1/*
2 * Common Flash Interface support:
3 *   Intel Extended Vendor Command Set (ID 0x0001)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
7 *
8 * 10/10/2000	Nicolas Pitre <nico@fluxnic.net>
9 * 	- completely revamped method functions so they are aware and
10 * 	  independent of the flash geometry (buswidth, interleave, etc.)
11 * 	- scalability vs code size is completely set at compile-time
12 * 	  (see include/linux/mtd/cfi.h for selection)
13 *	- optimized write buffer method
14 * 02/05/2002	Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 *	- reworked lock/unlock/erase support for var size flash
16 * 21/03/2007   Rodolfo Giometti <giometti@linux.it>
17 * 	- auto unlock sectors on resume for auto locking flash on power up
18 */
19
20#include <linux/module.h>
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/sched.h>
24#include <asm/io.h>
25#include <asm/byteorder.h>
26
27#include <linux/errno.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/interrupt.h>
31#include <linux/reboot.h>
32#include <linux/bitmap.h>
33#include <linux/mtd/xip.h>
34#include <linux/mtd/map.h>
35#include <linux/mtd/mtd.h>
36#include <linux/mtd/cfi.h>
37
38/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
39/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
40
41// debugging, turns off buffer write mode if set to 1
42#define FORCE_WORD_WRITE 0
43
44/* Intel chips */
45#define I82802AB	0x00ad
46#define I82802AC	0x00ac
47#define PF38F4476	0x881c
48#define M28F00AP30	0x8963
49/* STMicroelectronics chips */
50#define M50LPW080       0x002F
51#define M50FLW080A	0x0080
52#define M50FLW080B	0x0081
53/* Atmel chips */
54#define AT49BV640D	0x02de
55#define AT49BV640DT	0x02db
56/* Sharp chips */
57#define LH28F640BFHE_PTTL90	0x00b0
58#define LH28F640BFHE_PBTL90	0x00b1
59#define LH28F640BFHE_PTTL70A	0x00b2
60#define LH28F640BFHE_PBTL70A	0x00b3
61
62static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
64static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
65static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
66static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
67static void cfi_intelext_sync (struct mtd_info *);
68static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
69static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
70static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
71				  uint64_t len);
72#ifdef CONFIG_MTD_OTP
73static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
74static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
75static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
76static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
77static int cfi_intelext_get_fact_prot_info(struct mtd_info *, size_t,
78					   size_t *, struct otp_info *);
79static int cfi_intelext_get_user_prot_info(struct mtd_info *, size_t,
80					   size_t *, struct otp_info *);
81#endif
82static int cfi_intelext_suspend (struct mtd_info *);
83static void cfi_intelext_resume (struct mtd_info *);
84static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
85
86static void cfi_intelext_destroy(struct mtd_info *);
87
88struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
89
90static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
91static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
92
93static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
94		     size_t *retlen, void **virt, resource_size_t *phys);
95static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
96
97static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
98static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
99static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
100#include "fwh_lock.h"
101
102
103
104/*
105 *  *********** SETUP AND PROBE BITS  ***********
106 */
107
108static struct mtd_chip_driver cfi_intelext_chipdrv = {
109	.probe		= NULL, /* Not usable directly */
110	.destroy	= cfi_intelext_destroy,
111	.name		= "cfi_cmdset_0001",
112	.module		= THIS_MODULE
113};
114
115/* #define DEBUG_LOCK_BITS */
116/* #define DEBUG_CFI_FEATURES */
117
118#ifdef DEBUG_CFI_FEATURES
119static void cfi_tell_features(struct cfi_pri_intelext *extp)
120{
121	int i;
122	printk("  Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
123	printk("  Feature/Command Support:      %4.4X\n", extp->FeatureSupport);
124	printk("     - Chip Erase:              %s\n", extp->FeatureSupport&1?"supported":"unsupported");
125	printk("     - Suspend Erase:           %s\n", extp->FeatureSupport&2?"supported":"unsupported");
126	printk("     - Suspend Program:         %s\n", extp->FeatureSupport&4?"supported":"unsupported");
127	printk("     - Legacy Lock/Unlock:      %s\n", extp->FeatureSupport&8?"supported":"unsupported");
128	printk("     - Queued Erase:            %s\n", extp->FeatureSupport&16?"supported":"unsupported");
129	printk("     - Instant block lock:      %s\n", extp->FeatureSupport&32?"supported":"unsupported");
130	printk("     - Protection Bits:         %s\n", extp->FeatureSupport&64?"supported":"unsupported");
131	printk("     - Page-mode read:          %s\n", extp->FeatureSupport&128?"supported":"unsupported");
132	printk("     - Synchronous read:        %s\n", extp->FeatureSupport&256?"supported":"unsupported");
133	printk("     - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
134	printk("     - Extended Flash Array:    %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
135	for (i=11; i<32; i++) {
136		if (extp->FeatureSupport & (1<<i))
137			printk("     - Unknown Bit %X:      supported\n", i);
138	}
139
140	printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
141	printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
142	for (i=1; i<8; i++) {
143		if (extp->SuspendCmdSupport & (1<<i))
144			printk("     - Unknown Bit %X:               supported\n", i);
145	}
146
147	printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
148	printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
149	printk("     - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
150	for (i=2; i<3; i++) {
151		if (extp->BlkStatusRegMask & (1<<i))
152			printk("     - Unknown Bit %X Active: yes\n",i);
153	}
154	printk("     - EFA Lock Bit:         %s\n", extp->BlkStatusRegMask&16?"yes":"no");
155	printk("     - EFA Lock-Down Bit:    %s\n", extp->BlkStatusRegMask&32?"yes":"no");
156	for (i=6; i<16; i++) {
157		if (extp->BlkStatusRegMask & (1<<i))
158			printk("     - Unknown Bit %X Active: yes\n",i);
159	}
160
161	printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
162	       extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
163	if (extp->VppOptimal)
164		printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
165		       extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
166}
167#endif
168
169/* Atmel chips don't use the same PRI format as Intel chips */
170static void fixup_convert_atmel_pri(struct mtd_info *mtd)
171{
172	struct map_info *map = mtd->priv;
173	struct cfi_private *cfi = map->fldrv_priv;
174	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
175	struct cfi_pri_atmel atmel_pri;
176	uint32_t features = 0;
177
178	/* Reverse byteswapping */
179	extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
180	extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
181	extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
182
183	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
184	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
185
186	printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
187
188	if (atmel_pri.Features & 0x01) /* chip erase supported */
189		features |= (1<<0);
190	if (atmel_pri.Features & 0x02) /* erase suspend supported */
191		features |= (1<<1);
192	if (atmel_pri.Features & 0x04) /* program suspend supported */
193		features |= (1<<2);
194	if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
195		features |= (1<<9);
196	if (atmel_pri.Features & 0x20) /* page mode read supported */
197		features |= (1<<7);
198	if (atmel_pri.Features & 0x40) /* queued erase supported */
199		features |= (1<<4);
200	if (atmel_pri.Features & 0x80) /* Protection bits supported */
201		features |= (1<<6);
202
203	extp->FeatureSupport = features;
204
205	/* burst write mode not supported */
206	cfi->cfiq->BufWriteTimeoutTyp = 0;
207	cfi->cfiq->BufWriteTimeoutMax = 0;
208}
209
210static void fixup_at49bv640dx_lock(struct mtd_info *mtd)
211{
212	struct map_info *map = mtd->priv;
213	struct cfi_private *cfi = map->fldrv_priv;
214	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
215
216	cfip->FeatureSupport |= (1 << 5);
217	mtd->flags |= MTD_POWERUP_LOCK;
218}
219
220#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
221/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
222static void fixup_intel_strataflash(struct mtd_info *mtd)
223{
224	struct map_info *map = mtd->priv;
225	struct cfi_private *cfi = map->fldrv_priv;
226	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
227
228	printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
229	                    "erase on write disabled.\n");
230	extp->SuspendCmdSupport &= ~1;
231}
232#endif
233
234#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
235static void fixup_no_write_suspend(struct mtd_info *mtd)
236{
237	struct map_info *map = mtd->priv;
238	struct cfi_private *cfi = map->fldrv_priv;
239	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
240
241	if (cfip && (cfip->FeatureSupport&4)) {
242		cfip->FeatureSupport &= ~4;
243		printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
244	}
245}
246#endif
247
248static void fixup_st_m28w320ct(struct mtd_info *mtd)
249{
250	struct map_info *map = mtd->priv;
251	struct cfi_private *cfi = map->fldrv_priv;
252
253	cfi->cfiq->BufWriteTimeoutTyp = 0;	/* Not supported */
254	cfi->cfiq->BufWriteTimeoutMax = 0;	/* Not supported */
255}
256
257static void fixup_st_m28w320cb(struct mtd_info *mtd)
258{
259	struct map_info *map = mtd->priv;
260	struct cfi_private *cfi = map->fldrv_priv;
261
262	/* Note this is done after the region info is endian swapped */
263	cfi->cfiq->EraseRegionInfo[1] =
264		(cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
265};
266
267static int is_LH28F640BF(struct cfi_private *cfi)
268{
269	/* Sharp LH28F640BF Family */
270	if (cfi->mfr == CFI_MFR_SHARP && (
271	    cfi->id == LH28F640BFHE_PTTL90 || cfi->id == LH28F640BFHE_PBTL90 ||
272	    cfi->id == LH28F640BFHE_PTTL70A || cfi->id == LH28F640BFHE_PBTL70A))
273		return 1;
274	return 0;
275}
276
277static void fixup_LH28F640BF(struct mtd_info *mtd)
278{
279	struct map_info *map = mtd->priv;
280	struct cfi_private *cfi = map->fldrv_priv;
281	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
282
283	/* Reset the Partition Configuration Register on LH28F640BF
284	 * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */
285	if (is_LH28F640BF(cfi)) {
286		printk(KERN_INFO "Reset Partition Config. Register: 1 Partition of 4 planes\n");
287		map_write(map, CMD(0x60), 0);
288		map_write(map, CMD(0x04), 0);
289
290		/* We have set one single partition thus
291		 * Simultaneous Operations are not allowed */
292		printk(KERN_INFO "cfi_cmdset_0001: Simultaneous Operations disabled\n");
293		extp->FeatureSupport &= ~512;
294	}
295}
296
297static void fixup_use_point(struct mtd_info *mtd)
298{
299	struct map_info *map = mtd->priv;
300	if (!mtd->_point && map_is_linear(map)) {
301		mtd->_point   = cfi_intelext_point;
302		mtd->_unpoint = cfi_intelext_unpoint;
303	}
304}
305
306static void fixup_use_write_buffers(struct mtd_info *mtd)
307{
308	struct map_info *map = mtd->priv;
309	struct cfi_private *cfi = map->fldrv_priv;
310	if (cfi->cfiq->BufWriteTimeoutTyp) {
311		printk(KERN_INFO "Using buffer write method\n" );
312		mtd->_write = cfi_intelext_write_buffers;
313		mtd->_writev = cfi_intelext_writev;
314	}
315}
316
317/*
318 * Some chips power-up with all sectors locked by default.
