1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  Copyright © 2005-2009 Samsung Electronics
4 *  Copyright © 2007 Nokia Corporation
5 *
6 *  Kyungmin Park <kyungmin.park@samsung.com>
7 *
8 *  Credits:
9 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
10 *	auto-placement support, read-while load support, various fixes
11 *
12 *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13 *	Flex-OneNAND support
14 *	Amul Kumar Saha <amul.saha at samsung.com>
15 *	OTP support
16 */
17
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/moduleparam.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/delay.h>
24#include <linux/interrupt.h>
25#include <linux/jiffies.h>
26#include <linux/mtd/mtd.h>
27#include <linux/mtd/onenand.h>
28#include <linux/mtd/partitions.h>
29
30#include <asm/io.h>
31
32/*
33 * Multiblock erase if number of blocks to erase is 2 or more.
34 * Maximum number of blocks for simultaneous erase is 64.
35 */
36#define MB_ERASE_MIN_BLK_COUNT 2
37#define MB_ERASE_MAX_BLK_COUNT 64
38
39/* Default Flex-OneNAND boundary and lock respectively */
40static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
41
42module_param_array(flex_bdry, int, NULL, 0400);
43MODULE_PARM_DESC(flex_bdry,	"SLC Boundary information for Flex-OneNAND"
44				"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45				"DIE_BDRY: SLC boundary of the die"
46				"LOCK: Locking information for SLC boundary"
47				"    : 0->Set boundary in unlocked status"
48				"    : 1->Set boundary in locked status");
49
50/* Default OneNAND/Flex-OneNAND OTP options*/
51static int otp;
52
53module_param(otp, int, 0400);
54MODULE_PARM_DESC(otp,	"Corresponding behaviour of OneNAND in OTP"
55			"Syntax : otp=LOCK_TYPE"
56			"LOCK_TYPE : Keys issued, for specific OTP Lock type"
57			"	   : 0 -> Default (No Blocks Locked)"
58			"	   : 1 -> OTP Block lock"
59			"	   : 2 -> 1st Block lock"
60			"	   : 3 -> BOTH OTP Block and 1st Block lock");
61
62/*
63 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64 * For now, we expose only 64 out of 80 ecc bytes
65 */
66static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
67				     struct mtd_oob_region *oobregion)
68{
69	if (section > 7)
70		return -ERANGE;
71
72	oobregion->offset = (section * 16) + 6;
73	oobregion->length = 10;
74
75	return 0;
76}
77
78static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
79				      struct mtd_oob_region *oobregion)
80{
81	if (section > 7)
82		return -ERANGE;
83
84	oobregion->offset = (section * 16) + 2;
85	oobregion->length = 4;
86
87	return 0;
88}
89
90static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
91	.ecc = flexonenand_ooblayout_ecc,
92	.free = flexonenand_ooblayout_free,
93};
94
95/*
96 * onenand_oob_128 - oob info for OneNAND with 4KB page
97 *
98 * Based on specification:
99 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
100 *
101 */
102static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
103				     struct mtd_oob_region *oobregion)
104{
105	if (section > 7)
106		return -ERANGE;
107
108	oobregion->offset = (section * 16) + 7;
109	oobregion->length = 9;
110
111	return 0;
112}
113
114static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
115				      struct mtd_oob_region *oobregion)
116{
117	if (section >= 8)
118		return -ERANGE;
119
120	/*
121	 * free bytes are using the spare area fields marked as
122	 * "Managed by internal ECC logic for Logical Sector Number area"
123	 */
124	oobregion->offset = (section * 16) + 2;
125	oobregion->length = 3;
126
127	return 0;
128}
129
130static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
131	.ecc = onenand_ooblayout_128_ecc,
132	.free = onenand_ooblayout_128_free,
133};
134
135/**
136 * onenand_oob_32_64 - oob info for large (2KB) page
137 */
138static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
139				       struct mtd_oob_region *oobregion)
140{
141	if (section > 3)
142		return -ERANGE;
143
144	oobregion->offset = (section * 16) + 8;
145	oobregion->length = 5;
146
147	return 0;
148}
149
150static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
151					struct mtd_oob_region *oobregion)
152{
153	int sections = (mtd->oobsize / 32) * 2;
154
155	if (section >= sections)
156		return -ERANGE;
157
158	if (section & 1) {
159		oobregion->offset = ((section - 1) * 16) + 14;
160		oobregion->length = 2;
161	} else  {
162		oobregion->offset = (section * 16) + 2;
163		oobregion->length = 3;
164	}
165
166	return 0;
167}
168
169static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
170	.ecc = onenand_ooblayout_32_64_ecc,
171	.free = onenand_ooblayout_32_64_free,
172};
173
174static const unsigned char ffchars[] = {
175	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
177	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
179	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
181	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
183	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
185	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
187	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
189	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
191};
192
193/**
194 * onenand_readw - [OneNAND Interface] Read OneNAND register
195 * @param addr		address to read
196 *
197 * Read OneNAND register
198 */
199static unsigned short onenand_readw(void __iomem *addr)
200{
201	return readw(addr);
202}
203
204/**
205 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206 * @param value		value to write
207 * @param addr		address to write
208 *
209 * Write OneNAND register with value
210 */
211static void onenand_writew(unsigned short value, void __iomem *addr)
212{
213	writew(value, addr);
214}
215
216/**
217 * onenand_block_address - [DEFAULT] Get block address
218 * @param this		onenand chip data structure
219 * @param block		the block
220 * @return		translated block address if DDP, otherwise same
221 *
222 * Setup Start Address 1 Register (F100h)
223 */
224static int onenand_block_address(struct onenand_chip *this, int block)
225{
226	/* Device Flash Core select, NAND Flash Block Address */
227	if (block & this->density_mask)
228		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
229
230	return block;
231}
232
233/**
234 * onenand_bufferram_address - [DEFAULT] Get bufferram address
235 * @param this		onenand chip data structure
236 * @param block		the block
237 * @return		set DBS value if DDP, otherwise 0
238 *
239 * Setup Start Address 2 Register (F101h) for DDP
240 */
241static int onenand_bufferram_address(struct onenand_chip *this, int block)
242{
243	/* Device BufferRAM Select */
244	if (block & this->density_mask)
245		return ONENAND_DDP_CHIP1;
246
247	return ONENAND_DDP_CHIP0;
248}
249
250/**
251 * onenand_page_address - [DEFAULT] Get page address
252 * @param page		the page address
253 * @param sector	the sector address
254 * @return		combined page and sector address
255 *
256 * Setup Start Address 8 Register (F107h)
257 */
258static int onenand_page_address(int page, int sector)
259{
260	/* Flash Page Address, Flash Sector Address */
261	int fpa, fsa;
262
263	fpa = page & ONENAND_FPA_MASK;
264	fsa = sector & ONENAND_FSA_MASK;
265
266	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
267}
268
269/**
270 * onenand_buffer_address - [DEFAULT] Get buffer address
271 * @param dataram1	DataRAM index
272 * @param sectors	the sector address
273 * @param count		the number of sectors
274 * @return		the start buffer value
275 *
276 * Setup Start Buffer Register (F200h)
277 */
278static int onenand_buffer_address(int dataram1, int sectors, int count)
279{
280	int bsa, bsc;
281
282	/* BufferRAM Sector Address */
283	bsa = sectors & ONENAND_BSA_MASK;
284
285	if (dataram1)
286		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
287	else
288		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
289
290	/* BufferRAM Sector Count */
291	bsc = count & ONENAND_BSC_MASK;
292
293	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
294}
295
296/**
297 * flexonenand_block- For given address return block number
298 * @param this         - OneNAND device structure
299 * @param addr		- Address for which block number is needed
300 */
301static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
302{
303	unsigned boundary, blk, die = 0;
304
305	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
306		die = 1;
307		addr -= this->diesize[0];
308	}
309
310	boundary = this->boundary[die];
311
312	blk = addr >> (this->erase_shift - 1);
313	if (blk > boundary)
314		blk = (blk + boundary + 1) >> 1;
315
316	blk += die ? this->density_mask : 0;
317	return blk;
318}
319
320inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
321{
322	if (!FLEXONENAND(this))
323		return addr >> this->erase_shift;
324	return flexonenand_block(this, addr);
325}
326
327/**
328 * flexonenand_addr - Return address of the block
329 * @this:		OneNAND device structure
330 * @block:		Block number on Flex-OneNAND
331 *
332 * Return address of the block
333 */
334static loff_t flexonenand_addr(struct onenand_chip *this, int block)
335{
336	loff_t ofs = 0;
337	int die = 0, boundary;
338
339	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
340		block -= this->density_mask;
341		die = 1;
342		ofs = this->diesize[0];
343	}
344
345	boundary = this->boundary[die];
346	ofs += (loff_t)block << (this->erase_shift - 1);
347	if (block > (boundary + 1))
348		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
349	return ofs;
350}
351
352loff_t onenand_addr(struct onenand_chip *this, int block)
353{
354	if (!FLEXONENAND(this))
355		return (loff_t)block << this->erase_shift;
356	return flexonenand_addr(this, block);
357}
358EXPORT_SYMBOL(onenand_addr);
359
360/**
361 * onenand_get_density - [DEFAULT] Get OneNAND density
362 * @param dev_id	OneNAND device ID
363 *
364 * Get OneNAND density from device ID
365 */
366static inline int onenand_get_density(int dev_id)
367{
368	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
369	return (density & ONENAND_DEVICE_DENSITY_MASK);
370}
371
372/**
373 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374 * @param mtd		MTD device structure
375 * @param addr		address whose erase region needs to be identified
376 */
377int flexonenand_region(struct mtd_info *mtd, loff_t addr)
378{
379	int i;
380
381	for (i = 0; i < mtd->numeraseregions; i++)
382		if (addr < mtd->eraseregions[i].offset)
383			break;
384	return i - 1;
385}
386EXPORT_SYMBOL(flexonenand_region);
387
388/**
389 * onenand_command - [DEFAULT] Send command to OneNAND device
390 * @param mtd		MTD device structure
391 * @param cmd		the command to be sent
392 * @param addr		offset to read from or write to
393 * @param len		number of bytes to read or write
394 *
395 * Send command to OneNAND device. This function is used for middle/large page
396 * devices (1KB/2KB Bytes per page)
397 */
398static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
399{
400	struct onenand_chip *this = mtd->priv;
401	int value, block, page;
402
403	/* Address translation */
404	switch (cmd) {
405	case ONENAND_CMD_UNLOCK:
406	case ONENAND_CMD_LOCK:
407	case ONENAND_CMD_LOCK_TIGHT:
408	case ONENAND_CMD_UNLOCK_ALL:
409		block = -1;
410		page = -1;
411		break;
412
413	case FLEXONENAND_CMD_PI_ACCESS:
414		/* addr contains die index */
415		block = addr * this->density_mask;
416		page = -1;
417		break;
418
419	case ONENAND_CMD_ERASE:
420	case ONENAND_CMD_MULTIBLOCK_ERASE:
421	case ONENAND_CMD_ERASE_VERIFY:
422	case ONENAND_CMD_BUFFERRAM:
423	case ONENAND_CMD_OTP_ACCESS:
424		block = onenand_block(this, addr);
425		page = -1;
426		break;
427
428	case FLEXONENAND_CMD_READ_PI:
429		cmd = ONENAND_CMD_READ;
430		block = addr * this->density_mask;
431		page = 0;
432		break;
433
434	default:
435		block = onenand_block(this, addr);
436		if (FLEXONENAND(this))
437			page = (int) (addr - onenand_addr(this, block))>>\
438				this->page_shift;
439		else
440			page = (int) (addr >> this->page_shift);
441		if (ONENAND_IS_2PLANE(this)) {
442			/* Make the even block number */
443			block &= ~1;
444			/* Is it the odd plane? */
445			if (addr & this->writesize)
446				block++;
447			page >>= 1;
448		}
449		page &= this->page_mask;
450		break;
451	}
452
453	/* NOTE: The setting order of the registers is very important! */
454	if (cmd == ONENAND_CMD_BUFFERRAM) {
455		/* Select DataRAM for DDP */
456		value = onenand_bufferram_address(this, block);
457		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
458
459		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460			/* It is always BufferRAM0 */
461			ONENAND_SET_BUFFERRAM0(this);
462		else
463			/* Switch to the next data buffer */
464			ONENAND_SET_NEXT_BUFFERRAM(this);
465
466		return 0;
467	}
468
469	if (block != -1) {
470		/* Write 'DFS, FBA' of Flash */
471		value = onenand_block_address(this, block);
472		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
473
474		/* Select DataRAM for DDP */
475		value = onenand_bufferram_address(this, block);
476		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
477	}
478
479	if (page != -1) {
480		/* Now we use page size operation */
481		int sectors = 0, count = 0;
482		int dataram;
483
484		switch (cmd) {
485		case FLEXONENAND_CMD_RECOVER_LSB:
486		case ONENAND_CMD_READ:
487		case ONENAND_CMD_READOOB:
488			if (ONENAND_IS_4KB_PAGE(this))
489				/* It is always BufferRAM0 */
490				dataram = ONENAND_SET_BUFFERRAM0(this);
491			else
492				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
493			break;
494
495		default:
496			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
497				cmd = ONENAND_CMD_2X_PROG;
498			dataram = ONENAND_CURRENT_BUFFERRAM(this);
499			break;
500		}
501
502		/* Write 'FPA, FSA' of Flash */
503		value = onenand_page_address(page, sectors);
504		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
505
506		/* Write 'BSA, BSC' of DataRAM */
507		value = onenand_buffer_address(dataram, sectors, count);
508		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
509	}
510
511	/* Interrupt clear */
512	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
513
514	/* Write command */
515	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
516
517	return 0;
518}
519
520/**
521 * onenand_read_ecc - return ecc status
522 * @param this		onenand chip structure
523 */
524static inline int onenand_read_ecc(struct onenand_chip *this)
525{
526	int ecc, i, result = 0;
527
528	if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
530
531	for (i = 0; i < 4; i++) {
532		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
533		if (likely(!ecc))
534			continue;
535		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
536			return ONENAND_ECC_2BIT_ALL;
537		else
538			result = ONENAND_ECC_1BIT_ALL;
539	}
540
541	return result;
542}
543
544/**
545 * onenand_wait - [DEFAULT] wait until the command is done
546 * @param mtd		MTD device structure
547 * @param state		state to select the max. timeout value
548 *
549 * Wait for command done. This applies to all OneNAND command
550 * Read can take up to 30us, erase up to 2ms and program up to 350us
551 * according to general OneNAND specs
552 */
553static int onenand_wait(struct mtd_info *mtd, int state)
554{
555	struct onenand_chip * this = mtd->priv;
556	unsigned long timeout;
557	unsigned int flags = ONENAND_INT_MASTER;
558	unsigned int interrupt = 0;
559	unsigned int ctrl;
560
561	/* The 20 msec is enough */
562	timeout = jiffies + msecs_to_jiffies(20);
563	while (time_before(jiffies, timeout)) {
564		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
565
566		if (interrupt & flags)
567			break;
568
569		if (state != FL_READING && state != FL_PREPARING_ERASE)
570			cond_resched();
571	}
572	/* To get correct interrupt status in timeout case */
573	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
574
575	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
576
577	/*
578	 * In the Spec. it checks the controller status first
579	 * However if you get the correct information in case of
580	 * power off recovery (POR) test, it should read ECC status first
581	 */
582	if (interrupt & ONENAND_INT_READ) {
583		int ecc = onenand_read_ecc(this);
584		if (ecc) {
585			if (ecc & ONENAND_ECC_2BIT_ALL) {
586				printk(KERN_ERR "%s: ECC error = 0x%04x\n",
587					__func__, ecc);
588				mtd->ecc_stats.failed++;
589				return -EBADMSG;
590			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
591				printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
592					__func__, ecc);
593				mtd->ecc_stats.corrected++;
594			}
595		}
596	} else if (state == FL_READING) {
597		printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598			__func__, ctrl, interrupt);
599		return -EIO;
600	}
601
602	if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
603		printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604		       __func__, ctrl, interrupt);
605		return -EIO;
606	}
607
608	if (!(interrupt & ONENAND_INT_MASTER)) {
609		printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610		       __func__, ctrl, interrupt);
611		return -EIO;
612	}
613
614	/* If there's controller error, it's a real error */
615	if (ctrl & ONENAND_CTRL_ERROR) {
616		printk(KERN_ERR "%s: controller error = 0x%04x\n",
617			__func__, ctrl);
618		if (ctrl & ONENAND_CTRL_LOCK)
619			printk(KERN_ERR "%s: it's locked error.\n", __func__);
620		return -EIO;
621	}
622
623	return 0;
624}
625
626/*
627 * onenand_interrupt - [DEFAULT] onenand interrupt handler
628 * @param irq		onenand interrupt number
629 * @param dev_id	interrupt data
630 *
631 * complete the work
632 */
633static irqreturn_t onenand_interrupt(int irq, void *data)
634{
635	struct onenand_chip *this = data;
636
637	/* To handle shared interrupt */
638	if (!this->complete.done)
639		complete(&this->complete);
640
641	return IRQ_HANDLED;
642}
643
644/*
645 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646 * @param mtd		MTD device structure
647 * @param state		state to select the max. timeout value
648 *
649 * Wait for command done.
