1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright © 2010-2015 Broadcom Corporation
4 */
5
6#include <linux/clk.h>
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/delay.h>
10#include <linux/device.h>
11#include <linux/platform_device.h>
12#include <linux/err.h>
13#include <linux/completion.h>
14#include <linux/interrupt.h>
15#include <linux/spinlock.h>
16#include <linux/dma-mapping.h>
17#include <linux/ioport.h>
18#include <linux/bug.h>
19#include <linux/kernel.h>
20#include <linux/bitops.h>
21#include <linux/mm.h>
22#include <linux/mtd/mtd.h>
23#include <linux/mtd/rawnand.h>
24#include <linux/mtd/partitions.h>
25#include <linux/of.h>
26#include <linux/of_platform.h>
27#include <linux/slab.h>
28#include <linux/static_key.h>
29#include <linux/list.h>
30#include <linux/log2.h>
31
32#include "brcmnand.h"
33
34/*
35 * This flag controls if WP stays on between erase/write commands to mitigate
36 * flash corruption due to power glitches. Values:
37 * 0: NAND_WP is not used or not available
38 * 1: NAND_WP is set by default, cleared for erase/write operations
39 * 2: NAND_WP is always cleared
40 */
41static int wp_on = 1;
42module_param(wp_on, int, 0444);
43
44/***********************************************************************
45 * Definitions
46 ***********************************************************************/
47
48#define DRV_NAME			"brcmnand"
49
50#define CMD_NULL			0x00
51#define CMD_PAGE_READ			0x01
52#define CMD_SPARE_AREA_READ		0x02
53#define CMD_STATUS_READ			0x03
54#define CMD_PROGRAM_PAGE		0x04
55#define CMD_PROGRAM_SPARE_AREA		0x05
56#define CMD_COPY_BACK			0x06
57#define CMD_DEVICE_ID_READ		0x07
58#define CMD_BLOCK_ERASE			0x08
59#define CMD_FLASH_RESET			0x09
60#define CMD_BLOCKS_LOCK			0x0a
61#define CMD_BLOCKS_LOCK_DOWN		0x0b
62#define CMD_BLOCKS_UNLOCK		0x0c
63#define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
64#define CMD_PARAMETER_READ		0x0e
65#define CMD_PARAMETER_CHANGE_COL	0x0f
66#define CMD_LOW_LEVEL_OP		0x10
67
68struct brcm_nand_dma_desc {
69	u32 next_desc;
70	u32 next_desc_ext;
71	u32 cmd_irq;
72	u32 dram_addr;
73	u32 dram_addr_ext;
74	u32 tfr_len;
75	u32 total_len;
76	u32 flash_addr;
77	u32 flash_addr_ext;
78	u32 cs;
79	u32 pad2[5];
80	u32 status_valid;
81} __packed;
82
83/* Bitfields for brcm_nand_dma_desc::status_valid */
84#define FLASH_DMA_ECC_ERROR	(1 << 8)
85#define FLASH_DMA_CORR_ERROR	(1 << 9)
86
87/* Bitfields for DMA_MODE */
88#define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
89#define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
90#define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
91						FLASH_DMA_MODE_MODE)
92
93/* 512B flash cache in the NAND controller HW */
94#define FC_SHIFT		9U
95#define FC_BYTES		512U
96#define FC_WORDS		(FC_BYTES >> 2)
97
98#define BRCMNAND_MIN_PAGESIZE	512
99#define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
100#define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
101
102#define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
103#define NAND_POLL_STATUS_TIMEOUT_MS	100
104
105#define EDU_CMD_WRITE          0x00
106#define EDU_CMD_READ           0x01
107#define EDU_STATUS_ACTIVE      BIT(0)
108#define EDU_ERR_STATUS_ERRACK  BIT(0)
109#define EDU_DONE_MASK		GENMASK(1, 0)
110
111#define EDU_CONFIG_MODE_NAND   BIT(0)
112#define EDU_CONFIG_SWAP_BYTE   BIT(1)
113#ifdef CONFIG_CPU_BIG_ENDIAN
114#define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
115#else
116#define EDU_CONFIG_SWAP_CFG     0
117#endif
118
119/* edu registers */
120enum edu_reg {
121	EDU_CONFIG = 0,
122	EDU_DRAM_ADDR,
123	EDU_EXT_ADDR,
124	EDU_LENGTH,
125	EDU_CMD,
126	EDU_STOP,
127	EDU_STATUS,
128	EDU_DONE,
129	EDU_ERR_STATUS,
130};
131
132static const u16  edu_regs[] = {
133	[EDU_CONFIG] = 0x00,
134	[EDU_DRAM_ADDR] = 0x04,
135	[EDU_EXT_ADDR] = 0x08,
136	[EDU_LENGTH] = 0x0c,
137	[EDU_CMD] = 0x10,
138	[EDU_STOP] = 0x14,
139	[EDU_STATUS] = 0x18,
140	[EDU_DONE] = 0x1c,
141	[EDU_ERR_STATUS] = 0x20,
142};
143
144/* flash_dma registers */
145enum flash_dma_reg {
146	FLASH_DMA_REVISION = 0,
147	FLASH_DMA_FIRST_DESC,
148	FLASH_DMA_FIRST_DESC_EXT,
149	FLASH_DMA_CTRL,
150	FLASH_DMA_MODE,
151	FLASH_DMA_STATUS,
152	FLASH_DMA_INTERRUPT_DESC,
153	FLASH_DMA_INTERRUPT_DESC_EXT,
154	FLASH_DMA_ERROR_STATUS,
155	FLASH_DMA_CURRENT_DESC,
156	FLASH_DMA_CURRENT_DESC_EXT,
157};
158
159/* flash_dma registers v0*/
160static const u16 flash_dma_regs_v0[] = {
161	[FLASH_DMA_REVISION]		= 0x00,
162	[FLASH_DMA_FIRST_DESC]		= 0x04,
163	[FLASH_DMA_CTRL]		= 0x08,
164	[FLASH_DMA_MODE]		= 0x0c,
165	[FLASH_DMA_STATUS]		= 0x10,
166	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
167	[FLASH_DMA_ERROR_STATUS]	= 0x18,
168	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
169};
170
171/* flash_dma registers v1*/
172static const u16 flash_dma_regs_v1[] = {
173	[FLASH_DMA_REVISION]		= 0x00,
174	[FLASH_DMA_FIRST_DESC]		= 0x04,
175	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
176	[FLASH_DMA_CTRL]		= 0x0c,
177	[FLASH_DMA_MODE]		= 0x10,
178	[FLASH_DMA_STATUS]		= 0x14,
179	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
180	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
181	[FLASH_DMA_ERROR_STATUS]	= 0x20,
182	[FLASH_DMA_CURRENT_DESC]	= 0x24,
183	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
184};
185
186/* flash_dma registers v4 */
187static const u16 flash_dma_regs_v4[] = {
188	[FLASH_DMA_REVISION]		= 0x00,
189	[FLASH_DMA_FIRST_DESC]		= 0x08,
190	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
191	[FLASH_DMA_CTRL]		= 0x10,
192	[FLASH_DMA_MODE]		= 0x14,
193	[FLASH_DMA_STATUS]		= 0x18,
194	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
195	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
196	[FLASH_DMA_ERROR_STATUS]	= 0x28,
197	[FLASH_DMA_CURRENT_DESC]	= 0x30,
198	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
199};
200
201/* Controller feature flags */
202enum {
203	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
204	BRCMNAND_HAS_PREFETCH			= BIT(1),
205	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
206	BRCMNAND_HAS_WP				= BIT(3),
207};
208
209struct brcmnand_host;
210
211static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
212
213struct brcmnand_controller {
214	struct device		*dev;
215	struct nand_controller	controller;
216	void __iomem		*nand_base;
217	void __iomem		*nand_fc; /* flash cache */
218	void __iomem		*flash_dma_base;
219	unsigned int		irq;
220	unsigned int		dma_irq;
221	int			nand_version;
222
223	/* Some SoCs provide custom interrupt status register(s) */
224	struct brcmnand_soc	*soc;
225
226	/* Some SoCs have a gateable clock for the controller */
227	struct clk		*clk;
228
229	int			cmd_pending;
230	bool			dma_pending;
231	bool                    edu_pending;
232	struct completion	done;
233	struct completion	dma_done;
234	struct completion       edu_done;
235
236	/* List of NAND hosts (one for each chip-select) */
237	struct list_head host_list;
238
239	/* EDU info, per-transaction */
240	const u16               *edu_offsets;
241	void __iomem            *edu_base;
242	int			edu_irq;
243	int                     edu_count;
244	u64                     edu_dram_addr;
245	u32                     edu_ext_addr;
246	u32                     edu_cmd;
247	u32                     edu_config;
248
249	/* flash_dma reg */
250	const u16		*flash_dma_offsets;
251	struct brcm_nand_dma_desc *dma_desc;
252	dma_addr_t		dma_pa;
253
254	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
255			 u32 len, u8 dma_cmd);
256
257	/* in-memory cache of the FLASH_CACHE, used only for some commands */
258	u8			flash_cache[FC_BYTES];
259
260	/* Controller revision details */
261	const u16		*reg_offsets;
262	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
263	const u8		*cs_offsets; /* within each chip-select */
264	const u8		*cs0_offsets; /* within CS0, if different */
265	unsigned int		max_block_size;
266	const unsigned int	*block_sizes;
267	unsigned int		max_page_size;
268	const unsigned int	*page_sizes;
269	unsigned int		page_size_shift;
270	unsigned int		max_oob;
271	u32			ecc_level_shift;
272	u32			features;
273
274	/* for low-power standby/resume only */
275	u32			nand_cs_nand_select;
276	u32			nand_cs_nand_xor;
277	u32			corr_stat_threshold;
278	u32			flash_dma_mode;
279	u32                     flash_edu_mode;
280	bool			pio_poll_mode;
281};
282
283struct brcmnand_cfg {
284	u64			device_size;
285	unsigned int		block_size;
286	unsigned int		page_size;
287	unsigned int		spare_area_size;
288	unsigned int		device_width;
289	unsigned int		col_adr_bytes;
290	unsigned int		blk_adr_bytes;
291	unsigned int		ful_adr_bytes;
292	unsigned int		sector_size_1k;
293	unsigned int		ecc_level;
294	/* use for low-power standby/resume only */
295	u32			acc_control;
296	u32			config;
297	u32			config_ext;
298	u32			timing_1;
299	u32			timing_2;
300};
301
302struct brcmnand_host {
303	struct list_head	node;
304
305	struct nand_chip	chip;
306	struct platform_device	*pdev;
307	int			cs;
308
309	unsigned int		last_cmd;
310	unsigned int		last_byte;
311	u64			last_addr;
312	struct brcmnand_cfg	hwcfg;
313	struct brcmnand_controller *ctrl;
314};
315
316enum brcmnand_reg {
317	BRCMNAND_CMD_START = 0,
318	BRCMNAND_CMD_EXT_ADDRESS,
319	BRCMNAND_CMD_ADDRESS,
320	BRCMNAND_INTFC_STATUS,
321	BRCMNAND_CS_SELECT,
322	BRCMNAND_CS_XOR,
323	BRCMNAND_LL_OP,
324	BRCMNAND_CS0_BASE,
325	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
326	BRCMNAND_CORR_THRESHOLD,
327	BRCMNAND_CORR_THRESHOLD_EXT,
328	BRCMNAND_UNCORR_COUNT,
329	BRCMNAND_CORR_COUNT,
330	BRCMNAND_CORR_EXT_ADDR,
331	BRCMNAND_CORR_ADDR,
332	BRCMNAND_UNCORR_EXT_ADDR,
333	BRCMNAND_UNCORR_ADDR,
334	BRCMNAND_SEMAPHORE,
335	BRCMNAND_ID,
336	BRCMNAND_ID_EXT,
