1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for sunxi SD/MMC host controllers
4 * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
5 * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
6 * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
7 * (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
8 * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
9 * (C) Copyright 2017 Sootech SA
10 */
11
12#include <linux/clk.h>
13#include <linux/clk/sunxi-ng.h>
14#include <linux/delay.h>
15#include <linux/device.h>
16#include <linux/dma-mapping.h>
17#include <linux/err.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/kernel.h>
21#include <linux/mmc/card.h>
22#include <linux/mmc/core.h>
23#include <linux/mmc/host.h>
24#include <linux/mmc/mmc.h>
25#include <linux/mmc/sd.h>
26#include <linux/mmc/sdio.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/module.h>
29#include <linux/of_address.h>
30#include <linux/of_platform.h>
31#include <linux/platform_device.h>
32#include <linux/pm_runtime.h>
33#include <linux/regulator/consumer.h>
34#include <linux/reset.h>
35#include <linux/scatterlist.h>
36#include <linux/slab.h>
37#include <linux/spinlock.h>
38
39/* register offset definitions */
40#define SDXC_REG_GCTRL	(0x00) /* SMC Global Control Register */
41#define SDXC_REG_CLKCR	(0x04) /* SMC Clock Control Register */
42#define SDXC_REG_TMOUT	(0x08) /* SMC Time Out Register */
43#define SDXC_REG_WIDTH	(0x0C) /* SMC Bus Width Register */
44#define SDXC_REG_BLKSZ	(0x10) /* SMC Block Size Register */
45#define SDXC_REG_BCNTR	(0x14) /* SMC Byte Count Register */
46#define SDXC_REG_CMDR	(0x18) /* SMC Command Register */
47#define SDXC_REG_CARG	(0x1C) /* SMC Argument Register */
48#define SDXC_REG_RESP0	(0x20) /* SMC Response Register 0 */
49#define SDXC_REG_RESP1	(0x24) /* SMC Response Register 1 */
50#define SDXC_REG_RESP2	(0x28) /* SMC Response Register 2 */
51#define SDXC_REG_RESP3	(0x2C) /* SMC Response Register 3 */
52#define SDXC_REG_IMASK	(0x30) /* SMC Interrupt Mask Register */
53#define SDXC_REG_MISTA	(0x34) /* SMC Masked Interrupt Status Register */
54#define SDXC_REG_RINTR	(0x38) /* SMC Raw Interrupt Status Register */
55#define SDXC_REG_STAS	(0x3C) /* SMC Status Register */
56#define SDXC_REG_FTRGL	(0x40) /* SMC FIFO Threshold Watermark Registe */
57#define SDXC_REG_FUNS	(0x44) /* SMC Function Select Register */
58#define SDXC_REG_CBCR	(0x48) /* SMC CIU Byte Count Register */
59#define SDXC_REG_BBCR	(0x4C) /* SMC BIU Byte Count Register */
60#define SDXC_REG_DBGC	(0x50) /* SMC Debug Enable Register */
61#define SDXC_REG_HWRST	(0x78) /* SMC Card Hardware Reset for Register */
62#define SDXC_REG_DMAC	(0x80) /* SMC IDMAC Control Register */
63#define SDXC_REG_DLBA	(0x84) /* SMC IDMAC Descriptor List Base Addre */