650 */
651static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
652{
653	struct onenand_chip *this = mtd->priv;
654
655	wait_for_completion(&this->complete);
656
657	return onenand_wait(mtd, state);
658}
659
660/*
661 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662 * @param mtd		MTD device structure
663 * @param state		state to select the max. timeout value
664 *
665 * Try interrupt based wait (It is used one-time)
666 */
667static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
668{
669	struct onenand_chip *this = mtd->priv;
670	unsigned long remain, timeout;
671
672	/* We use interrupt wait first */
673	this->wait = onenand_interrupt_wait;
674
675	timeout = msecs_to_jiffies(100);
676	remain = wait_for_completion_timeout(&this->complete, timeout);
677	if (!remain) {
678		printk(KERN_INFO "OneNAND: There's no interrupt. "
679				"We use the normal wait\n");
680
681		/* Release the irq */
682		free_irq(this->irq, this);
683
684		this->wait = onenand_wait;
685	}
686
687	return onenand_wait(mtd, state);
688}
689
690/*
691 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692 * @param mtd		MTD device structure
693 *
694 * There's two method to wait onenand work
695 * 1. polling - read interrupt status register
696 * 2. interrupt - use the kernel interrupt method
697 */
698static void onenand_setup_wait(struct mtd_info *mtd)
699{
700	struct onenand_chip *this = mtd->priv;
701	int syscfg;
702
703	init_completion(&this->complete);
704
705	if (this->irq <= 0) {
706		this->wait = onenand_wait;
707		return;
708	}
709
710	if (request_irq(this->irq, &onenand_interrupt,
711				IRQF_SHARED, "onenand", this)) {
712		/* If we can't get irq, use the normal wait */
713		this->wait = onenand_wait;
714		return;
715	}
716
717	/* Enable interrupt */
718	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
719	syscfg |= ONENAND_SYS_CFG1_IOBE;
720	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
721
722	this->wait = onenand_try_interrupt_wait;
723}
724
725/**
726 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727 * @param mtd		MTD data structure
728 * @param area		BufferRAM area
729 * @return		offset given area
730 *
731 * Return BufferRAM offset given area
732 */
733static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
734{
735	struct onenand_chip *this = mtd->priv;
736
737	if (ONENAND_CURRENT_BUFFERRAM(this)) {
738		/* Note: the 'this->writesize' is a real page size */
739		if (area == ONENAND_DATARAM)
740			return this->writesize;
741		if (area == ONENAND_SPARERAM)
742			return mtd->oobsize;
743	}
744
745	return 0;
746}
747
748/**
749 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750 * @param mtd		MTD data structure
751 * @param area		BufferRAM area
752 * @param buffer	the databuffer to put/get data
753 * @param offset	offset to read from or write to
754 * @param count		number of bytes to read/write
755 *
756 * Read the BufferRAM area
757 */
758static int onenand_read_bufferram(struct mtd_info *mtd, int area,
759		unsigned char *buffer, int offset, size_t count)
760{
761	struct onenand_chip *this = mtd->priv;
762	void __iomem *bufferram;
763
764	bufferram = this->base + area;
765
766	bufferram += onenand_bufferram_offset(mtd, area);
767
768	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
769		unsigned short word;
770
771		/* Align with word(16-bit) size */
772		count--;
773
774		/* Read word and save byte */
775		word = this->read_word(bufferram + offset + count);
776		buffer[count] = (word & 0xff);
777	}
778
779	memcpy(buffer, bufferram + offset, count);
780
781	return 0;
782}
783
784/**
785 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786 * @param mtd		MTD data structure
787 * @param area		BufferRAM area
788 * @param buffer	the databuffer to put/get data
789 * @param offset	offset to read from or write to
790 * @param count		number of bytes to read/write
791 *
792 * Read the BufferRAM area with Sync. Burst Mode
793 */
794static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
795		unsigned char *buffer, int offset, size_t count)
796{
797	struct onenand_chip *this = mtd->priv;
798	void __iomem *bufferram;
799
800	bufferram = this->base + area;
801
802	bufferram += onenand_bufferram_offset(mtd, area);
803
804	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
805
806	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
807		unsigned short word;
808
809		/* Align with word(16-bit) size */
810		count--;
811
812		/* Read word and save byte */
813		word = this->read_word(bufferram + offset + count);
814		buffer[count] = (word & 0xff);
815	}
816
817	memcpy(buffer, bufferram + offset, count);
818
819	this->mmcontrol(mtd, 0);
820
821	return 0;
822}
823
824/**
825 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826 * @param mtd		MTD data structure
827 * @param area		BufferRAM area
828 * @param buffer	the databuffer to put/get data
829 * @param offset	offset to read from or write to
830 * @param count		number of bytes to read/write
831 *
832 * Write the BufferRAM area
833 */
834static int onenand_write_bufferram(struct mtd_info *mtd, int area,
835		const unsigned char *buffer, int offset, size_t count)
836{
837	struct onenand_chip *this = mtd->priv;
838	void __iomem *bufferram;
839
840	bufferram = this->base + area;
841
842	bufferram += onenand_bufferram_offset(mtd, area);
843
844	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
845		unsigned short word;
846		int byte_offset;
847
848		/* Align with word(16-bit) size */
849		count--;
850
851		/* Calculate byte access offset */
852		byte_offset = offset + count;
853
854		/* Read word and save byte */
855		word = this->read_word(bufferram + byte_offset);
856		word = (word & ~0xff) | buffer[count];
857		this->write_word(word, bufferram + byte_offset);
858	}
859
860	memcpy(bufferram + offset, buffer, count);
861
862	return 0;
863}
864
865/**
866 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867 * @param mtd		MTD data structure
868 * @param addr		address to check
869 * @return		blockpage address
870 *
871 * Get blockpage address at 2x program mode
872 */
873static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
874{
875	struct onenand_chip *this = mtd->priv;
876	int blockpage, block, page;
877
878	/* Calculate the even block number */
879	block = (int) (addr >> this->erase_shift) & ~1;
880	/* Is it the odd plane? */
881	if (addr & this->writesize)
882		block++;
883	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
884	blockpage = (block << 7) | page;
885
886	return blockpage;
887}
888
889/**
890 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891 * @param mtd		MTD data structure
892 * @param addr		address to check
893 * @return		1 if there are valid data, otherwise 0
894 *
895 * Check bufferram if there is data we required
896 */
897static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
898{
899	struct onenand_chip *this = mtd->priv;
900	int blockpage, found = 0;
901	unsigned int i;
902
903	if (ONENAND_IS_2PLANE(this))
904		blockpage = onenand_get_2x_blockpage(mtd, addr);
905	else
906		blockpage = (int) (addr >> this->page_shift);
907
908	/* Is there valid data? */
909	i = ONENAND_CURRENT_BUFFERRAM(this);
910	if (this->bufferram[i].blockpage == blockpage)
911		found = 1;
912	else {
913		/* Check another BufferRAM */
914		i = ONENAND_NEXT_BUFFERRAM(this);
915		if (this->bufferram[i].blockpage == blockpage) {
916			ONENAND_SET_NEXT_BUFFERRAM(this);
917			found = 1;
918		}
919	}
920
921	if (found && ONENAND_IS_DDP(this)) {
922		/* Select DataRAM for DDP */
923		int block = onenand_block(this, addr);
924		int value = onenand_bufferram_address(this, block);
925		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
926	}
927
928	return found;
929}
930
931/**
932 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933 * @param mtd		MTD data structure
934 * @param addr		address to update
935 * @param valid		valid flag
936 *
937 * Update BufferRAM information
938 */
939static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
940		int valid)
941{
942	struct onenand_chip *this = mtd->priv;
943	int blockpage;
944	unsigned int i;
945
946	if (ONENAND_IS_2PLANE(this))
947		blockpage = onenand_get_2x_blockpage(mtd, addr);
948	else
949		blockpage = (int) (addr >> this->page_shift);
950
951	/* Invalidate another BufferRAM */
952	i = ONENAND_NEXT_BUFFERRAM(this);
953	if (this->bufferram[i].blockpage == blockpage)
954		this->bufferram[i].blockpage = -1;
955
956	/* Update BufferRAM */
957	i = ONENAND_CURRENT_BUFFERRAM(this);
958	if (valid)
959		this->bufferram[i].blockpage = blockpage;
960	else
961		this->bufferram[i].blockpage = -1;
962}
963
964/**
965 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966 * @param mtd		MTD data structure
967 * @param addr		start address to invalidate
968 * @param len		length to invalidate
969 *
970 * Invalidate BufferRAM information
971 */
972static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
973		unsigned int len)
974{
975	struct onenand_chip *this = mtd->priv;
976	int i;
977	loff_t end_addr = addr + len;
978
979	/* Invalidate BufferRAM */
980	for (i = 0; i < MAX_BUFFERRAM; i++) {
981		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
982		if (buf_addr >= addr && buf_addr < end_addr)
983			this->bufferram[i].blockpage = -1;
984	}
985}
986
987/**
988 * onenand_get_device - [GENERIC] Get chip for selected access
989 * @param mtd		MTD device structure
990 * @param new_state	the state which is requested
991 *
992 * Get the device and lock it for exclusive access
993 */
994static int onenand_get_device(struct mtd_info *mtd, int new_state)
995{
996	struct onenand_chip *this = mtd->priv;
997	DECLARE_WAITQUEUE(wait, current);
998
999	/*
1000	 * Grab the lock and see if the device is available
1001	 */
1002	while (1) {
1003		spin_lock(&this->chip_lock);
1004		if (this->state == FL_READY) {
1005			this->state = new_state;
1006			spin_unlock(&this->chip_lock);
1007			if (new_state != FL_PM_SUSPENDED && this->enable)
1008				this->enable(mtd);
1009			break;
1010		}
1011		if (new_state == FL_PM_SUSPENDED) {
1012			spin_unlock(&this->chip_lock);
1013			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014		}
1015		set_current_state(TASK_UNINTERRUPTIBLE);
1016		add_wait_queue(&this->wq, &wait);
1017		spin_unlock(&this->chip_lock);
1018		schedule();
1019		remove_wait_queue(&this->wq, &wait);
1020	}
1021
1022	return 0;
1023}
1024
1025/**
1026 * onenand_release_device - [GENERIC] release chip
1027 * @param mtd		MTD device structure
1028 *
1029 * Deselect, release chip lock and wake up anyone waiting on the device
1030 */
1031static void onenand_release_device(struct mtd_info *mtd)
1032{
1033	struct onenand_chip *this = mtd->priv;
1034
1035	if (this->state != FL_PM_SUSPENDED && this->disable)
1036		this->disable(mtd);
1037	/* Release the chip */
1038	spin_lock(&this->chip_lock);
1039	this->state = FL_READY;
1040	wake_up(&this->wq);
1041	spin_unlock(&this->chip_lock);
1042}
1043
1044/**
1045 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046 * @param mtd		MTD device structure
1047 * @param buf		destination address
1048 * @param column	oob offset to read from
1049 * @param thislen	oob length to read
1050 */
1051static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052				int thislen)
1053{
1054	struct onenand_chip *this = mtd->priv;
1055
1056	this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1057			     mtd->oobsize);
1058	return mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1059					   column, thislen);
1060}
1061
1062/**
1063 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1064 * @param mtd		MTD device structure
1065 * @param addr		address to recover
1066 * @param status	return value from onenand_wait / onenand_bbt_wait
1067 *
1068 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1069 * lower page address and MSB page has higher page address in paired pages.
1070 * If power off occurs during MSB page program, the paired LSB page data can
1071 * become corrupt. LSB page recovery read is a way to read LSB page though page
1072 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1073 * read after power up, issue LSB page recovery read.