337	BRCMNAND_LL_RDATA,
338	BRCMNAND_OOB_READ_BASE,
339	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
340	BRCMNAND_OOB_WRITE_BASE,
341	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
342	BRCMNAND_FC_BASE,
343};
344
345/* BRCMNAND v2.1-v2.2 */
346static const u16 brcmnand_regs_v21[] = {
347	[BRCMNAND_CMD_START]		=  0x04,
348	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
349	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
350	[BRCMNAND_INTFC_STATUS]		=  0x5c,
351	[BRCMNAND_CS_SELECT]		=  0x14,
352	[BRCMNAND_CS_XOR]		=  0x18,
353	[BRCMNAND_LL_OP]		=     0,
354	[BRCMNAND_CS0_BASE]		=  0x40,
355	[BRCMNAND_CS1_BASE]		=     0,
356	[BRCMNAND_CORR_THRESHOLD]	=     0,
357	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
358	[BRCMNAND_UNCORR_COUNT]		=     0,
359	[BRCMNAND_CORR_COUNT]		=     0,
360	[BRCMNAND_CORR_EXT_ADDR]	=  0x60,
361	[BRCMNAND_CORR_ADDR]		=  0x64,
362	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x68,
363	[BRCMNAND_UNCORR_ADDR]		=  0x6c,
364	[BRCMNAND_SEMAPHORE]		=  0x50,
365	[BRCMNAND_ID]			=  0x54,
366	[BRCMNAND_ID_EXT]		=     0,
367	[BRCMNAND_LL_RDATA]		=     0,
368	[BRCMNAND_OOB_READ_BASE]	=  0x20,
369	[BRCMNAND_OOB_READ_10_BASE]	=     0,
370	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
371	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
372	[BRCMNAND_FC_BASE]		= 0x200,
373};
374
375/* BRCMNAND v3.3-v4.0 */
376static const u16 brcmnand_regs_v33[] = {
377	[BRCMNAND_CMD_START]		=  0x04,
378	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
379	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
380	[BRCMNAND_INTFC_STATUS]		=  0x6c,
381	[BRCMNAND_CS_SELECT]		=  0x14,
382	[BRCMNAND_CS_XOR]		=  0x18,
383	[BRCMNAND_LL_OP]		= 0x178,
384	[BRCMNAND_CS0_BASE]		=  0x40,
385	[BRCMNAND_CS1_BASE]		=  0xd0,
386	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
387	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
388	[BRCMNAND_UNCORR_COUNT]		=     0,
389	[BRCMNAND_CORR_COUNT]		=     0,
390	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
391	[BRCMNAND_CORR_ADDR]		=  0x74,
392	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
393	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
394	[BRCMNAND_SEMAPHORE]		=  0x58,
395	[BRCMNAND_ID]			=  0x60,
396	[BRCMNAND_ID_EXT]		=  0x64,
397	[BRCMNAND_LL_RDATA]		= 0x17c,
398	[BRCMNAND_OOB_READ_BASE]	=  0x20,
399	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
400	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
401	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
402	[BRCMNAND_FC_BASE]		= 0x200,
403};
404
405/* BRCMNAND v5.0 */
406static const u16 brcmnand_regs_v50[] = {
407	[BRCMNAND_CMD_START]		=  0x04,
408	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
409	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
410	[BRCMNAND_INTFC_STATUS]		=  0x6c,
411	[BRCMNAND_CS_SELECT]		=  0x14,
412	[BRCMNAND_CS_XOR]		=  0x18,
413	[BRCMNAND_LL_OP]		= 0x178,
414	[BRCMNAND_CS0_BASE]		=  0x40,
415	[BRCMNAND_CS1_BASE]		=  0xd0,
416	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
417	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
418	[BRCMNAND_UNCORR_COUNT]		=     0,
419	[BRCMNAND_CORR_COUNT]		=     0,
420	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
421	[BRCMNAND_CORR_ADDR]		=  0x74,
422	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
423	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
424	[BRCMNAND_SEMAPHORE]		=  0x58,
425	[BRCMNAND_ID]			=  0x60,
426	[BRCMNAND_ID_EXT]		=  0x64,
427	[BRCMNAND_LL_RDATA]		= 0x17c,
428	[BRCMNAND_OOB_READ_BASE]	=  0x20,
429	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
430	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
431	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
432	[BRCMNAND_FC_BASE]		= 0x200,
433};
434
435/* BRCMNAND v6.0 - v7.1 */
436static const u16 brcmnand_regs_v60[] = {
437	[BRCMNAND_CMD_START]		=  0x04,
438	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
439	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
440	[BRCMNAND_INTFC_STATUS]		=  0x14,
441	[BRCMNAND_CS_SELECT]		=  0x18,
442	[BRCMNAND_CS_XOR]		=  0x1c,
443	[BRCMNAND_LL_OP]		=  0x20,
444	[BRCMNAND_CS0_BASE]		=  0x50,
445	[BRCMNAND_CS1_BASE]		=     0,
446	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
447	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
448	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
449	[BRCMNAND_CORR_COUNT]		= 0x100,
450	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
451	[BRCMNAND_CORR_ADDR]		= 0x110,
452	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
453	[BRCMNAND_UNCORR_ADDR]		= 0x118,
454	[BRCMNAND_SEMAPHORE]		= 0x150,
455	[BRCMNAND_ID]			= 0x194,
456	[BRCMNAND_ID_EXT]		= 0x198,
457	[BRCMNAND_LL_RDATA]		= 0x19c,
458	[BRCMNAND_OOB_READ_BASE]	= 0x200,
459	[BRCMNAND_OOB_READ_10_BASE]	=     0,
460	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
461	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
462	[BRCMNAND_FC_BASE]		= 0x400,
463};
464
465/* BRCMNAND v7.1 */
466static const u16 brcmnand_regs_v71[] = {
467	[BRCMNAND_CMD_START]		=  0x04,
468	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
469	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
470	[BRCMNAND_INTFC_STATUS]		=  0x14,
471	[BRCMNAND_CS_SELECT]		=  0x18,
472	[BRCMNAND_CS_XOR]		=  0x1c,
473	[BRCMNAND_LL_OP]		=  0x20,
474	[BRCMNAND_CS0_BASE]		=  0x50,
475	[BRCMNAND_CS1_BASE]		=     0,
476	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
477	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
478	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
479	[BRCMNAND_CORR_COUNT]		= 0x100,
480	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
481	[BRCMNAND_CORR_ADDR]		= 0x110,
482	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
483	[BRCMNAND_UNCORR_ADDR]		= 0x118,
484	[BRCMNAND_SEMAPHORE]		= 0x150,
485	[BRCMNAND_ID]			= 0x194,
486	[BRCMNAND_ID_EXT]		= 0x198,
487	[BRCMNAND_LL_RDATA]		= 0x19c,
488	[BRCMNAND_OOB_READ_BASE]	= 0x200,
489	[BRCMNAND_OOB_READ_10_BASE]	=     0,
490	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
491	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
492	[BRCMNAND_FC_BASE]		= 0x400,
493};
494
495/* BRCMNAND v7.2 */
496static const u16 brcmnand_regs_v72[] = {
497	[BRCMNAND_CMD_START]		=  0x04,
498	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
499	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
500	[BRCMNAND_INTFC_STATUS]		=  0x14,
501	[BRCMNAND_CS_SELECT]		=  0x18,
502	[BRCMNAND_CS_XOR]		=  0x1c,
503	[BRCMNAND_LL_OP]		=  0x20,
504	[BRCMNAND_CS0_BASE]		=  0x50,
505	[BRCMNAND_CS1_BASE]		=     0,
506	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
507	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
508	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
509	[BRCMNAND_CORR_COUNT]		= 0x100,
510	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
511	[BRCMNAND_CORR_ADDR]		= 0x110,
512	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
513	[BRCMNAND_UNCORR_ADDR]		= 0x118,
514	[BRCMNAND_SEMAPHORE]		= 0x150,
515	[BRCMNAND_ID]			= 0x194,
516	[BRCMNAND_ID_EXT]		= 0x198,
517	[BRCMNAND_LL_RDATA]		= 0x19c,
518	[BRCMNAND_OOB_READ_BASE]	= 0x200,
519	[BRCMNAND_OOB_READ_10_BASE]	=     0,
520	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
521	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
522	[BRCMNAND_FC_BASE]		= 0x600,
523};
524
525enum brcmnand_cs_reg {
526	BRCMNAND_CS_CFG_EXT = 0,
527	BRCMNAND_CS_CFG,
528	BRCMNAND_CS_ACC_CONTROL,
529	BRCMNAND_CS_TIMING1,
530	BRCMNAND_CS_TIMING2,
531};
532
533/* Per chip-select offsets for v7.1 */
534static const u8 brcmnand_cs_offsets_v71[] = {
535	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
536	[BRCMNAND_CS_CFG_EXT]		= 0x04,
537	[BRCMNAND_CS_CFG]		= 0x08,
538	[BRCMNAND_CS_TIMING1]		= 0x0c,
539	[BRCMNAND_CS_TIMING2]		= 0x10,
540};
541
542/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
543static const u8 brcmnand_cs_offsets[] = {
544	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
545	[BRCMNAND_CS_CFG_EXT]		= 0x04,
546	[BRCMNAND_CS_CFG]		= 0x04,
547	[BRCMNAND_CS_TIMING1]		= 0x08,
548	[BRCMNAND_CS_TIMING2]		= 0x0c,
549};
550
551/* Per chip-select offset for <= v5.0 on CS0 only */
552static const u8 brcmnand_cs_offsets_cs0[] = {
553	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
554	[BRCMNAND_CS_CFG_EXT]		= 0x08,
555	[BRCMNAND_CS_CFG]		= 0x08,
556	[BRCMNAND_CS_TIMING1]		= 0x10,
557	[BRCMNAND_CS_TIMING2]		= 0x14,
558};
559
560/*
561 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
562 * one config register, but once the bitfields overflowed, newer controllers
563 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
564 */
565enum {
566	CFG_BLK_ADR_BYTES_SHIFT		= 8,
567	CFG_COL_ADR_BYTES_SHIFT		= 12,
568	CFG_FUL_ADR_BYTES_SHIFT		= 16,
569	CFG_BUS_WIDTH_SHIFT		= 23,
570	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
571	CFG_DEVICE_SIZE_SHIFT		= 24,
572
573	/* Only for v2.1 */
574	CFG_PAGE_SIZE_SHIFT_v2_1	= 30,
575
576	/* Only for pre-v7.1 (with no CFG_EXT register) */
577	CFG_PAGE_SIZE_SHIFT		= 20,
578	CFG_BLK_SIZE_SHIFT		= 28,
579
580	/* Only for v7.1+ (with CFG_EXT register) */
581	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
582	CFG_EXT_BLK_SIZE_SHIFT		= 4,
583};
584
585/* BRCMNAND_INTFC_STATUS */
586enum {
587	INTFC_FLASH_STATUS		= GENMASK(7, 0),
588
589	INTFC_ERASED			= BIT(27),
590	INTFC_OOB_VALID			= BIT(28),
591	INTFC_CACHE_VALID		= BIT(29),
592	INTFC_FLASH_READY		= BIT(30),
593	INTFC_CTLR_READY		= BIT(31),
594};
595
596/***********************************************************************
597 * NAND ACC CONTROL bitfield
598 *
599 * Some bits have remained constant throughout hardware revision, while
600 * others have shifted around.
