xref: /kernel/linux/linux-5.10/drivers/mtd/nand/ecc.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Generic Error-Correcting Code (ECC) engine
4 *
5 * Copyright (C) 2019 Macronix
6 * Author:
7 *     Miquèl RAYNAL <miquel.raynal@bootlin.com>
8 *
9 *
10 * This file describes the abstraction of any NAND ECC engine. It has been
11 * designed to fit most cases, including parallel NANDs and SPI-NANDs.
12 *
13 * There are three main situations where instantiating this ECC engine makes
14 * sense:
15 *   - external: The ECC engine is outside the NAND pipeline, typically this
16 *               is a software ECC engine, or an hardware engine that is
17 *               outside the NAND controller pipeline.
18 *   - pipelined: The ECC engine is inside the NAND pipeline, ie. on the
19 *                controller's side. This is the case of most of the raw NAND
20 *                controllers. In the pipeline case, the ECC bytes are
21 *                generated/data corrected on the fly when a page is
22 *                written/read.
23 *   - ondie: The ECC engine is inside the NAND pipeline, on the chip's side.
24 *            Some NAND chips can correct themselves the data.
25 *
26 * Besides the initial setup and final cleanups, the interfaces are rather
27 * simple:
28 *   - prepare: Prepare an I/O request. Enable/disable the ECC engine based on
29 *              the I/O request type. In case of software correction or external
30 *              engine, this step may involve to derive the ECC bytes and place
31 *              them in the OOB area before a write.
32 *   - finish: Finish an I/O request. Correct the data in case of a read
33 *             request and report the number of corrected bits/uncorrectable
34 *             errors. Most likely empty for write operations, unless you have
35 *             hardware specific stuff to do, like shutting down the engine to
36 *             save power.
37 *
38 * The I/O request should be enclosed in a prepare()/finish() pair of calls
39 * and will behave differently depending on the requested I/O type:
40 *   - raw: Correction disabled
41 *   - ecc: Correction enabled
42 *
43 * The request direction is impacting the logic as well:
44 *   - read: Load data from the NAND chip
45 *   - write: Store data in the NAND chip
46 *
47 * Mixing all this combinations together gives the following behavior.
48 * Those are just examples, drivers are free to add custom steps in their
49 * prepare/finish hook.
50 *
51 * [external ECC engine]
52 *   - external + prepare + raw + read: do nothing
53 *   - external + finish  + raw + read: do nothing
54 *   - external + prepare + raw + write: do nothing
55 *   - external + finish  + raw + write: do nothing
56 *   - external + prepare + ecc + read: do nothing
57 *   - external + finish  + ecc + read: calculate expected ECC bytes, extract
58 *                                      ECC bytes from OOB buffer, correct
59 *                                      and report any bitflip/error
60 *   - external + prepare + ecc + write: calculate ECC bytes and store them at
61 *                                       the right place in the OOB buffer based
62 *                                       on the OOB layout
63 *   - external + finish  + ecc + write: do nothing
64 *
65 * [pipelined ECC engine]
66 *   - pipelined + prepare + raw + read: disable the controller's ECC engine if
67 *                                       activated
68 *   - pipelined + finish  + raw + read: do nothing
69 *   - pipelined + prepare + raw + write: disable the controller's ECC engine if
70 *                                        activated
71 *   - pipelined + finish  + raw + write: do nothing
72 *   - pipelined + prepare + ecc + read: enable the controller's ECC engine if
73 *                                       deactivated
74 *   - pipelined + finish  + ecc + read: check the status, report any
75 *                                       error/bitflip
76 *   - pipelined + prepare + ecc + write: enable the controller's ECC engine if
77 *                                        deactivated
78 *   - pipelined + finish  + ecc + write: do nothing
79 *
80 * [ondie ECC engine]
81 *   - ondie + prepare + raw + read: send commands to disable the on-chip ECC
82 *                                   engine if activated
83 *   - ondie + finish  + raw + read: do nothing
84 *   - ondie + prepare + raw + write: send commands to disable the on-chip ECC
85 *                                    engine if activated
86 *   - ondie + finish  + raw + write: do nothing
87 *   - ondie + prepare + ecc + read: send commands to enable the on-chip ECC
88 *                                   engine if deactivated
89 *   - ondie + finish  + ecc + read: send commands to check the status, report
90 *                                   any error/bitflip
91 *   - ondie + prepare + ecc + write: send commands to enable the on-chip ECC
92 *                                    engine if deactivated
93 *   - ondie + finish  + ecc + write: do nothing
94 */
95
96#include <linux/module.h>
97#include <linux/mtd/nand.h>
98
99/**
100 * nand_ecc_init_ctx - Init the ECC engine context
101 * @nand: the NAND device
102 *
103 * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx().