319 */
320static void fixup_unlock_powerup_lock(struct mtd_info *mtd)
321{
322	struct map_info *map = mtd->priv;
323	struct cfi_private *cfi = map->fldrv_priv;
324	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
325
326	if (cfip->FeatureSupport&32) {
327		printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
328		mtd->flags |= MTD_POWERUP_LOCK;
329	}
330}
331
332static struct cfi_fixup cfi_fixup_table[] = {
333	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
334	{ CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock },
335	{ CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock },
336#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
337	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash },
338#endif
339#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
340	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend },
341#endif
342#if !FORCE_WORD_WRITE
343	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
344#endif
345	{ CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct },
346	{ CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb },
347	{ CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock },
348	{ CFI_MFR_SHARP, CFI_ID_ANY, fixup_unlock_powerup_lock },
349	{ CFI_MFR_SHARP, CFI_ID_ANY, fixup_LH28F640BF },
350	{ 0, 0, NULL }
351};
352
353static struct cfi_fixup jedec_fixup_table[] = {
354	{ CFI_MFR_INTEL, I82802AB,   fixup_use_fwh_lock },
355	{ CFI_MFR_INTEL, I82802AC,   fixup_use_fwh_lock },
356	{ CFI_MFR_ST,    M50LPW080,  fixup_use_fwh_lock },
357	{ CFI_MFR_ST,    M50FLW080A, fixup_use_fwh_lock },
358	{ CFI_MFR_ST,    M50FLW080B, fixup_use_fwh_lock },
359	{ 0, 0, NULL }
360};
361static struct cfi_fixup fixup_table[] = {
362	/* The CFI vendor ids and the JEDEC vendor IDs appear
363	 * to be common.  It is like the devices id's are as
364	 * well.  This table is to pick all cases where
365	 * we know that is the case.
366	 */
367	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point },
368	{ 0, 0, NULL }
369};
370
371static void cfi_fixup_major_minor(struct cfi_private *cfi,
372						struct cfi_pri_intelext *extp)
373{
374	if (cfi->mfr == CFI_MFR_INTEL &&
375			cfi->id == PF38F4476 && extp->MinorVersion == '3')
376		extp->MinorVersion = '1';
377}
378
379static int cfi_is_micron_28F00AP30(struct cfi_private *cfi, struct flchip *chip)
380{
381	/*
382	 * Micron(was Numonyx) 1Gbit bottom boot are buggy w.r.t
383	 * Erase Supend for their small Erase Blocks(0x8000)
384	 */
385	if (cfi->mfr == CFI_MFR_INTEL && cfi->id == M28F00AP30)
386		return 1;
387	return 0;
388}
389
390static inline struct cfi_pri_intelext *
391read_pri_intelext(struct map_info *map, __u16 adr)
392{
393	struct cfi_private *cfi = map->fldrv_priv;
394	struct cfi_pri_intelext *extp;
395	unsigned int extra_size = 0;
396	unsigned int extp_size = sizeof(*extp);
397
398 again:
399	extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
400	if (!extp)
401		return NULL;
402
403	cfi_fixup_major_minor(cfi, extp);
404
405	if (extp->MajorVersion != '1' ||
406	    (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
407		printk(KERN_ERR "  Unknown Intel/Sharp Extended Query "
408		       "version %c.%c.\n",  extp->MajorVersion,
409		       extp->MinorVersion);
410		kfree(extp);
411		return NULL;
412	}
413
414	/* Do some byteswapping if necessary */
415	extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
416	extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
417	extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
418
419	if (extp->MinorVersion >= '0') {
420		extra_size = 0;
421
422		/* Protection Register info */
423		if (extp->NumProtectionFields) {
424			struct cfi_intelext_otpinfo *otp =
425				(struct cfi_intelext_otpinfo *)&extp->extra[0];
426
427			extra_size += (extp->NumProtectionFields - 1) *
428				sizeof(struct cfi_intelext_otpinfo);
429
430			if (extp_size >= sizeof(*extp) + extra_size) {
431				int i;
432
433				/* Do some byteswapping if necessary */
434				for (i = 0; i < extp->NumProtectionFields - 1; i++) {
435					otp->ProtRegAddr = le32_to_cpu(otp->ProtRegAddr);
436					otp->FactGroups = le16_to_cpu(otp->FactGroups);
437					otp->UserGroups = le16_to_cpu(otp->UserGroups);
438					otp++;
439				}
440			}
441		}
442	}
443
444	if (extp->MinorVersion >= '1') {
445		/* Burst Read info */
446		extra_size += 2;
447		if (extp_size < sizeof(*extp) + extra_size)
448			goto need_more;
449		extra_size += extp->extra[extra_size - 1];
450	}
451
452	if (extp->MinorVersion >= '3') {
453		int nb_parts, i;
454
455		/* Number of hardware-partitions */
456		extra_size += 1;
457		if (extp_size < sizeof(*extp) + extra_size)
458			goto need_more;
459		nb_parts = extp->extra[extra_size - 1];
460
461		/* skip the sizeof(partregion) field in CFI 1.4 */
462		if (extp->MinorVersion >= '4')
463			extra_size += 2;
464
465		for (i = 0; i < nb_parts; i++) {
466			struct cfi_intelext_regioninfo *rinfo;
467			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
468			extra_size += sizeof(*rinfo);
469			if (extp_size < sizeof(*extp) + extra_size)
470				goto need_more;
471			rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
472			extra_size += (rinfo->NumBlockTypes - 1)
473				      * sizeof(struct cfi_intelext_blockinfo);
474		}
475
476		if (extp->MinorVersion >= '4')
477			extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
478
479		if (extp_size < sizeof(*extp) + extra_size) {
480			need_more:
481			extp_size = sizeof(*extp) + extra_size;
482			kfree(extp);
483			if (extp_size > 4096) {
484				printk(KERN_ERR
485					"%s: cfi_pri_intelext is too fat\n",
486					__func__);
487				return NULL;
488			}
489			goto again;
490		}
491	}
492
493	return extp;
494}
495
496struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
497{
498	struct cfi_private *cfi = map->fldrv_priv;
499	struct mtd_info *mtd;
500	int i;
501
502	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
503	if (!mtd)
504		return NULL;
505	mtd->priv = map;
506	mtd->type = MTD_NORFLASH;
507
508	/* Fill in the default mtd operations */
509	mtd->_erase   = cfi_intelext_erase_varsize;
510	mtd->_read    = cfi_intelext_read;
511	mtd->_write   = cfi_intelext_write_words;
512	mtd->_sync    = cfi_intelext_sync;
513	mtd->_lock    = cfi_intelext_lock;
514	mtd->_unlock  = cfi_intelext_unlock;
515	mtd->_is_locked = cfi_intelext_is_locked;
516	mtd->_suspend = cfi_intelext_suspend;
517	mtd->_resume  = cfi_intelext_resume;
518	mtd->flags   = MTD_CAP_NORFLASH;
519	mtd->name    = map->name;
520	mtd->writesize = 1;
521	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
522
523	mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
524
525	if (cfi->cfi_mode == CFI_MODE_CFI) {
526		/*
527		 * It's a real CFI chip, not one for which the probe
528		 * routine faked a CFI structure. So we read the feature
529		 * table from it.
530		 */
531		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
532		struct cfi_pri_intelext *extp;
533
534		extp = read_pri_intelext(map, adr);
535		if (!extp) {
536			kfree(mtd);
537			return NULL;
538		}
539
540		/* Install our own private info structure */
541		cfi->cmdset_priv = extp;
542
543		cfi_fixup(mtd, cfi_fixup_table);
544
545#ifdef DEBUG_CFI_FEATURES
546		/* Tell the user about it in lots of lovely detail */
547		cfi_tell_features(extp);
548#endif
549
550		if(extp->SuspendCmdSupport & 1) {
551			printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
552		}
553	}
554	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
555		/* Apply jedec specific fixups */
556		cfi_fixup(mtd, jedec_fixup_table);
557	}
558	/* Apply generic fixups */
559	cfi_fixup(mtd, fixup_table);
560
561	for (i=0; i< cfi->numchips; i++) {
562		if (cfi->cfiq->WordWriteTimeoutTyp)
563			cfi->chips[i].word_write_time =
564				1<<cfi->cfiq->WordWriteTimeoutTyp;
565		else
566			cfi->chips[i].word_write_time = 50000;
567
568		if (cfi->cfiq->BufWriteTimeoutTyp)
569			cfi->chips[i].buffer_write_time =
570				1<<cfi->cfiq->BufWriteTimeoutTyp;
571		/* No default; if it isn't specified, we won't use it */
572
573		if (cfi->cfiq->BlockEraseTimeoutTyp)
574			cfi->chips[i].erase_time =
575				1000<<cfi->cfiq->BlockEraseTimeoutTyp;
576		else
577			cfi->chips[i].erase_time = 2000000;
578
579		if (cfi->cfiq->WordWriteTimeoutTyp &&
580		    cfi->cfiq->WordWriteTimeoutMax)
581			cfi->chips[i].word_write_time_max =
582				1<<(cfi->cfiq->WordWriteTimeoutTyp +
583				    cfi->cfiq->WordWriteTimeoutMax);
584		else
585			cfi->chips[i].word_write_time_max = 50000 * 8;
586
587		if (cfi->cfiq->BufWriteTimeoutTyp &&
588		    cfi->cfiq->BufWriteTimeoutMax)
589			cfi->chips[i].buffer_write_time_max =
590				1<<(cfi->cfiq->BufWriteTimeoutTyp +
591				    cfi->cfiq->BufWriteTimeoutMax);
592
593		if (cfi->cfiq->BlockEraseTimeoutTyp &&
594		    cfi->cfiq->BlockEraseTimeoutMax)
595			cfi->chips[i].erase_time_max =
596				1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
597				       cfi->cfiq->BlockEraseTimeoutMax);
598		else
599			cfi->chips[i].erase_time_max = 2000000 * 8;
600
601		cfi->chips[i].ref_point_counter = 0;
602		init_waitqueue_head(&(cfi->chips[i].wq));
603	}
604
605	map->fldrv = &cfi_intelext_chipdrv;
606
607	return cfi_intelext_setup(mtd);
608}
609struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
610struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
611EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
612EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
613EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
614
615static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
616{
617	struct map_info *map = mtd->priv;
618	struct cfi_private *cfi = map->fldrv_priv;
619	unsigned long offset = 0;
620	int i,j;
621	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
622
623	//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
624
625	mtd->size = devsize * cfi->numchips;
626
627	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
628	mtd->eraseregions = kcalloc(mtd->numeraseregions,
629				    sizeof(struct mtd_erase_region_info),
630				    GFP_KERNEL);
631	if (!mtd->eraseregions)
632		goto setup_err;
633
634	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
635		unsigned long ernum, ersize;
636		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
637		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
638
639		if (mtd->erasesize < ersize) {
640			mtd->erasesize = ersize;
641		}
642		for (j=0; j<cfi->numchips; j++) {
643			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
644			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
645			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
646			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
647			if (!mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap)
648				goto setup_err;
649		}
650		offset += (ersize * ernum);
651	}
652
653	if (offset != devsize) {
654		/* Argh */
655		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
656		goto setup_err;
657	}
658
659	for (i=0; i<mtd->numeraseregions;i++){
660		printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
661		       i,(unsigned long long)mtd->eraseregions[i].offset,
662		       mtd->eraseregions[i].erasesize,
663		       mtd->eraseregions[i].numblocks);
664	}
665
666#ifdef CONFIG_MTD_OTP
667	mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
668	mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg;
669	mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg;
670	mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
671	mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info;
672	mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info;
673#endif
674
675	/* This function has the potential to distort the reality
676	   a bit and therefore should be called last. */
677	if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
678		goto setup_err;
679
680	__module_get(THIS_MODULE);
681	register_reboot_notifier(&mtd->reboot_notifier);
682	return mtd;
683
684 setup_err:
685	if (mtd->eraseregions)
686		for (i=0; i<cfi->cfiq->NumEraseRegions; i++)
687			for (j=0; j<cfi->numchips; j++)
688				kfree(mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap);
689	kfree(mtd->eraseregions);
690	kfree(mtd);
691	kfree(cfi->cmdset_priv);
692	return NULL;
693}
694
695static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
696					struct cfi_private **pcfi)
697{
698	struct map_info *map = mtd->priv;
699	struct cfi_private *cfi = *pcfi;
700	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
701
702	/*
703	 * Probing of multi-partition flash chips.