601 ***********************************************************************/
602
603/* Constant for all versions (where supported) */
604enum {
605	/* See BRCMNAND_HAS_CACHE_MODE */
606	ACC_CONTROL_CACHE_MODE				= BIT(22),
607
608	/* See BRCMNAND_HAS_PREFETCH */
609	ACC_CONTROL_PREFETCH				= BIT(23),
610
611	ACC_CONTROL_PAGE_HIT				= BIT(24),
612	ACC_CONTROL_WR_PREEMPT				= BIT(25),
613	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
614	ACC_CONTROL_RD_ERASED				= BIT(27),
615	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
616	ACC_CONTROL_WR_ECC				= BIT(30),
617	ACC_CONTROL_RD_ECC				= BIT(31),
618};
619
620#define	ACC_CONTROL_ECC_SHIFT			16
621/* Only for v7.2 */
622#define	ACC_CONTROL_ECC_EXT_SHIFT		13
623
624static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
625{
626	return static_branch_unlikely(&brcmnand_soc_has_ops_key);
627}
628
629static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
630{
631	if (brcmnand_non_mmio_ops(ctrl))
632		return brcmnand_soc_read(ctrl->soc, offs);
633	return brcmnand_readl(ctrl->nand_base + offs);
634}
635
636static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
637				 u32 val)
638{
639	if (brcmnand_non_mmio_ops(ctrl))
640		brcmnand_soc_write(ctrl->soc, val, offs);
641	else
642		brcmnand_writel(val, ctrl->nand_base + offs);
643}
644
645static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
646{
647	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
648	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
649	static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
650	static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
651	static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
652	static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
653	static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
654
655	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
656
657	/* Only support v2.1+ */
658	if (ctrl->nand_version < 0x0201) {
659		dev_err(ctrl->dev, "version %#x not supported\n",
660			ctrl->nand_version);
661		return -ENODEV;
662	}
663
664	/* Register offsets */
665	if (ctrl->nand_version >= 0x0702)
666		ctrl->reg_offsets = brcmnand_regs_v72;
667	else if (ctrl->nand_version == 0x0701)
668		ctrl->reg_offsets = brcmnand_regs_v71;
669	else if (ctrl->nand_version >= 0x0600)
670		ctrl->reg_offsets = brcmnand_regs_v60;
671	else if (ctrl->nand_version >= 0x0500)
672		ctrl->reg_offsets = brcmnand_regs_v50;
673	else if (ctrl->nand_version >= 0x0303)
674		ctrl->reg_offsets = brcmnand_regs_v33;
675	else if (ctrl->nand_version >= 0x0201)
676		ctrl->reg_offsets = brcmnand_regs_v21;
677
678	/* Chip-select stride */
679	if (ctrl->nand_version >= 0x0701)
680		ctrl->reg_spacing = 0x14;
681	else
682		ctrl->reg_spacing = 0x10;
683
684	/* Per chip-select registers */
685	if (ctrl->nand_version >= 0x0701) {
686		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
687	} else {
688		ctrl->cs_offsets = brcmnand_cs_offsets;
689
690		/* v3.3-5.0 have a different CS0 offset layout */
691		if (ctrl->nand_version >= 0x0303 &&
692		    ctrl->nand_version <= 0x0500)
693			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
694	}
695
696	/* Page / block sizes */
697	if (ctrl->nand_version >= 0x0701) {
698		/* >= v7.1 use nice power-of-2 values! */
699		ctrl->max_page_size = 16 * 1024;
700		ctrl->max_block_size = 2 * 1024 * 1024;
701	} else {
702		if (ctrl->nand_version >= 0x0304)
703			ctrl->page_sizes = page_sizes_v3_4;
704		else if (ctrl->nand_version >= 0x0202)
705			ctrl->page_sizes = page_sizes_v2_2;
706		else
707			ctrl->page_sizes = page_sizes_v2_1;
708
709		if (ctrl->nand_version >= 0x0202)
710			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
711		else
712			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
713
714		if (ctrl->nand_version >= 0x0600)
715			ctrl->block_sizes = block_sizes_v6;
716		else if (ctrl->nand_version >= 0x0400)
717			ctrl->block_sizes = block_sizes_v4;
718		else if (ctrl->nand_version >= 0x0202)
719			ctrl->block_sizes = block_sizes_v2_2;
720		else
721			ctrl->block_sizes = block_sizes_v2_1;
722
723		if (ctrl->nand_version < 0x0400) {
724			if (ctrl->nand_version < 0x0202)
725				ctrl->max_page_size = 2048;
726			else
727				ctrl->max_page_size = 4096;
728			ctrl->max_block_size = 512 * 1024;
729		}
730	}
731
732	/* Maximum spare area sector size (per 512B) */
733	if (ctrl->nand_version == 0x0702)
734		ctrl->max_oob = 128;
735	else if (ctrl->nand_version >= 0x0600)
736		ctrl->max_oob = 64;
737	else if (ctrl->nand_version >= 0x0500)
738		ctrl->max_oob = 32;
739	else
740		ctrl->max_oob = 16;
741
742	/* v6.0 and newer (except v6.1) have prefetch support */
743	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
744		ctrl->features |= BRCMNAND_HAS_PREFETCH;
745
746	/*
747	 * v6.x has cache mode, but it's implemented differently. Ignore it for
748	 * now.
749	 */
750	if (ctrl->nand_version >= 0x0700)
751		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
752
753	if (ctrl->nand_version >= 0x0500)
754		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
755
756	if (ctrl->nand_version >= 0x0700)
757		ctrl->features |= BRCMNAND_HAS_WP;
758	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
759		ctrl->features |= BRCMNAND_HAS_WP;
760
761	/* v7.2 has different ecc level shift in the acc register */
762	if (ctrl->nand_version == 0x0702)
763		ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
764	else
765		ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
766
767	return 0;
768}
769
770static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
771{
772	/* flash_dma register offsets */
773	if (ctrl->nand_version >= 0x0703)
774		ctrl->flash_dma_offsets = flash_dma_regs_v4;
775	else if (ctrl->nand_version == 0x0602)
776		ctrl->flash_dma_offsets = flash_dma_regs_v0;
777	else
778		ctrl->flash_dma_offsets = flash_dma_regs_v1;
779}
780
781static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
782		enum brcmnand_reg reg)
783{
784	u16 offs = ctrl->reg_offsets[reg];
785
786	if (offs)
787		return nand_readreg(ctrl, offs);
788	else
789		return 0;
790}
791
792static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
793				      enum brcmnand_reg reg, u32 val)
794{
795	u16 offs = ctrl->reg_offsets[reg];
796
797	if (offs)
798		nand_writereg(ctrl, offs, val);
799}
800
801static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
802				    enum brcmnand_reg reg, u32 mask, unsigned
803				    int shift, u32 val)
804{
805	u32 tmp = brcmnand_read_reg(ctrl, reg);
806
807	tmp &= ~mask;
808	tmp |= val << shift;
809	brcmnand_write_reg(ctrl, reg, tmp);
810}
811
812static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
813{
814	if (brcmnand_non_mmio_ops(ctrl))
815		return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
816	return __raw_readl(ctrl->nand_fc + word * 4);
817}
818
819static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
820				     int word, u32 val)
821{
822	if (brcmnand_non_mmio_ops(ctrl))
823		brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
824	else
825		__raw_writel(val, ctrl->nand_fc + word * 4);
826}
827
828static inline void edu_writel(struct brcmnand_controller *ctrl,
829			      enum edu_reg reg, u32 val)
830{
831	u16 offs = ctrl->edu_offsets[reg];
832
833	brcmnand_writel(val, ctrl->edu_base + offs);
834}
835
836static inline u32 edu_readl(struct brcmnand_controller *ctrl,
837			    enum edu_reg reg)
838{
839	u16 offs = ctrl->edu_offsets[reg];
840
841	return brcmnand_readl(ctrl->edu_base + offs);
842}
843
844static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
845{
846
847	/* Clear error addresses */
848	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
849	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
850	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
851	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
852}
853
854static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
855{
856	u64 err_addr;
857
858	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
859	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
860					     BRCMNAND_UNCORR_EXT_ADDR)
861					     & 0xffff) << 32);
862
863	return err_addr;
864}
865
866static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
867{
868	u64 err_addr;
869
870	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
871	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
872					     BRCMNAND_CORR_EXT_ADDR)
873					     & 0xffff) << 32);
874
875	return err_addr;
876}
877
878static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
879{
880	struct nand_chip *chip =  mtd_to_nand(mtd);
881	struct brcmnand_host *host = nand_get_controller_data(chip);
882	struct brcmnand_controller *ctrl = host->ctrl;
883
884	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
885			   (host->cs << 16) | ((addr >> 32) & 0xffff));
886	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
887	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
888			   lower_32_bits(addr));
889	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
890}
891
892static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
893				     enum brcmnand_cs_reg reg)
894{
895	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
896	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
897	u8 cs_offs;
898
899	if (cs == 0 && ctrl->cs0_offsets)
900		cs_offs = ctrl->cs0_offsets[reg];
901	else
902		cs_offs = ctrl->cs_offsets[reg];
903
904	if (cs && offs_cs1)
905		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
906
907	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
908}
909
910static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
911{
912	if (ctrl->nand_version < 0x0600)
913		return 1;
914	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
915}
916
917static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
918{
919	struct brcmnand_controller *ctrl = host->ctrl;
920	unsigned int shift = 0, bits;
921	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
922	int cs = host->cs;
923
924	if (!ctrl->reg_offsets[reg])
925		return;
926
927	if (ctrl->nand_version == 0x0702)
928		bits = 7;
929	else if (ctrl->nand_version >= 0x0600)
930		bits = 6;
931	else if (ctrl->nand_version >= 0x0500)
932		bits = 5;
933	else
934		bits = 4;
935
936	if (ctrl->nand_version >= 0x0702) {
937		if (cs >= 4)
938			reg = BRCMNAND_CORR_THRESHOLD_EXT;
939		shift = (cs % 4) * bits;
940	} else if (ctrl->nand_version >= 0x0600) {
941		if (cs >= 5)
942			reg = BRCMNAND_CORR_THRESHOLD_EXT;
943		shift = (cs % 5) * bits;
944	}
945	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
946}
947
948static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
949{
950	if (ctrl->nand_version < 0x0602)
951		return 24;
952	return 0;
953}
954
955static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
956{
957	if (ctrl->nand_version == 0x0702)
958		return GENMASK(7, 0);
959	else if (ctrl->nand_version >= 0x0600)
960		return GENMASK(6, 0);
961	else if (ctrl->nand_version >= 0x0303)
962		return GENMASK(5, 0);
963	else
964		return GENMASK(4, 0);
965}
966
967static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
968{
969	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
970
971	mask <<= ACC_CONTROL_ECC_SHIFT;
972
973	/* v7.2 includes additional ECC levels */
974	if (ctrl->nand_version == 0x0702)
975		mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
976
977	return mask;
978}
979
980static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
981{
982	struct brcmnand_controller *ctrl = host->ctrl;
983	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
984	u32 acc_control = nand_readreg(ctrl, offs);
985	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
986
987	if (en) {
988		acc_control |= ecc_flags; /* enable RD/WR ECC */
989		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
990		acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
991	} else {
992		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
993		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
994	}
995
996	nand_writereg(ctrl, offs, acc_control);
997}
998
999static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1000{
1001	if (ctrl->nand_version >= 0x0702)
1002		return 9;
1003	else if (ctrl->nand_version >= 0x0600)
1004		return 7;
1005	else if (ctrl->nand_version >= 0x0500)
1006		return 6;
1007	else
1008		return -1;
1009}
1010
1011static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
1012{
1013	struct brcmnand_controller *ctrl = host->ctrl;
1014	int shift = brcmnand_sector_1k_shift(ctrl);
1015	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1016						  BRCMNAND_CS_ACC_CONTROL);
1017
1018	if (shift < 0)
1019		return 0;
1020
1021	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
1022}
1023
1024static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1025{
1026	struct brcmnand_controller *ctrl = host->ctrl;
1027	int shift = brcmnand_sector_1k_shift(ctrl);
1028	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1029						  BRCMNAND_CS_ACC_CONTROL);
1030	u32 tmp;
1031
1032	if (shift < 0)
1033		return;
1034
1035	tmp = nand_readreg(ctrl, acc_control_offs);
1036	tmp &= ~(1 << shift);
1037	tmp |= (!!val) << shift;
1038	nand_writereg(ctrl, acc_control_offs, tmp);
1039}
1040
1041/***********************************************************************
1042 * CS_NAND_SELECT
1043 ***********************************************************************/
1044
1045enum {
1046	CS_SELECT_NAND_WP			= BIT(29),
1047	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
1048};
1049
1050static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
1051				    u32 mask, u32 expected_val,
1052				    unsigned long timeout_ms)
1053{
1054	unsigned long limit;
1055	u32 val;
1056
1057	if (!timeout_ms)
1058		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1059
1060	limit = jiffies + msecs_to_jiffies(timeout_ms);
1061	do {
1062		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1063		if ((val & mask) == expected_val)
1064			return 0;
1065
1066		cpu_relax();
1067	} while (time_after(limit, jiffies));
1068
1069	/*
1070	 * do a final check after time out in case the CPU was busy and the driver
1071	 * did not get enough time to perform the polling to avoid false alarms
1072	 */
1073	val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1074	if ((val & mask) == expected_val)
1075		return 0;
1076
1077	dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1078		 expected_val, val & mask);
1079
1080	return -ETIMEDOUT;
1081}
1082
1083static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1084{
1085	u32 val = en ? CS_SELECT_NAND_WP : 0;
1086
1087	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1088}
1089
1090/***********************************************************************
1091 * Flash DMA
1092 ***********************************************************************/
1093
1094static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1095{
1096	return ctrl->flash_dma_base;
1097}
1098
1099static inline bool has_edu(struct brcmnand_controller *ctrl)
1100{
1101	return ctrl->edu_base;
1102}
1103
1104static inline bool use_dma(struct brcmnand_controller *ctrl)
1105{
1106	return has_flash_dma(ctrl) || has_edu(ctrl);
1107}
1108
1109static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1110{
1111	if (ctrl->pio_poll_mode)
1112		return;
1113
1114	if (has_flash_dma(ctrl)) {
1115		ctrl->flash_dma_base = NULL;
1116		disable_irq(ctrl->dma_irq);
1117	}
1118
1119	disable_irq(ctrl->irq);
1120	ctrl->pio_poll_mode = true;
1121}
1122
1123static inline bool flash_dma_buf_ok(const void *buf)
1124{
1125	return buf && !is_vmalloc_addr(buf) &&
1126		likely(IS_ALIGNED((uintptr_t)buf, 4));
1127}
1128
1129static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1130				    enum flash_dma_reg dma_reg, u32 val)
1131{
1132	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1133
1134	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1135}
1136
1137static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1138				  enum flash_dma_reg dma_reg)
1139{
1140	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1141
1142	return brcmnand_readl(ctrl->flash_dma_base + offs);
1143}
1144
1145/* Low-level operation types: command, address, write, or read */
1146enum brcmnand_llop_type {
1147	LL_OP_CMD,
1148	LL_OP_ADDR,
1149	LL_OP_WR,
1150	LL_OP_RD,
1151};
1152
1153/***********************************************************************
1154 * Internal support functions
1155 ***********************************************************************/
1156
1157static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1158				  struct brcmnand_cfg *cfg)
1159{
1160	if (ctrl->nand_version <= 0x0701)
1161		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1162			cfg->ecc_level == 15;
1163	else
1164		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1165			cfg->ecc_level == 15) ||
1166			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1167}
1168
1169/*
1170 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1171 * the layout/configuration.