104 */
105int nand_ecc_init_ctx(struct nand_device *nand)
106{
107	if (!nand->ecc.engine->ops->init_ctx)
108		return 0;
109
110	return nand->ecc.engine->ops->init_ctx(nand);
111}
112EXPORT_SYMBOL(nand_ecc_init_ctx);
113
114/**
115 * nand_ecc_cleanup_ctx - Cleanup the ECC engine context
116 * @nand: the NAND device
117 */
118void nand_ecc_cleanup_ctx(struct nand_device *nand)
119{
120	if (nand->ecc.engine->ops->cleanup_ctx)
121		nand->ecc.engine->ops->cleanup_ctx(nand);
122}
123EXPORT_SYMBOL(nand_ecc_cleanup_ctx);
124
125/**
126 * nand_ecc_prepare_io_req - Prepare an I/O request
127 * @nand: the NAND device
128 * @req: the I/O request
129 */
130int nand_ecc_prepare_io_req(struct nand_device *nand,
131			    struct nand_page_io_req *req)
132{
133	if (!nand->ecc.engine->ops->prepare_io_req)
134		return 0;
135
136	return nand->ecc.engine->ops->prepare_io_req(nand, req);
137}
138EXPORT_SYMBOL(nand_ecc_prepare_io_req);
139
140/**
141 * nand_ecc_finish_io_req - Finish an I/O request
142 * @nand: the NAND device
143 * @req: the I/O request
144 */
145int nand_ecc_finish_io_req(struct nand_device *nand,
146			   struct nand_page_io_req *req)
147{
148	if (!nand->ecc.engine->ops->finish_io_req)
149		return 0;
150
151	return nand->ecc.engine->ops->finish_io_req(nand, req);
152}
153EXPORT_SYMBOL(nand_ecc_finish_io_req);
154
155/* Define default OOB placement schemes for large and small page devices */
156static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
157				 struct mtd_oob_region *oobregion)
158{
159	struct nand_device *nand = mtd_to_nanddev(mtd);
160	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
161
162	if (section > 1)
163		return -ERANGE;
164
165	if (!section) {
166		oobregion->offset = 0;
167		if (mtd->oobsize == 16)
168			oobregion->length = 4;
169		else
170			oobregion->length = 3;
171	} else {
172		if (mtd->oobsize == 8)
173			return -ERANGE;
174
175		oobregion->offset = 6;
176		oobregion->length = total_ecc_bytes - 4;
177	}
178
179	return 0;
180}
181
182static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
183				  struct mtd_oob_region *oobregion)
184{
185	if (section > 1)
186		return -ERANGE;
187
188	if (mtd->oobsize == 16) {
189		if (section)
190			return -ERANGE;
191
192		oobregion->length = 8;
193		oobregion->offset = 8;
194	} else {
195		oobregion->length = 2;
196		if (!section)
197			oobregion->offset = 3;
198		else
199			oobregion->offset = 6;
200	}
201
202	return 0;
203}
204
205static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
206	.ecc = nand_ooblayout_ecc_sp,
207	.free = nand_ooblayout_free_sp,
208};
209
210const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void)
211{
212	return &nand_ooblayout_sp_ops;
213}
214EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout);
215
216static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
217				 struct mtd_oob_region *oobregion)
218{
219	struct nand_device *nand = mtd_to_nanddev(mtd);
220	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
221
222	if (section || !total_ecc_bytes)
223		return -ERANGE;
224
225	oobregion->length = total_ecc_bytes;
226	oobregion->offset = mtd->oobsize - oobregion->length;
227
228	return 0;
229}
230
231static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
232				  struct mtd_oob_region *oobregion)
233{
234	struct nand_device *nand = mtd_to_nanddev(mtd);
235	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