704	 *
705	 * To support multiple partitions when available, we simply arrange
706	 * for each of them to have their own flchip structure even if they
707	 * are on the same physical chip.  This means completely recreating
708	 * a new cfi_private structure right here which is a blatent code
709	 * layering violation, but this is still the least intrusive
710	 * arrangement at this point. This can be rearranged in the future
711	 * if someone feels motivated enough.  --nico
712	 */
713	if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
714	    && extp->FeatureSupport & (1 << 9)) {
715		int offs = 0;
716		struct cfi_private *newcfi;
717		struct flchip *chip;
718		struct flchip_shared *shared;
719		int numregions, numparts, partshift, numvirtchips, i, j;
720
721		/* Protection Register info */
722		if (extp->NumProtectionFields)
723			offs = (extp->NumProtectionFields - 1) *
724			       sizeof(struct cfi_intelext_otpinfo);
725
726		/* Burst Read info */
727		offs += extp->extra[offs+1]+2;
728
729		/* Number of partition regions */
730		numregions = extp->extra[offs];
731		offs += 1;
732
733		/* skip the sizeof(partregion) field in CFI 1.4 */
734		if (extp->MinorVersion >= '4')
735			offs += 2;
736
737		/* Number of hardware partitions */
738		numparts = 0;
739		for (i = 0; i < numregions; i++) {
740			struct cfi_intelext_regioninfo *rinfo;
741			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
742			numparts += rinfo->NumIdentPartitions;
743			offs += sizeof(*rinfo)
744				+ (rinfo->NumBlockTypes - 1) *
745				  sizeof(struct cfi_intelext_blockinfo);
746		}
747
748		if (!numparts)
749			numparts = 1;
750
751		/* Programming Region info */
752		if (extp->MinorVersion >= '4') {
753			struct cfi_intelext_programming_regioninfo *prinfo;
754			prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
755			mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
756			mtd->flags &= ~MTD_BIT_WRITEABLE;
757			printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
758			       map->name, mtd->writesize,
759			       cfi->interleave * prinfo->ControlValid,
760			       cfi->interleave * prinfo->ControlInvalid);
761		}
762
763		/*
764		 * All functions below currently rely on all chips having
765		 * the same geometry so we'll just assume that all hardware
766		 * partitions are of the same size too.
767		 */
768		partshift = cfi->chipshift - __ffs(numparts);
769
770		if ((1 << partshift) < mtd->erasesize) {
771			printk( KERN_ERR
772				"%s: bad number of hw partitions (%d)\n",
773				__func__, numparts);
774			return -EINVAL;
775		}
776
777		numvirtchips = cfi->numchips * numparts;
778		newcfi = kmalloc(struct_size(newcfi, chips, numvirtchips),
779				 GFP_KERNEL);
780		if (!newcfi)
781			return -ENOMEM;
782		shared = kmalloc_array(cfi->numchips,
783				       sizeof(struct flchip_shared),
784				       GFP_KERNEL);
785		if (!shared) {
786			kfree(newcfi);
787			return -ENOMEM;
788		}
789		memcpy(newcfi, cfi, sizeof(struct cfi_private));
790		newcfi->numchips = numvirtchips;
791		newcfi->chipshift = partshift;
792
793		chip = &newcfi->chips[0];
794		for (i = 0; i < cfi->numchips; i++) {
795			shared[i].writing = shared[i].erasing = NULL;
796			mutex_init(&shared[i].lock);
797			for (j = 0; j < numparts; j++) {
798				*chip = cfi->chips[i];
799				chip->start += j << partshift;
800				chip->priv = &shared[i];
801				/* those should be reset too since
802				   they create memory references. */
803				init_waitqueue_head(&chip->wq);
804				mutex_init(&chip->mutex);
805				chip++;
806			}
807		}
808
809		printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
810				  "--> %d partitions of %d KiB\n",
811				  map->name, cfi->numchips, cfi->interleave,
812				  newcfi->numchips, 1<<(newcfi->chipshift-10));
813
814		map->fldrv_priv = newcfi;
815		*pcfi = newcfi;
816		kfree(cfi);
817	}
818
819	return 0;
820}
821
822/*
823 *  *********** CHIP ACCESS FUNCTIONS ***********
824 */
825static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
826{
827	DECLARE_WAITQUEUE(wait, current);
828	struct cfi_private *cfi = map->fldrv_priv;
829	map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
830	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
831	unsigned long timeo = jiffies + HZ;
832
833	/* Prevent setting state FL_SYNCING for chip in suspended state. */
834	if (mode == FL_SYNCING && chip->oldstate != FL_READY)
835		goto sleep;
836
837	switch (chip->state) {
838
839	case FL_STATUS:
840		for (;;) {
841			status = map_read(map, adr);
842			if (map_word_andequal(map, status, status_OK, status_OK))
843				break;
844
845			/* At this point we're fine with write operations
846			   in other partitions as they don't conflict. */
847			if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
848				break;
849
850			mutex_unlock(&chip->mutex);
851			cfi_udelay(1);
852			mutex_lock(&chip->mutex);
853			/* Someone else might have been playing with it. */
854			return -EAGAIN;
855		}
856		fallthrough;
857	case FL_READY:
858	case FL_CFI_QUERY:
859	case FL_JEDEC_QUERY:
860		return 0;
861
862	case FL_ERASING:
863		if (!cfip ||
864		    !(cfip->FeatureSupport & 2) ||
865		    !(mode == FL_READY || mode == FL_POINT ||
866		     (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
867			goto sleep;
868
869		/* Do not allow suspend iff read/write to EB address */
870		if ((adr & chip->in_progress_block_mask) ==
871		    chip->in_progress_block_addr)
872			goto sleep;
873
874		/* do not suspend small EBs, buggy Micron Chips */
875		if (cfi_is_micron_28F00AP30(cfi, chip) &&
876		    (chip->in_progress_block_mask == ~(0x8000-1)))
877			goto sleep;
878
879		/* Erase suspend */
880		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
881
882		/* If the flash has finished erasing, then 'erase suspend'
883		 * appears to make some (28F320) flash devices switch to
884		 * 'read' mode.  Make sure that we switch to 'read status'
885		 * mode so we get the right data. --rmk
886		 */
887		map_write(map, CMD(0x70), chip->in_progress_block_addr);
888		chip->oldstate = FL_ERASING;
889		chip->state = FL_ERASE_SUSPENDING;
890		chip->erase_suspended = 1;
891		for (;;) {
892			status = map_read(map, chip->in_progress_block_addr);
893			if (map_word_andequal(map, status, status_OK, status_OK))
894			        break;
895
896			if (time_after(jiffies, timeo)) {
897				/* Urgh. Resume and pretend we weren't here.
898				 * Make sure we're in 'read status' mode if it had finished */
899				put_chip(map, chip, adr);
900				printk(KERN_ERR "%s: Chip not ready after erase "
901				       "suspended: status = 0x%lx\n", map->name, status.x[0]);
902				return -EIO;
903			}
904
905			mutex_unlock(&chip->mutex);
906			cfi_udelay(1);
907			mutex_lock(&chip->mutex);
908			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
909			   So we can just loop here. */
910		}
911		chip->state = FL_STATUS;
912		return 0;
913
914	case FL_XIP_WHILE_ERASING:
915		if (mode != FL_READY && mode != FL_POINT &&
916		    (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
917			goto sleep;
918		chip->oldstate = chip->state;
919		chip->state = FL_READY;
920		return 0;
921
922	case FL_SHUTDOWN:
923		/* The machine is rebooting now,so no one can get chip anymore */
924		return -EIO;
925	case FL_POINT:
926		/* Only if there's no operation suspended... */
927		if (mode == FL_READY && chip->oldstate == FL_READY)
928			return 0;
929		fallthrough;
930	default:
931	sleep:
932		set_current_state(TASK_UNINTERRUPTIBLE);
933		add_wait_queue(&chip->wq, &wait);
934		mutex_unlock(&chip->mutex);
935		schedule();
936		remove_wait_queue(&chip->wq, &wait);
937		mutex_lock(&chip->mutex);
938		return -EAGAIN;
939	}
940}
941
942static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
943{
944	int ret;
945	DECLARE_WAITQUEUE(wait, current);
946
947 retry:
948	if (chip->priv &&
949	    (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
950	    || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
951		/*
952		 * OK. We have possibility for contention on the write/erase
953		 * operations which are global to the real chip and not per
954		 * partition.  So let's fight it over in the partition which
955		 * currently has authority on the operation.
956		 *
957		 * The rules are as follows:
958		 *
959		 * - any write operation must own shared->writing.
960		 *
961		 * - any erase operation must own _both_ shared->writing and
962		 *   shared->erasing.
963		 *
964		 * - contention arbitration is handled in the owner's context.
965		 *
966		 * The 'shared' struct can be read and/or written only when
967		 * its lock is taken.
968		 */
969		struct flchip_shared *shared = chip->priv;
970		struct flchip *contender;
971		mutex_lock(&shared->lock);
972		contender = shared->writing;
973		if (contender && contender != chip) {
974			/*
975			 * The engine to perform desired operation on this
976			 * partition is already in use by someone else.