1074 */
1075static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1076{
1077	struct onenand_chip *this = mtd->priv;
1078	int i;
1079
1080	/* Recovery is only for Flex-OneNAND */
1081	if (!FLEXONENAND(this))
1082		return status;
1083
1084	/* check if we failed due to uncorrectable error */
1085	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1086		return status;
1087
1088	/* check if address lies in MLC region */
1089	i = flexonenand_region(mtd, addr);
1090	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1091		return status;
1092
1093	/* We are attempting to reread, so decrement stats.failed
1094	 * which was incremented by onenand_wait due to read failure
1095	 */
1096	printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1097		__func__);
1098	mtd->ecc_stats.failed--;
1099
1100	/* Issue the LSB page recovery command */
1101	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1102	return this->wait(mtd, FL_READING);
1103}
1104
1105/**
1106 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1107 * @param mtd		MTD device structure
1108 * @param from		offset to read from
1109 * @param ops:		oob operation description structure
1110 *
1111 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1112 * So, read-while-load is not present.
1113 */
1114static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1115				struct mtd_oob_ops *ops)
1116{
1117	struct onenand_chip *this = mtd->priv;
1118	struct mtd_ecc_stats stats;
1119	size_t len = ops->len;
1120	size_t ooblen = ops->ooblen;
1121	u_char *buf = ops->datbuf;
1122	u_char *oobbuf = ops->oobbuf;
1123	int read = 0, column, thislen;
1124	int oobread = 0, oobcolumn, thisooblen, oobsize;
1125	int ret = 0;
1126	int writesize = this->writesize;
1127
1128	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1129			(int)len);
1130
1131	oobsize = mtd_oobavail(mtd, ops);
1132	oobcolumn = from & (mtd->oobsize - 1);
1133
1134	/* Do not allow reads past end of device */
1135	if (from + len > mtd->size) {
1136		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1137			__func__);
1138		ops->retlen = 0;
1139		ops->oobretlen = 0;
1140		return -EINVAL;
1141	}
1142
1143	stats = mtd->ecc_stats;
1144
1145	while (read < len) {
1146		cond_resched();
1147
1148		thislen = min_t(int, writesize, len - read);
1149
1150		column = from & (writesize - 1);
1151		if (column + thislen > writesize)
1152			thislen = writesize - column;
1153
1154		if (!onenand_check_bufferram(mtd, from)) {
1155			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1156
1157			ret = this->wait(mtd, FL_READING);
1158			if (unlikely(ret))
1159				ret = onenand_recover_lsb(mtd, from, ret);
1160			onenand_update_bufferram(mtd, from, !ret);
1161			if (mtd_is_eccerr(ret))
1162				ret = 0;
1163			if (ret)
1164				break;
1165		}
1166
1167		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1168		if (oobbuf) {
1169			thisooblen = oobsize - oobcolumn;
1170			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1171
1172			if (ops->mode == MTD_OPS_AUTO_OOB)
1173				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1174			else
1175				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1176			oobread += thisooblen;
1177			oobbuf += thisooblen;
1178			oobcolumn = 0;
1179		}
1180
1181		read += thislen;
1182		if (read == len)
1183			break;
1184
1185		from += thislen;
1186		buf += thislen;
1187	}
1188
1189	/*
1190	 * Return success, if no ECC failures, else -EBADMSG
1191	 * fs driver will take care of that, because
1192	 * retlen == desired len and result == -EBADMSG
1193	 */
1194	ops->retlen = read;
1195	ops->oobretlen = oobread;
1196
1197	if (ret)
1198		return ret;
1199
1200	if (mtd->ecc_stats.failed - stats.failed)
1201		return -EBADMSG;
1202
1203	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1205}
1206
1207/**
1208 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209 * @param mtd		MTD device structure
1210 * @param from		offset to read from
1211 * @param ops:		oob operation description structure
1212 *
1213 * OneNAND read main and/or out-of-band data
1214 */
1215static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216				struct mtd_oob_ops *ops)
1217{
1218	struct onenand_chip *this = mtd->priv;
1219	struct mtd_ecc_stats stats;
1220	size_t len = ops->len;
1221	size_t ooblen = ops->ooblen;
1222	u_char *buf = ops->datbuf;
1223	u_char *oobbuf = ops->oobbuf;
1224	int read = 0, column, thislen;
1225	int oobread = 0, oobcolumn, thisooblen, oobsize;
1226	int ret = 0, boundary = 0;
1227	int writesize = this->writesize;
1228
1229	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230			(int)len);
1231
1232	oobsize = mtd_oobavail(mtd, ops);
1233	oobcolumn = from & (mtd->oobsize - 1);
1234
1235	/* Do not allow reads past end of device */
1236	if ((from + len) > mtd->size) {
1237		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1238			__func__);
1239		ops->retlen = 0;
1240		ops->oobretlen = 0;
1241		return -EINVAL;
1242	}
1243
1244	stats = mtd->ecc_stats;
1245
1246	/* Read-while-load method */
1247
1248	/* Do first load to bufferRAM */
1249	if (read < len) {
1250		if (!onenand_check_bufferram(mtd, from)) {
1251			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1252			ret = this->wait(mtd, FL_READING);
1253			onenand_update_bufferram(mtd, from, !ret);
1254			if (mtd_is_eccerr(ret))
1255				ret = 0;
1256		}
1257	}
1258
1259	thislen = min_t(int, writesize, len - read);
1260	column = from & (writesize - 1);
1261	if (column + thislen > writesize)
1262		thislen = writesize - column;
1263
1264	while (!ret) {
1265		/* If there is more to load then start next load */
1266		from += thislen;
1267		if (read + thislen < len) {
1268			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1269			/*
1270			 * Chip boundary handling in DDP
1271			 * Now we issued chip 1 read and pointed chip 1
1272			 * bufferram so we have to point chip 0 bufferram.
1273			 */
1274			if (ONENAND_IS_DDP(this) &&
1275			    unlikely(from == (this->chipsize >> 1))) {
1276				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1277				boundary = 1;
1278			} else
1279				boundary = 0;
1280			ONENAND_SET_PREV_BUFFERRAM(this);
1281		}
1282		/* While load is going, read from last bufferRAM */
1283		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1284
1285		/* Read oob area if needed */
1286		if (oobbuf) {
1287			thisooblen = oobsize - oobcolumn;
1288			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1289
1290			if (ops->mode == MTD_OPS_AUTO_OOB)
1291				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1292			else
1293				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1294			oobread += thisooblen;
1295			oobbuf += thisooblen;
1296			oobcolumn = 0;
1297		}
1298
1299		/* See if we are done */
1300		read += thislen;
1301		if (read == len)
1302			break;
1303		/* Set up for next read from bufferRAM */
1304		if (unlikely(boundary))
1305			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1306		ONENAND_SET_NEXT_BUFFERRAM(this);
1307		buf += thislen;
1308		thislen = min_t(int, writesize, len - read);
1309		column = 0;
1310		cond_resched();
1311		/* Now wait for load */
1312		ret = this->wait(mtd, FL_READING);
1313		onenand_update_bufferram(mtd, from, !ret);
1314		if (mtd_is_eccerr(ret))
1315			ret = 0;
1316	}
1317
1318	/*
1319	 * Return success, if no ECC failures, else -EBADMSG
1320	 * fs driver will take care of that, because
1321	 * retlen == desired len and result == -EBADMSG
1322	 */
1323	ops->retlen = read;
1324	ops->oobretlen = oobread;
1325
1326	if (ret)
1327		return ret;
1328
1329	if (mtd->ecc_stats.failed - stats.failed)
1330		return -EBADMSG;
1331
1332	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1333	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1334}
1335
1336/**
1337 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1338 * @param mtd		MTD device structure
1339 * @param from		offset to read from
1340 * @param ops:		oob operation description structure
1341 *
1342 * OneNAND read out-of-band data from the spare area
1343 */
1344static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1345			struct mtd_oob_ops *ops)
1346{
1347	struct onenand_chip *this = mtd->priv;
1348	struct mtd_ecc_stats stats;
1349	int read = 0, thislen, column, oobsize;
1350	size_t len = ops->ooblen;
1351	unsigned int mode = ops->mode;
1352	u_char *buf = ops->oobbuf;
1353	int ret = 0, readcmd;
1354
1355	from += ops->ooboffs;
1356
1357	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1358			(int)len);
1359
1360	/* Initialize return length value */
1361	ops->oobretlen = 0;
1362
1363	if (mode == MTD_OPS_AUTO_OOB)
1364		oobsize = mtd->oobavail;
1365	else
1366		oobsize = mtd->oobsize;
1367
1368	column = from & (mtd->oobsize - 1);
1369
1370	if (unlikely(column >= oobsize)) {
1371		printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1372			__func__);
1373		return -EINVAL;
1374	}
1375
1376	stats = mtd->ecc_stats;
1377
1378	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1379
1380	while (read < len) {
1381		cond_resched();
1382
1383		thislen = oobsize - column;
1384		thislen = min_t(int, thislen, len);
1385
1386		this->command(mtd, readcmd, from, mtd->oobsize);
1387
1388		onenand_update_bufferram(mtd, from, 0);
1389
1390		ret = this->wait(mtd, FL_READING);
1391		if (unlikely(ret))
1392			ret = onenand_recover_lsb(mtd, from, ret);
1393
1394		if (ret && !mtd_is_eccerr(ret)) {
1395			printk(KERN_ERR "%s: read failed = 0x%x\n",
1396				__func__, ret);
1397			break;
1398		}
1399
1400		if (mode == MTD_OPS_AUTO_OOB)
1401			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1402		else
1403			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1404
1405		read += thislen;
1406
1407		if (read == len)
1408			break;
1409
1410		buf += thislen;
1411
1412		/* Read more? */
1413		if (read < len) {
1414			/* Page size */
1415			from += mtd->writesize;
1416			column = 0;
1417		}
1418	}
1419
1420	ops->oobretlen = read;
1421
1422	if (ret)
1423		return ret;
1424
1425	if (mtd->ecc_stats.failed - stats.failed)
1426		return -EBADMSG;
1427
1428	return 0;
1429}
1430
1431/**
1432 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1433 * @param mtd:		MTD device structure
1434 * @param from:		offset to read from
1435 * @param ops:		oob operation description structure
1436
1437 * Read main and/or out-of-band
1438 */
1439static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1440			    struct mtd_oob_ops *ops)
1441{
1442	struct onenand_chip *this = mtd->priv;
1443	int ret;
1444
1445	switch (ops->mode) {
1446	case MTD_OPS_PLACE_OOB:
1447	case MTD_OPS_AUTO_OOB:
1448		break;
1449	case MTD_OPS_RAW:
1450		/* Not implemented yet */
1451	default:
1452		return -EINVAL;
1453	}
1454
1455	onenand_get_device(mtd, FL_READING);
1456	if (ops->datbuf)
1457		ret = ONENAND_IS_4KB_PAGE(this) ?
1458			onenand_mlc_read_ops_nolock(mtd, from, ops) :
1459			onenand_read_ops_nolock(mtd, from, ops);
1460	else
1461		ret = onenand_read_oob_nolock(mtd, from, ops);
1462	onenand_release_device(mtd);
1463
1464	return ret;
1465}
1466
1467/**
1468 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1469 * @param mtd		MTD device structure
1470 * @param state		state to select the max. timeout value
1471 *
1472 * Wait for command done.