64#define SDXC_REG_IDST	(0x88) /* SMC IDMAC Status Register */
65#define SDXC_REG_IDIE	(0x8C) /* SMC IDMAC Interrupt Enable Register */
66#define SDXC_REG_CHDA	(0x90)
67#define SDXC_REG_CBDA	(0x94)
68
69/* New registers introduced in A64 */
70#define SDXC_REG_A12A		0x058 /* SMC Auto Command 12 Register */
71#define SDXC_REG_SD_NTSR	0x05C /* SMC New Timing Set Register */
72#define SDXC_REG_DRV_DL		0x140 /* Drive Delay Control Register */
73#define SDXC_REG_SAMP_DL_REG	0x144 /* SMC sample delay control */
74#define SDXC_REG_DS_DL_REG	0x148 /* SMC data strobe delay control */
75
76#define mmc_readl(host, reg) \
77	readl((host)->reg_base + SDXC_##reg)
78#define mmc_writel(host, reg, value) \
79	writel((value), (host)->reg_base + SDXC_##reg)
80
81/* global control register bits */
82#define SDXC_SOFT_RESET			BIT(0)
83#define SDXC_FIFO_RESET			BIT(1)
84#define SDXC_DMA_RESET			BIT(2)
85#define SDXC_INTERRUPT_ENABLE_BIT	BIT(4)
86#define SDXC_DMA_ENABLE_BIT		BIT(5)
87#define SDXC_DEBOUNCE_ENABLE_BIT	BIT(8)
88#define SDXC_POSEDGE_LATCH_DATA		BIT(9)
89#define SDXC_DDR_MODE			BIT(10)
90#define SDXC_MEMORY_ACCESS_DONE		BIT(29)
91#define SDXC_ACCESS_DONE_DIRECT		BIT(30)
92#define SDXC_ACCESS_BY_AHB		BIT(31)
93#define SDXC_ACCESS_BY_DMA		(0 << 31)
94#define SDXC_HARDWARE_RESET \
95	(SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
96
97/* clock control bits */
98#define SDXC_MASK_DATA0			BIT(31)
99#define SDXC_CARD_CLOCK_ON		BIT(16)
100#define SDXC_LOW_POWER_ON		BIT(17)
101
102/* bus width */
103#define SDXC_WIDTH1			0
104#define SDXC_WIDTH4			1
105#define SDXC_WIDTH8			2
106
107/* smc command bits */
108#define SDXC_RESP_EXPIRE		BIT(6)
109#define SDXC_LONG_RESPONSE		BIT(7)
110#define SDXC_CHECK_RESPONSE_CRC		BIT(8)
111#define SDXC_DATA_EXPIRE		BIT(9)
112#define SDXC_WRITE			BIT(10)
113#define SDXC_SEQUENCE_MODE		BIT(11)
114#define SDXC_SEND_AUTO_STOP		BIT(12)
115#define SDXC_WAIT_PRE_OVER		BIT(13)
116#define SDXC_STOP_ABORT_CMD		BIT(14)
117#define SDXC_SEND_INIT_SEQUENCE		BIT(15)
118#define SDXC_UPCLK_ONLY			BIT(21)
119#define SDXC_READ_CEATA_DEV		BIT(22)
120#define SDXC_CCS_EXPIRE			BIT(23)
121#define SDXC_ENABLE_BIT_BOOT		BIT(24)
122#define SDXC_ALT_BOOT_OPTIONS		BIT(25)
123#define SDXC_BOOT_ACK_EXPIRE		BIT(26)
124#define SDXC_BOOT_ABORT			BIT(27)
125#define SDXC_VOLTAGE_SWITCH	        BIT(28)
126#define SDXC_USE_HOLD_REGISTER	        BIT(29)
127#define SDXC_START			BIT(31)
128
129/* interrupt bits */
130#define SDXC_RESP_ERROR			BIT(1)
131#define SDXC_COMMAND_DONE		BIT(2)
132#define SDXC_DATA_OVER			BIT(3)
133#define SDXC_TX_DATA_REQUEST		BIT(4)
134#define SDXC_RX_DATA_REQUEST		BIT(5)
135#define SDXC_RESP_CRC_ERROR		BIT(6)
136#define SDXC_DATA_CRC_ERROR		BIT(7)