977			 * Let's fight over it in the context of the chip
978			 * currently using it.  If it is possible to suspend,
979			 * that other partition will do just that, otherwise
980			 * it'll happily send us to sleep.  In any case, when
981			 * get_chip returns success we're clear to go ahead.
982			 */
983			ret = mutex_trylock(&contender->mutex);
984			mutex_unlock(&shared->lock);
985			if (!ret)
986				goto retry;
987			mutex_unlock(&chip->mutex);
988			ret = chip_ready(map, contender, contender->start, mode);
989			mutex_lock(&chip->mutex);
990
991			if (ret == -EAGAIN) {
992				mutex_unlock(&contender->mutex);
993				goto retry;
994			}
995			if (ret) {
996				mutex_unlock(&contender->mutex);
997				return ret;
998			}
999			mutex_lock(&shared->lock);
1000
1001			/* We should not own chip if it is already
1002			 * in FL_SYNCING state. Put contender and retry. */
1003			if (chip->state == FL_SYNCING) {
1004				put_chip(map, contender, contender->start);
1005				mutex_unlock(&contender->mutex);
1006				goto retry;
1007			}
1008			mutex_unlock(&contender->mutex);
1009		}
1010
1011		/* Check if we already have suspended erase
1012		 * on this chip. Sleep. */
1013		if (mode == FL_ERASING && shared->erasing
1014		    && shared->erasing->oldstate == FL_ERASING) {
1015			mutex_unlock(&shared->lock);
1016			set_current_state(TASK_UNINTERRUPTIBLE);
1017			add_wait_queue(&chip->wq, &wait);
1018			mutex_unlock(&chip->mutex);
1019			schedule();
1020			remove_wait_queue(&chip->wq, &wait);
1021			mutex_lock(&chip->mutex);
1022			goto retry;
1023		}
1024
1025		/* We now own it */
1026		shared->writing = chip;
1027		if (mode == FL_ERASING)
1028			shared->erasing = chip;
1029		mutex_unlock(&shared->lock);
1030	}
1031	ret = chip_ready(map, chip, adr, mode);
1032	if (ret == -EAGAIN)
1033		goto retry;
1034
1035	return ret;
1036}
1037
1038static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
1039{
1040	struct cfi_private *cfi = map->fldrv_priv;
1041
1042	if (chip->priv) {
1043		struct flchip_shared *shared = chip->priv;
1044		mutex_lock(&shared->lock);
1045		if (shared->writing == chip && chip->oldstate == FL_READY) {
1046			/* We own the ability to write, but we're done */
1047			shared->writing = shared->erasing;
1048			if (shared->writing && shared->writing != chip) {
1049				/* give back ownership to who we loaned it from */
1050				struct flchip *loaner = shared->writing;
1051				mutex_lock(&loaner->mutex);
1052				mutex_unlock(&shared->lock);
1053				mutex_unlock(&chip->mutex);
1054				put_chip(map, loaner, loaner->start);
1055				mutex_lock(&chip->mutex);
1056				mutex_unlock(&loaner->mutex);
1057				wake_up(&chip->wq);
1058				return;
1059			}
1060			shared->erasing = NULL;
1061			shared->writing = NULL;
1062		} else if (shared->erasing == chip && shared->writing != chip) {
1063			/*
1064			 * We own the ability to erase without the ability
1065			 * to write, which means the erase was suspended
1066			 * and some other partition is currently writing.
1067			 * Don't let the switch below mess things up since
1068			 * we don't have ownership to resume anything.
1069			 */
1070			mutex_unlock(&shared->lock);
1071			wake_up(&chip->wq);
1072			return;
1073		}
1074		mutex_unlock(&shared->lock);
1075	}
1076
1077	switch(chip->oldstate) {
1078	case FL_ERASING:
1079		/* What if one interleaved chip has finished and the
1080		   other hasn't? The old code would leave the finished
1081		   one in READY mode. That's bad, and caused -EROFS
1082		   errors to be returned from do_erase_oneblock because
1083		   that's the only bit it checked for at the time.
1084		   As the state machine appears to explicitly allow
1085		   sending the 0x70 (Read Status) command to an erasing
1086		   chip and expecting it to be ignored, that's what we
1087		   do. */
1088		map_write(map, CMD(0xd0), chip->in_progress_block_addr);
1089		map_write(map, CMD(0x70), chip->in_progress_block_addr);
1090		chip->oldstate = FL_READY;
1091		chip->state = FL_ERASING;
1092		break;
1093
1094	case FL_XIP_WHILE_ERASING:
1095		chip->state = chip->oldstate;
1096		chip->oldstate = FL_READY;
1097		break;
1098
1099	case FL_READY:
1100	case FL_STATUS:
1101	case FL_JEDEC_QUERY:
1102		break;
1103	default:
1104		printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1105	}
1106	wake_up(&chip->wq);
1107}
1108
1109#ifdef CONFIG_MTD_XIP
1110
1111/*
1112 * No interrupt what so ever can be serviced while the flash isn't in array
1113 * mode.  This is ensured by the xip_disable() and xip_enable() functions
1114 * enclosing any code path where the flash is known not to be in array mode.
1115 * And within a XIP disabled code path, only functions marked with __xipram
1116 * may be called and nothing else (it's a good thing to inspect generated
1117 * assembly to make sure inline functions were actually inlined and that gcc
1118 * didn't emit calls to its own support functions). Also configuring MTD CFI
1119 * support to a single buswidth and a single interleave is also recommended.
1120 */
1121
1122static void xip_disable(struct map_info *map, struct flchip *chip,
1123			unsigned long adr)
1124{
1125	/* TODO: chips with no XIP use should ignore and return */
1126	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
1127	local_irq_disable();
1128}
1129
1130static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1131				unsigned long adr)
1132{
1133	struct cfi_private *cfi = map->fldrv_priv;
1134	if (chip->state != FL_POINT && chip->state != FL_READY) {
1135		map_write(map, CMD(0xff), adr);
1136		chip->state = FL_READY;
1137	}
1138	(void) map_read(map, adr);
1139	xip_iprefetch();
1140	local_irq_enable();
1141}
1142
1143/*
1144 * When a delay is required for the flash operation to complete, the
1145 * xip_wait_for_operation() function is polling for both the given timeout
1146 * and pending (but still masked) hardware interrupts.  Whenever there is an
1147 * interrupt pending then the flash erase or write operation is suspended,
1148 * array mode restored and interrupts unmasked.  Task scheduling might also
1149 * happen at that point.  The CPU eventually returns from the interrupt or
1150 * the call to schedule() and the suspended flash operation is resumed for
1151 * the remaining of the delay period.
1152 *
1153 * Warning: this function _will_ fool interrupt latency tracing tools.
1154 */
1155
1156static int __xipram xip_wait_for_operation(
1157		struct map_info *map, struct flchip *chip,
1158		unsigned long adr, unsigned int chip_op_time_max)
1159{
1160	struct cfi_private *cfi = map->fldrv_priv;
1161	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1162	map_word status, OK = CMD(0x80);
1163	unsigned long usec, suspended, start, done;
1164	flstate_t oldstate, newstate;
1165
1166       	start = xip_currtime();
1167	usec = chip_op_time_max;
1168	if (usec == 0)
1169		usec = 500000;
1170	done = 0;
1171
1172	do {
1173		cpu_relax();
1174		if (xip_irqpending() && cfip &&
1175		    ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1176		     (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1177		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1178			/*
1179			 * Let's suspend the erase or write operation when
1180			 * supported.  Note that we currently don't try to
1181			 * suspend interleaved chips if there is already
1182			 * another operation suspended (imagine what happens
1183			 * when one chip was already done with the current
1184			 * operation while another chip suspended it, then
1185			 * we resume the whole thing at once).  Yes, it
1186			 * can happen!
1187			 */
1188			usec -= done;
1189			map_write(map, CMD(0xb0), adr);
1190			map_write(map, CMD(0x70), adr);
1191			suspended = xip_currtime();
1192			do {
1193				if (xip_elapsed_since(suspended) > 100000) {
1194					/*
1195					 * The chip doesn't want to suspend
1196					 * after waiting for 100 msecs.
1197					 * This is a critical error but there
1198					 * is not much we can do here.
1199					 */
1200					return -EIO;
1201				}
1202				status = map_read(map, adr);
1203			} while (!map_word_andequal(map, status, OK, OK));
1204
1205			/* Suspend succeeded */
1206			oldstate = chip->state;
1207			if (oldstate == FL_ERASING) {
1208				if (!map_word_bitsset(map, status, CMD(0x40)))
1209					break;
1210				newstate = FL_XIP_WHILE_ERASING;
1211				chip->erase_suspended = 1;
1212			} else {
1213				if (!map_word_bitsset(map, status, CMD(0x04)))
1214					break;
1215				newstate = FL_XIP_WHILE_WRITING;
1216				chip->write_suspended = 1;
1217			}
1218			chip->state = newstate;
1219			map_write(map, CMD(0xff), adr);
1220			(void) map_read(map, adr);
1221			xip_iprefetch();
1222			local_irq_enable();
1223			mutex_unlock(&chip->mutex);
1224			xip_iprefetch();
1225			cond_resched();
1226
1227			/*
1228			 * We're back.  However someone else might have
1229			 * decided to go write to the chip if we are in
1230			 * a suspended erase state.  If so let's wait
1231			 * until it's done.
1232			 */
1233			mutex_lock(&chip->mutex);
1234			while (chip->state != newstate) {
1235				DECLARE_WAITQUEUE(wait, current);
1236				set_current_state(TASK_UNINTERRUPTIBLE);
1237				add_wait_queue(&chip->wq, &wait);
1238				mutex_unlock(&chip->mutex);
1239				schedule();
1240				remove_wait_queue(&chip->wq, &wait);
1241				mutex_lock(&chip->mutex);
1242			}
1243			/* Disallow XIP again */
1244			local_irq_disable();
1245
1246			/* Resume the write or erase operation */
1247			map_write(map, CMD(0xd0), adr);
1248			map_write(map, CMD(0x70), adr);
1249			chip->state = oldstate;
1250			start = xip_currtime();
1251		} else if (usec >= 1000000/HZ) {
1252			/*
1253			 * Try to save on CPU power when waiting delay
1254			 * is at least a system timer tick period.
1255			 * No need to be extremely accurate here.
1256			 */
1257			xip_cpu_idle();
1258		}
1259		status = map_read(map, adr);
1260		done = xip_elapsed_since(start);
1261	} while (!map_word_andequal(map, status, OK, OK)
1262		 && done < usec);
1263
1264	return (done >= usec) ? -ETIME : 0;
1265}
1266
1267/*
1268 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1269 * the flash is actively programming or erasing since we have to poll for
1270 * the operation to complete anyway.  We can't do that in a generic way with
1271 * a XIP setup so do it before the actual flash operation in this case
1272 * and stub it out from INVAL_CACHE_AND_WAIT.