1473 */
1474static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1475{
1476	struct onenand_chip *this = mtd->priv;
1477	unsigned long timeout;
1478	unsigned int interrupt, ctrl, ecc, addr1, addr8;
1479
1480	/* The 20 msec is enough */
1481	timeout = jiffies + msecs_to_jiffies(20);
1482	while (time_before(jiffies, timeout)) {
1483		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1484		if (interrupt & ONENAND_INT_MASTER)
1485			break;
1486	}
1487	/* To get correct interrupt status in timeout case */
1488	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1489	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1490	addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1491	addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1492
1493	if (interrupt & ONENAND_INT_READ) {
1494		ecc = onenand_read_ecc(this);
1495		if (ecc & ONENAND_ECC_2BIT_ALL) {
1496			printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1497			       "intr 0x%04x addr1 %#x addr8 %#x\n",
1498			       __func__, ecc, ctrl, interrupt, addr1, addr8);
1499			return ONENAND_BBT_READ_ECC_ERROR;
1500		}
1501	} else {
1502		printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1503		       "intr 0x%04x addr1 %#x addr8 %#x\n",
1504		       __func__, ctrl, interrupt, addr1, addr8);
1505		return ONENAND_BBT_READ_FATAL_ERROR;
1506	}
1507
1508	/* Initial bad block case: 0x2400 or 0x0400 */
1509	if (ctrl & ONENAND_CTRL_ERROR) {
1510		printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1511		       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1512		return ONENAND_BBT_READ_ERROR;
1513	}
1514
1515	return 0;
1516}
1517
1518/**
1519 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1520 * @param mtd		MTD device structure
1521 * @param from		offset to read from
1522 * @param ops		oob operation description structure
1523 *
1524 * OneNAND read out-of-band data from the spare area for bbt scan
1525 */
1526int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1527			    struct mtd_oob_ops *ops)
1528{
1529	struct onenand_chip *this = mtd->priv;
1530	int read = 0, thislen, column;
1531	int ret = 0, readcmd;
1532	size_t len = ops->ooblen;
1533	u_char *buf = ops->oobbuf;
1534
1535	pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1536			len);
1537
1538	/* Initialize return value */
1539	ops->oobretlen = 0;
1540
1541	/* Do not allow reads past end of device */
1542	if (unlikely((from + len) > mtd->size)) {
1543		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1544			__func__);
1545		return ONENAND_BBT_READ_FATAL_ERROR;
1546	}
1547
1548	/* Grab the lock and see if the device is available */
1549	onenand_get_device(mtd, FL_READING);
1550
1551	column = from & (mtd->oobsize - 1);
1552
1553	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1554
1555	while (read < len) {
1556		cond_resched();
1557
1558		thislen = mtd->oobsize - column;
1559		thislen = min_t(int, thislen, len);
1560
1561		this->command(mtd, readcmd, from, mtd->oobsize);
1562
1563		onenand_update_bufferram(mtd, from, 0);
1564
1565		ret = this->bbt_wait(mtd, FL_READING);
1566		if (unlikely(ret))
1567			ret = onenand_recover_lsb(mtd, from, ret);
1568
1569		if (ret)
1570			break;
1571
1572		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1573		read += thislen;
1574		if (read == len)
1575			break;
1576
1577		buf += thislen;
1578
1579		/* Read more? */
1580		if (read < len) {
1581			/* Update Page size */
1582			from += this->writesize;
1583			column = 0;
1584		}
1585	}
1586
1587	/* Deselect and wake up anyone waiting on the device */
1588	onenand_release_device(mtd);
1589
1590	ops->oobretlen = read;
1591	return ret;
1592}
1593
1594#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1595/**
1596 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1597 * @param mtd		MTD device structure
1598 * @param buf		the databuffer to verify
1599 * @param to		offset to read from
1600 */
1601static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1602{
1603	struct onenand_chip *this = mtd->priv;
1604	u_char *oob_buf = this->oob_buf;
1605	int status, i, readcmd;
1606
1607	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1608
1609	this->command(mtd, readcmd, to, mtd->oobsize);
1610	onenand_update_bufferram(mtd, to, 0);
1611	status = this->wait(mtd, FL_READING);
1612	if (status)
1613		return status;
1614
1615	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1616	for (i = 0; i < mtd->oobsize; i++)
1617		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1618			return -EBADMSG;
1619
1620	return 0;
1621}
1622
1623/**
1624 * onenand_verify - [GENERIC] verify the chip contents after a write
1625 * @param mtd          MTD device structure
1626 * @param buf          the databuffer to verify
1627 * @param addr         offset to read from
1628 * @param len          number of bytes to read and compare
1629 */
1630static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1631{
1632	struct onenand_chip *this = mtd->priv;
1633	int ret = 0;
1634	int thislen, column;
1635
1636	column = addr & (this->writesize - 1);
1637
1638	while (len != 0) {
1639		thislen = min_t(int, this->writesize - column, len);
1640
1641		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1642
1643		onenand_update_bufferram(mtd, addr, 0);
1644
1645		ret = this->wait(mtd, FL_READING);
1646		if (ret)
1647			return ret;
1648
1649		onenand_update_bufferram(mtd, addr, 1);
1650
1651		this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1652
1653		if (memcmp(buf, this->verify_buf + column, thislen))
1654			return -EBADMSG;
1655
1656		len -= thislen;
1657		buf += thislen;
1658		addr += thislen;
1659		column = 0;
1660	}
1661
1662	return 0;
1663}
1664#else
1665#define onenand_verify(...)		(0)
1666#define onenand_verify_oob(...)		(0)
1667#endif
1668
1669#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1670
1671static void onenand_panic_wait(struct mtd_info *mtd)
1672{
1673	struct onenand_chip *this = mtd->priv;
1674	unsigned int interrupt;
1675	int i;
1676
1677	for (i = 0; i < 2000; i++) {
1678		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1679		if (interrupt & ONENAND_INT_MASTER)
1680			break;
1681		udelay(10);
1682	}
1683}
1684
1685/**
1686 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1687 * @param mtd		MTD device structure
1688 * @param to		offset to write to
1689 * @param len		number of bytes to write
1690 * @param retlen	pointer to variable to store the number of written bytes
1691 * @param buf		the data to write
1692 *
1693 * Write with ECC
1694 */
1695static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1696			 size_t *retlen, const u_char *buf)
1697{
1698	struct onenand_chip *this = mtd->priv;
1699	int column, subpage;
1700	int written = 0;
1701
1702	if (this->state == FL_PM_SUSPENDED)
1703		return -EBUSY;
1704
1705	/* Wait for any existing operation to clear */
1706	onenand_panic_wait(mtd);
1707
1708	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1709			(int)len);
1710
1711	/* Reject writes, which are not page aligned */
1712        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1713		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1714			__func__);
1715                return -EINVAL;
1716        }
1717
1718	column = to & (mtd->writesize - 1);
1719
1720	/* Loop until all data write */
1721	while (written < len) {
1722		int thislen = min_t(int, mtd->writesize - column, len - written);
1723		u_char *wbuf = (u_char *) buf;
1724
1725		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1726
1727		/* Partial page write */
1728		subpage = thislen < mtd->writesize;
1729		if (subpage) {
1730			memset(this->page_buf, 0xff, mtd->writesize);
1731			memcpy(this->page_buf + column, buf, thislen);
1732			wbuf = this->page_buf;
1733		}
1734
1735		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1736		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1737
1738		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1739
1740		onenand_panic_wait(mtd);
1741
1742		/* In partial page write we don't update bufferram */
1743		onenand_update_bufferram(mtd, to, !subpage);
1744		if (ONENAND_IS_2PLANE(this)) {
1745			ONENAND_SET_BUFFERRAM1(this);
1746			onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1747		}
1748
1749		written += thislen;
1750
1751		if (written == len)
1752			break;
1753
1754		column = 0;
1755		to += thislen;
1756		buf += thislen;
1757	}
1758
1759	*retlen = written;
1760	return 0;
1761}
1762
1763/**
1764 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1765 * @param mtd		MTD device structure
1766 * @param oob_buf	oob buffer
1767 * @param buf		source address
1768 * @param column	oob offset to write to
1769 * @param thislen	oob length to write
1770 */
1771static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1772				  const u_char *buf, int column, int thislen)
1773{
1774	return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1775}
1776
1777/**
1778 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1779 * @param mtd		MTD device structure
1780 * @param to		offset to write to
1781 * @param ops		oob operation description structure
1782 *
1783 * Write main and/or oob with ECC
1784 */
1785static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1786				struct mtd_oob_ops *ops)
1787{
1788	struct onenand_chip *this = mtd->priv;
1789	int written = 0, column, thislen = 0, subpage = 0;
1790	int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1791	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1792	size_t len = ops->len;
1793	size_t ooblen = ops->ooblen;
1794	const u_char *buf = ops->datbuf;
1795	const u_char *oob = ops->oobbuf;
1796	u_char *oobbuf;
1797	int ret = 0, cmd;
1798
1799	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1800			(int)len);
1801
1802	/* Initialize retlen, in case of early exit */
1803	ops->retlen = 0;
1804	ops->oobretlen = 0;
1805
1806	/* Reject writes, which are not page aligned */
1807        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1808		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1809			__func__);
1810                return -EINVAL;
1811        }
1812
1813	/* Check zero length */
1814	if (!len)
1815		return 0;
1816	oobsize = mtd_oobavail(mtd, ops);
1817	oobcolumn = to & (mtd->oobsize - 1);
1818
1819	column = to & (mtd->writesize - 1);
1820
1821	/* Loop until all data write */
1822	while (1) {
1823		if (written < len) {
1824			u_char *wbuf = (u_char *) buf;
1825
1826			thislen = min_t(int, mtd->writesize - column, len - written);
1827			thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1828
1829			cond_resched();
1830
1831			this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1832
1833			/* Partial page write */
1834			subpage = thislen < mtd->writesize;
1835			if (subpage) {
1836				memset(this->page_buf, 0xff, mtd->writesize);
1837				memcpy(this->page_buf + column, buf, thislen);
1838				wbuf = this->page_buf;
1839			}
1840
1841			this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1842
1843			if (oob) {
1844				oobbuf = this->oob_buf;
1845
1846				/* We send data to spare ram with oobsize
1847				 * to prevent byte access */
1848				memset(oobbuf, 0xff, mtd->oobsize);
1849				if (ops->mode == MTD_OPS_AUTO_OOB)
1850					onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1851				else
1852					memcpy(oobbuf + oobcolumn, oob, thisooblen);
1853
1854				oobwritten += thisooblen;
1855				oob += thisooblen;
1856				oobcolumn = 0;
1857			} else
1858				oobbuf = (u_char *) ffchars;
1859
1860			this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1861		} else
1862			ONENAND_SET_NEXT_BUFFERRAM(this);
1863
1864		/*
1865		 * 2 PLANE, MLC, and Flex-OneNAND do not support
1866		 * write-while-program feature.
1867		 */
1868		if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1869			ONENAND_SET_PREV_BUFFERRAM(this);
1870
1871			ret = this->wait(mtd, FL_WRITING);
1872
1873			/* In partial page write we don't update bufferram */
1874			onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1875			if (ret) {
1876				written -= prevlen;
1877				printk(KERN_ERR "%s: write failed %d\n",
1878					__func__, ret);
1879				break;
1880			}
1881
1882			if (written == len) {
1883				/* Only check verify write turn on */
1884				ret = onenand_verify(mtd, buf - len, to - len, len);
1885				if (ret)
1886					printk(KERN_ERR "%s: verify failed %d\n",
1887						__func__, ret);
1888				break;
1889			}
1890
1891			ONENAND_SET_NEXT_BUFFERRAM(this);
1892		}
1893
1894		this->ongoing = 0;
1895		cmd = ONENAND_CMD_PROG;
1896
1897		/* Exclude 1st OTP and OTP blocks for cache program feature */
1898		if (ONENAND_IS_CACHE_PROGRAM(this) &&
1899		    likely(onenand_block(this, to) != 0) &&
1900		    ONENAND_IS_4KB_PAGE(this) &&
1901		    ((written + thislen) < len)) {
1902			cmd = ONENAND_CMD_2X_CACHE_PROG;
1903			this->ongoing = 1;
1904		}
1905
1906		this->command(mtd, cmd, to, mtd->writesize);
1907
1908		/*
1909		 * 2 PLANE, MLC, and Flex-OneNAND wait here
1910		 */
1911		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1912			ret = this->wait(mtd, FL_WRITING);
1913
1914			/* In partial page write we don't update bufferram */
1915			onenand_update_bufferram(mtd, to, !ret && !subpage);
1916			if (ret) {
1917				printk(KERN_ERR "%s: write failed %d\n",
1918					__func__, ret);
1919				break;
1920			}
1921
1922			/* Only check verify write turn on */
1923			ret = onenand_verify(mtd, buf, to, thislen);
1924			if (ret) {
1925				printk(KERN_ERR "%s: verify failed %d\n",
1926					__func__, ret);
1927				break;
1928			}
1929
1930			written += thislen;
1931
1932			if (written == len)
1933				break;
1934
1935		} else
1936			written += thislen;
1937
1938		column = 0;
1939		prev_subpage = subpage;
1940		prev = to;
1941		prevlen = thislen;
1942		to += thislen;
1943		buf += thislen;
1944		first = 0;
1945	}
1946
1947	/* In error case, clear all bufferrams */
1948	if (written != len)
1949		onenand_invalidate_bufferram(mtd, 0, -1);
1950
1951	ops->retlen = written;
1952	ops->oobretlen = oobwritten;
1953
1954	return ret;
1955}
1956
1957
1958/**
1959 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1960 * @param mtd		MTD device structure
1961 * @param to		offset to write to
1962 * @param len		number of bytes to write
1963 * @param retlen	pointer to variable to store the number of written bytes
1964 * @param buf		the data to write
1965 * @param mode		operation mode
1966 *
1967 * OneNAND write out-of-band
1968 */
1969static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1970				    struct mtd_oob_ops *ops)
1971{
1972	struct onenand_chip *this = mtd->priv;
1973	int column, ret = 0, oobsize;
1974	int written = 0, oobcmd;
1975	u_char *oobbuf;
1976	size_t len = ops->ooblen;
1977	const u_char *buf = ops->oobbuf;
1978	unsigned int mode = ops->mode;
1979
1980	to += ops->ooboffs;
1981
1982	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1983			(int)len);
1984
1985	/* Initialize retlen, in case of early exit */
1986	ops->oobretlen = 0;
1987
1988	if (mode == MTD_OPS_AUTO_OOB)
1989		oobsize = mtd->oobavail;
1990	else
1991		oobsize = mtd->oobsize;
1992
1993	column = to & (mtd->oobsize - 1);
1994
1995	if (unlikely(column >= oobsize)) {
1996		printk(KERN_ERR "%s: Attempted to start write outside oob\n",
1997			__func__);
1998		return -EINVAL;
1999	}
2000
2001	/* For compatibility with NAND: Do not allow write past end of page */
2002	if (unlikely(column + len > oobsize)) {
2003		printk(KERN_ERR "%s: Attempt to write past end of page\n",
2004			__func__);
2005		return -EINVAL;
2006	}
2007
2008	oobbuf = this->oob_buf;
2009
2010	oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2011
2012	/* Loop until all data write */
2013	while (written < len) {
2014		int thislen = min_t(int, oobsize, len - written);
2015
2016		cond_resched();
2017
2018		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2019
2020		/* We send data to spare ram with oobsize
2021		 * to prevent byte access */
2022		memset(oobbuf, 0xff, mtd->oobsize);
2023		if (mode == MTD_OPS_AUTO_OOB)
2024			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2025		else
2026			memcpy(oobbuf + column, buf, thislen);
2027		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2028
2029		if (ONENAND_IS_4KB_PAGE(this)) {
2030			/* Set main area of DataRAM to 0xff*/
2031			memset(this->page_buf, 0xff, mtd->writesize);
2032			this->write_bufferram(mtd, ONENAND_DATARAM,
2033					 this->page_buf, 0, mtd->writesize);
2034		}
2035
2036		this->command(mtd, oobcmd, to, mtd->oobsize);
2037
2038		onenand_update_bufferram(mtd, to, 0);
2039		if (ONENAND_IS_2PLANE(this)) {
2040			ONENAND_SET_BUFFERRAM1(this);
2041			onenand_update_bufferram(mtd, to + this->writesize, 0);
2042		}
2043
2044		ret = this->wait(mtd, FL_WRITING);
2045		if (ret) {
2046			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2047			break;
2048		}
2049
2050		ret = onenand_verify_oob(mtd, oobbuf, to);
2051		if (ret) {
2052			printk(KERN_ERR "%s: verify failed %d\n",
2053				__func__, ret);
2054			break;
2055		}
2056
2057		written += thislen;
2058		if (written == len)
2059			break;
2060
2061		to += mtd->writesize;
2062		buf += thislen;
2063		column = 0;
2064	}
2065
2066	ops->oobretlen = written;
2067
2068	return ret;
2069}
2070
2071/**
2072 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2073 * @param mtd:		MTD device structure
2074 * @param to:		offset to write
2075 * @param ops:		oob operation description structure
2076 */
2077static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2078			     struct mtd_oob_ops *ops)
2079{
2080	int ret;
2081
2082	switch (ops->mode) {
2083	case MTD_OPS_PLACE_OOB:
2084	case MTD_OPS_AUTO_OOB:
2085		break;
2086	case MTD_OPS_RAW:
2087		/* Not implemented yet */
2088	default:
2089		return -EINVAL;
2090	}
2091
2092	onenand_get_device(mtd, FL_WRITING);
2093	if (ops->datbuf)
2094		ret = onenand_write_ops_nolock(mtd, to, ops);
2095	else
2096		ret = onenand_write_oob_nolock(mtd, to, ops);
2097	onenand_release_device(mtd);
2098
2099	return ret;
2100}
2101
2102/**
2103 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2104 * @param mtd		MTD device structure
2105 * @param ofs		offset from device start
2106 * @param allowbbt	1, if its allowed to access the bbt area
2107 *
2108 * Check, if the block is bad. Either by reading the bad block table or
2109 * calling of the scan function.