137#define SDXC_RESP_TIMEOUT		BIT(8)
138#define SDXC_DATA_TIMEOUT		BIT(9)
139#define SDXC_VOLTAGE_CHANGE_DONE	BIT(10)
140#define SDXC_FIFO_RUN_ERROR		BIT(11)
141#define SDXC_HARD_WARE_LOCKED		BIT(12)
142#define SDXC_START_BIT_ERROR		BIT(13)
143#define SDXC_AUTO_COMMAND_DONE		BIT(14)
144#define SDXC_END_BIT_ERROR		BIT(15)
145#define SDXC_SDIO_INTERRUPT		BIT(16)
146#define SDXC_CARD_INSERT		BIT(30)
147#define SDXC_CARD_REMOVE		BIT(31)
148#define SDXC_INTERRUPT_ERROR_BIT \
149	(SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
150	 SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
151	 SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
152#define SDXC_INTERRUPT_DONE_BIT \
153	(SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
154	 SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
155
156/* status */
157#define SDXC_RXWL_FLAG			BIT(0)
158#define SDXC_TXWL_FLAG			BIT(1)
159#define SDXC_FIFO_EMPTY			BIT(2)
160#define SDXC_FIFO_FULL			BIT(3)
161#define SDXC_CARD_PRESENT		BIT(8)
162#define SDXC_CARD_DATA_BUSY		BIT(9)
163#define SDXC_DATA_FSM_BUSY		BIT(10)
164#define SDXC_DMA_REQUEST		BIT(31)
165#define SDXC_FIFO_SIZE			16
166
167/* Function select */
168#define SDXC_CEATA_ON			(0xceaa << 16)
169#define SDXC_SEND_IRQ_RESPONSE		BIT(0)
170#define SDXC_SDIO_READ_WAIT		BIT(1)
171#define SDXC_ABORT_READ_DATA		BIT(2)
172#define SDXC_SEND_CCSD			BIT(8)
173#define SDXC_SEND_AUTO_STOPCCSD		BIT(9)
174#define SDXC_CEATA_DEV_IRQ_ENABLE	BIT(10)
175
176/* IDMA controller bus mod bit field */
177#define SDXC_IDMAC_SOFT_RESET		BIT(0)
178#define SDXC_IDMAC_FIX_BURST		BIT(1)
179#define SDXC_IDMAC_IDMA_ON		BIT(7)
180#define SDXC_IDMAC_REFETCH_DES		BIT(31)
181
182/* IDMA status bit field */
183#define SDXC_IDMAC_TRANSMIT_INTERRUPT		BIT(0)
184#define SDXC_IDMAC_RECEIVE_INTERRUPT		BIT(1)
185#define SDXC_IDMAC_FATAL_BUS_ERROR		BIT(2)
186#define SDXC_IDMAC_DESTINATION_INVALID		BIT(4)
187#define SDXC_IDMAC_CARD_ERROR_SUM		BIT(5)
188#define SDXC_IDMAC_NORMAL_INTERRUPT_SUM		BIT(8)
189#define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM	BIT(9)
190#define SDXC_IDMAC_HOST_ABORT_INTERRUPT		BIT(10)
191#define SDXC_IDMAC_IDLE				(0 << 13)
192#define SDXC_IDMAC_SUSPEND			(1 << 13)
193#define SDXC_IDMAC_DESC_READ			(2 << 13)
194#define SDXC_IDMAC_DESC_CHECK			(3 << 13)
195#define SDXC_IDMAC_READ_REQUEST_WAIT		(4 << 13)
196#define SDXC_IDMAC_WRITE_REQUEST_WAIT		(5 << 13)
197#define SDXC_IDMAC_READ				(6 << 13)
198#define SDXC_IDMAC_WRITE			(7 << 13)
199#define SDXC_IDMAC_DESC_CLOSE			(8 << 13)
200
201/*
202* If the idma-des-size-bits of property is ie 13, bufsize bits are:
203*  Bits  0-12: buf1 size
204*  Bits 13-25: buf2 size
205*  Bits 26-31: not used
206* Since we only ever set buf1 size, we can simply store it directly.