1172 * Returns -ERRCODE on failure.
1173 */
1174static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1175					  struct mtd_oob_region *oobregion)
1176{
1177	struct nand_chip *chip = mtd_to_nand(mtd);
1178	struct brcmnand_host *host = nand_get_controller_data(chip);
1179	struct brcmnand_cfg *cfg = &host->hwcfg;
1180	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1181	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1182
1183	if (section >= sectors)
1184		return -ERANGE;
1185
1186	oobregion->offset = (section * sas) + 6;
1187	oobregion->length = 3;
1188
1189	return 0;
1190}
1191
1192static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1193					   struct mtd_oob_region *oobregion)
1194{
1195	struct nand_chip *chip = mtd_to_nand(mtd);
1196	struct brcmnand_host *host = nand_get_controller_data(chip);
1197	struct brcmnand_cfg *cfg = &host->hwcfg;
1198	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1199	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1200	u32 next;
1201
1202	if (section > sectors)
1203		return -ERANGE;
1204
1205	next = (section * sas);
1206	if (section < sectors)
1207		next += 6;
1208
1209	if (section) {
1210		oobregion->offset = ((section - 1) * sas) + 9;
1211	} else {
1212		if (cfg->page_size > 512) {
1213			/* Large page NAND uses first 2 bytes for BBI */
1214			oobregion->offset = 2;
1215		} else {
1216			/* Small page NAND uses last byte before ECC for BBI */
1217			oobregion->offset = 0;
1218			next--;
1219		}
1220	}
1221
1222	oobregion->length = next - oobregion->offset;
1223
1224	return 0;
1225}
1226
1227static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1228	.ecc = brcmnand_hamming_ooblayout_ecc,
1229	.free = brcmnand_hamming_ooblayout_free,
1230};
1231
1232static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1233				      struct mtd_oob_region *oobregion)
1234{
1235	struct nand_chip *chip = mtd_to_nand(mtd);
1236	struct brcmnand_host *host = nand_get_controller_data(chip);
1237	struct brcmnand_cfg *cfg = &host->hwcfg;
1238	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1239	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1240
1241	if (section >= sectors)
1242		return -ERANGE;
1243
1244	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1245	oobregion->length = chip->ecc.bytes;
1246
1247	return 0;
1248}
1249
1250static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1251					  struct mtd_oob_region *oobregion)
1252{
1253	struct nand_chip *chip = mtd_to_nand(mtd);
1254	struct brcmnand_host *host = nand_get_controller_data(chip);
1255	struct brcmnand_cfg *cfg = &host->hwcfg;
1256	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1257	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1258
1259	if (section >= sectors)
1260		return -ERANGE;
1261
1262	if (sas <= chip->ecc.bytes)
1263		return 0;
1264
1265	oobregion->offset = section * sas;
1266	oobregion->length = sas - chip->ecc.bytes;
1267
1268	if (!section) {
1269		oobregion->offset++;
1270		oobregion->length--;
1271	}
1272
1273	return 0;
1274}
1275
1276static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1277					  struct mtd_oob_region *oobregion)
1278{
1279	struct nand_chip *chip = mtd_to_nand(mtd);
1280	struct brcmnand_host *host = nand_get_controller_data(chip);
1281	struct brcmnand_cfg *cfg = &host->hwcfg;
1282	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1283
1284	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1285	    (section && sas - chip->ecc.bytes == 6))
1286		return -ERANGE;
1287
1288	if (!section) {
1289		oobregion->offset = 0;
1290		oobregion->length = 5;
1291	} else {
1292		oobregion->offset = 6;
1293		oobregion->length = sas - chip->ecc.bytes - 6;
1294	}
1295
1296	return 0;
1297}
1298
1299static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1300	.ecc = brcmnand_bch_ooblayout_ecc,
1301	.free = brcmnand_bch_ooblayout_free_lp,
1302};
1303
1304static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1305	.ecc = brcmnand_bch_ooblayout_ecc,
1306	.free = brcmnand_bch_ooblayout_free_sp,
1307};
1308
1309static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1310{
1311	struct brcmnand_cfg *p = &host->hwcfg;
1312	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1313	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1314	unsigned int ecc_level = p->ecc_level;
1315	int sas = p->spare_area_size << p->sector_size_1k;
1316	int sectors = p->page_size / (512 << p->sector_size_1k);
1317
1318	if (p->sector_size_1k)
1319		ecc_level <<= 1;
1320
1321	if (is_hamming_ecc(host->ctrl, p)) {
1322		ecc->bytes = 3 * sectors;
1323		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1324		return 0;
1325	}
1326
1327	/*
1328	 * CONTROLLER_VERSION:
1329	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1330	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1331	 * But we will just be conservative.
1332	 */
1333	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1334	if (p->page_size == 512)
1335		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1336	else
1337		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1338
1339	if (ecc->bytes >= sas) {
1340		dev_err(&host->pdev->dev,
1341			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1342			ecc->bytes, sas);
1343		return -EINVAL;
1344	}
1345
1346	return 0;
1347}
1348
1349static void brcmnand_wp(struct mtd_info *mtd, int wp)
1350{
1351	struct nand_chip *chip = mtd_to_nand(mtd);
1352	struct brcmnand_host *host = nand_get_controller_data(chip);
1353	struct brcmnand_controller *ctrl = host->ctrl;
1354
1355	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1356		static int old_wp = -1;
1357		int ret;
1358
1359		if (old_wp != wp) {
1360			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1361			old_wp = wp;
1362		}
1363
1364		/*
1365		 * make sure ctrl/flash ready before and after
1366		 * changing state of #WP pin
1367		 */
1368		ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1369					       NAND_STATUS_READY,
1370					       NAND_CTRL_RDY |
1371					       NAND_STATUS_READY, 0);
1372		if (ret)
1373			return;
1374
1375		brcmnand_set_wp(ctrl, wp);
1376		nand_status_op(chip, NULL);
1377		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1378		ret = bcmnand_ctrl_poll_status(ctrl,
1379					       NAND_CTRL_RDY |
1380					       NAND_STATUS_READY |
1381					       NAND_STATUS_WP,
1382					       NAND_CTRL_RDY |
1383					       NAND_STATUS_READY |
1384					       (wp ? 0 : NAND_STATUS_WP), 0);
1385
1386		if (ret)
1387			dev_err_ratelimited(&host->pdev->dev,
1388					    "nand #WP expected %s\n",
1389					    wp ? "on" : "off");
1390	}
1391}
1392
1393/* Helper functions for reading and writing OOB registers */
1394static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1395{
1396	u16 offset0, offset10, reg_offs;
1397
1398	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1399	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1400
1401	if (offs >= ctrl->max_oob)
1402		return 0x77;
1403
1404	if (offs >= 16 && offset10)
1405		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1406	else
1407		reg_offs = offset0 + (offs & ~0x03);
1408
1409	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1410}
1411
1412static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1413				 u32 data)
1414{
1415	u16 offset0, offset10, reg_offs;
1416
1417	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1418	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1419
1420	if (offs >= ctrl->max_oob)
1421		return;
1422
1423	if (offs >= 16 && offset10)
1424		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1425	else
1426		reg_offs = offset0 + (offs & ~0x03);
1427
1428	nand_writereg(ctrl, reg_offs, data);
1429}
1430
1431/*
1432 * read_oob_from_regs - read data from OOB registers
1433 * @ctrl: NAND controller
1434 * @i: sub-page sector index
1435 * @oob: buffer to read to
1436 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1437 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1438 */
1439static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1440			      int sas, int sector_1k)
1441{
1442	int tbytes = sas << sector_1k;
1443	int j;
1444
1445	/* Adjust OOB values for 1K sector size */
1446	if (sector_1k && (i & 0x01))
1447		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1448	tbytes = min_t(int, tbytes, ctrl->max_oob);
1449
1450	for (j = 0; j < tbytes; j++)
1451		oob[j] = oob_reg_read(ctrl, j);
1452	return tbytes;
1453}
1454
1455/*
1456 * write_oob_to_regs - write data to OOB registers
1457 * @i: sub-page sector index
1458 * @oob: buffer to write from
1459 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1460 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1461 */
1462static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1463			     const u8 *oob, int sas, int sector_1k)
1464{
1465	int tbytes = sas << sector_1k;
1466	int j, k = 0;
1467	u32 last = 0xffffffff;
1468	u8 *plast = (u8 *)&last;
1469
1470	/* Adjust OOB values for 1K sector size */
1471	if (sector_1k && (i & 0x01))
1472		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1473	tbytes = min_t(int, tbytes, ctrl->max_oob);
1474
1475	/*
1476	 * tbytes may not be multiple of words. Make sure we don't read out of
1477	 * the boundary and stop at last word.
1478	 */
1479	for (j = 0; (j + 3) < tbytes; j += 4)
1480		oob_reg_write(ctrl, j,
1481				(oob[j + 0] << 24) |
1482				(oob[j + 1] << 16) |
1483				(oob[j + 2] <<  8) |
1484				(oob[j + 3] <<  0));
1485
1486	/* handle the remaing bytes */
1487	while (j < tbytes)
1488		plast[k++] = oob[j++];
1489
1490	if (tbytes & 0x3)
1491		oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
1492
1493	return tbytes;
1494}
1495
1496static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1497{
1498	/* initialize edu */
1499	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1500	edu_readl(ctrl, EDU_ERR_STATUS);
1501	edu_writel(ctrl, EDU_DONE, 0);
1502	edu_writel(ctrl, EDU_DONE, 0);
1503	edu_writel(ctrl, EDU_DONE, 0);
1504	edu_writel(ctrl, EDU_DONE, 0);
1505	edu_readl(ctrl, EDU_DONE);
1506}
1507
1508/* edu irq */
1509static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1510{
1511	struct brcmnand_controller *ctrl = data;
1512
1513	if (ctrl->edu_count) {
1514		ctrl->edu_count--;
1515		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1516			udelay(1);
1517		edu_writel(ctrl, EDU_DONE, 0);
1518		edu_readl(ctrl, EDU_DONE);
1519	}
1520
1521	if (ctrl->edu_count) {
1522		ctrl->edu_dram_addr += FC_BYTES;
1523		ctrl->edu_ext_addr += FC_BYTES;
1524
1525		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1526		edu_readl(ctrl, EDU_DRAM_ADDR);
1527		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1528		edu_readl(ctrl, EDU_EXT_ADDR);
1529
1530		mb(); /* flush previous writes */
1531		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1532		edu_readl(ctrl, EDU_CMD);
1533
1534		return IRQ_HANDLED;
1535	}
1536
1537	complete(&ctrl->edu_done);
1538
1539	return IRQ_HANDLED;
1540}
1541
1542static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1543{
1544	struct brcmnand_controller *ctrl = data;
1545
1546	/* Discard all NAND_CTLRDY interrupts during DMA */
1547	if (ctrl->dma_pending)
1548		return IRQ_HANDLED;
1549
1550	/* check if you need to piggy back on the ctrlrdy irq */
1551	if (ctrl->edu_pending) {
1552		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1553	/* Discard interrupts while using dedicated edu irq */
1554			return IRQ_HANDLED;
1555
1556	/* no registered edu irq, call handler */
1557		return brcmnand_edu_irq(irq, data);
1558	}
1559
1560	complete(&ctrl->done);
1561	return IRQ_HANDLED;
1562}
1563
1564/* Handle SoC-specific interrupt hardware */
1565static irqreturn_t brcmnand_irq(int irq, void *data)
1566{
1567	struct brcmnand_controller *ctrl = data;
1568
1569	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1570		return brcmnand_ctlrdy_irq(irq, data);
1571
1572	return IRQ_NONE;
1573}
1574
1575static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1576{
1577	struct brcmnand_controller *ctrl = data;
1578
1579	complete(&ctrl->dma_done);
1580
1581	return IRQ_HANDLED;
1582}
1583
1584static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1585{
1586	struct brcmnand_controller *ctrl = host->ctrl;
1587	int ret;
1588	u64 cmd_addr;
1589
1590	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1591
1592	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1593
1594	/*
1595	 * If we came here through _panic_write and there is a pending
1596	 * command, try to wait for it. If it times out, rather than
1597	 * hitting BUG_ON, just return so we don't crash while crashing.