2110 */
2111static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2112{
2113	struct onenand_chip *this = mtd->priv;
2114	struct bbm_info *bbm = this->bbm;
2115
2116	/* Return info from the table */
2117	return bbm->isbad_bbt(mtd, ofs, allowbbt);
2118}
2119
2120
2121static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2122					   struct erase_info *instr)
2123{
2124	struct onenand_chip *this = mtd->priv;
2125	loff_t addr = instr->addr;
2126	int len = instr->len;
2127	unsigned int block_size = (1 << this->erase_shift);
2128	int ret = 0;
2129
2130	while (len) {
2131		this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2132		ret = this->wait(mtd, FL_VERIFYING_ERASE);
2133		if (ret) {
2134			printk(KERN_ERR "%s: Failed verify, block %d\n",
2135			       __func__, onenand_block(this, addr));
2136			instr->fail_addr = addr;
2137			return -1;
2138		}
2139		len -= block_size;
2140		addr += block_size;
2141	}
2142	return 0;
2143}
2144
2145/**
2146 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2147 * @param mtd		MTD device structure
2148 * @param instr		erase instruction
2149 * @param region	erase region
2150 *
2151 * Erase one or more blocks up to 64 block at a time
2152 */
2153static int onenand_multiblock_erase(struct mtd_info *mtd,
2154				    struct erase_info *instr,
2155				    unsigned int block_size)
2156{
2157	struct onenand_chip *this = mtd->priv;
2158	loff_t addr = instr->addr;
2159	int len = instr->len;
2160	int eb_count = 0;
2161	int ret = 0;
2162	int bdry_block = 0;
2163
2164	if (ONENAND_IS_DDP(this)) {
2165		loff_t bdry_addr = this->chipsize >> 1;
2166		if (addr < bdry_addr && (addr + len) > bdry_addr)
2167			bdry_block = bdry_addr >> this->erase_shift;
2168	}
2169
2170	/* Pre-check bbs */
2171	while (len) {
2172		/* Check if we have a bad block, we do not erase bad blocks */
2173		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2174			printk(KERN_WARNING "%s: attempt to erase a bad block "
2175			       "at addr 0x%012llx\n",
2176			       __func__, (unsigned long long) addr);
2177			return -EIO;
2178		}
2179		len -= block_size;
2180		addr += block_size;
2181	}
2182
2183	len = instr->len;
2184	addr = instr->addr;
2185
2186	/* loop over 64 eb batches */
2187	while (len) {
2188		struct erase_info verify_instr = *instr;
2189		int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2190
2191		verify_instr.addr = addr;
2192		verify_instr.len = 0;
2193
2194		/* do not cross chip boundary */
2195		if (bdry_block) {
2196			int this_block = (addr >> this->erase_shift);
2197
2198			if (this_block < bdry_block) {
2199				max_eb_count = min(max_eb_count,
2200						   (bdry_block - this_block));
2201			}
2202		}
2203
2204		eb_count = 0;
2205
2206		while (len > block_size && eb_count < (max_eb_count - 1)) {
2207			this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2208				      addr, block_size);
2209			onenand_invalidate_bufferram(mtd, addr, block_size);
2210
2211			ret = this->wait(mtd, FL_PREPARING_ERASE);
2212			if (ret) {
2213				printk(KERN_ERR "%s: Failed multiblock erase, "
2214				       "block %d\n", __func__,
2215				       onenand_block(this, addr));
2216				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2217				return -EIO;
2218			}
2219
2220			len -= block_size;
2221			addr += block_size;
2222			eb_count++;
2223		}
2224
2225		/* last block of 64-eb series */
2226		cond_resched();
2227		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2228		onenand_invalidate_bufferram(mtd, addr, block_size);
2229
2230		ret = this->wait(mtd, FL_ERASING);
2231		/* Check if it is write protected */
2232		if (ret) {
2233			printk(KERN_ERR "%s: Failed erase, block %d\n",
2234			       __func__, onenand_block(this, addr));
2235			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2236			return -EIO;
2237		}
2238
2239		len -= block_size;
2240		addr += block_size;
2241		eb_count++;
2242
2243		/* verify */
2244		verify_instr.len = eb_count * block_size;
2245		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2246			instr->fail_addr = verify_instr.fail_addr;
2247			return -EIO;
2248		}
2249
2250	}
2251	return 0;
2252}
2253
2254
2255/**
2256 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2257 * @param mtd		MTD device structure
2258 * @param instr		erase instruction
2259 * @param region	erase region
2260 * @param block_size	erase block size
2261 *
2262 * Erase one or more blocks one block at a time
2263 */
2264static int onenand_block_by_block_erase(struct mtd_info *mtd,
2265					struct erase_info *instr,
2266					struct mtd_erase_region_info *region,
2267					unsigned int block_size)
2268{
2269	struct onenand_chip *this = mtd->priv;
2270	loff_t addr = instr->addr;
2271	int len = instr->len;
2272	loff_t region_end = 0;
2273	int ret = 0;
2274
2275	if (region) {
2276		/* region is set for Flex-OneNAND */
2277		region_end = region->offset + region->erasesize * region->numblocks;
2278	}
2279
2280	/* Loop through the blocks */
2281	while (len) {
2282		cond_resched();
2283
2284		/* Check if we have a bad block, we do not erase bad blocks */
2285		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2286			printk(KERN_WARNING "%s: attempt to erase a bad block "
2287					"at addr 0x%012llx\n",
2288					__func__, (unsigned long long) addr);
2289			return -EIO;
2290		}
2291
2292		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2293
2294		onenand_invalidate_bufferram(mtd, addr, block_size);
2295
2296		ret = this->wait(mtd, FL_ERASING);
2297		/* Check, if it is write protected */
2298		if (ret) {
2299			printk(KERN_ERR "%s: Failed erase, block %d\n",
2300				__func__, onenand_block(this, addr));
2301			instr->fail_addr = addr;
2302			return -EIO;
2303		}
2304
2305		len -= block_size;
2306		addr += block_size;
2307
2308		if (region && addr == region_end) {
2309			if (!len)
2310				break;
2311			region++;
2312
2313			block_size = region->erasesize;
2314			region_end = region->offset + region->erasesize * region->numblocks;
2315
2316			if (len & (block_size - 1)) {
2317				/* FIXME: This should be handled at MTD partitioning level. */
2318				printk(KERN_ERR "%s: Unaligned address\n",
2319					__func__);
2320				return -EIO;
2321			}
2322		}
2323	}
2324	return 0;
2325}
2326
2327/**
2328 * onenand_erase - [MTD Interface] erase block(s)
2329 * @param mtd		MTD device structure
2330 * @param instr		erase instruction
2331 *
2332 * Erase one or more blocks
2333 */
2334static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2335{
2336	struct onenand_chip *this = mtd->priv;
2337	unsigned int block_size;
2338	loff_t addr = instr->addr;
2339	loff_t len = instr->len;
2340	int ret = 0;
2341	struct mtd_erase_region_info *region = NULL;
2342	loff_t region_offset = 0;
2343
2344	pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2345			(unsigned long long)instr->addr,
2346			(unsigned long long)instr->len);
2347
2348	if (FLEXONENAND(this)) {
2349		/* Find the eraseregion of this address */
2350		int i = flexonenand_region(mtd, addr);
2351
2352		region = &mtd->eraseregions[i];
2353		block_size = region->erasesize;
2354
2355		/* Start address within region must align on block boundary.
2356		 * Erase region's start offset is always block start address.
2357		 */
2358		region_offset = region->offset;
2359	} else
2360		block_size = 1 << this->erase_shift;
2361
2362	/* Start address must align on block boundary */
2363	if (unlikely((addr - region_offset) & (block_size - 1))) {
2364		printk(KERN_ERR "%s: Unaligned address\n", __func__);
2365		return -EINVAL;
2366	}
2367
2368	/* Length must align on block boundary */
2369	if (unlikely(len & (block_size - 1))) {
2370		printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2371		return -EINVAL;
2372	}
2373
2374	/* Grab the lock and see if the device is available */
2375	onenand_get_device(mtd, FL_ERASING);
2376
2377	if (ONENAND_IS_4KB_PAGE(this) || region ||
2378	    instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2379		/* region is set for Flex-OneNAND (no mb erase) */
2380		ret = onenand_block_by_block_erase(mtd, instr,
2381						   region, block_size);
2382	} else {
2383		ret = onenand_multiblock_erase(mtd, instr, block_size);
2384	}
2385
2386	/* Deselect and wake up anyone waiting on the device */
2387	onenand_release_device(mtd);
2388
2389	return ret;
2390}
2391
2392/**
2393 * onenand_sync - [MTD Interface] sync
2394 * @param mtd		MTD device structure
2395 *
2396 * Sync is actually a wait for chip ready function
2397 */
2398static void onenand_sync(struct mtd_info *mtd)
2399{
2400	pr_debug("%s: called\n", __func__);
2401
2402	/* Grab the lock and see if the device is available */
2403	onenand_get_device(mtd, FL_SYNCING);
2404
2405	/* Release it and go back */
2406	onenand_release_device(mtd);
2407}
2408
2409/**
2410 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2411 * @param mtd		MTD device structure
2412 * @param ofs		offset relative to mtd start
2413 *
2414 * Check whether the block is bad
2415 */
2416static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2417{
2418	int ret;
2419
2420	onenand_get_device(mtd, FL_READING);
2421	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2422	onenand_release_device(mtd);
2423	return ret;
2424}
2425
2426/**
2427 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2428 * @param mtd		MTD device structure
2429 * @param ofs		offset from device start
2430 *
2431 * This is the default implementation, which can be overridden by
2432 * a hardware specific driver.
2433 */
2434static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2435{
2436	struct onenand_chip *this = mtd->priv;
2437	struct bbm_info *bbm = this->bbm;
2438	u_char buf[2] = {0, 0};
2439	struct mtd_oob_ops ops = {
2440		.mode = MTD_OPS_PLACE_OOB,
2441		.ooblen = 2,
2442		.oobbuf = buf,
2443		.ooboffs = 0,
2444	};
2445	int block;
2446
2447	/* Get block number */
2448	block = onenand_block(this, ofs);
2449        if (bbm->bbt)
2450                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2451
2452        /* We write two bytes, so we don't have to mess with 16-bit access */
2453        ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2454	/* FIXME : What to do when marking SLC block in partition
2455	 * 	   with MLC erasesize? For now, it is not advisable to
2456	 *	   create partitions containing both SLC and MLC regions.