207*/
208#define SDXC_IDMAC_DES0_DIC	BIT(1)  /* disable interrupt on completion */
209#define SDXC_IDMAC_DES0_LD	BIT(2)  /* last descriptor */
210#define SDXC_IDMAC_DES0_FD	BIT(3)  /* first descriptor */
211#define SDXC_IDMAC_DES0_CH	BIT(4)  /* chain mode */
212#define SDXC_IDMAC_DES0_ER	BIT(5)  /* end of ring */
213#define SDXC_IDMAC_DES0_CES	BIT(30) /* card error summary */
214#define SDXC_IDMAC_DES0_OWN	BIT(31) /* 1-idma owns it, 0-host owns it */
215
216#define SDXC_CLK_400K		0
217#define SDXC_CLK_25M		1
218#define SDXC_CLK_50M		2
219#define SDXC_CLK_50M_DDR	3
220#define SDXC_CLK_50M_DDR_8BIT	4
221
222#define SDXC_2X_TIMING_MODE	BIT(31)
223
224#define SDXC_CAL_START		BIT(15)
225#define SDXC_CAL_DONE		BIT(14)
226#define SDXC_CAL_DL_SHIFT	8
227#define SDXC_CAL_DL_SW_EN	BIT(7)
228#define SDXC_CAL_DL_SW_SHIFT	0
229#define SDXC_CAL_DL_MASK	0x3f
230
231#define SDXC_CAL_TIMEOUT	3	/* in seconds, 3s is enough*/
232
233struct sunxi_mmc_clk_delay {
234	u32 output;
235	u32 sample;
236};
237
238struct sunxi_idma_des {
239	__le32 config;
240	__le32 buf_size;
241	__le32 buf_addr_ptr1;
242	__le32 buf_addr_ptr2;
243};
244
245struct sunxi_mmc_cfg {
246	u32 idma_des_size_bits;
247	const struct sunxi_mmc_clk_delay *clk_delays;
248
249	/* does the IP block support autocalibration? */
250	bool can_calibrate;
251
252	/* Does DATA0 needs to be masked while the clock is updated */
253	bool mask_data0;
254
255	/*
256	 * hardware only supports new timing mode, either due to lack of
257	 * a mode switch in the clock controller, or the mmc controller
258	 * is permanently configured in the new timing mode, without the
259	 * NTSR mode switch.
260	 */
261	bool needs_new_timings;
262
263	/* clock hardware can switch between old and new timing modes */
264	bool ccu_has_timings_switch;
265};
266
267struct sunxi_mmc_host {
268	struct device *dev;
269	struct mmc_host	*mmc;
270	struct reset_control *reset;
271	const struct sunxi_mmc_cfg *cfg;
272
273	/* IO mapping base */
274	void __iomem	*reg_base;
275
276	/* clock management */
277	struct clk	*clk_ahb;
278	struct clk	*clk_mmc;
279	struct clk	*clk_sample;
280	struct clk	*clk_output;
281
282	/* irq */
283	spinlock_t	lock;
284	int		irq;
285	u32		int_sum;
286	u32		sdio_imask;
287
288	/* dma */
289	dma_addr_t	sg_dma;
290	void		*sg_cpu;
291	bool		wait_dma;
292
293	struct mmc_request *mrq;
294	struct mmc_request *manual_stop_mrq;
295	int		ferror;
296
297	/* vqmmc */
298	bool		vqmmc_enabled;
299
300	/* timings */
301	bool		use_new_timings;
302};
303
304static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
305{
306	unsigned long expire = jiffies + msecs_to_jiffies(250);
307	u32 rval;
308
309	mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
310	do {
311		rval = mmc_readl(host, REG_GCTRL);
312	} while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
313
314	if (rval & SDXC_HARDWARE_RESET) {
315		dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
316		return -EIO;
317	}
318
319	return 0;
320}
321
322static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
323{
324	u32 rval;
325
326	if (sunxi_mmc_reset_host(host))
327		return -EIO;
328
329	/*
330	 * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
331	 *
332	 * TODO: sun9i has a larger FIFO and supports higher trigger values
333	 */
334	mmc_writel(host, REG_FTRGL, 0x20070008);
335	/* Maximum timeout value */
336	mmc_writel(host, REG_TMOUT, 0xffffffff);
337	/* Unmask SDIO interrupt if needed */
338	mmc_writel(host, REG_IMASK, host->sdio_imask);
339	/* Clear all pending interrupts */
340	mmc_writel(host, REG_RINTR, 0xffffffff);
341	/* Debug register? undocumented */