1273 */
1274#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1275	INVALIDATE_CACHED_RANGE(map, from, size)
1276
1277#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1278	xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1279
1280#else
1281
1282#define xip_disable(map, chip, adr)
1283#define xip_enable(map, chip, adr)
1284#define XIP_INVAL_CACHED_RANGE(x...)
1285#define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1286
1287static int inval_cache_and_wait_for_operation(
1288		struct map_info *map, struct flchip *chip,
1289		unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1290		unsigned int chip_op_time, unsigned int chip_op_time_max)
1291{
1292	struct cfi_private *cfi = map->fldrv_priv;
1293	map_word status, status_OK = CMD(0x80);
1294	int chip_state = chip->state;
1295	unsigned int timeo, sleep_time, reset_timeo;
1296
1297	mutex_unlock(&chip->mutex);
1298	if (inval_len)
1299		INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1300	mutex_lock(&chip->mutex);
1301
1302	timeo = chip_op_time_max;
1303	if (!timeo)
1304		timeo = 500000;
1305	reset_timeo = timeo;
1306	sleep_time = chip_op_time / 2;
1307
1308	for (;;) {
1309		if (chip->state != chip_state) {
1310			/* Someone's suspended the operation: sleep */
1311			DECLARE_WAITQUEUE(wait, current);
1312			set_current_state(TASK_UNINTERRUPTIBLE);
1313			add_wait_queue(&chip->wq, &wait);
1314			mutex_unlock(&chip->mutex);
1315			schedule();
1316			remove_wait_queue(&chip->wq, &wait);
1317			mutex_lock(&chip->mutex);
1318			continue;
1319		}
1320
1321		status = map_read(map, cmd_adr);
1322		if (map_word_andequal(map, status, status_OK, status_OK))
1323			break;
1324
1325		if (chip->erase_suspended && chip_state == FL_ERASING)  {
1326			/* Erase suspend occurred while sleep: reset timeout */
1327			timeo = reset_timeo;
1328			chip->erase_suspended = 0;
1329		}
1330		if (chip->write_suspended && chip_state == FL_WRITING)  {
1331			/* Write suspend occurred while sleep: reset timeout */
1332			timeo = reset_timeo;
1333			chip->write_suspended = 0;
1334		}
1335		if (!timeo) {
1336			map_write(map, CMD(0x70), cmd_adr);
1337			chip->state = FL_STATUS;
1338			return -ETIME;
1339		}
1340
1341		/* OK Still waiting. Drop the lock, wait a while and retry. */
1342		mutex_unlock(&chip->mutex);
1343		if (sleep_time >= 1000000/HZ) {
1344			/*
1345			 * Half of the normal delay still remaining
1346			 * can be performed with a sleeping delay instead
1347			 * of busy waiting.
1348			 */
1349			msleep(sleep_time/1000);
1350			timeo -= sleep_time;
1351			sleep_time = 1000000/HZ;
1352		} else {
1353			udelay(1);
1354			cond_resched();
1355			timeo--;
1356		}
1357		mutex_lock(&chip->mutex);
1358	}
1359
1360	/* Done and happy. */
1361 	chip->state = FL_STATUS;
1362	return 0;
1363}
1364
1365#endif
1366
1367#define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1368	INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1369
1370
1371static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1372{
1373	unsigned long cmd_addr;
1374	struct cfi_private *cfi = map->fldrv_priv;
1375	int ret;
1376
1377	adr += chip->start;
1378
1379	/* Ensure cmd read/writes are aligned. */
1380	cmd_addr = adr & ~(map_bankwidth(map)-1);
1381
1382	mutex_lock(&chip->mutex);
1383
1384	ret = get_chip(map, chip, cmd_addr, FL_POINT);
1385
1386	if (!ret) {
1387		if (chip->state != FL_POINT && chip->state != FL_READY)
1388			map_write(map, CMD(0xff), cmd_addr);
1389
1390		chip->state = FL_POINT;
1391		chip->ref_point_counter++;
1392	}
1393	mutex_unlock(&chip->mutex);
1394
1395	return ret;
1396}
1397
1398static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1399		size_t *retlen, void **virt, resource_size_t *phys)
1400{
1401	struct map_info *map = mtd->priv;
1402	struct cfi_private *cfi = map->fldrv_priv;
1403	unsigned long ofs, last_end = 0;
1404	int chipnum;
1405	int ret;
1406
1407	if (!map->virt)
1408		return -EINVAL;
1409
1410	/* Now lock the chip(s) to POINT state */
1411
1412	/* ofs: offset within the first chip that the first read should start */
1413	chipnum = (from >> cfi->chipshift);
1414	ofs = from - (chipnum << cfi->chipshift);
1415
1416	*virt = map->virt + cfi->chips[chipnum].start + ofs;
1417	if (phys)
1418		*phys = map->phys + cfi->chips[chipnum].start + ofs;
1419
1420	while (len) {
1421		unsigned long thislen;
1422
1423		if (chipnum >= cfi->numchips)
1424			break;
1425
1426		/* We cannot point across chips that are virtually disjoint */
1427		if (!last_end)
1428			last_end = cfi->chips[chipnum].start;
1429		else if (cfi->chips[chipnum].start != last_end)
1430			break;
1431
1432		if ((len + ofs -1) >> cfi->chipshift)
1433			thislen = (1<<cfi->chipshift) - ofs;
1434		else
1435			thislen = len;
1436
1437		ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1438		if (ret)
1439			break;
1440
1441		*retlen += thislen;
1442		len -= thislen;
1443
1444		ofs = 0;
1445		last_end += 1 << cfi->chipshift;
1446		chipnum++;
1447	}
1448	return 0;
1449}
1450
1451static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1452{
1453	struct map_info *map = mtd->priv;
1454	struct cfi_private *cfi = map->fldrv_priv;
1455	unsigned long ofs;
1456	int chipnum, err = 0;
1457
1458	/* Now unlock the chip(s) POINT state */
1459
1460	/* ofs: offset within the first chip that the first read should start */
1461	chipnum = (from >> cfi->chipshift);
1462	ofs = from - (chipnum <<  cfi->chipshift);
1463
1464	while (len && !err) {
1465		unsigned long thislen;
1466		struct flchip *chip;
1467
1468		chip = &cfi->chips[chipnum];
1469		if (chipnum >= cfi->numchips)
1470			break;
1471
1472		if ((len + ofs -1) >> cfi->chipshift)
1473			thislen = (1<<cfi->chipshift) - ofs;
1474		else
1475			thislen = len;
1476
1477		mutex_lock(&chip->mutex);
1478		if (chip->state == FL_POINT) {
1479			chip->ref_point_counter--;
1480			if(chip->ref_point_counter == 0)
1481				chip->state = FL_READY;
1482		} else {
1483			printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name);
1484			err = -EINVAL;
1485		}
1486
1487		put_chip(map, chip, chip->start);
1488		mutex_unlock(&chip->mutex);
1489
1490		len -= thislen;
1491		ofs = 0;
1492		chipnum++;
1493	}
1494
1495	return err;
1496}
1497
1498static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1499{
1500	unsigned long cmd_addr;
1501	struct cfi_private *cfi = map->fldrv_priv;
1502	int ret;
1503
1504	adr += chip->start;
1505
1506	/* Ensure cmd read/writes are aligned. */
1507	cmd_addr = adr & ~(map_bankwidth(map)-1);
1508
1509	mutex_lock(&chip->mutex);
1510	ret = get_chip(map, chip, cmd_addr, FL_READY);
1511	if (ret) {
1512		mutex_unlock(&chip->mutex);
1513		return ret;
1514	}
1515
1516	if (chip->state != FL_POINT && chip->state != FL_READY) {
1517		map_write(map, CMD(0xff), cmd_addr);
1518
1519		chip->state = FL_READY;
1520	}
1521
1522	map_copy_from(map, buf, adr, len);
1523
1524	put_chip(map, chip, cmd_addr);
1525
1526	mutex_unlock(&chip->mutex);
1527	return 0;
1528}
1529
1530static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1531{
1532	struct map_info *map = mtd->priv;
1533	struct cfi_private *cfi = map->fldrv_priv;
1534	unsigned long ofs;
1535	int chipnum;
1536	int ret = 0;
1537
1538	/* ofs: offset within the first chip that the first read should start */
1539	chipnum = (from >> cfi->chipshift);
1540	ofs = from - (chipnum <<  cfi->chipshift);
1541
1542	while (len) {
1543		unsigned long thislen;
1544
1545		if (chipnum >= cfi->numchips)
1546			break;
1547
1548		if ((len + ofs -1) >> cfi->chipshift)
1549			thislen = (1<<cfi->chipshift) - ofs;
1550		else
1551			thislen = len;
1552
1553		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1554		if (ret)
1555			break;
1556
1557		*retlen += thislen;
1558		len -= thislen;
1559		buf += thislen;
1560
1561		ofs = 0;
1562		chipnum++;
1563	}
1564	return ret;
1565}
1566
1567static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1568				     unsigned long adr, map_word datum, int mode)
1569{
1570	struct cfi_private *cfi = map->fldrv_priv;
1571	map_word status, write_cmd;
1572	int ret;
1573
1574	adr += chip->start;
1575
1576	switch (mode) {
1577	case FL_WRITING:
1578		write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41);
1579		break;
1580	case FL_OTP_WRITE:
1581		write_cmd = CMD(0xc0);
1582		break;
1583	default:
1584		return -EINVAL;
1585	}
1586
1587	mutex_lock(&chip->mutex);
1588	ret = get_chip(map, chip, adr, mode);
1589	if (ret) {
1590		mutex_unlock(&chip->mutex);
1591		return ret;
1592	}
1593
1594	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1595	ENABLE_VPP(map);
1596	xip_disable(map, chip, adr);
1597	map_write(map, write_cmd, adr);
1598	map_write(map, datum, adr);
1599	chip->state = mode;
1600
1601	ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1602				   adr, map_bankwidth(map),
1603				   chip->word_write_time,
1604				   chip->word_write_time_max);
1605	if (ret) {
1606		xip_enable(map, chip, adr);
1607		printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1608		goto out;
1609	}
1610
1611	/* check for errors */
1612	status = map_read(map, adr);
1613	if (map_word_bitsset(map, status, CMD(0x1a))) {
1614		unsigned long chipstatus = MERGESTATUS(status);
1615
1616		/* reset status */
1617		map_write(map, CMD(0x50), adr);
1618		map_write(map, CMD(0x70), adr);
1619		xip_enable(map, chip, adr);
1620
1621		if (chipstatus & 0x02) {
1622			ret = -EROFS;
1623		} else if (chipstatus & 0x08) {
1624			printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1625			ret = -EIO;
1626		} else {
1627			printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1628			ret = -EINVAL;
1629		}
1630
1631		goto out;
1632	}
1633
1634	xip_enable(map, chip, adr);
1635 out:	DISABLE_VPP(map);
1636	put_chip(map, chip, adr);
1637	mutex_unlock(&chip->mutex);
1638	return ret;
1639}
1640
1641
1642static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1643{
1644	struct map_info *map = mtd->priv;
1645	struct cfi_private *cfi = map->fldrv_priv;
1646	int ret;
1647	int chipnum;
1648	unsigned long ofs;
1649
1650	chipnum = to >> cfi->chipshift;
1651	ofs = to  - (chipnum << cfi->chipshift);
1652
1653	/* If it's not bus-aligned, do the first byte write */
1654	if (ofs & (map_bankwidth(map)-1)) {
1655		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1656		int gap = ofs - bus_ofs;
1657		int n;
1658		map_word datum;
1659
1660		n = min_t(int, len, map_bankwidth(map)-gap);
1661		datum = map_word_ff(map);
1662		datum = map_word_load_partial(map, datum, buf, gap, n);
1663
1664		ret = do_write_oneword(map, &cfi->chips[chipnum],
1665					       bus_ofs, datum, FL_WRITING);
1666		if (ret)
1667			return ret;
1668
1669		len -= n;
1670		ofs += n;
1671		buf += n;
1672		(*retlen) += n;
1673
1674		if (ofs >> cfi->chipshift) {
1675			chipnum ++;
1676			ofs = 0;
1677			if (chipnum == cfi->numchips)
1678				return 0;
1679		}
1680	}
1681
1682	while(len >= map_bankwidth(map)) {