2457	 */
2458	return onenand_write_oob_nolock(mtd, ofs, &ops);
2459}
2460
2461/**
2462 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2463 * @param mtd		MTD device structure
2464 * @param ofs		offset relative to mtd start
2465 *
2466 * Mark the block as bad
2467 */
2468static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2469{
2470	struct onenand_chip *this = mtd->priv;
2471	int ret;
2472
2473	ret = onenand_block_isbad(mtd, ofs);
2474	if (ret) {
2475		/* If it was bad already, return success and do nothing */
2476		if (ret > 0)
2477			return 0;
2478		return ret;
2479	}
2480
2481	onenand_get_device(mtd, FL_WRITING);
2482	ret = this->block_markbad(mtd, ofs);
2483	onenand_release_device(mtd);
2484	return ret;
2485}
2486
2487/**
2488 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2489 * @param mtd		MTD device structure
2490 * @param ofs		offset relative to mtd start
2491 * @param len		number of bytes to lock or unlock
2492 * @param cmd		lock or unlock command
2493 *
2494 * Lock or unlock one or more blocks
2495 */
2496static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2497{
2498	struct onenand_chip *this = mtd->priv;
2499	int start, end, block, value, status;
2500	int wp_status_mask;
2501
2502	start = onenand_block(this, ofs);
2503	end = onenand_block(this, ofs + len) - 1;
2504
2505	if (cmd == ONENAND_CMD_LOCK)
2506		wp_status_mask = ONENAND_WP_LS;
2507	else
2508		wp_status_mask = ONENAND_WP_US;
2509
2510	/* Continuous lock scheme */
2511	if (this->options & ONENAND_HAS_CONT_LOCK) {
2512		/* Set start block address */
2513		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2514		/* Set end block address */
2515		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2516		/* Write lock command */
2517		this->command(mtd, cmd, 0, 0);
2518
2519		/* There's no return value */
2520		this->wait(mtd, FL_LOCKING);
2521
2522		/* Sanity check */
2523		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2524		    & ONENAND_CTRL_ONGO)
2525			continue;
2526
2527		/* Check lock status */
2528		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2529		if (!(status & wp_status_mask))
2530			printk(KERN_ERR "%s: wp status = 0x%x\n",
2531				__func__, status);
2532
2533		return 0;
2534	}
2535
2536	/* Block lock scheme */
2537	for (block = start; block < end + 1; block++) {
2538		/* Set block address */
2539		value = onenand_block_address(this, block);
2540		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2541		/* Select DataRAM for DDP */
2542		value = onenand_bufferram_address(this, block);
2543		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2544		/* Set start block address */
2545		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2546		/* Write lock command */
2547		this->command(mtd, cmd, 0, 0);
2548
2549		/* There's no return value */
2550		this->wait(mtd, FL_LOCKING);
2551
2552		/* Sanity check */
2553		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2554		    & ONENAND_CTRL_ONGO)
2555			continue;
2556
2557		/* Check lock status */
2558		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2559		if (!(status & wp_status_mask))
2560			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2561				__func__, block, status);
2562	}
2563
2564	return 0;
2565}
2566
2567/**
2568 * onenand_lock - [MTD Interface] Lock block(s)
2569 * @param mtd		MTD device structure
2570 * @param ofs		offset relative to mtd start
2571 * @param len		number of bytes to unlock
2572 *
2573 * Lock one or more blocks
2574 */
2575static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2576{
2577	int ret;
2578
2579	onenand_get_device(mtd, FL_LOCKING);
2580	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2581	onenand_release_device(mtd);
2582	return ret;
2583}
2584
2585/**
2586 * onenand_unlock - [MTD Interface] Unlock block(s)
2587 * @param mtd		MTD device structure
2588 * @param ofs		offset relative to mtd start
2589 * @param len		number of bytes to unlock
2590 *
2591 * Unlock one or more blocks
2592 */
2593static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2594{
2595	int ret;
2596
2597	onenand_get_device(mtd, FL_LOCKING);
2598	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2599	onenand_release_device(mtd);
2600	return ret;
2601}
2602
2603/**
2604 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2605 * @param this		onenand chip data structure
2606 *
2607 * Check lock status
2608 */
2609static int onenand_check_lock_status(struct onenand_chip *this)
2610{
2611	unsigned int value, block, status;
2612	unsigned int end;
2613
2614	end = this->chipsize >> this->erase_shift;
2615	for (block = 0; block < end; block++) {
2616		/* Set block address */
2617		value = onenand_block_address(this, block);
2618		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2619		/* Select DataRAM for DDP */
2620		value = onenand_bufferram_address(this, block);
2621		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2622		/* Set start block address */
2623		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2624
2625		/* Check lock status */
2626		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2627		if (!(status & ONENAND_WP_US)) {
2628			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2629				__func__, block, status);
2630			return 0;
2631		}
2632	}
2633
2634	return 1;
2635}
2636
2637/**
2638 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2639 * @param mtd		MTD device structure
2640 *
2641 * Unlock all blocks
2642 */
2643static void onenand_unlock_all(struct mtd_info *mtd)
2644{
2645	struct onenand_chip *this = mtd->priv;
2646	loff_t ofs = 0;
2647	loff_t len = mtd->size;
2648
2649	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2650		/* Set start block address */
2651		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2652		/* Write unlock command */
2653		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2654
2655		/* There's no return value */
2656		this->wait(mtd, FL_LOCKING);
2657
2658		/* Sanity check */
2659		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2660		    & ONENAND_CTRL_ONGO)
2661			continue;
2662
2663		/* Don't check lock status */
2664		if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2665			return;
2666
2667		/* Check lock status */
2668		if (onenand_check_lock_status(this))
2669			return;
2670
2671		/* Workaround for all block unlock in DDP */
2672		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2673			/* All blocks on another chip */
2674			ofs = this->chipsize >> 1;
2675			len = this->chipsize >> 1;
2676		}
2677	}
2678
2679	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2680}
2681
2682#ifdef CONFIG_MTD_ONENAND_OTP
2683
2684/**
2685 * onenand_otp_command - Send OTP specific command to OneNAND device
2686 * @param mtd	 MTD device structure
2687 * @param cmd	 the command to be sent
2688 * @param addr	 offset to read from or write to
2689 * @param len	 number of bytes to read or write
2690 */
2691static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2692				size_t len)
2693{
2694	struct onenand_chip *this = mtd->priv;
2695	int value, block, page;
2696
2697	/* Address translation */
2698	switch (cmd) {
2699	case ONENAND_CMD_OTP_ACCESS:
2700		block = (int) (addr >> this->erase_shift);
2701		page = -1;
2702		break;
2703
2704	default:
2705		block = (int) (addr >> this->erase_shift);
2706		page = (int) (addr >> this->page_shift);
2707
2708		if (ONENAND_IS_2PLANE(this)) {
2709			/* Make the even block number */
2710			block &= ~1;
2711			/* Is it the odd plane? */
2712			if (addr & this->writesize)
2713				block++;
2714			page >>= 1;
2715		}
2716		page &= this->page_mask;
2717		break;
2718	}
2719
2720	if (block != -1) {
2721		/* Write 'DFS, FBA' of Flash */
2722		value = onenand_block_address(this, block);
2723		this->write_word(value, this->base +
2724				ONENAND_REG_START_ADDRESS1);
2725	}
2726
2727	if (page != -1) {
2728		/* Now we use page size operation */
2729		int sectors = 4, count = 4;
2730		int dataram;
2731
2732		switch (cmd) {
2733		default:
2734			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2735				cmd = ONENAND_CMD_2X_PROG;
2736			dataram = ONENAND_CURRENT_BUFFERRAM(this);
2737			break;
2738		}
2739
2740		/* Write 'FPA, FSA' of Flash */
2741		value = onenand_page_address(page, sectors);
2742		this->write_word(value, this->base +
2743				ONENAND_REG_START_ADDRESS8);
2744
2745		/* Write 'BSA, BSC' of DataRAM */
2746		value = onenand_buffer_address(dataram, sectors, count);
2747		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2748	}
2749
2750	/* Interrupt clear */
2751	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2752
2753	/* Write command */
2754	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2755
2756	return 0;
2757}
2758
2759/**
2760 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2761 * @param mtd		MTD device structure
2762 * @param to		offset to write to
2763 * @param len		number of bytes to write
2764 * @param retlen	pointer to variable to store the number of written bytes
2765 * @param buf		the data to write
2766 *
2767 * OneNAND write out-of-band only for OTP
2768 */
2769static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2770				    struct mtd_oob_ops *ops)
2771{
2772	struct onenand_chip *this = mtd->priv;
2773	int column, ret = 0, oobsize;
2774	int written = 0;
2775	u_char *oobbuf;
2776	size_t len = ops->ooblen;
2777	const u_char *buf = ops->oobbuf;
2778	int block, value, status;
2779
2780	to += ops->ooboffs;
2781
2782	/* Initialize retlen, in case of early exit */
2783	ops->oobretlen = 0;
2784
2785	oobsize = mtd->oobsize;
2786
2787	column = to & (mtd->oobsize - 1);
2788
2789	oobbuf = this->oob_buf;
2790
2791	/* Loop until all data write */
2792	while (written < len) {
2793		int thislen = min_t(int, oobsize, len - written);
2794
2795		cond_resched();
2796
2797		block = (int) (to >> this->erase_shift);
2798		/*
2799		 * Write 'DFS, FBA' of Flash
2800		 * Add: F100h DQ=DFS, FBA
2801		 */
2802
2803		value = onenand_block_address(this, block);
2804		this->write_word(value, this->base +
2805				ONENAND_REG_START_ADDRESS1);
2806
2807		/*
2808		 * Select DataRAM for DDP
2809		 * Add: F101h DQ=DBS
2810		 */
2811
2812		value = onenand_bufferram_address(this, block);
2813		this->write_word(value, this->base +
2814				ONENAND_REG_START_ADDRESS2);
2815		ONENAND_SET_NEXT_BUFFERRAM(this);
2816
2817		/*
2818		 * Enter OTP access mode
2819		 */
2820		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2821		this->wait(mtd, FL_OTPING);
2822
2823		/* We send data to spare ram with oobsize
2824		 * to prevent byte access */
2825		memcpy(oobbuf + column, buf, thislen);
2826
2827		/*
2828		 * Write Data into DataRAM
2829		 * Add: 8th Word
2830		 * in sector0/spare/page0
2831		 * DQ=XXFCh
2832		 */
2833		this->write_bufferram(mtd, ONENAND_SPARERAM,
2834					oobbuf, 0, mtd->oobsize);
2835
2836		onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2837		onenand_update_bufferram(mtd, to, 0);
2838		if (ONENAND_IS_2PLANE(this)) {
2839			ONENAND_SET_BUFFERRAM1(this);
2840			onenand_update_bufferram(mtd, to + this->writesize, 0);
2841		}
2842
2843		ret = this->wait(mtd, FL_WRITING);
2844		if (ret) {
2845			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2846			break;
2847		}
2848
2849		/* Exit OTP access mode */
2850		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2851		this->wait(mtd, FL_RESETTING);
2852
2853		status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2854		status &= 0x60;
2855
2856		if (status == 0x60) {
2857			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2858			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2859			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2860		} else if (status == 0x20) {
2861			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2862			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2863			printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2864		} else if (status == 0x40) {
2865			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2866			printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2867			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2868		} else {
2869			printk(KERN_DEBUG "Reboot to check\n");
2870		}
2871
2872		written += thislen;
2873		if (written == len)
2874			break;
2875
2876		to += mtd->writesize;
2877		buf += thislen;
2878		column = 0;
2879	}
2880
2881	ops->oobretlen = written;
2882
2883	return ret;
2884}
2885
2886/* Internal OTP operation */
2887typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2888		size_t *retlen, u_char *buf);
2889
2890/**
2891 * do_otp_read - [DEFAULT] Read OTP block area
2892 * @param mtd		MTD device structure
2893 * @param from		The offset to read
2894 * @param len		number of bytes to read
2895 * @param retlen	pointer to variable to store the number of readbytes
2896 * @param buf		the databuffer to put/get data
2897 *
2898 * Read OTP block area.
2899 */
2900static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2901		size_t *retlen, u_char *buf)
2902{
2903	struct onenand_chip *this = mtd->priv;
2904	struct mtd_oob_ops ops = {
2905		.len	= len,
2906		.ooblen	= 0,
2907		.datbuf	= buf,
2908		.oobbuf	= NULL,
2909	};
2910	int ret;
2911
2912	/* Enter OTP access mode */
2913	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2914	this->wait(mtd, FL_OTPING);
2915
2916	ret = ONENAND_IS_4KB_PAGE(this) ?
2917		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2918		onenand_read_ops_nolock(mtd, from, &ops);
2919
2920	/* Exit OTP access mode */
2921	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2922	this->wait(mtd, FL_RESETTING);
2923
2924	return ret;
2925}
2926
2927/**
2928 * do_otp_write - [DEFAULT] Write OTP block area
2929 * @param mtd		MTD device structure
2930 * @param to		The offset to write
2931 * @param len		number of bytes to write
2932 * @param retlen	pointer to variable to store the number of write bytes
2933 * @param buf		the databuffer to put/get data
2934 *
2935 * Write OTP block area.
2936 */
2937static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2938		size_t *retlen, u_char *buf)
2939{
2940	struct onenand_chip *this = mtd->priv;
2941	unsigned char *pbuf = buf;
2942	int ret;
2943	struct mtd_oob_ops ops;
2944
2945	/* Force buffer page aligned */
2946	if (len < mtd->writesize) {
2947		memcpy(this->page_buf, buf, len);
2948		memset(this->page_buf + len, 0xff, mtd->writesize - len);
2949		pbuf = this->page_buf;
2950		len = mtd->writesize;
2951	}
2952
2953	/* Enter OTP access mode */
2954	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2955	this->wait(mtd, FL_OTPING);
2956
2957	ops.len = len;
2958	ops.ooblen = 0;
2959	ops.datbuf = pbuf;
2960	ops.oobbuf = NULL;
2961	ret = onenand_write_ops_nolock(mtd, to, &ops);
2962	*retlen = ops.retlen;
2963
2964	/* Exit OTP access mode */
2965	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2966	this->wait(mtd, FL_RESETTING);
2967
2968	return ret;
2969}
2970
2971/**
2972 * do_otp_lock - [DEFAULT] Lock OTP block area
2973 * @param mtd		MTD device structure
2974 * @param from		The offset to lock
2975 * @param len		number of bytes to lock
2976 * @param retlen	pointer to variable to store the number of lock bytes
2977 * @param buf		the databuffer to put/get data
2978 *
2979 * Lock OTP block area.
2980 */
2981static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2982		size_t *retlen, u_char *buf)
2983{
2984	struct onenand_chip *this = mtd->priv;
2985	struct mtd_oob_ops ops;
2986	int ret;
2987
2988	if (FLEXONENAND(this)) {
2989
2990		/* Enter OTP access mode */
2991		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2992		this->wait(mtd, FL_OTPING);
2993		/*
2994		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2995		 * main area of page 49.
2996		 */
2997		ops.len = mtd->writesize;
2998		ops.ooblen = 0;
2999		ops.datbuf = buf;
3000		ops.oobbuf = NULL;
3001		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3002		*retlen = ops.retlen;
3003
3004		/* Exit OTP access mode */
3005		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3006		this->wait(mtd, FL_RESETTING);
3007	} else {
3008		ops.mode = MTD_OPS_PLACE_OOB;
3009		ops.ooblen = len;
3010		ops.oobbuf = buf;
3011		ops.ooboffs = 0;
3012		ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3013		*retlen = ops.oobretlen;
3014	}
3015
3016	return ret;
3017}
3018
3019/**
3020 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3021 * @param mtd		MTD device structure
3022 * @param from		The offset to read/write
3023 * @param len		number of bytes to read/write
3024 * @param retlen	pointer to variable to store the number of read bytes
3025 * @param buf		the databuffer to put/get data
3026 * @param action	do given action
3027 * @param mode		specify user and factory
3028 *
3029 * Handle OTP operation.
3030 */
3031static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3032			size_t *retlen, u_char *buf,
3033			otp_op_t action, int mode)
3034{
3035	struct onenand_chip *this = mtd->priv;
3036	int otp_pages;
3037	int density;
3038	int ret = 0;
3039
3040	*retlen = 0;
3041
3042	density = onenand_get_density(this->device_id);
3043	if (density < ONENAND_DEVICE_DENSITY_512Mb)
3044		otp_pages = 20;
3045	else
3046		otp_pages = 50;
3047
3048	if (mode == MTD_OTP_FACTORY) {
3049		from += mtd->writesize * otp_pages;
3050		otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3051	}
3052
3053	/* Check User/Factory boundary */
3054	if (mode == MTD_OTP_USER) {
3055		if (mtd->writesize * otp_pages < from + len)
3056			return 0;
3057	} else {
3058		if (mtd->writesize * otp_pages <  len)
3059			return 0;
3060	}
3061
3062	onenand_get_device(mtd, FL_OTPING);
3063	while (len > 0 && otp_pages > 0) {
3064		if (!action) {	/* OTP Info functions */
3065			struct otp_info *otpinfo;
3066
3067			len -= sizeof(struct otp_info);
3068			if (len <= 0) {
3069				ret = -ENOSPC;
3070				break;
3071			}
3072
3073			otpinfo = (struct otp_info *) buf;
3074			otpinfo->start = from;
3075			otpinfo->length = mtd->writesize;
3076			otpinfo->locked = 0;
3077
3078			from += mtd->writesize;
3079			buf += sizeof(struct otp_info);
3080			*retlen += sizeof(struct otp_info);
3081		} else {
3082			size_t tmp_retlen;
3083
3084			ret = action(mtd, from, len, &tmp_retlen, buf);
3085			if (ret)
3086				break;
3087
3088			buf += tmp_retlen;
3089			len -= tmp_retlen;
3090			*retlen += tmp_retlen;
3091
3092		}
3093		otp_pages--;
3094	}
3095	onenand_release_device(mtd);
3096
3097	return ret;
3098}
3099
3100/**
3101 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3102 * @param mtd		MTD device structure
3103 * @param len		number of bytes to read
3104 * @param retlen	pointer to variable to store the number of read bytes
3105 * @param buf		the databuffer to put/get data
3106 *
3107 * Read factory OTP info.