236
237	if (section)
238		return -ERANGE;
239
240	oobregion->length = mtd->oobsize - total_ecc_bytes - 2;
241	oobregion->offset = 2;
242
243	return 0;
244}
245
246static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
247	.ecc = nand_ooblayout_ecc_lp,
248	.free = nand_ooblayout_free_lp,
249};
250
251const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
252{
253	return &nand_ooblayout_lp_ops;
254}
255EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout);
256
257/*
258 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
259 * are placed at a fixed offset.
260 */
261static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
262					 struct mtd_oob_region *oobregion)
263{
264	struct nand_device *nand = mtd_to_nanddev(mtd);
265	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
266
267	if (section)
268		return -ERANGE;
269
270	switch (mtd->oobsize) {
271	case 64:
272		oobregion->offset = 40;
273		break;
274	case 128:
275		oobregion->offset = 80;
276		break;
277	default:
278		return -EINVAL;
279	}
280
281	oobregion->length = total_ecc_bytes;
282	if (oobregion->offset + oobregion->length > mtd->oobsize)
283		return -ERANGE;
284
285	return 0;
286}
287
288static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
289					  struct mtd_oob_region *oobregion)
290{
291	struct nand_device *nand = mtd_to_nanddev(mtd);
292	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
293	int ecc_offset = 0;
294
295	if (section < 0 || section > 1)
296		return -ERANGE;
297
298	switch (mtd->oobsize) {
299	case 64:
300		ecc_offset = 40;
301		break;
302	case 128:
303		ecc_offset = 80;
304		break;
305	default:
306		return -EINVAL;
307	}
308
309	if (section == 0) {
310		oobregion->offset = 2;
311		oobregion->length = ecc_offset - 2;
312	} else {
313		oobregion->offset = ecc_offset + total_ecc_bytes;
314		oobregion->length = mtd->oobsize - oobregion->offset;
315	}
316
317	return 0;
318}
319
320static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
321	.ecc = nand_ooblayout_ecc_lp_hamming,
322	.free = nand_ooblayout_free_lp_hamming,
323};
324
325const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void)
326{
327	return &nand_ooblayout_lp_hamming_ops;
328}
329EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout);
330
331static enum nand_ecc_engine_type
332of_get_nand_ecc_engine_type(struct device_node *np)
333{
334	struct device_node *eng_np;
335
336	if (of_property_read_bool(np, "nand-no-ecc-engine"))
337		return NAND_ECC_ENGINE_TYPE_NONE;
338
339	if (of_property_read_bool(np, "nand-use-soft-ecc-engine"))
340		return NAND_ECC_ENGINE_TYPE_SOFT;
341
342	eng_np = of_parse_phandle(np, "nand-ecc-engine", 0);
343	of_node_put(eng_np);
344
345	if (eng_np) {
346		if (eng_np == np)
347			return NAND_ECC_ENGINE_TYPE_ON_DIE;
348		else
349			return NAND_ECC_ENGINE_TYPE_ON_HOST;
350	}
351
352	return NAND_ECC_ENGINE_TYPE_INVALID;
353}
354
355static const char * const nand_ecc_placement[] = {
356	[NAND_ECC_PLACEMENT_OOB] = "oob",
357	[NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved",
358};
359
360static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np)
361{
362	enum nand_ecc_placement placement;
363	const char *pm;
364	int err;
365
366	err = of_property_read_string(np, "nand-ecc-placement", &pm);
367	if (!err) {
368		for (placement = NAND_ECC_PLACEMENT_OOB;
369		     placement < ARRAY_SIZE(nand_ecc_placement); placement++) {