1683		map_word datum = map_word_load(map, buf);
1684
1685		ret = do_write_oneword(map, &cfi->chips[chipnum],
1686				       ofs, datum, FL_WRITING);
1687		if (ret)
1688			return ret;
1689
1690		ofs += map_bankwidth(map);
1691		buf += map_bankwidth(map);
1692		(*retlen) += map_bankwidth(map);
1693		len -= map_bankwidth(map);
1694
1695		if (ofs >> cfi->chipshift) {
1696			chipnum ++;
1697			ofs = 0;
1698			if (chipnum == cfi->numchips)
1699				return 0;
1700		}
1701	}
1702
1703	if (len & (map_bankwidth(map)-1)) {
1704		map_word datum;
1705
1706		datum = map_word_ff(map);
1707		datum = map_word_load_partial(map, datum, buf, 0, len);
1708
1709		ret = do_write_oneword(map, &cfi->chips[chipnum],
1710				       ofs, datum, FL_WRITING);
1711		if (ret)
1712			return ret;
1713
1714		(*retlen) += len;
1715	}
1716
1717	return 0;
1718}
1719
1720
1721static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1722				    unsigned long adr, const struct kvec **pvec,
1723				    unsigned long *pvec_seek, int len)
1724{
1725	struct cfi_private *cfi = map->fldrv_priv;
1726	map_word status, write_cmd, datum;
1727	unsigned long cmd_adr;
1728	int ret, wbufsize, word_gap, words;
1729	const struct kvec *vec;
1730	unsigned long vec_seek;
1731	unsigned long initial_adr;
1732	int initial_len = len;
1733
1734	wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1735	adr += chip->start;
1736	initial_adr = adr;
1737	cmd_adr = adr & ~(wbufsize-1);
1738
1739	/* Sharp LH28F640BF chips need the first address for the
1740	 * Page Buffer Program command. See Table 5 of
1741	 * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */
1742	if (is_LH28F640BF(cfi))
1743		cmd_adr = adr;
1744
1745	/* Let's determine this according to the interleave only once */
1746	write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9);
1747
1748	mutex_lock(&chip->mutex);
1749	ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1750	if (ret) {
1751		mutex_unlock(&chip->mutex);
1752		return ret;
1753	}
1754
1755	XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1756	ENABLE_VPP(map);
1757	xip_disable(map, chip, cmd_adr);
1758
1759	/* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1760	   [...], the device will not accept any more Write to Buffer commands".
1761	   So we must check here and reset those bits if they're set. Otherwise
1762	   we're just pissing in the wind */
1763	if (chip->state != FL_STATUS) {
1764		map_write(map, CMD(0x70), cmd_adr);
1765		chip->state = FL_STATUS;
1766	}
1767	status = map_read(map, cmd_adr);
1768	if (map_word_bitsset(map, status, CMD(0x30))) {
1769		xip_enable(map, chip, cmd_adr);
1770		printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1771		xip_disable(map, chip, cmd_adr);
1772		map_write(map, CMD(0x50), cmd_adr);
1773		map_write(map, CMD(0x70), cmd_adr);
1774	}
1775
1776	chip->state = FL_WRITING_TO_BUFFER;
1777	map_write(map, write_cmd, cmd_adr);
1778	ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
1779	if (ret) {
1780		/* Argh. Not ready for write to buffer */
1781		map_word Xstatus = map_read(map, cmd_adr);
1782		map_write(map, CMD(0x70), cmd_adr);
1783		chip->state = FL_STATUS;
1784		status = map_read(map, cmd_adr);
1785		map_write(map, CMD(0x50), cmd_adr);
1786		map_write(map, CMD(0x70), cmd_adr);
1787		xip_enable(map, chip, cmd_adr);
1788		printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1789				map->name, Xstatus.x[0], status.x[0]);
1790		goto out;
1791	}
1792
1793	/* Figure out the number of words to write */
1794	word_gap = (-adr & (map_bankwidth(map)-1));
1795	words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
1796	if (!word_gap) {
1797		words--;
1798	} else {
1799		word_gap = map_bankwidth(map) - word_gap;
1800		adr -= word_gap;
1801		datum = map_word_ff(map);
1802	}
1803
1804	/* Write length of data to come */
1805	map_write(map, CMD(words), cmd_adr );
1806
1807	/* Write data */
1808	vec = *pvec;
1809	vec_seek = *pvec_seek;
1810	do {
1811		int n = map_bankwidth(map) - word_gap;
1812		if (n > vec->iov_len - vec_seek)
1813			n = vec->iov_len - vec_seek;
1814		if (n > len)
1815			n = len;
1816
1817		if (!word_gap && len < map_bankwidth(map))
1818			datum = map_word_ff(map);
1819
1820		datum = map_word_load_partial(map, datum,
1821					      vec->iov_base + vec_seek,
1822					      word_gap, n);
1823
1824		len -= n;
1825		word_gap += n;
1826		if (!len || word_gap == map_bankwidth(map)) {
1827			map_write(map, datum, adr);
1828			adr += map_bankwidth(map);
1829			word_gap = 0;
1830		}
1831
1832		vec_seek += n;
1833		if (vec_seek == vec->iov_len) {
1834			vec++;
1835			vec_seek = 0;
1836		}
1837	} while (len);
1838	*pvec = vec;
1839	*pvec_seek = vec_seek;
1840
1841	/* GO GO GO */
1842	map_write(map, CMD(0xd0), cmd_adr);
1843	chip->state = FL_WRITING;
1844
1845	ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1846				   initial_adr, initial_len,
1847				   chip->buffer_write_time,
1848				   chip->buffer_write_time_max);
1849	if (ret) {
1850		map_write(map, CMD(0x70), cmd_adr);
1851		chip->state = FL_STATUS;
1852		xip_enable(map, chip, cmd_adr);
1853		printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1854		goto out;
1855	}
1856
1857	/* check for errors */
1858	status = map_read(map, cmd_adr);
1859	if (map_word_bitsset(map, status, CMD(0x1a))) {
1860		unsigned long chipstatus = MERGESTATUS(status);
1861
1862		/* reset status */
1863		map_write(map, CMD(0x50), cmd_adr);
1864		map_write(map, CMD(0x70), cmd_adr);
1865		xip_enable(map, chip, cmd_adr);
1866
1867		if (chipstatus & 0x02) {
1868			ret = -EROFS;
1869		} else if (chipstatus & 0x08) {
1870			printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1871			ret = -EIO;
1872		} else {
1873			printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1874			ret = -EINVAL;
1875		}
1876
1877		goto out;
1878	}
1879
1880	xip_enable(map, chip, cmd_adr);
1881 out:	DISABLE_VPP(map);
1882	put_chip(map, chip, cmd_adr);
1883	mutex_unlock(&chip->mutex);
1884	return ret;
1885}
1886
1887static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1888				unsigned long count, loff_t to, size_t *retlen)
1889{
1890	struct map_info *map = mtd->priv;
1891	struct cfi_private *cfi = map->fldrv_priv;
1892	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1893	int ret;
1894	int chipnum;
1895	unsigned long ofs, vec_seek, i;
1896	size_t len = 0;
1897
1898	for (i = 0; i < count; i++)
1899		len += vecs[i].iov_len;
1900
1901	if (!len)
1902		return 0;
1903
1904	chipnum = to >> cfi->chipshift;
1905	ofs = to - (chipnum << cfi->chipshift);
1906	vec_seek = 0;
1907
1908	do {
1909		/* We must not cross write block boundaries */
1910		int size = wbufsize - (ofs & (wbufsize-1));
1911
1912		if (size > len)
1913			size = len;
1914		ret = do_write_buffer(map, &cfi->chips[chipnum],
1915				      ofs, &vecs, &vec_seek, size);
1916		if (ret)
1917			return ret;
1918
1919		ofs += size;
1920		(*retlen) += size;
1921		len -= size;
1922
1923		if (ofs >> cfi->chipshift) {
1924			chipnum ++;
1925			ofs = 0;
1926			if (chipnum == cfi->numchips)
1927				return 0;
1928		}
1929
1930		/* Be nice and reschedule with the chip in a usable state for other
1931		   processes. */
1932		cond_resched();
1933
1934	} while (len);
1935
1936	return 0;
1937}
1938
1939static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1940				       size_t len, size_t *retlen, const u_char *buf)
1941{
1942	struct kvec vec;
1943
1944	vec.iov_base = (void *) buf;
1945	vec.iov_len = len;
1946
1947	return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1948}
1949
1950static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1951				      unsigned long adr, int len, void *thunk)
1952{
1953	struct cfi_private *cfi = map->fldrv_priv;
1954	map_word status;
1955	int retries = 3;
1956	int ret;
1957
1958	adr += chip->start;
1959
1960 retry:
1961	mutex_lock(&chip->mutex);
1962	ret = get_chip(map, chip, adr, FL_ERASING);
1963	if (ret) {
1964		mutex_unlock(&chip->mutex);
1965		return ret;
1966	}
1967
1968	XIP_INVAL_CACHED_RANGE(map, adr, len);
1969	ENABLE_VPP(map);
1970	xip_disable(map, chip, adr);
1971
1972	/* Clear the status register first */
1973	map_write(map, CMD(0x50), adr);
1974
1975	/* Now erase */
1976	map_write(map, CMD(0x20), adr);
1977	map_write(map, CMD(0xD0), adr);
1978	chip->state = FL_ERASING;
1979	chip->erase_suspended = 0;
1980	chip->in_progress_block_addr = adr;
1981	chip->in_progress_block_mask = ~(len - 1);
1982
1983	ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1984				   adr, len,
1985				   chip->erase_time,
1986				   chip->erase_time_max);
1987	if (ret) {
1988		map_write(map, CMD(0x70), adr);
1989		chip->state = FL_STATUS;
1990		xip_enable(map, chip, adr);
1991		printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1992		goto out;
1993	}
1994
1995	/* We've broken this before. It doesn't hurt to be safe */
1996	map_write(map, CMD(0x70), adr);
1997	chip->state = FL_STATUS;
1998	status = map_read(map, adr);
1999
2000	/* check for errors */
2001	if (map_word_bitsset(map, status, CMD(0x3a))) {
2002		unsigned long chipstatus = MERGESTATUS(status);
2003
2004		/* Reset the error bits */
2005		map_write(map, CMD(0x50), adr);
2006		map_write(map, CMD(0x70), adr);
2007		xip_enable(map, chip, adr);
2008
2009		if ((chipstatus & 0x30) == 0x30) {
2010			printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
2011			ret = -EINVAL;
2012		} else if (chipstatus & 0x02) {
2013			/* Protection bit set */
2014			ret = -EROFS;
2015		} else if (chipstatus & 0x8) {
2016			/* Voltage */
2017			printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
2018			ret = -EIO;
2019		} else if (chipstatus & 0x20 && retries--) {
2020			printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
2021			DISABLE_VPP(map);
2022			put_chip(map, chip, adr);
2023			mutex_unlock(&chip->mutex);
2024			goto retry;
2025		} else {
2026			printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
2027			ret = -EIO;
2028		}
2029
2030		goto out;
2031	}
2032
2033	xip_enable(map, chip, adr);
2034 out:	DISABLE_VPP(map);
2035	put_chip(map, chip, adr);
2036	mutex_unlock(&chip->mutex);
2037	return ret;
2038}
2039
2040static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2041{
2042	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2043				instr->len, NULL);
2044}
2045
2046static void cfi_intelext_sync (struct mtd_info *mtd)
2047{
2048	struct map_info *map = mtd->priv;
2049	struct cfi_private *cfi = map->fldrv_priv;
2050	int i;
2051	struct flchip *chip;
2052	int ret = 0;
2053
2054	for (i=0; !ret && i<cfi->numchips; i++) {
2055		chip = &cfi->chips[i];
2056
2057		mutex_lock(&chip->mutex);
2058		ret = get_chip(map, chip, chip->start, FL_SYNCING);
2059
2060		if (!ret) {
2061			chip->oldstate = chip->state;
2062			chip->state = FL_SYNCING;
2063			/* No need to wake_up() on this state change -
2064			 * as the whole point is that nobody can do anything
2065			 * with the chip now anyway.
