence_nand_remove(&dt->cdns_ctrl);
3020
3021	return 0;
3022}
3023
3024static struct platform_driver cadence_nand_dt_driver = {
3025	.probe		= cadence_nand_dt_probe,
3026	.remove		= cadence_nand_dt_remove,
3027	.driver		= {
3028		.name	= "cadence-nand-controller",
3029		.of_match_table = cadence_nand_dt_ids,
3030	},
3031};
3032
3033module_platform_driver(cadence_nand_dt_driver);
3034
3035MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3036MODULE_LICENSE("GPL v2");
3037MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3038
3039