1598	 */
1599	if (oops_in_progress) {
1600		if (ctrl->cmd_pending &&
1601			bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
1602			return;
1603	} else
1604		BUG_ON(ctrl->cmd_pending != 0);
1605	ctrl->cmd_pending = cmd;
1606
1607	ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1608	WARN_ON(ret);
1609
1610	mb(); /* flush previous writes */
1611	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1612			   cmd << brcmnand_cmd_shift(ctrl));
1613}
1614
1615/***********************************************************************
1616 * NAND MTD API: read/program/erase
1617 ***********************************************************************/
1618
1619static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1620			      unsigned int ctrl)
1621{
1622	/* intentionally left blank */
1623}
1624
1625static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1626{
1627	struct brcmnand_host *host = nand_get_controller_data(chip);
1628	struct brcmnand_controller *ctrl = host->ctrl;
1629	struct mtd_info *mtd = nand_to_mtd(chip);
1630	bool err = false;
1631	int sts;
1632
1633	if (mtd->oops_panic_write) {
1634		/* switch to interrupt polling and PIO mode */
1635		disable_ctrl_irqs(ctrl);
1636		sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1637					       NAND_CTRL_RDY, 0);
1638		err = (sts < 0) ? true : false;
1639	} else {
1640		unsigned long timeo = msecs_to_jiffies(
1641						NAND_POLL_STATUS_TIMEOUT_MS);
1642		/* wait for completion interrupt */
1643		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1644		err = (sts <= 0) ? true : false;
1645	}
1646
1647	return err;
1648}
1649
1650static int brcmnand_waitfunc(struct nand_chip *chip)
1651{
1652	struct brcmnand_host *host = nand_get_controller_data(chip);
1653	struct brcmnand_controller *ctrl = host->ctrl;
1654	bool err = false;
1655
1656	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1657	if (ctrl->cmd_pending)
1658		err = brcmstb_nand_wait_for_completion(chip);
1659
1660	if (err) {
1661		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1662					>> brcmnand_cmd_shift(ctrl);
1663
1664		dev_err_ratelimited(ctrl->dev,
1665			"timeout waiting for command %#02x\n", cmd);
1666		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1667			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1668	}
1669	ctrl->cmd_pending = 0;
1670	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1671				 INTFC_FLASH_STATUS;
1672}
1673
1674enum {
1675	LLOP_RE				= BIT(16),
1676	LLOP_WE				= BIT(17),
1677	LLOP_ALE			= BIT(18),
1678	LLOP_CLE			= BIT(19),
1679	LLOP_RETURN_IDLE		= BIT(31),
1680
1681	LLOP_DATA_MASK			= GENMASK(15, 0),
1682};
1683
1684static int brcmnand_low_level_op(struct brcmnand_host *host,
1685				 enum brcmnand_llop_type type, u32 data,
1686				 bool last_op)
1687{
1688	struct nand_chip *chip = &host->chip;
1689	struct brcmnand_controller *ctrl = host->ctrl;
1690	u32 tmp;
1691
1692	tmp = data & LLOP_DATA_MASK;
1693	switch (type) {
1694	case LL_OP_CMD:
1695		tmp |= LLOP_WE | LLOP_CLE;
1696		break;
1697	case LL_OP_ADDR:
1698		/* WE | ALE */
1699		tmp |= LLOP_WE | LLOP_ALE;
1700		break;
1701	case LL_OP_WR:
1702		/* WE */
1703		tmp |= LLOP_WE;
1704		break;
1705	case LL_OP_RD:
1706		/* RE */
1707		tmp |= LLOP_RE;
1708		break;
1709	}
1710	if (last_op)
1711		/* RETURN_IDLE */
1712		tmp |= LLOP_RETURN_IDLE;
1713
1714	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1715
1716	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1717	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1718
1719	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1720	return brcmnand_waitfunc(chip);
1721}
1722
1723static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1724			     int column, int page_addr)
1725{
1726	struct mtd_info *mtd = nand_to_mtd(chip);
1727	struct brcmnand_host *host = nand_get_controller_data(chip);
1728	struct brcmnand_controller *ctrl = host->ctrl;
1729	u64 addr = (u64)page_addr << chip->page_shift;
1730	int native_cmd = 0;
1731
1732	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1733			command == NAND_CMD_RNDOUT)
1734		addr = (u64)column;
1735	/* Avoid propagating a negative, don't-care address */
1736	else if (page_addr < 0)
1737		addr = 0;
1738
1739	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1740		(unsigned long long)addr);
1741
1742	host->last_cmd = command;
1743	host->last_byte = 0;
1744	host->last_addr = addr;
1745
1746	switch (command) {
1747	case NAND_CMD_RESET:
1748		native_cmd = CMD_FLASH_RESET;
1749		break;
1750	case NAND_CMD_STATUS:
1751		native_cmd = CMD_STATUS_READ;
1752		break;
1753	case NAND_CMD_READID:
1754		native_cmd = CMD_DEVICE_ID_READ;
1755		break;
1756	case NAND_CMD_READOOB:
1757		native_cmd = CMD_SPARE_AREA_READ;
1758		break;
1759	case NAND_CMD_ERASE1:
1760		native_cmd = CMD_BLOCK_ERASE;
1761		brcmnand_wp(mtd, 0);
1762		break;
1763	case NAND_CMD_PARAM:
1764		native_cmd = CMD_PARAMETER_READ;
1765		break;
1766	case NAND_CMD_SET_FEATURES:
1767	case NAND_CMD_GET_FEATURES:
1768		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1769		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1770		break;
1771	case NAND_CMD_RNDOUT:
1772		native_cmd = CMD_PARAMETER_CHANGE_COL;
1773		addr &= ~((u64)(FC_BYTES - 1));
1774		/*
1775		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1776		 * NB: hwcfg.sector_size_1k may not be initialized yet
1777		 */
1778		if (brcmnand_get_sector_size_1k(host)) {
1779			host->hwcfg.sector_size_1k =
1780				brcmnand_get_sector_size_1k(host);
1781			brcmnand_set_sector_size_1k(host, 0);
1782		}
1783		break;
1784	}
1785
1786	if (!native_cmd)
1787		return;
1788
1789	brcmnand_set_cmd_addr(mtd, addr);
1790	brcmnand_send_cmd(host, native_cmd);
1791	brcmnand_waitfunc(chip);
1792
1793	if (native_cmd == CMD_PARAMETER_READ ||
1794			native_cmd == CMD_PARAMETER_CHANGE_COL) {
1795		/* Copy flash cache word-wise */
1796		u32 *flash_cache = (u32 *)ctrl->flash_cache;
1797		int i;
1798
1799		brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1800
1801		/*
1802		 * Must cache the FLASH_CACHE now, since changes in
1803		 * SECTOR_SIZE_1K may invalidate it
1804		 */
1805		for (i = 0; i < FC_WORDS; i++)
1806			/*
1807			 * Flash cache is big endian for parameter pages, at
1808			 * least on STB SoCs
1809			 */
1810			flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1811
1812		brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1813
1814		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1815		if (host->hwcfg.sector_size_1k)
1816			brcmnand_set_sector_size_1k(host,
1817						    host->hwcfg.sector_size_1k);
1818	}
1819
1820	/* Re-enable protection is necessary only after erase */
1821	if (command == NAND_CMD_ERASE1)
1822		brcmnand_wp(mtd, 1);
1823}
1824
1825static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1826{
1827	struct brcmnand_host *host = nand_get_controller_data(chip);
1828	struct brcmnand_controller *ctrl = host->ctrl;
1829	uint8_t ret = 0;
1830	int addr, offs;
1831
1832	switch (host->last_cmd) {
1833	case NAND_CMD_READID:
1834		if (host->last_byte < 4)
1835			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1836				(24 - (host->last_byte << 3));
1837		else if (host->last_byte < 8)
1838			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1839				(56 - (host->last_byte << 3));
1840		break;
1841
1842	case NAND_CMD_READOOB:
1843		ret = oob_reg_read(ctrl, host->last_byte);
1844		break;
1845
1846	case NAND_CMD_STATUS:
1847		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1848					INTFC_FLASH_STATUS;
1849		if (wp_on) /* hide WP status */
1850			ret |= NAND_STATUS_WP;
1851		break;
1852
1853	case NAND_CMD_PARAM:
1854	case NAND_CMD_RNDOUT:
1855		addr = host->last_addr + host->last_byte;
1856		offs = addr & (FC_BYTES - 1);
1857
1858		/* At FC_BYTES boundary, switch to next column */
1859		if (host->last_byte > 0 && offs == 0)
1860			nand_change_read_column_op(chip, addr, NULL, 0, false);
1861
1862		ret = ctrl->flash_cache[offs];
1863		break;
1864	case NAND_CMD_GET_FEATURES:
1865		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1866			ret = 0;
1867		} else {
1868			bool last = host->last_byte ==
1869				ONFI_SUBFEATURE_PARAM_LEN - 1;
1870			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1871			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1872		}
1873	}
1874
1875	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1876	host->last_byte++;
1877
1878	return ret;
1879}
1880
1881static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1882{
1883	int i;
1884
1885	for (i = 0; i < len; i++, buf++)
1886		*buf = brcmnand_read_byte(chip);
1887}
1888
1889static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1890			       int len)
1891{
1892	int i;
1893	struct brcmnand_host *host = nand_get_controller_data(chip);
1894
1895	switch (host->last_cmd) {
1896	case NAND_CMD_SET_FEATURES:
1897		for (i = 0; i < len; i++)
1898			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1899						  (i + 1) == len);
1900		break;
1901	default:
1902		BUG();
1903		break;
1904	}
1905}
1906
1907/**
1908 *  Kick EDU engine
1909 */
1910static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1911			      u32 len, u8 cmd)
1912{
1913	struct brcmnand_controller *ctrl = host->ctrl;
1914	unsigned long timeo = msecs_to_jiffies(200);
1915	int ret = 0;
1916	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1917	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1918	unsigned int trans = len >> FC_SHIFT;
1919	dma_addr_t pa;
1920
1921	pa = dma_map_single(ctrl->dev, buf, len, dir);
1922	if (dma_mapping_error(ctrl->dev, pa)) {
1923		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1924		return -ENOMEM;
1925	}
1926
1927	ctrl->edu_pending = true;
1928	ctrl->edu_dram_addr = pa;
1929	ctrl->edu_ext_addr = addr;
1930	ctrl->edu_cmd = edu_cmd;
1931	ctrl->edu_count = trans;
1932
1933	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1934	edu_readl(ctrl,  EDU_DRAM_ADDR);
1935	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1936	edu_readl(ctrl, EDU_EXT_ADDR);
1937	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1938	edu_readl(ctrl, EDU_LENGTH);
1939
1940	/* Start edu engine */
1941	mb(); /* flush previous writes */
1942	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1943	edu_readl(ctrl, EDU_CMD);
1944
1945	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1946		dev_err(ctrl->dev,
1947			"timeout waiting for EDU; status %#x, error status %#x\n",
1948			edu_readl(ctrl, EDU_STATUS),
1949			edu_readl(ctrl, EDU_ERR_STATUS));
1950	}
1951
1952	dma_unmap_single(ctrl->dev, pa, len, dir);
1953
1954	/* for program page check NAND status */
1955	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1956	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1957	    edu_cmd == EDU_CMD_WRITE) {
1958		dev_info(ctrl->dev, "program failed at %llx\n",
1959			 (unsigned long long)addr);
1960		ret = -EIO;
1961	}
1962
1963	/* Make sure the EDU status is clean */
1964	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1965		dev_warn(ctrl->dev, "EDU still active: %#x\n",
1966			 edu_readl(ctrl, EDU_STATUS));
1967
1968	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1969		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1970			 (unsigned long long)addr);
1971		ret = -EIO;
1972	}
1973
1974	ctrl->edu_pending = false;
1975	brcmnand_edu_init(ctrl);
1976	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1977	edu_readl(ctrl, EDU_STOP);
1978
1979	if (!ret && edu_cmd == EDU_CMD_READ) {
1980		u64 err_addr = 0;
1981
1982		/*
1983		 * check for ECC errors here, subpage ECC errors are
1984		 * retained in ECC error address register
1985		 */
1986		err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1987		if (!err_addr) {
1988			err_addr = brcmnand_get_correcc_addr(ctrl);
1989			if (err_addr)
1990				ret = -EUCLEAN;
1991		} else
1992			ret = -EBADMSG;
1993	}
1994
1995	return ret;
1996}
1997
1998/**
1999 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
2000 * following ahead of time:
2001 *  - Is this descriptor the beginning or end of a linked list?
2002 *  - What is the (DMA) address of the next descriptor in the linked list?