2066			 */
2067		}
2068		mutex_unlock(&chip->mutex);
2069	}
2070
2071	/* Unlock the chips again */
2072
2073	for (i--; i >=0; i--) {
2074		chip = &cfi->chips[i];
2075
2076		mutex_lock(&chip->mutex);
2077
2078		if (chip->state == FL_SYNCING) {
2079			chip->state = chip->oldstate;
2080			chip->oldstate = FL_READY;
2081			wake_up(&chip->wq);
2082		}
2083		mutex_unlock(&chip->mutex);
2084	}
2085}
2086
2087static int __xipram do_getlockstatus_oneblock(struct map_info *map,
2088						struct flchip *chip,
2089						unsigned long adr,
2090						int len, void *thunk)
2091{
2092	struct cfi_private *cfi = map->fldrv_priv;
2093	int status, ofs_factor = cfi->interleave * cfi->device_type;
2094
2095	adr += chip->start;
2096	xip_disable(map, chip, adr+(2*ofs_factor));
2097	map_write(map, CMD(0x90), adr+(2*ofs_factor));
2098	chip->state = FL_JEDEC_QUERY;
2099	status = cfi_read_query(map, adr+(2*ofs_factor));
2100	xip_enable(map, chip, 0);
2101	return status;
2102}
2103
2104#ifdef DEBUG_LOCK_BITS
2105static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2106						struct flchip *chip,
2107						unsigned long adr,
2108						int len, void *thunk)
2109{
2110	printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
2111	       adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
2112	return 0;
2113}
2114#endif
2115
2116#define DO_XXLOCK_ONEBLOCK_LOCK		((void *) 1)
2117#define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *) 2)
2118
2119static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2120				       unsigned long adr, int len, void *thunk)
2121{
2122	struct cfi_private *cfi = map->fldrv_priv;
2123	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2124	int mdelay;
2125	int ret;
2126
2127	adr += chip->start;
2128
2129	mutex_lock(&chip->mutex);
2130	ret = get_chip(map, chip, adr, FL_LOCKING);
2131	if (ret) {
2132		mutex_unlock(&chip->mutex);
2133		return ret;
2134	}
2135
2136	ENABLE_VPP(map);
2137	xip_disable(map, chip, adr);
2138
2139	map_write(map, CMD(0x60), adr);
2140	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2141		map_write(map, CMD(0x01), adr);
2142		chip->state = FL_LOCKING;
2143	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2144		map_write(map, CMD(0xD0), adr);
2145		chip->state = FL_UNLOCKING;
2146	} else
2147		BUG();
2148
2149	/*
2150	 * If Instant Individual Block Locking supported then no need
2151	 * to delay.
2152	 */
2153	/*
2154	 * Unlocking may take up to 1.4 seconds on some Intel flashes. So
2155	 * lets use a max of 1.5 seconds (1500ms) as timeout.
2156	 *
2157	 * See "Clear Block Lock-Bits Time" on page 40 in
2158	 * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
2159	 * from February 2003
2160	 */
2161	mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0;
2162
2163	ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000);
2164	if (ret) {
2165		map_write(map, CMD(0x70), adr);
2166		chip->state = FL_STATUS;
2167		xip_enable(map, chip, adr);
2168		printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2169		goto out;
2170	}
2171
2172	xip_enable(map, chip, adr);
2173 out:	DISABLE_VPP(map);
2174	put_chip(map, chip, adr);
2175	mutex_unlock(&chip->mutex);
2176	return ret;
2177}
2178
2179static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2180{
2181	int ret;
2182
2183#ifdef DEBUG_LOCK_BITS
2184	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2185	       __func__, ofs, len);
2186	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2187		ofs, len, NULL);
2188#endif
2189
2190	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2191		ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2192
2193#ifdef DEBUG_LOCK_BITS
2194	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2195	       __func__, ret);
2196	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2197		ofs, len, NULL);
2198#endif
2199
2200	return ret;
2201}
2202
2203static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2204{
2205	int ret;
2206
2207#ifdef DEBUG_LOCK_BITS
2208	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2209	       __func__, ofs, len);
2210	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2211		ofs, len, NULL);
2212#endif
2213
2214	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2215					ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2216
2217#ifdef DEBUG_LOCK_BITS
2218	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2219	       __func__, ret);
2220	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2221		ofs, len, NULL);
2222#endif
2223
2224	return ret;
2225}
2226
2227static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
2228				  uint64_t len)
2229{
2230	return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
2231				ofs, len, NULL) ? 1 : 0;
2232}
2233
2234#ifdef CONFIG_MTD_OTP
2235
2236typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2237			u_long data_offset, u_char *buf, u_int size,
2238			u_long prot_offset, u_int groupno, u_int groupsize);
2239
2240static int __xipram
2241do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2242	    u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2243{
2244	struct cfi_private *cfi = map->fldrv_priv;
2245	int ret;
2246
2247	mutex_lock(&chip->mutex);
2248	ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2249	if (ret) {
2250		mutex_unlock(&chip->mutex);
2251		return ret;
2252	}
2253
2254	/* let's ensure we're not reading back cached data from array mode */
2255	INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2256
2257	xip_disable(map, chip, chip->start);
2258	if (chip->state != FL_JEDEC_QUERY) {
2259		map_write(map, CMD(0x90), chip->start);
2260		chip->state = FL_JEDEC_QUERY;
2261	}
2262	map_copy_from(map, buf, chip->start + offset, size);
2263	xip_enable(map, chip, chip->start);
2264
2265	/* then ensure we don't keep OTP data in the cache */
2266	INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2267
2268	put_chip(map, chip, chip->start);
2269	mutex_unlock(&chip->mutex);
2270	return 0;
2271}
2272
2273static int
2274do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2275	     u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2276{
2277	int ret;
2278
2279	while (size) {
2280		unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2281		int gap = offset - bus_ofs;
2282		int n = min_t(int, size, map_bankwidth(map)-gap);
2283		map_word datum = map_word_ff(map);
2284
2285		datum = map_word_load_partial(map, datum, buf, gap, n);
2286		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2287		if (ret)
2288			return ret;
2289
2290		offset += n;
2291		buf += n;
2292		size -= n;
2293	}
2294
2295	return 0;
2296}
2297
2298static int
2299do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2300	    u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2301{
2302	struct cfi_private *cfi = map->fldrv_priv;
2303	map_word datum;
2304
2305	/* make sure area matches group boundaries */
2306	if (size != grpsz)
2307		return -EXDEV;
2308
2309	datum = map_word_ff(map);
2310	datum = map_word_clr(map, datum, CMD(1 << grpno));
2311	return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2312}
2313
2314static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2315				 size_t *retlen, u_char *buf,
2316				 otp_op_t action, int user_regs)
2317{
2318	struct map_info *map = mtd->priv;
2319	struct cfi_private *cfi = map->fldrv_priv;
2320	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2321	struct flchip *chip;
2322	struct cfi_intelext_otpinfo *otp;
2323	u_long devsize, reg_prot_offset, data_offset;
2324	u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2325	u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2326	int ret;
2327
2328	*retlen = 0;
2329
2330	/* Check that we actually have some OTP registers */
2331	if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2332		return -ENODATA;
2333
2334	/* we need real chips here not virtual ones */
2335	devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2336	chip_step = devsize >> cfi->chipshift;
2337	chip_num = 0;
2338
2339	/* Some chips have OTP located in the _top_ partition only.
2340	   For example: Intel 28F256L18T (T means top-parameter device) */
2341	if (cfi->mfr == CFI_MFR_INTEL) {
2342		switch (cfi->id) {
2343		case 0x880b:
2344		case 0x880c:
2345		case 0x880d:
2346			chip_num = chip_step - 1;
2347		}
2348	}
2349
2350	for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2351		chip = &cfi->chips[chip_num];
2352		otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2353
2354		/* first OTP region */
2355		field = 0;
2356		reg_prot_offset = extp->ProtRegAddr;
2357		reg_fact_groups = 1;
2358		reg_fact_size = 1 << extp->FactProtRegSize;
2359		reg_user_groups = 1;
2360		reg_user_size = 1 << extp->UserProtRegSize;
2361
2362		while (len > 0) {
2363			/* flash geometry fixup */
2364			data_offset = reg_prot_offset + 1;
2365			data_offset *= cfi->interleave * cfi->device_type;
2366			reg_prot_offset *= cfi->interleave * cfi->device_type;
2367			reg_fact_size *= cfi->interleave;
2368			reg_user_size *= cfi->interleave;
2369
2370			if (user_regs) {
2371				groups = reg_user_groups;
2372				groupsize = reg_user_size;
2373				/* skip over factory reg area */
2374				groupno = reg_fact_groups;
2375				data_offset += reg_fact_groups * reg_fact_size;
2376			} else {
2377				groups = reg_fact_groups;
2378				groupsize = reg_fact_size;
2379				groupno = 0;
2380			}
2381
2382			while (len > 0 && groups > 0) {
2383				if (!action) {
2384					/*
2385					 * Special case: if action is NULL
2386					 * we fill buf with otp_info records.