370			if (!strcasecmp(pm, nand_ecc_placement[placement]))
371				return placement;
372		}
373	}
374
375	return NAND_ECC_PLACEMENT_UNKNOWN;
376}
377
378static const char * const nand_ecc_algos[] = {
379	[NAND_ECC_ALGO_HAMMING] = "hamming",
380	[NAND_ECC_ALGO_BCH] = "bch",
381	[NAND_ECC_ALGO_RS] = "rs",
382};
383
384static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
385{
386	enum nand_ecc_algo ecc_algo;
387	const char *pm;
388	int err;
389
390	err = of_property_read_string(np, "nand-ecc-algo", &pm);
391	if (!err) {
392		for (ecc_algo = NAND_ECC_ALGO_HAMMING;
393		     ecc_algo < ARRAY_SIZE(nand_ecc_algos);
394		     ecc_algo++) {
395			if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
396				return ecc_algo;
397		}
398	}
399
400	return NAND_ECC_ALGO_UNKNOWN;
401}
402
403static int of_get_nand_ecc_step_size(struct device_node *np)
404{
405	int ret;
406	u32 val;
407
408	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
409	return ret ? ret : val;
410}
411
412static int of_get_nand_ecc_strength(struct device_node *np)
413{
414	int ret;
415	u32 val;
416
417	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
418	return ret ? ret : val;
419}
420
421void of_get_nand_ecc_user_config(struct nand_device *nand)
422{
423	struct device_node *dn = nanddev_get_of_node(nand);
424	int strength, size;
425
426	nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn);
427	nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn);
428	nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn);
429
430	strength = of_get_nand_ecc_strength(dn);
431	if (strength >= 0)
432		nand->ecc.user_conf.strength = strength;
433
434	size = of_get_nand_ecc_step_size(dn);
435	if (size >= 0)
436		nand->ecc.user_conf.step_size = size;
437
438	if (of_property_read_bool(dn, "nand-ecc-maximize"))
439		nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH;
440}
441EXPORT_SYMBOL(of_get_nand_ecc_user_config);
442
443/**
444 * nand_ecc_is_strong_enough - Check if the chip configuration meets the
445 *                             datasheet requirements.
446 *
447 * @nand: Device to check
448 *
449 * If our configuration corrects A bits per B bytes and the minimum
450 * required correction level is X bits per Y bytes, then we must ensure
451 * both of the following are true:
452 *
453 * (1) A / B >= X / Y
454 * (2) A >= X
455 *
456 * Requirement (1) ensures we can correct for the required bitflip density.
457 * Requirement (2) ensures we can correct even when all bitflips are clumped
458 * in the same sector.
459 */
460bool nand_ecc_is_strong_enough(struct nand_device *nand)
461{
462	const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand);
463	const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand);
464	struct mtd_info *mtd = nanddev_to_mtd(nand);
465	int corr, ds_corr;
466
467	if (conf->step_size == 0 || reqs->step_size == 0)
468		/* Not enough information */
469		return true;
470
471	/*
472	 * We get the number of corrected bits per page to compare
473	 * the correction density.
474	 */
475	corr = (mtd->writesize * conf->strength) / conf->step_size;
476	ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size;
477
478	return corr >= ds_corr && conf->strength >= reqs->strength;
479}
480EXPORT_SYMBOL(nand_ecc_is_strong_enough);
481
482MODULE_LICENSE("GPL");
483MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
484MODULE_DESCRIPTION("Generic ECC engine");
485