3108 */
3109static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3110				      size_t *retlen, struct otp_info *buf)
3111{
3112	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3113				MTD_OTP_FACTORY);
3114}
3115
3116/**
3117 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3118 * @param mtd		MTD device structure
3119 * @param from		The offset to read
3120 * @param len		number of bytes to read
3121 * @param retlen	pointer to variable to store the number of read bytes
3122 * @param buf		the databuffer to put/get data
3123 *
3124 * Read factory OTP area.
3125 */
3126static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3127			size_t len, size_t *retlen, u_char *buf)
3128{
3129	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3130}
3131
3132/**
3133 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3134 * @param mtd		MTD device structure
3135 * @param retlen	pointer to variable to store the number of read bytes
3136 * @param len		number of bytes to read
3137 * @param buf		the databuffer to put/get data
3138 *
3139 * Read user OTP info.
3140 */
3141static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3142				      size_t *retlen, struct otp_info *buf)
3143{
3144	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3145				MTD_OTP_USER);
3146}
3147
3148/**
3149 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3150 * @param mtd		MTD device structure
3151 * @param from		The offset to read
3152 * @param len		number of bytes to read
3153 * @param retlen	pointer to variable to store the number of read bytes
3154 * @param buf		the databuffer to put/get data
3155 *
3156 * Read user OTP area.
3157 */
3158static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3159			size_t len, size_t *retlen, u_char *buf)
3160{
3161	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3162}
3163
3164/**
3165 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3166 * @param mtd		MTD device structure
3167 * @param from		The offset to write
3168 * @param len		number of bytes to write
3169 * @param retlen	pointer to variable to store the number of write bytes
3170 * @param buf		the databuffer to put/get data
3171 *
3172 * Write user OTP area.
3173 */
3174static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3175			size_t len, size_t *retlen, u_char *buf)
3176{
3177	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3178}
3179
3180/**
3181 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3182 * @param mtd		MTD device structure
3183 * @param from		The offset to lock
3184 * @param len		number of bytes to unlock
3185 *
3186 * Write lock mark on spare area in page 0 in OTP block
3187 */
3188static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3189			size_t len)
3190{
3191	struct onenand_chip *this = mtd->priv;
3192	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3193	size_t retlen;
3194	int ret;
3195	unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3196
3197	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3198						 : mtd->oobsize);
3199	/*
3200	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3201	 * We write 16 bytes spare area instead of 2 bytes.
3202	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3203	 * main area of page 49.
3204	 */
3205
3206	from = 0;
3207	len = FLEXONENAND(this) ? mtd->writesize : 16;
3208
3209	/*
3210	 * Note: OTP lock operation
3211	 *       OTP block : 0xXXFC			XX 1111 1100
3212	 *       1st block : 0xXXF3 (If chip support)	XX 1111 0011
3213	 *       Both      : 0xXXF0 (If chip support)	XX 1111 0000
3214	 */
3215	if (FLEXONENAND(this))
3216		otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3217
3218	/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3219	if (otp == 1)
3220		buf[otp_lock_offset] = 0xFC;
3221	else if (otp == 2)
3222		buf[otp_lock_offset] = 0xF3;
3223	else if (otp == 3)
3224		buf[otp_lock_offset] = 0xF0;
3225	else if (otp != 0)
3226		printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3227
3228	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3229
3230	return ret ? : retlen;
3231}
3232
3233#endif	/* CONFIG_MTD_ONENAND_OTP */
3234
3235/**
3236 * onenand_check_features - Check and set OneNAND features
3237 * @param mtd		MTD data structure
3238 *
3239 * Check and set OneNAND features
3240 * - lock scheme
3241 * - two plane
3242 */
3243static void onenand_check_features(struct mtd_info *mtd)
3244{
3245	struct onenand_chip *this = mtd->priv;
3246	unsigned int density, process, numbufs;
3247
3248	/* Lock scheme depends on density and process */
3249	density = onenand_get_density(this->device_id);
3250	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3251	numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3252
3253	/* Lock scheme */
3254	switch (density) {
3255	case ONENAND_DEVICE_DENSITY_8Gb:
3256		this->options |= ONENAND_HAS_NOP_1;
3257		fallthrough;
3258	case ONENAND_DEVICE_DENSITY_4Gb:
3259		if (ONENAND_IS_DDP(this))
3260			this->options |= ONENAND_HAS_2PLANE;
3261		else if (numbufs == 1) {
3262			this->options |= ONENAND_HAS_4KB_PAGE;
3263			this->options |= ONENAND_HAS_CACHE_PROGRAM;
3264			/*
3265			 * There are two different 4KiB pagesize chips
3266			 * and no way to detect it by H/W config values.
3267			 *
3268			 * To detect the correct NOP for each chips,
3269			 * It should check the version ID as workaround.
3270			 *
3271			 * Now it has as following
3272			 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3273			 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3274			 */
3275			if ((this->version_id & 0xf) == 0xe)
3276				this->options |= ONENAND_HAS_NOP_1;
3277		}
3278		this->options |= ONENAND_HAS_UNLOCK_ALL;
3279		break;
3280
3281	case ONENAND_DEVICE_DENSITY_2Gb:
3282		/* 2Gb DDP does not have 2 plane */
3283		if (!ONENAND_IS_DDP(this))
3284			this->options |= ONENAND_HAS_2PLANE;
3285		this->options |= ONENAND_HAS_UNLOCK_ALL;
3286		break;
3287
3288	case ONENAND_DEVICE_DENSITY_1Gb:
3289		/* A-Die has all block unlock */
3290		if (process)
3291			this->options |= ONENAND_HAS_UNLOCK_ALL;
3292		break;
3293
3294	default:
3295		/* Some OneNAND has continuous lock scheme */
3296		if (!process)
3297			this->options |= ONENAND_HAS_CONT_LOCK;
3298		break;
3299	}
3300
3301	/* The MLC has 4KiB pagesize. */
3302	if (ONENAND_IS_MLC(this))
3303		this->options |= ONENAND_HAS_4KB_PAGE;
3304
3305	if (ONENAND_IS_4KB_PAGE(this))
3306		this->options &= ~ONENAND_HAS_2PLANE;
3307
3308	if (FLEXONENAND(this)) {
3309		this->options &= ~ONENAND_HAS_CONT_LOCK;
3310		this->options |= ONENAND_HAS_UNLOCK_ALL;
3311	}
3312
3313	if (this->options & ONENAND_HAS_CONT_LOCK)
3314		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3315	if (this->options & ONENAND_HAS_UNLOCK_ALL)
3316		printk(KERN_DEBUG "Chip support all block unlock\n");
3317	if (this->options & ONENAND_HAS_2PLANE)
3318		printk(KERN_DEBUG "Chip has 2 plane\n");
3319	if (this->options & ONENAND_HAS_4KB_PAGE)
3320		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3321	if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3322		printk(KERN_DEBUG "Chip has cache program feature\n");
3323}
3324
3325/**
3326 * onenand_print_device_info - Print device & version ID
3327 * @param device        device ID
3328 * @param version	version ID
3329 *
3330 * Print device & version ID
3331 */
3332static void onenand_print_device_info(int device, int version)
3333{
3334	int vcc, demuxed, ddp, density, flexonenand;
3335
3336        vcc = device & ONENAND_DEVICE_VCC_MASK;
3337        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3338        ddp = device & ONENAND_DEVICE_IS_DDP;
3339        density = onenand_get_density(device);
3340	flexonenand = device & DEVICE_IS_FLEXONENAND;
3341	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3342		demuxed ? "" : "Muxed ",
3343		flexonenand ? "Flex-" : "",
3344                ddp ? "(DDP)" : "",
3345                (16 << density),
3346                vcc ? "2.65/3.3" : "1.8",
3347                device);
3348	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3349}
3350
3351static const struct onenand_manufacturers onenand_manuf_ids[] = {
3352        {ONENAND_MFR_SAMSUNG, "Samsung"},
3353	{ONENAND_MFR_NUMONYX, "Numonyx"},
3354};
3355
3356/**
3357 * onenand_check_maf - Check manufacturer ID
3358 * @param manuf         manufacturer ID
3359 *
3360 * Check manufacturer ID
3361 */
3362static int onenand_check_maf(int manuf)
3363{
3364	int size = ARRAY_SIZE(onenand_manuf_ids);
3365	char *name;
3366        int i;
3367
3368	for (i = 0; i < size; i++)
3369                if (manuf == onenand_manuf_ids[i].id)
3370                        break;
3371
3372	if (i < size)
3373		name = onenand_manuf_ids[i].name;
3374	else
3375		name = "Unknown";
3376
3377	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3378
3379	return (i == size);
3380}
3381
3382/**
3383* flexonenand_get_boundary	- Reads the SLC boundary
3384* @param onenand_info		- onenand info structure
3385**/
3386static int flexonenand_get_boundary(struct mtd_info *mtd)
3387{
3388	struct onenand_chip *this = mtd->priv;
3389	unsigned die, bdry;
3390	int syscfg, locked;
3391
3392	/* Disable ECC */
3393	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3394	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3395
3396	for (die = 0; die < this->dies; die++) {
3397		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3398		this->wait(mtd, FL_SYNCING);
3399
3400		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3401		this->wait(mtd, FL_READING);
3402
3403		bdry = this->read_word(this->base + ONENAND_DATARAM);
3404		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3405			locked = 0;
3406		else
3407			locked = 1;
3408		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3409
3410		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3411		this->wait(mtd, FL_RESETTING);
3412
3413		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3414		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3415	}
3416
3417	/* Enable ECC */
3418	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3419	return 0;
3420}
3421
3422/**
3423 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3424 * 			  boundary[], diesize[], mtd->size, mtd->erasesize
3425 * @param mtd		- MTD device structure
3426 */
3427static void flexonenand_get_size(struct mtd_info *mtd)
3428{
3429	struct onenand_chip *this = mtd->priv;
3430	int die, i, eraseshift, density;
3431	int blksperdie, maxbdry;
3432	loff_t ofs;
3433
3434	density = onenand_get_density(this->device_id);
3435	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3436	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3437	maxbdry = blksperdie - 1;
3438	eraseshift = this->erase_shift - 1;
3439
3440	mtd->numeraseregions = this->dies << 1;
3441
3442	/* This fills up the device boundary */
3443	flexonenand_get_boundary(mtd);
3444	die = ofs = 0;
3445	i = -1;
3446	for (; die < this->dies; die++) {
3447		if (!die || this->boundary[die-1] != maxbdry) {
3448			i++;
3449			mtd->eraseregions[i].offset = ofs;
3450			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3451			mtd->eraseregions[i].numblocks =
3452							this->boundary[die] + 1;
3453			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3454			eraseshift++;
3455		} else {
3456			mtd->numeraseregions -= 1;
3457			mtd->eraseregions[i].numblocks +=
3458							this->boundary[die] + 1;
3459			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3460		}
3461		if (this->boundary[die] != maxbdry) {
3462			i++;
3463			mtd->eraseregions[i].offset = ofs;
3464			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3465			mtd->eraseregions[i].numblocks = maxbdry ^
3466							 this->boundary[die];
3467			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3468			eraseshift--;
3469		} else
3470			mtd->numeraseregions -= 1;
3471	}
3472
3473	/* Expose MLC erase size except when all blocks are SLC */
3474	mtd->erasesize = 1 << this->erase_shift;
3475	if (mtd->numeraseregions == 1)
3476		mtd->erasesize >>= 1;
3477
3478	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3479	for (i = 0; i < mtd->numeraseregions; i++)
3480		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3481			" numblocks: %04u]\n",
3482			(unsigned int) mtd->eraseregions[i].offset,
3483			mtd->eraseregions[i].erasesize,
3484			mtd->eraseregions[i].numblocks);
3485
3486	for (die = 0, mtd->size = 0; die < this->dies; die++) {
3487		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3488		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3489						 << (this->erase_shift - 1);
3490		mtd->size += this->diesize[die];
3491	}
3492}
3493
3494/**
3495 * flexonenand_check_blocks_erased - Check if blocks are erased
3496 * @param mtd_info	- mtd info structure
3497 * @param start		- first erase block to check
3498 * @param end		- last erase block to check
3499 *
3500 * Converting an unerased block from MLC to SLC
3501 * causes byte values to change. Since both data and its ECC
3502 * have changed, reads on the block give uncorrectable error.
3503 * This might lead to the block being detected as bad.
3504 *
3505 * Avoid this by ensuring that the block to be converted is
3506 * erased.
3507 */
3508static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3509{
3510	struct onenand_chip *this = mtd->priv;
3511	int i, ret;
3512	int block;
3513	struct mtd_oob_ops ops = {
3514		.mode = MTD_OPS_PLACE_OOB,
3515		.ooboffs = 0,
3516		.ooblen	= mtd->oobsize,
3517		.datbuf	= NULL,
3518		.oobbuf	= this->oob_buf,
3519	};
3520	loff_t addr;
3521
3522	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3523
3524	for (block = start; block <= end; block++) {
3525		addr = flexonenand_addr(this, block);
3526		if (onenand_block_isbad_nolock(mtd, addr, 0))
3527			continue;
3528
3529		/*
3530		 * Since main area write results in ECC write to spare,
3531		 * it is sufficient to check only ECC bytes for change.