2003 */
2004static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
2005				  struct brcm_nand_dma_desc *desc, u64 addr,
2006				  dma_addr_t buf, u32 len, u8 dma_cmd,
2007				  bool begin, bool end,
2008				  dma_addr_t next_desc)
2009{
2010	memset(desc, 0, sizeof(*desc));
2011	/* Descriptors are written in native byte order (wordwise) */
2012	desc->next_desc = lower_32_bits(next_desc);
2013	desc->next_desc_ext = upper_32_bits(next_desc);
2014	desc->cmd_irq = (dma_cmd << 24) |
2015		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
2016		(!!begin) | ((!!end) << 1); /* head, tail */
2017#ifdef CONFIG_CPU_BIG_ENDIAN
2018	desc->cmd_irq |= 0x01 << 12;
2019#endif
2020	desc->dram_addr = lower_32_bits(buf);
2021	desc->dram_addr_ext = upper_32_bits(buf);
2022	desc->tfr_len = len;
2023	desc->total_len = len;
2024	desc->flash_addr = lower_32_bits(addr);
2025	desc->flash_addr_ext = upper_32_bits(addr);
2026	desc->cs = host->cs;
2027	desc->status_valid = 0x01;
2028	return 0;
2029}
2030
2031/**
2032 * Kick the FLASH_DMA engine, with a given DMA descriptor
2033 */
2034static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
2035{
2036	struct brcmnand_controller *ctrl = host->ctrl;
2037	unsigned long timeo = msecs_to_jiffies(100);
2038
2039	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
2040	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
2041	if (ctrl->nand_version > 0x0602) {
2042		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
2043				 upper_32_bits(desc));
2044		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
2045	}
2046
2047	/* Start FLASH_DMA engine */
2048	ctrl->dma_pending = true;
2049	mb(); /* flush previous writes */
2050	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
2051
2052	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
2053		dev_err(ctrl->dev,
2054				"timeout waiting for DMA; status %#x, error status %#x\n",
2055				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2056				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2057	}
2058	ctrl->dma_pending = false;
2059	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2060}
2061
2062static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2063			      u32 len, u8 dma_cmd)
2064{
2065	struct brcmnand_controller *ctrl = host->ctrl;
2066	dma_addr_t buf_pa;
2067	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2068
2069	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2070	if (dma_mapping_error(ctrl->dev, buf_pa)) {
2071		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2072		return -ENOMEM;
2073	}
2074
2075	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2076				   dma_cmd, true, true, 0);
2077
2078	brcmnand_dma_run(host, ctrl->dma_pa);
2079
2080	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2081
2082	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2083		return -EBADMSG;
2084	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2085		return -EUCLEAN;
2086
2087	return 0;
2088}
2089
2090/*
2091 * Assumes proper CS is already set
2092 */
2093static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2094				u64 addr, unsigned int trans, u32 *buf,
2095				u8 *oob, u64 *err_addr)
2096{
2097	struct brcmnand_host *host = nand_get_controller_data(chip);
2098	struct brcmnand_controller *ctrl = host->ctrl;
2099	int i, j, ret = 0;
2100
2101	brcmnand_clear_ecc_addr(ctrl);
2102
2103	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2104		brcmnand_set_cmd_addr(mtd, addr);
2105		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2106		brcmnand_send_cmd(host, CMD_PAGE_READ);
2107		brcmnand_waitfunc(chip);
2108
2109		if (likely(buf)) {
2110			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2111
2112			for (j = 0; j < FC_WORDS; j++, buf++)
2113				*buf = brcmnand_read_fc(ctrl, j);
2114
2115			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2116		}
2117
2118		if (oob)
2119			oob += read_oob_from_regs(ctrl, i, oob,
2120					mtd->oobsize / trans,
2121					host->hwcfg.sector_size_1k);
2122
2123		if (ret != -EBADMSG) {
2124			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2125
2126			if (*err_addr)
2127				ret = -EBADMSG;
2128		}
2129
2130		if (!ret) {
2131			*err_addr = brcmnand_get_correcc_addr(ctrl);
2132
2133			if (*err_addr)
2134				ret = -EUCLEAN;
2135		}
2136	}
2137
2138	return ret;
2139}
2140
2141/*
2142 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2143 * error
2144 *
2145 * Because the HW ECC signals an ECC error if an erase paged has even a single
2146 * bitflip, we must check each ECC error to see if it is actually an erased
2147 * page with bitflips, not a truly corrupted page.
2148 *
2149 * On a real error, return a negative error code (-EBADMSG for ECC error), and
2150 * buf will contain raw data.
2151 * Otherwise, buf gets filled with 0xffs and return the maximum number of
2152 * bitflips-per-ECC-sector to the caller.
2153 *
2154 */
2155static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2156		  struct nand_chip *chip, void *buf, u64 addr)
2157{
2158	struct mtd_oob_region ecc;
2159	int i;
2160	int bitflips = 0;
2161	int page = addr >> chip->page_shift;
2162	int ret;
2163	void *ecc_bytes;
2164	void *ecc_chunk;
2165
2166	if (!buf)
2167		buf = nand_get_data_buf(chip);
2168
2169	/* read without ecc for verification */
2170	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2171	if (ret)
2172		return ret;
2173
2174	for (i = 0; i < chip->ecc.steps; i++) {
2175		ecc_chunk = buf + chip->ecc.size * i;
2176
2177		mtd_ooblayout_ecc(mtd, i, &ecc);
2178		ecc_bytes = chip->oob_poi + ecc.offset;
2179
2180		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2181						  ecc_bytes, ecc.length,
2182						  NULL, 0,
2183						  chip->ecc.strength);
2184		if (ret < 0)
2185			return ret;
2186
2187		bitflips = max(bitflips, ret);
2188	}
2189
2190	return bitflips;
2191}
2192
2193static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2194			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2195{
2196	struct brcmnand_host *host = nand_get_controller_data(chip);
2197	struct brcmnand_controller *ctrl = host->ctrl;
2198	u64 err_addr = 0;
2199	int err;
2200	bool retry = true;
2201	bool edu_err = false;
2202
2203	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2204
2205try_dmaread:
2206	brcmnand_clear_ecc_addr(ctrl);
2207
2208	if (ctrl->dma_trans && !oob && flash_dma_buf_ok(buf)) {
2209		err = ctrl->dma_trans(host, addr, buf,
2210				      trans * FC_BYTES,
2211				      CMD_PAGE_READ);
2212
2213		if (err) {
2214			if (mtd_is_bitflip_or_eccerr(err))
2215				err_addr = addr;
2216			else
2217				return -EIO;
2218		}
2219
2220		if (has_edu(ctrl) && err_addr)
2221			edu_err = true;
2222
2223	} else {
2224		if (oob)
2225			memset(oob, 0x99, mtd->oobsize);
2226
2227		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2228					       oob, &err_addr);
2229	}
2230
2231	if (mtd_is_eccerr(err)) {
2232		/*
2233		 * On controller version and 7.0, 7.1 , DMA read after a
2234		 * prior PIO read that reported uncorrectable error,
2235		 * the DMA engine captures this error following DMA read
2236		 * cleared only on subsequent DMA read, so just retry once
2237		 * to clear a possible false error reported for current DMA
2238		 * read
2239		 */
2240		if ((ctrl->nand_version == 0x0700) ||
2241		    (ctrl->nand_version == 0x0701)) {
2242			if (retry) {
2243				retry = false;
2244				goto try_dmaread;
2245			}
2246		}
2247
2248		/*
2249		 * Controller version 7.2 has hw encoder to detect erased page
2250		 * bitflips, apply sw verification for older controllers only
2251		 */
2252		if (ctrl->nand_version < 0x0702) {
2253			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2254							      addr);
2255			/* erased page bitflips corrected */
2256			if (err >= 0)
2257				return err;
2258		}
2259
2260		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2261			(unsigned long long)err_addr);
2262		mtd->ecc_stats.failed++;
2263		/* NAND layer expects zero on ECC errors */
2264		return 0;
2265	}
2266
2267	if (mtd_is_bitflip(err)) {
2268		unsigned int corrected = brcmnand_count_corrected(ctrl);
2269
2270		/* in case of EDU correctable error we read again using PIO */
2271		if (edu_err)
2272			err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2273						   oob, &err_addr);
2274
2275		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2276			(unsigned long long)err_addr);
2277		mtd->ecc_stats.corrected += corrected;
2278		/* Always exceed the software-imposed threshold */
2279		return max(mtd->bitflip_threshold, corrected);
2280	}
2281
2282	return 0;
2283}
2284
2285static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2286			      int oob_required, int page)
2287{
2288	struct mtd_info *mtd = nand_to_mtd(chip);
2289	struct brcmnand_host *host = nand_get_controller_data(chip);
2290	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2291
2292	nand_read_page_op(chip, page, 0, NULL, 0);
2293
2294	return brcmnand_read(mtd, chip, host->last_addr,
2295			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2296}
2297
2298static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2299				  int oob_required, int page)
2300{
2301	struct brcmnand_host *host = nand_get_controller_data(chip);
2302	struct mtd_info *mtd = nand_to_mtd(chip);
2303	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2304	int ret;
2305
2306	nand_read_page_op(chip, page, 0, NULL, 0);
2307
2308	brcmnand_set_ecc_enabled(host, 0);
2309	ret = brcmnand_read(mtd, chip, host->last_addr,
2310			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2311	brcmnand_set_ecc_enabled(host, 1);
2312	return ret;
2313}
2314
2315static int brcmnand_read_oob(struct nand_chip *chip, int page)
2316{
2317	struct mtd_info *mtd = nand_to_mtd(chip);
2318
2319	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2320			mtd->writesize >> FC_SHIFT,
2321			NULL, (u8 *)chip->oob_poi);
2322}
2323
2324static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2325{
2326	struct mtd_info *mtd = nand_to_mtd(chip);
2327	struct brcmnand_host *host = nand_get_controller_data(chip);
2328
2329	brcmnand_set_ecc_enabled(host, 0);
2330	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2331		mtd->writesize >> FC_SHIFT,
2332		NULL, (u8 *)chip->oob_poi);
2333	brcmnand_set_ecc_enabled(host, 1);
2334	return 0;
2335}
2336
2337static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2338			  u64 addr, const u32 *buf, u8 *oob)
2339{
2340	struct brcmnand_host *host = nand_get_controller_data(chip);
2341	struct brcmnand_controller *ctrl = host->ctrl;
2342	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2343	int status, ret = 0;
2344
2345	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2346
2347	if (unlikely((unsigned long)buf & 0x03)) {
2348		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2349		buf = (u32 *)((unsigned long)buf & ~0x03);
2350	}
2351
2352	brcmnand_wp(mtd, 0);
2353
2354	for (i = 0; i < ctrl->max_oob; i += 4)
2355		oob_reg_write(ctrl, i, 0xffffffff);
2356
2357	if (use_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
2358		if (ctrl->dma_trans(host, addr, (u32 *)buf, mtd->writesize,
2359				    CMD_PROGRAM_PAGE))
2360
2361			ret = -EIO;
2362
2363		goto out;
2364	}
2365
2366	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2367		/* full address MUST be set before populating FC */
2368		brcmnand_set_cmd_addr(mtd, addr);
2369
2370		if (buf) {
2371			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2372
2373			for (j = 0; j < FC_WORDS; j++, buf++)
2374				brcmnand_write_fc(ctrl, j, *buf);
2375
2376			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2377		} else if (oob) {
2378			for (j = 0; j < FC_WORDS; j++)
2379				brcmnand_write_fc(ctrl, j, 0xffffffff);
2380		}
2381
2382		if (oob) {
2383			oob += write_oob_to_regs(ctrl, i, oob,
2384					mtd->oobsize / trans,
2385					host->hwcfg.sector_size_1k);
2386		}
2387
2388		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2389		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2390		status = brcmnand_waitfunc(chip);
2391
2392		if (status & NAND_STATUS_FAIL) {
2393			dev_info(ctrl->dev, "program failed at %llx\n",
2394				(unsigned long long)addr);
2395			ret = -EIO;
2396			goto out;
2397		}
2398	}
2399out:
2400	brcmnand_wp(mtd, 1);
2401	return ret;
2402}
2403
2404static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2405			       int oob_required, int page)
2406{
2407	struct mtd_info *mtd = nand_to_mtd(chip);
2408	struct brcmnand_host *host = nand_get_controller_data(chip);
2409	void *oob = oob_required ? chip->oob_poi : NULL;
2410
2411	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2412	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2413
2414	return nand_prog_page_end_op(chip);
2415}
2416
2417static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2418				   int oob_required, int page)
2419{
2420	struct mtd_info *mtd = nand_to_mtd(chip);
2421	struct brcmnand_host *host = nand_get_controller_data(chip);
2422	void *oob = oob_required ? chip->oob_poi : NULL;
2423