342	mmc_writel(host, REG_DBGC, 0xdeb);
343	/* Enable CEATA support */
344	mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
345	/* Set DMA descriptor list base address */
346	mmc_writel(host, REG_DLBA, host->sg_dma);
347
348	rval = mmc_readl(host, REG_GCTRL);
349	rval |= SDXC_INTERRUPT_ENABLE_BIT;
350	/* Undocumented, but found in Allwinner code */
351	rval &= ~SDXC_ACCESS_DONE_DIRECT;
352	mmc_writel(host, REG_GCTRL, rval);
353
354	return 0;
355}
356
357static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
358				    struct mmc_data *data)
359{
360	struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
361	dma_addr_t next_desc = host->sg_dma;
362	int i, max_len = (1 << host->cfg->idma_des_size_bits);
363
364	for (i = 0; i < data->sg_len; i++) {
365		pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
366					     SDXC_IDMAC_DES0_OWN |
367					     SDXC_IDMAC_DES0_DIC);
368
369		if (data->sg[i].length == max_len)
370			pdes[i].buf_size = 0; /* 0 == max_len */
371		else
372			pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
373
374		next_desc += sizeof(struct sunxi_idma_des);
375		pdes[i].buf_addr_ptr1 =
376			cpu_to_le32(sg_dma_address(&data->sg[i]));
377		pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc);
378	}
379
380	pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
381	pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
382					  SDXC_IDMAC_DES0_ER);
383	pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
384	pdes[i - 1].buf_addr_ptr2 = 0;
385
386	/*
387	 * Avoid the io-store starting the idmac hitting io-mem before the
388	 * descriptors hit the main-mem.
389	 */
390	wmb();
391}
392
393static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
394			     struct mmc_data *data)
395{
396	u32 i, dma_len;
397	struct scatterlist *sg;
398
399	dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
400			     mmc_get_dma_dir(data));
401	if (dma_len == 0) {
402		dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
403		return -ENOMEM;
404	}
405
406	for_each_sg(data->sg, sg, data->sg_len, i) {
407		if (sg->offset & 3 || sg->length & 3) {
408			dev_err(mmc_dev(host->mmc),
409				"unaligned scatterlist: os %x length %d\n",
410				sg->offset, sg->length);
411			return -EINVAL;
412		}
413	}
414
415	return 0;
416}
417
418static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
419				struct mmc_data *data)
420{
421	u32 rval;
422
423	sunxi_mmc_init_idma_des(host, data);
424
425	rval = mmc_readl(host, REG_GCTRL);
426	rval |= SDXC_DMA_ENABLE_BIT;
427	mmc_writel(host, REG_GCTRL, rval);
428	rval |= SDXC_DMA_RESET;
429	mmc_writel(host, REG_GCTRL, rval);
430
431	mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
432
433	if (!(data->flags & MMC_DATA_WRITE))
434		mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
435
436	mmc_writel(host, REG_DMAC,
437		   SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
438}
439
440static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
441				       struct mmc_request *req)
442{
443	u32 arg, cmd_val, ri;
444	unsigned long expire = jiffies + msecs_to_jiffies(1000);
445
446	cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
447		  SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
448
449	if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
450		cmd_val |= SD_IO_RW_DIRECT;
451		arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
452		      ((req->cmd->arg >> 28) & 0x7);
453	} else {
454		cmd_val |= MMC_STOP_TRANSMISSION;
455		arg = 0;
456	}
457
458	mmc_writel(host, REG_CARG, arg);
459	mmc_writel(host, REG_CMDR, cmd_val);