2387					 */
2388					struct otp_info *otpinfo;
2389					map_word lockword;
2390					len -= sizeof(struct otp_info);
2391					if (len <= 0)
2392						return -ENOSPC;
2393					ret = do_otp_read(map, chip,
2394							  reg_prot_offset,
2395							  (u_char *)&lockword,
2396							  map_bankwidth(map),
2397							  0, 0,  0);
2398					if (ret)
2399						return ret;
2400					otpinfo = (struct otp_info *)buf;
2401					otpinfo->start = from;
2402					otpinfo->length = groupsize;
2403					otpinfo->locked =
2404					   !map_word_bitsset(map, lockword,
2405							     CMD(1 << groupno));
2406					from += groupsize;
2407					buf += sizeof(*otpinfo);
2408					*retlen += sizeof(*otpinfo);
2409				} else if (from >= groupsize) {
2410					from -= groupsize;
2411					data_offset += groupsize;
2412				} else {
2413					int size = groupsize;
2414					data_offset += from;
2415					size -= from;
2416					from = 0;
2417					if (size > len)
2418						size = len;
2419					ret = action(map, chip, data_offset,
2420						     buf, size, reg_prot_offset,
2421						     groupno, groupsize);
2422					if (ret < 0)
2423						return ret;
2424					buf += size;
2425					len -= size;
2426					*retlen += size;
2427					data_offset += size;
2428				}
2429				groupno++;
2430				groups--;
2431			}
2432
2433			/* next OTP region */
2434			if (++field == extp->NumProtectionFields)
2435				break;
2436			reg_prot_offset = otp->ProtRegAddr;
2437			reg_fact_groups = otp->FactGroups;
2438			reg_fact_size = 1 << otp->FactProtRegSize;
2439			reg_user_groups = otp->UserGroups;
2440			reg_user_size = 1 << otp->UserProtRegSize;
2441			otp++;
2442		}
2443	}
2444
2445	return 0;
2446}
2447
2448static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2449					   size_t len, size_t *retlen,
2450					    u_char *buf)
2451{
2452	return cfi_intelext_otp_walk(mtd, from, len, retlen,
2453				     buf, do_otp_read, 0);
2454}
2455
2456static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2457					   size_t len, size_t *retlen,
2458					    u_char *buf)
2459{
2460	return cfi_intelext_otp_walk(mtd, from, len, retlen,
2461				     buf, do_otp_read, 1);
2462}
2463
2464static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2465					    size_t len, size_t *retlen,
2466					     u_char *buf)
2467{
2468	return cfi_intelext_otp_walk(mtd, from, len, retlen,
2469				     buf, do_otp_write, 1);
2470}
2471
2472static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2473					   loff_t from, size_t len)
2474{
2475	size_t retlen;
2476	return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2477				     NULL, do_otp_lock, 1);
2478}
2479
2480static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, size_t len,
2481					   size_t *retlen, struct otp_info *buf)
2482
2483{
2484	return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
2485				     NULL, 0);
2486}
2487
2488static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, size_t len,
2489					   size_t *retlen, struct otp_info *buf)
2490{
2491	return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
2492				     NULL, 1);
2493}
2494
2495#endif
2496
2497static void cfi_intelext_save_locks(struct mtd_info *mtd)
2498{
2499	struct mtd_erase_region_info *region;
2500	int block, status, i;
2501	unsigned long adr;
2502	size_t len;
2503
2504	for (i = 0; i < mtd->numeraseregions; i++) {
2505		region = &mtd->eraseregions[i];
2506		if (!region->lockmap)
2507			continue;
2508
2509		for (block = 0; block < region->numblocks; block++){
2510			len = region->erasesize;
2511			adr = region->offset + block * len;
2512
2513			status = cfi_varsize_frob(mtd,
2514					do_getlockstatus_oneblock, adr, len, NULL);
2515			if (status)
2516				set_bit(block, region->lockmap);
2517			else
2518				clear_bit(block, region->lockmap);
2519		}
2520	}
2521}
2522
2523static int cfi_intelext_suspend(struct mtd_info *mtd)
2524{
2525	struct map_info *map = mtd->priv;
2526	struct cfi_private *cfi = map->fldrv_priv;
2527	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2528	int i;
2529	struct flchip *chip;
2530	int ret = 0;
2531
2532	if ((mtd->flags & MTD_POWERUP_LOCK)
2533	    && extp && (extp->FeatureSupport & (1 << 5)))
2534		cfi_intelext_save_locks(mtd);
2535
2536	for (i=0; !ret && i<cfi->numchips; i++) {
2537		chip = &cfi->chips[i];
2538
2539		mutex_lock(&chip->mutex);
2540
2541		switch (chip->state) {
2542		case FL_READY:
2543		case FL_STATUS:
2544		case FL_CFI_QUERY:
2545		case FL_JEDEC_QUERY:
2546			if (chip->oldstate == FL_READY) {
2547				/* place the chip in a known state before suspend */
2548				map_write(map, CMD(0xFF), cfi->chips[i].start);
2549				chip->oldstate = chip->state;
2550				chip->state = FL_PM_SUSPENDED;
2551				/* No need to wake_up() on this state change -
2552				 * as the whole point is that nobody can do anything
2553				 * with the chip now anyway.
2554				 */
2555			} else {
2556				/* There seems to be an operation pending. We must wait for it. */
2557				printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2558				ret = -EAGAIN;
2559			}
2560			break;
2561		default:
2562			/* Should we actually wait? Once upon a time these routines weren't
2563			   allowed to. Or should we return -EAGAIN, because the upper layers
2564			   ought to have already shut down anything which was using the device
2565			   anyway? The latter for now. */
2566			printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state);
2567			ret = -EAGAIN;
2568		case FL_PM_SUSPENDED:
2569			break;
2570		}
2571		mutex_unlock(&chip->mutex);
2572	}
2573
2574	/* Unlock the chips again */
2575
2576	if (ret) {
2577		for (i--; i >=0; i--) {
2578			chip = &cfi->chips[i];
2579
2580			mutex_lock(&chip->mutex);
2581
2582			if (chip->state == FL_PM_SUSPENDED) {
2583				/* No need to force it into a known state here,
2584				   because we're returning failure, and it didn't
2585				   get power cycled */
2586				chip->state = chip->oldstate;
2587				chip->oldstate = FL_READY;
2588				wake_up(&chip->wq);
2589			}
2590			mutex_unlock(&chip->mutex);
2591		}
2592	}
2593
2594	return ret;
2595}
2596
2597static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2598{
2599	struct mtd_erase_region_info *region;
2600	int block, i;
2601	unsigned long adr;
2602	size_t len;
2603
2604	for (i = 0; i < mtd->numeraseregions; i++) {
2605		region = &mtd->eraseregions[i];
2606		if (!region->lockmap)
2607			continue;
2608
2609		for_each_clear_bit(block, region->lockmap, region->numblocks) {
2610			len = region->erasesize;
2611			adr = region->offset + block * len;
2612			cfi_intelext_unlock(mtd, adr, len);
2613		}
2614	}
2615}
2616
2617static void cfi_intelext_resume(struct mtd_info *mtd)
2618{
2619	struct map_info *map = mtd->priv;
2620	struct cfi_private *cfi = map->fldrv_priv;
2621	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2622	int i;
2623	struct flchip *chip;
2624
2625	for (i=0; i<cfi->numchips; i++) {
2626
2627		chip = &cfi->chips[i];
2628
2629		mutex_lock(&chip->mutex);
2630
2631		/* Go to known state. Chip may have been power cycled */
2632		if (chip->state == FL_PM_SUSPENDED) {
2633			/* Refresh LH28F640BF Partition Config. Register */
2634			fixup_LH28F640BF(mtd);
2635			map_write(map, CMD(0xFF), cfi->chips[i].start);
2636			chip->oldstate = chip->state = FL_READY;
2637			wake_up(&chip->wq);
2638		}
2639
2640		mutex_unlock(&chip->mutex);
2641	}
2642
2643	if ((mtd->flags & MTD_POWERUP_LOCK)
2644	    && extp && (extp->FeatureSupport & (1 << 5)))
2645		cfi_intelext_restore_locks(mtd);
2646}
2647
2648static int cfi_intelext_reset(struct mtd_info *mtd)
2649{
2650	struct map_info *map = mtd->priv;
2651	struct cfi_private *cfi = map->fldrv_priv;
2652	int i, ret;
2653
2654	for (i=0; i < cfi->numchips; i++) {
2655		struct flchip *chip = &cfi->chips[i];
2656
2657		/* force the completion of any ongoing operation
2658		   and switch to array mode so any bootloader in
2659		   flash is accessible for soft reboot. */
2660		mutex_lock(&chip->mutex);
2661		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2662		if (!ret) {
2663			map_write(map, CMD(0xff), chip->start);
2664			chip->state = FL_SHUTDOWN;
2665			put_chip(map, chip, chip->start);
2666		}
2667		mutex_unlock(&chip->mutex);
2668	}
2669
2670	return 0;
2671}
2672
2673static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2674			       void *v)
2675{
2676	struct mtd_info *mtd;
2677
2678	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2679	cfi_intelext_reset(mtd);
2680	return NOTIFY_DONE;
2681}
2682
2683static void cfi_intelext_destroy(struct mtd_info *mtd)
2684{
2685	struct map_info *map = mtd->priv;
2686	struct cfi_private *cfi = map->fldrv_priv;
2687	struct mtd_erase_region_info *region;
2688	int i;
2689	cfi_intelext_reset(mtd);
2690	unregister_reboot_notifier(&mtd->reboot_notifier);
2691	kfree(cfi->cmdset_priv);
2692	kfree(cfi->cfiq);
2693	kfree(cfi->chips[0].priv);
2694	kfree(cfi);
2695	for (i = 0; i < mtd->numeraseregions; i++) {
2696		region = &mtd->eraseregions[i];
2697		kfree(region->lockmap);
2698	}
2699	kfree(mtd->eraseregions);
2700}
2701
2702MODULE_LICENSE("GPL");
2703MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2704MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2705MODULE_ALIAS("cfi_cmdset_0003");
2706MODULE_ALIAS("cfi_cmdset_0200");
2707