2424	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2425	brcmnand_set_ecc_enabled(host, 0);
2426	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2427	brcmnand_set_ecc_enabled(host, 1);
2428
2429	return nand_prog_page_end_op(chip);
2430}
2431
2432static int brcmnand_write_oob(struct nand_chip *chip, int page)
2433{
2434	return brcmnand_write(nand_to_mtd(chip), chip,
2435			      (u64)page << chip->page_shift, NULL,
2436			      chip->oob_poi);
2437}
2438
2439static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2440{
2441	struct mtd_info *mtd = nand_to_mtd(chip);
2442	struct brcmnand_host *host = nand_get_controller_data(chip);
2443	int ret;
2444
2445	brcmnand_set_ecc_enabled(host, 0);
2446	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2447				 (u8 *)chip->oob_poi);
2448	brcmnand_set_ecc_enabled(host, 1);
2449
2450	return ret;
2451}
2452
2453/***********************************************************************
2454 * Per-CS setup (1 NAND device)
2455 ***********************************************************************/
2456
2457static int brcmnand_set_cfg(struct brcmnand_host *host,
2458			    struct brcmnand_cfg *cfg)
2459{
2460	struct brcmnand_controller *ctrl = host->ctrl;
2461	struct nand_chip *chip = &host->chip;
2462	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2463	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2464			BRCMNAND_CS_CFG_EXT);
2465	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2466			BRCMNAND_CS_ACC_CONTROL);
2467	u8 block_size = 0, page_size = 0, device_size = 0;
2468	u32 tmp;
2469
2470	if (ctrl->block_sizes) {
2471		int i, found;
2472
2473		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2474			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2475				block_size = i;
2476				found = 1;
2477			}
2478		if (!found) {
2479			dev_warn(ctrl->dev, "invalid block size %u\n",
2480					cfg->block_size);
2481			return -EINVAL;
2482		}
2483	} else {
2484		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2485	}
2486
2487	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2488				cfg->block_size > ctrl->max_block_size)) {
2489		dev_warn(ctrl->dev, "invalid block size %u\n",
2490				cfg->block_size);
2491		block_size = 0;
2492	}
2493
2494	if (ctrl->page_sizes) {
2495		int i, found;
2496
2497		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2498			if (ctrl->page_sizes[i] == cfg->page_size) {
2499				page_size = i;
2500				found = 1;
2501			}
2502		if (!found) {
2503			dev_warn(ctrl->dev, "invalid page size %u\n",
2504					cfg->page_size);
2505			return -EINVAL;
2506		}
2507	} else {
2508		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2509	}
2510
2511	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2512				cfg->page_size > ctrl->max_page_size)) {
2513		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2514		return -EINVAL;
2515	}
2516
2517	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2518		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2519			(unsigned long long)cfg->device_size);
2520		return -EINVAL;
2521	}
2522	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2523
2524	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2525		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2526		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2527		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2528		(device_size << CFG_DEVICE_SIZE_SHIFT);
2529	if (cfg_offs == cfg_ext_offs) {
2530		tmp |= (page_size << ctrl->page_size_shift) |
2531		       (block_size << CFG_BLK_SIZE_SHIFT);
2532		nand_writereg(ctrl, cfg_offs, tmp);
2533	} else {
2534		nand_writereg(ctrl, cfg_offs, tmp);
2535		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2536		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2537		nand_writereg(ctrl, cfg_ext_offs, tmp);
2538	}
2539
2540	tmp = nand_readreg(ctrl, acc_control_offs);
2541	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2542	tmp &= ~brcmnand_spare_area_mask(ctrl);
2543	if (ctrl->nand_version >= 0x0302) {
2544		tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2545		tmp |= cfg->spare_area_size;
2546	}
2547	nand_writereg(ctrl, acc_control_offs, tmp);
2548
2549	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2550
2551	/* threshold = ceil(BCH-level * 0.75) */
2552	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2553
2554	return 0;
2555}
2556
2557static void brcmnand_print_cfg(struct brcmnand_host *host,
2558			       char *buf, struct brcmnand_cfg *cfg)
2559{
2560	buf += sprintf(buf,
2561		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2562		(unsigned long long)cfg->device_size >> 20,
2563		cfg->block_size >> 10,
2564		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2565		cfg->page_size >= 1024 ? "KiB" : "B",
2566		cfg->spare_area_size, cfg->device_width);
2567
2568	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2569	if (is_hamming_ecc(host->ctrl, cfg))
2570		sprintf(buf, ", Hamming ECC");
2571	else if (cfg->sector_size_1k)
2572		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2573	else
2574		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2575}
2576
2577/*
2578 * Minimum number of bytes to address a page. Calculated as:
2579 *     roundup(log2(size / page-size) / 8)
2580 *
2581 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2582 *     OK because many other things will break if 'size' is irregular...
2583 */
2584static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2585{
2586	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2587}
2588
2589static int brcmnand_setup_dev(struct brcmnand_host *host)
2590{
2591	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2592	struct nand_chip *chip = &host->chip;
2593	const struct nand_ecc_props *requirements =
2594		nanddev_get_ecc_requirements(&chip->base);
2595	struct nand_memory_organization *memorg =
2596		nanddev_get_memorg(&chip->base);
2597	struct brcmnand_controller *ctrl = host->ctrl;
2598	struct brcmnand_cfg *cfg = &host->hwcfg;
2599	char msg[128];
2600	u32 offs, tmp, oob_sector;
2601	int ret;
2602
2603	memset(cfg, 0, sizeof(*cfg));
2604
2605	ret = of_property_read_u32(nand_get_flash_node(chip),
2606				   "brcm,nand-oob-sector-size",
2607				   &oob_sector);
2608	if (ret) {
2609		/* Use detected size */
2610		cfg->spare_area_size = mtd->oobsize /
2611					(mtd->writesize >> FC_SHIFT);
2612	} else {
2613		cfg->spare_area_size = oob_sector;
2614	}
2615	if (cfg->spare_area_size > ctrl->max_oob)
2616		cfg->spare_area_size = ctrl->max_oob;
2617	/*
2618	 * Set mtd and memorg oobsize to be consistent with controller's
2619	 * spare_area_size, as the rest is inaccessible.
2620	 */
2621	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2622	memorg->oobsize = mtd->oobsize;
2623
2624	cfg->device_size = mtd->size;
2625	cfg->block_size = mtd->erasesize;
2626	cfg->page_size = mtd->writesize;
2627	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2628	cfg->col_adr_bytes = 2;
2629	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2630
2631	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2632		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2633			chip->ecc.engine_type);
2634		return -EINVAL;
2635	}
2636
2637	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2638		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2639			/* Default to Hamming for 1-bit ECC, if unspecified */
2640			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2641		else
2642			/* Otherwise, BCH */
2643			chip->ecc.algo = NAND_ECC_ALGO_BCH;
2644	}
2645
2646	if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2647	    (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2648		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2649			chip->ecc.strength, chip->ecc.size);
2650		return -EINVAL;
2651	}
2652
2653	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2654	    (!chip->ecc.size || !chip->ecc.strength)) {
2655		if (requirements->step_size && requirements->strength) {
2656			/* use detected ECC parameters */
2657			chip->ecc.size = requirements->step_size;
2658			chip->ecc.strength = requirements->strength;
2659			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2660				chip->ecc.size, chip->ecc.strength);
2661		}
2662	}
2663
2664	switch (chip->ecc.size) {
2665	case 512:
2666		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2667			cfg->ecc_level = 15;
2668		else
2669			cfg->ecc_level = chip->ecc.strength;
2670		cfg->sector_size_1k = 0;
2671		break;
2672	case 1024:
2673		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2674			dev_err(ctrl->dev, "1KB sectors not supported\n");
2675			return -EINVAL;
2676		}
2677		if (chip->ecc.strength & 0x1) {
2678			dev_err(ctrl->dev,
2679				"odd ECC not supported with 1KB sectors\n");
2680			return -EINVAL;
2681		}
2682
2683		cfg->ecc_level = chip->ecc.strength >> 1;
2684		cfg->sector_size_1k = 1;
2685		break;
2686	default:
2687		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2688			chip->ecc.size);
2689		return -EINVAL;
2690	}
2691
2692	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2693	if (mtd->writesize > 512)
2694		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2695	else
2696		cfg->ful_adr_bytes += 1;
2697
2698	ret = brcmnand_set_cfg(host, cfg);
2699	if (ret)
2700		return ret;
2701
2702	brcmnand_set_ecc_enabled(host, 1);
2703
2704	brcmnand_print_cfg(host, msg, cfg);
2705	dev_info(ctrl->dev, "detected %s\n", msg);
2706
2707	/* Configure ACC_CONTROL */
2708	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2709	tmp = nand_readreg(ctrl, offs);
2710	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2711	tmp &= ~ACC_CONTROL_RD_ERASED;
2712
2713	/* We need to turn on Read from erased paged protected by ECC */
2714	if (ctrl->nand_version >= 0x0702)
2715		tmp |= ACC_CONTROL_RD_ERASED;
2716	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2717	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2718		tmp &= ~ACC_CONTROL_PREFETCH;
2719
2720	nand_writereg(ctrl, offs, tmp);
2721
2722	return 0;
2723}
2724
2725static int brcmnand_attach_chip(struct nand_chip *chip)
2726{
2727	struct mtd_info *mtd = nand_to_mtd(chip);
2728	struct brcmnand_host *host = nand_get_controller_data(chip);
2729	int ret;
2730
2731	chip->options |= NAND_NO_SUBPAGE_WRITE;
2732	/*
2733	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2734	 * to/from, and have nand_base pass us a bounce buffer instead, as
2735	 * needed.
2736	 */
2737	chip->options |= NAND_USES_DMA;
2738
2739	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2740		chip->bbt_options |= NAND_BBT_NO_OOB;
2741
2742	if (brcmnand_setup_dev(host))
2743		return -ENXIO;
2744
2745	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2746
2747	/* only use our internal HW threshold */
2748	mtd->bitflip_threshold = 1;
2749
2750	ret = brcmstb_choose_ecc_layout(host);
2751
2752	/* If OOB is written with ECC enabled it will cause ECC errors */
2753	if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2754		chip->ecc.write_oob = brcmnand_write_oob_raw;
2755		chip->ecc.read_oob = brcmnand_read_oob_raw;
2756	}
2757
2758	return ret;
2759}
2760
2761static const struct nand_controller_ops brcmnand_controller_ops = {
2762	.attach_chip = brcmnand_attach_chip,
2763};
2764
2765static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2766{
2767	struct brcmnand_controller *ctrl = host->ctrl;
2768	struct platform_device *pdev = host->pdev;
2769	struct mtd_info *mtd;
2770	struct nand_chip *chip;
2771	int ret;
2772	u16 cfg_offs;
2773
2774	ret = of_property_read_u32(dn, "reg", &host->cs);
2775	if (ret) {
2776		dev_err(&pdev->dev, "can't get chip-select\n");
2777		return -ENXIO;
2778	}
2779
2780	mtd = nand_to_mtd(&host->chip);
2781	chip = &host->chip;
2782
2783	nand_set_flash_node(chip, dn);
2784	nand_set_controller_data(chip, host);
2785	mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2786				   host->cs);
2787	if (!mtd->name)
2788		return -ENOMEM;
2789
2790	mtd->owner = THIS_MODULE;
2791	mtd->dev.parent = &pdev->dev;
2792
2793	chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2794	chip->legacy.cmdfunc = brcmnand_cmdfunc;
2795	chip->legacy.waitfunc = brcmnand_waitfunc;
2796	chip->legacy.read_byte = brcmnand_read_byte;
2797	chip->legacy.read_buf = brcmnand_read_buf;
2798	chip->legacy.write_buf = brcmnand_write_buf;
2799
2800	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2801	chip->ecc.read_page = brcmnand_read_page;
2802	chip->ecc.write_page = brcmnand_write_page;
2803	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2804	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2805	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2806	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2807	chip->ecc.read_oob = brcmnand_read_oob;
2808	chip->ecc.write_oob = brcmnand_write_oob;
2809
2810	chip->controller = &ctrl->controller;
2811
2812	/*
2813	 * The bootloader might have configured 16bit mode but
2814	 * NAND READID command only works in 8bit mode. We force
2815	 * 8bit mode here to ensure that NAND READID commands works.