3532		 */
3533		ret = onenand_read_oob_nolock(mtd, addr, &ops);
3534		if (ret)
3535			return ret;
3536
3537		for (i = 0; i < mtd->oobsize; i++)
3538			if (this->oob_buf[i] != 0xff)
3539				break;
3540
3541		if (i != mtd->oobsize) {
3542			printk(KERN_WARNING "%s: Block %d not erased.\n",
3543				__func__, block);
3544			return 1;
3545		}
3546	}
3547
3548	return 0;
3549}
3550
3551/**
3552 * flexonenand_set_boundary	- Writes the SLC boundary
3553 * @param mtd			- mtd info structure
3554 */
3555static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3556				    int boundary, int lock)
3557{
3558	struct onenand_chip *this = mtd->priv;
3559	int ret, density, blksperdie, old, new, thisboundary;
3560	loff_t addr;
3561
3562	/* Change only once for SDP Flex-OneNAND */
3563	if (die && (!ONENAND_IS_DDP(this)))
3564		return 0;
3565
3566	/* boundary value of -1 indicates no required change */
3567	if (boundary < 0 || boundary == this->boundary[die])
3568		return 0;
3569
3570	density = onenand_get_density(this->device_id);
3571	blksperdie = ((16 << density) << 20) >> this->erase_shift;
3572	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3573
3574	if (boundary >= blksperdie) {
3575		printk(KERN_ERR "%s: Invalid boundary value. "
3576				"Boundary not changed.\n", __func__);
3577		return -EINVAL;
3578	}
3579
3580	/* Check if converting blocks are erased */
3581	old = this->boundary[die] + (die * this->density_mask);
3582	new = boundary + (die * this->density_mask);
3583	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3584	if (ret) {
3585		printk(KERN_ERR "%s: Please erase blocks "
3586				"before boundary change\n", __func__);
3587		return ret;
3588	}
3589
3590	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3591	this->wait(mtd, FL_SYNCING);
3592
3593	/* Check is boundary is locked */
3594	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3595	this->wait(mtd, FL_READING);
3596
3597	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3598	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3599		printk(KERN_ERR "%s: boundary locked\n", __func__);
3600		ret = 1;
3601		goto out;
3602	}
3603
3604	printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3605			die, boundary, lock ? "(Locked)" : "(Unlocked)");
3606
3607	addr = die ? this->diesize[0] : 0;
3608
3609	boundary &= FLEXONENAND_PI_MASK;
3610	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3611
3612	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3613	ret = this->wait(mtd, FL_ERASING);
3614	if (ret) {
3615		printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3616		       __func__, die);
3617		goto out;
3618	}
3619
3620	this->write_word(boundary, this->base + ONENAND_DATARAM);
3621	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3622	ret = this->wait(mtd, FL_WRITING);
3623	if (ret) {
3624		printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3625			__func__, die);
3626		goto out;
3627	}
3628
3629	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3630	ret = this->wait(mtd, FL_WRITING);
3631out:
3632	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3633	this->wait(mtd, FL_RESETTING);
3634	if (!ret)
3635		/* Recalculate device size on boundary change*/
3636		flexonenand_get_size(mtd);
3637
3638	return ret;
3639}
3640
3641/**
3642 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3643 * @param mtd		MTD device structure
3644 *
3645 * OneNAND detection method:
3646 *   Compare the values from command with ones from register
3647 */
3648static int onenand_chip_probe(struct mtd_info *mtd)
3649{
3650	struct onenand_chip *this = mtd->priv;
3651	int bram_maf_id, bram_dev_id, maf_id, dev_id;
3652	int syscfg;
3653
3654	/* Save system configuration 1 */
3655	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3656	/* Clear Sync. Burst Read mode to read BootRAM */
3657	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3658
3659	/* Send the command for reading device ID from BootRAM */
3660	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3661
3662	/* Read manufacturer and device IDs from BootRAM */
3663	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3664	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3665
3666	/* Reset OneNAND to read default register values */
3667	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3668	/* Wait reset */
3669	this->wait(mtd, FL_RESETTING);
3670
3671	/* Restore system configuration 1 */
3672	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3673
3674	/* Check manufacturer ID */
3675	if (onenand_check_maf(bram_maf_id))
3676		return -ENXIO;
3677
3678	/* Read manufacturer and device IDs from Register */
3679	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3680	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3681
3682	/* Check OneNAND device */
3683	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3684		return -ENXIO;
3685
3686	return 0;
3687}
3688
3689/**
3690 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3691 * @param mtd		MTD device structure
3692 */
3693static int onenand_probe(struct mtd_info *mtd)
3694{
3695	struct onenand_chip *this = mtd->priv;
3696	int dev_id, ver_id;
3697	int density;
3698	int ret;
3699
3700	ret = this->chip_probe(mtd);
3701	if (ret)
3702		return ret;
3703
3704	/* Device and version IDs from Register */
3705	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3706	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3707	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3708
3709	/* Flash device information */
3710	onenand_print_device_info(dev_id, ver_id);
3711	this->device_id = dev_id;
3712	this->version_id = ver_id;
3713
3714	/* Check OneNAND features */
3715	onenand_check_features(mtd);
3716
3717	density = onenand_get_density(dev_id);
3718	if (FLEXONENAND(this)) {
3719		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3720		/* Maximum possible erase regions */
3721		mtd->numeraseregions = this->dies << 1;
3722		mtd->eraseregions =
3723			kcalloc(this->dies << 1,
3724				sizeof(struct mtd_erase_region_info),
3725				GFP_KERNEL);
3726		if (!mtd->eraseregions)
3727			return -ENOMEM;
3728	}
3729
3730	/*
3731	 * For Flex-OneNAND, chipsize represents maximum possible device size.
3732	 * mtd->size represents the actual device size.
3733	 */
3734	this->chipsize = (16 << density) << 20;
3735
3736	/* OneNAND page size & block size */
3737	/* The data buffer size is equal to page size */
3738	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3739	/* We use the full BufferRAM */
3740	if (ONENAND_IS_4KB_PAGE(this))
3741		mtd->writesize <<= 1;
3742
3743	mtd->oobsize = mtd->writesize >> 5;
3744	/* Pages per a block are always 64 in OneNAND */
3745	mtd->erasesize = mtd->writesize << 6;
3746	/*
3747	 * Flex-OneNAND SLC area has 64 pages per block.
3748	 * Flex-OneNAND MLC area has 128 pages per block.
3749	 * Expose MLC erase size to find erase_shift and page_mask.
3750	 */
3751	if (FLEXONENAND(this))
3752		mtd->erasesize <<= 1;
3753
3754	this->erase_shift = ffs(mtd->erasesize) - 1;
3755	this->page_shift = ffs(mtd->writesize) - 1;
3756	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3757	/* Set density mask. it is used for DDP */
3758	if (ONENAND_IS_DDP(this))
3759		this->density_mask = this->chipsize >> (this->erase_shift + 1);
3760	/* It's real page size */
3761	this->writesize = mtd->writesize;
3762
3763	/* REVISIT: Multichip handling */
3764
3765	if (FLEXONENAND(this))
3766		flexonenand_get_size(mtd);
3767	else
3768		mtd->size = this->chipsize;
3769
3770	/*
3771	 * We emulate the 4KiB page and 256KiB erase block size
3772	 * But oobsize is still 64 bytes.
3773	 * It is only valid if you turn on 2X program support,
3774	 * Otherwise it will be ignored by compiler.
3775	 */
3776	if (ONENAND_IS_2PLANE(this)) {
3777		mtd->writesize <<= 1;
3778		mtd->erasesize <<= 1;
3779	}
3780
3781	return 0;
3782}
3783
3784/**
3785 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3786 * @param mtd		MTD device structure
3787 */
3788static int onenand_suspend(struct mtd_info *mtd)
3789{
3790	return onenand_get_device(mtd, FL_PM_SUSPENDED);
3791}
3792
3793/**
3794 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3795 * @param mtd		MTD device structure
3796 */
3797static void onenand_resume(struct mtd_info *mtd)
3798{
3799	struct onenand_chip *this = mtd->priv;
3800
3801	if (this->state == FL_PM_SUSPENDED)
3802		onenand_release_device(mtd);
3803	else
3804		printk(KERN_ERR "%s: resume() called for the chip which is not "
3805				"in suspended state\n", __func__);
3806}
3807
3808/**
3809 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3810 * @param mtd		MTD device structure
3811 * @param maxchips	Number of chips to scan for
3812 *
3813 * This fills out all the not initialized function pointers
3814 * with the defaults.
3815 * The flash ID is read and the mtd/chip structures are
3816 * filled with the appropriate values.
3817 */
3818int onenand_scan(struct mtd_info *mtd, int maxchips)
3819{
3820	int i, ret;
3821	struct onenand_chip *this = mtd->priv;
3822
3823	if (!this->read_word)
3824		this->read_word = onenand_readw;
3825	if (!this->write_word)
3826		this->write_word = onenand_writew;
3827
3828	if (!this->command)
3829		this->command = onenand_command;
3830	if (!this->wait)
3831		onenand_setup_wait(mtd);
3832	if (!this->bbt_wait)
3833		this->bbt_wait = onenand_bbt_wait;
3834	if (!this->unlock_all)
3835		this->unlock_all = onenand_unlock_all;
3836
3837	if (!this->chip_probe)
3838		this->chip_probe = onenand_chip_probe;
3839
3840	if (!this->read_bufferram)
3841		this->read_bufferram = onenand_read_bufferram;
3842	if (!this->write_bufferram)
3843		this->write_bufferram = onenand_write_bufferram;
3844
3845	if (!this->block_markbad)
3846		this->block_markbad = onenand_default_block_markbad;
3847	if (!this->scan_bbt)
3848		this->scan_bbt = onenand_default_bbt;
3849
3850	if (onenand_probe(mtd))
3851		return -ENXIO;
3852
3853	/* Set Sync. Burst Read after probing */
3854	if (this->mmcontrol) {
3855		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3856		this->read_bufferram = onenand_sync_read_bufferram;
3857	}
3858
3859	/* Allocate buffers, if necessary */
3860	if (!this->page_buf) {
3861		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3862		if (!this->page_buf)
3863			return -ENOMEM;
3864#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3865		this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3866		if (!this->verify_buf) {
3867			kfree(this->page_buf);
3868			return -ENOMEM;
3869		}
3870#endif
3871		this->options |= ONENAND_PAGEBUF_ALLOC;
3872	}
3873	if (!this->oob_buf) {
3874		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3875		if (!this->oob_buf) {
3876			if (this->options & ONENAND_PAGEBUF_ALLOC) {
3877				this->options &= ~ONENAND_PAGEBUF_ALLOC;
3878#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3879				kfree(this->verify_buf);
3880#endif
3881				kfree(this->page_buf);
3882			}
3883			return -ENOMEM;
3884		}
3885		this->options |= ONENAND_OOBBUF_ALLOC;
3886	}
3887
3888	this->state = FL_READY;
3889	init_waitqueue_head(&this->wq);
3890	spin_lock_init(&this->chip_lock);
3891
3892	/*
3893	 * Allow subpage writes up to oobsize.
3894	 */
3895	switch (mtd->oobsize) {
3896	case 128:
3897		if (FLEXONENAND(this)) {
3898			mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3899			mtd->subpage_sft = 0;
3900		} else {
3901			mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3902			mtd->subpage_sft = 2;
3903		}
3904		if (ONENAND_IS_NOP_1(this))
3905			mtd->subpage_sft = 0;
3906		break;
3907	case 64:
3908		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3909		mtd->subpage_sft = 2;
3910		break;
3911
3912	case 32:
3913		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3914		mtd->subpage_sft = 1;
3915		break;
3916
3917	default:
3918		printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3919			__func__, mtd->oobsize);
3920		mtd->subpage_sft = 0;
3921		/* To prevent kernel oops */
3922		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3923		break;
3924	}
3925
3926	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3927
3928	/*
3929	 * The number of bytes available for a client to place data into
3930	 * the out of band area
3931	 */
3932	ret = mtd_ooblayout_count_freebytes(mtd);
3933	if (ret < 0)
3934		ret = 0;
3935
3936	mtd->oobavail = ret;
3937
3938	mtd->ecc_strength = 1;
3939
3940	/* Fill in remaining MTD driver data */
3941	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3942	mtd->flags = MTD_CAP_NANDFLASH;
3943	mtd->_erase = onenand_erase;
3944	mtd->_point = NULL;
3945	mtd->_unpoint = NULL;
3946	mtd->_read_oob = onenand_read_oob;
3947	mtd->_write_oob = onenand_write_oob;
3948	mtd->_panic_write = onenand_panic_write;
3949#ifdef CONFIG_MTD_ONENAND_OTP
3950	mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3951	mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3952	mtd->_get_user_prot_info = onenand_get_user_prot_info;
3953	mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3954	mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3955	mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3956#endif
3957	mtd->_sync = onenand_sync;
3958	mtd->_lock = onenand_lock;
3959	mtd->_unlock = onenand_unlock;
3960	mtd->_suspend = onenand_suspend;
3961	mtd->_resume = onenand_resume;
3962	mtd->_block_isbad = onenand_block_isbad;
3963	mtd->_block_markbad = onenand_block_markbad;
3964	mtd->owner = THIS_MODULE;
3965	mtd->writebufsize = mtd->writesize;
3966
3967	/* Unlock whole block */
3968	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3969		this->unlock_all(mtd);
3970
3971	/* Set the bad block marker position */
3972	this->badblockpos = ONENAND_BADBLOCK_POS;
3973
3974	ret = this->scan_bbt(mtd);
3975	if ((!FLEXONENAND(this)) || ret)
3976		return ret;
3977
3978	/* Change Flex-OneNAND boundaries if required */
3979	for (i = 0; i < MAX_DIES; i++)
3980		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3981						 flex_bdry[(2 * i) + 1]);
3982
3983	return 0;
3984}
3985
3986/**
3987 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3988 * @param mtd		MTD device structure
3989 */
3990void onenand_release(struct mtd_info *mtd)
3991{
3992	struct onenand_chip *this = mtd->priv;
3993
3994	/* Deregister partitions */
3995	mtd_device_unregister(mtd);
3996
3997	/* Free bad block table memory, if allocated */
3998	if (this->bbm) {
3999		struct bbm_info *bbm = this->bbm;
4000		kfree(bbm->bbt);
4001		kfree(this->bbm);
4002	}
4003	/* Buffers allocated by onenand_scan */
4004	if (this->options & ONENAND_PAGEBUF_ALLOC) {
4005		kfree(this->page_buf);
4006#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4007		kfree(this->verify_buf);
4008#endif
4009	}
4010	if (this->options & ONENAND_OOBBUF_ALLOC)
4011		kfree(this->oob_buf);
4012	kfree(mtd->eraseregions);
4013}
4014
4015EXPORT_SYMBOL_GPL(onenand_scan);
4016EXPORT_SYMBOL_GPL(onenand_release);
4017
4018MODULE_LICENSE("GPL");
4019MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4020MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4021