2816	 */
2817	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2818	nand_writereg(ctrl, cfg_offs,
2819		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2820
2821	ret = nand_scan(chip, 1);
2822	if (ret)
2823		return ret;
2824
2825	ret = mtd_device_register(mtd, NULL, 0);
2826	if (ret)
2827		nand_cleanup(chip);
2828
2829	return ret;
2830}
2831
2832static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2833					    int restore)
2834{
2835	struct brcmnand_controller *ctrl = host->ctrl;
2836	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2837	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2838			BRCMNAND_CS_CFG_EXT);
2839	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2840			BRCMNAND_CS_ACC_CONTROL);
2841	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2842	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2843
2844	if (restore) {
2845		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2846		if (cfg_offs != cfg_ext_offs)
2847			nand_writereg(ctrl, cfg_ext_offs,
2848				      host->hwcfg.config_ext);
2849		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2850		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2851		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2852	} else {
2853		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2854		if (cfg_offs != cfg_ext_offs)
2855			host->hwcfg.config_ext =
2856				nand_readreg(ctrl, cfg_ext_offs);
2857		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2858		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2859		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2860	}
2861}
2862
2863static int brcmnand_suspend(struct device *dev)
2864{
2865	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2866	struct brcmnand_host *host;
2867
2868	list_for_each_entry(host, &ctrl->host_list, node)
2869		brcmnand_save_restore_cs_config(host, 0);
2870
2871	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2872	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2873	ctrl->corr_stat_threshold =
2874		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2875
2876	if (has_flash_dma(ctrl))
2877		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2878	else if (has_edu(ctrl))
2879		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2880
2881	return 0;
2882}
2883
2884static int brcmnand_resume(struct device *dev)
2885{
2886	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2887	struct brcmnand_host *host;
2888
2889	if (has_flash_dma(ctrl)) {
2890		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2891		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2892	}
2893
2894	if (has_edu(ctrl)) {
2895		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2896		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2897		edu_readl(ctrl, EDU_CONFIG);
2898		brcmnand_edu_init(ctrl);
2899	}
2900
2901	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2902	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2903	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2904			ctrl->corr_stat_threshold);
2905	if (ctrl->soc) {
2906		/* Clear/re-enable interrupt */
2907		ctrl->soc->ctlrdy_ack(ctrl->soc);
2908		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2909	}
2910
2911	list_for_each_entry(host, &ctrl->host_list, node) {
2912		struct nand_chip *chip = &host->chip;
2913
2914		brcmnand_save_restore_cs_config(host, 1);
2915
2916		/* Reset the chip, required by some chips after power-up */
2917		nand_reset_op(chip);
2918	}
2919
2920	return 0;
2921}
2922
2923const struct dev_pm_ops brcmnand_pm_ops = {
2924	.suspend		= brcmnand_suspend,
2925	.resume			= brcmnand_resume,
2926};
2927EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2928
2929static const struct of_device_id brcmnand_of_match[] = {
2930	{ .compatible = "brcm,brcmnand-v2.1" },
2931	{ .compatible = "brcm,brcmnand-v2.2" },
2932	{ .compatible = "brcm,brcmnand-v4.0" },
2933	{ .compatible = "brcm,brcmnand-v5.0" },
2934	{ .compatible = "brcm,brcmnand-v6.0" },
2935	{ .compatible = "brcm,brcmnand-v6.1" },
2936	{ .compatible = "brcm,brcmnand-v6.2" },
2937	{ .compatible = "brcm,brcmnand-v7.0" },
2938	{ .compatible = "brcm,brcmnand-v7.1" },
2939	{ .compatible = "brcm,brcmnand-v7.2" },
2940	{ .compatible = "brcm,brcmnand-v7.3" },
2941	{},
2942};
2943MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2944
2945/***********************************************************************
2946 * Platform driver setup (per controller)
2947 ***********************************************************************/
2948static int brcmnand_edu_setup(struct platform_device *pdev)
2949{
2950	struct device *dev = &pdev->dev;
2951	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2952	struct resource *res;
2953	int ret;
2954
2955	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
2956	if (res) {
2957		ctrl->edu_base = devm_ioremap_resource(dev, res);
2958		if (IS_ERR(ctrl->edu_base))
2959			return PTR_ERR(ctrl->edu_base);
2960
2961		ctrl->edu_offsets = edu_regs;
2962
2963		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
2964			   EDU_CONFIG_SWAP_CFG);
2965		edu_readl(ctrl, EDU_CONFIG);
2966
2967		/* initialize edu */
2968		brcmnand_edu_init(ctrl);
2969
2970		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
2971		if (ctrl->edu_irq < 0) {
2972			dev_warn(dev,
2973				 "FLASH EDU enabled, using ctlrdy irq\n");
2974		} else {
2975			ret = devm_request_irq(dev, ctrl->edu_irq,
2976					       brcmnand_edu_irq, 0,
2977					       "brcmnand-edu", ctrl);
2978			if (ret < 0) {
2979				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
2980					ctrl->edu_irq, ret);
2981				return ret;
2982			}
2983
2984			dev_info(dev, "FLASH EDU enabled using irq %u\n",
2985				 ctrl->edu_irq);
2986		}
2987	}
2988
2989	return 0;
2990}
2991
2992int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2993{
2994	struct device *dev = &pdev->dev;
2995	struct device_node *dn = dev->of_node, *child;
2996	struct brcmnand_controller *ctrl;
2997	struct resource *res;
2998	int ret;
2999
3000	/* We only support device-tree instantiation */
3001	if (!dn)
3002		return -ENODEV;
3003
3004	if (!of_match_node(brcmnand_of_match, dn))
3005		return -ENODEV;
3006
3007	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3008	if (!ctrl)
3009		return -ENOMEM;
3010
3011	dev_set_drvdata(dev, ctrl);
3012	ctrl->dev = dev;
3013
3014	/* Enable the static key if the soc provides I/O operations indicating
3015	 * that a non-memory mapped IO access path must be used
3016	 */
3017	if (brcmnand_soc_has_ops(ctrl->soc))
3018		static_branch_enable(&brcmnand_soc_has_ops_key);
3019
3020	init_completion(&ctrl->done);
3021	init_completion(&ctrl->dma_done);
3022	init_completion(&ctrl->edu_done);
3023	nand_controller_init(&ctrl->controller);
3024	ctrl->controller.ops = &brcmnand_controller_ops;
3025	INIT_LIST_HEAD(&ctrl->host_list);
3026
3027	/* NAND register range */
3028	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3029	ctrl->nand_base = devm_ioremap_resource(dev, res);
3030	if (IS_ERR(ctrl->nand_base))
3031		return PTR_ERR(ctrl->nand_base);
3032
3033	/* Enable clock before using NAND registers */
3034	ctrl->clk = devm_clk_get(dev, "nand");
3035	if (!IS_ERR(ctrl->clk)) {
3036		ret = clk_prepare_enable(ctrl->clk);
3037		if (ret)
3038			return ret;
3039	} else {
3040		ret = PTR_ERR(ctrl->clk);
3041		if (ret == -EPROBE_DEFER)
3042			return ret;
3043
3044		ctrl->clk = NULL;
3045	}
3046
3047	/* Initialize NAND revision */
3048	ret = brcmnand_revision_init(ctrl);
3049	if (ret)
3050		goto err;
3051
3052	/*
3053	 * Most chips have this cache at a fixed offset within 'nand' block.
3054	 * Some must specify this region separately.
3055	 */
3056	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3057	if (res) {
3058		ctrl->nand_fc = devm_ioremap_resource(dev, res);
3059		if (IS_ERR(ctrl->nand_fc)) {
3060			ret = PTR_ERR(ctrl->nand_fc);
3061			goto err;
3062		}
3063	} else {
3064		ctrl->nand_fc = ctrl->nand_base +
3065				ctrl->reg_offsets[BRCMNAND_FC_BASE];
3066	}
3067
3068	/* FLASH_DMA */
3069	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3070	if (res) {
3071		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3072		if (IS_ERR(ctrl->flash_dma_base)) {
3073			ret = PTR_ERR(ctrl->flash_dma_base);
3074			goto err;
3075		}
3076
3077		/* initialize the dma version */
3078		brcmnand_flash_dma_revision_init(ctrl);
3079
3080		ret = -EIO;
3081		if (ctrl->nand_version >= 0x0700)
3082			ret = dma_set_mask_and_coherent(&pdev->dev,
3083							DMA_BIT_MASK(40));
3084		if (ret)
3085			ret = dma_set_mask_and_coherent(&pdev->dev,
3086							DMA_BIT_MASK(32));
3087		if (ret)
3088			goto err;
3089
3090		/* linked-list and stop on error */
3091		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3092		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3093
3094		/* Allocate descriptor(s) */
3095		ctrl->dma_desc = dmam_alloc_coherent(dev,
3096						     sizeof(*ctrl->dma_desc),
3097						     &ctrl->dma_pa, GFP_KERNEL);
3098		if (!ctrl->dma_desc) {
3099			ret = -ENOMEM;
3100			goto err;
3101		}
3102
3103		ctrl->dma_irq = platform_get_irq(pdev, 1);
3104		if ((int)ctrl->dma_irq < 0) {
3105			dev_err(dev, "missing FLASH_DMA IRQ\n");
3106			ret = -ENODEV;
3107			goto err;
3108		}
3109
3110		ret = devm_request_irq(dev, ctrl->dma_irq,
3111				brcmnand_dma_irq, 0, DRV_NAME,
3112				ctrl);
3113		if (ret < 0) {
3114			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3115					ctrl->dma_irq, ret);
3116			goto err;
3117		}
3118
3119		dev_info(dev, "enabling FLASH_DMA\n");
3120		/* set flash dma transfer function to call */
3121		ctrl->dma_trans = brcmnand_dma_trans;
3122	} else	{
3123		ret = brcmnand_edu_setup(pdev);
3124		if (ret < 0)
3125			goto err;
3126
3127		if (has_edu(ctrl))
3128			/* set edu transfer function to call */
3129			ctrl->dma_trans = brcmnand_edu_trans;
3130	}
3131
3132	/* Disable automatic device ID config, direct addressing */
3133	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3134			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3135	/* Disable XOR addressing */
3136	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3137
3138	if (ctrl->features & BRCMNAND_HAS_WP) {
3139		/* Permanently disable write protection */
3140		if (wp_on == 2)
3141			brcmnand_set_wp(ctrl, false);
3142	} else {
3143		wp_on = 0;
3144	}
3145
3146	/* IRQ */
3147	ctrl->irq = platform_get_irq(pdev, 0);
3148	if ((int)ctrl->irq < 0) {
3149		dev_err(dev, "no IRQ defined\n");
3150		ret = -ENODEV;
3151		goto err;
3152	}
3153
3154	/*
3155	 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3156	 * interesting ways
3157	 */
3158	if (soc) {
3159		ctrl->soc = soc;
3160
3161		ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3162				       DRV_NAME, ctrl);
3163
3164		/* Enable interrupt */
3165		ctrl->soc->ctlrdy_ack(ctrl->soc);
3166		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3167	} else {
3168		/* Use standard interrupt infrastructure */
3169		ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3170				       DRV_NAME, ctrl);
3171	}
3172	if (ret < 0) {
3173		dev_err(dev, "can't allocate IRQ %d: error %d\n",
3174			ctrl->irq, ret);
3175		goto err;
3176	}
3177
3178	for_each_available_child_of_node(dn, child) {
3179		if (of_device_is_compatible(child, "brcm,nandcs")) {
3180			struct brcmnand_host *host;
3181
3182			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3183			if (!host) {
3184				of_node_put(child);
3185				ret = -ENOMEM;
3186				goto err;
3187			}
3188			host->pdev = pdev;
3189			host->ctrl = ctrl;
3190
3191			ret = brcmnand_init_cs(host, child);
3192			if (ret) {
3193				devm_kfree(dev, host);
3194				continue; /* Try all chip-selects */
3195			}
3196
3197			list_add_tail(&host->node, &ctrl->host_list);
3198		}
3199	}
3200
3201	/* No chip-selects could initialize properly */
3202	if (list_empty(&ctrl->host_list)) {
3203		ret = -ENODEV;
3204		goto err;
3205	}
3206
3207	return 0;
3208
3209err:
3210	clk_disable_unprepare(ctrl->clk);
3211	return ret;
3212
3213}
3214EXPORT_SYMBOL_GPL(brcmnand_probe);
3215
3216int brcmnand_remove(struct platform_device *pdev)
3217{
3218	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3219	struct brcmnand_host *host;
3220	struct nand_chip *chip;
3221	int ret;
3222
3223	list_for_each_entry(host, &ctrl->host_list, node) {
3224		chip = &host->chip;
3225		ret = mtd_device_unregister(nand_to_mtd(chip));
3226		WARN_ON(ret);
3227		nand_cleanup(chip);
3228	}
3229
3230	clk_disable_unprepare(ctrl->clk);
3231
3232	dev_set_drvdata(&pdev->dev, NULL);
3233
3234	return 0;
3235}
3236EXPORT_SYMBOL_GPL(brcmnand_remove);
3237
3238MODULE_LICENSE("GPL v2");
3239MODULE_AUTHOR("Kevin Cernekee");
3240MODULE_AUTHOR("Brian Norris");
3241MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3242MODULE_ALIAS("platform:brcmnand");
3243