460
461	do {
462		ri = mmc_readl(host, REG_RINTR);
463	} while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
464		 time_before(jiffies, expire));
465
466	if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
467		dev_err(mmc_dev(host->mmc), "send stop command failed\n");
468		if (req->stop)
469			req->stop->resp[0] = -ETIMEDOUT;
470	} else {
471		if (req->stop)
472			req->stop->resp[0] = mmc_readl(host, REG_RESP0);
473	}
474
475	mmc_writel(host, REG_RINTR, 0xffff);
476}
477
478static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
479{
480	struct mmc_command *cmd = host->mrq->cmd;
481	struct mmc_data *data = host->mrq->data;
482
483	/* For some cmds timeout is normal with sd/mmc cards */
484	if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
485		SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
486				      cmd->opcode == SD_IO_RW_DIRECT))
487		return;
488
489	dev_dbg(mmc_dev(host->mmc),
490		"smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
491		host->mmc->index, cmd->opcode,
492		data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
493		host->int_sum & SDXC_RESP_ERROR     ? " RE"     : "",
494		host->int_sum & SDXC_RESP_CRC_ERROR  ? " RCE"    : "",
495		host->int_sum & SDXC_DATA_CRC_ERROR  ? " DCE"    : "",
496		host->int_sum & SDXC_RESP_TIMEOUT ? " RTO"    : "",
497		host->int_sum & SDXC_DATA_TIMEOUT ? " DTO"    : "",
498		host->int_sum & SDXC_FIFO_RUN_ERROR  ? " FE"     : "",
499		host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL"     : "",
500		host->int_sum & SDXC_START_BIT_ERROR ? " SBE"    : "",
501		host->int_sum & SDXC_END_BIT_ERROR   ? " EBE"    : ""
502		);
503}
504
505/* Called in interrupt context! */
506static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
507{
508	struct mmc_request *mrq = host->mrq;
509	struct mmc_data *data = mrq->data;
510	u32 rval;
511
512	mmc_writel(host, REG_IMASK, host->sdio_imask);
513	mmc_writel(host, REG_IDIE, 0);
514
515	if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
516		sunxi_mmc_dump_errinfo(host);
517		mrq->cmd->error = -ETIMEDOUT;
518
519		if (data) {
520			data->error = -ETIMEDOUT;
521			host->manual_stop_mrq = mrq;
522		}
523
524		if (mrq->stop)
525			mrq->stop->error = -ETIMEDOUT;
526	} else {
527		if (mrq->cmd->flags & MMC_RSP_136) {
528			mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
529			mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
530			mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
531			mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
532		} else {
533			mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
534		}
535
536		if (data)
537			data->bytes_xfered = data->blocks * data->blksz;
538	}
539
540	if (data) {
541		mmc_writel(host, REG_IDST, 0x337);
542		mmc_writel(host, REG_DMAC, 0);
543		rval = mmc_readl(host, REG_GCTRL);
544		rval |= SDXC_DMA_RESET;
545		mmc_writel(host, REG_GCTRL, rval);
546		rval &= ~SDXC_DMA_ENABLE_BIT;
547		mmc_writel(host, REG_GCTRL, rval);
548		rval |= SDXC_FIFO_RESET;
549		mmc_writel(host, REG_GCTRL, rval);
550		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
551			     mmc_get_dma_dir(data));
552	}
553
554	mmc_writel(host, REG_RINTR, 0xffff);
555
556	host->mrq = NULL;
557	host->int_sum = 0;
558	host->wait_dma = false;
559
560	return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
561}
562
563static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
564{
565	struct sunxi_mmc_host *host = dev_id;
566	struct mmc_request *mrq;
567	u32 msk_int, idma_int;
568	bool finalize = false;
569	bool sdio_int = false;
570	irqreturn_t ret = IRQ_HANDLED;
571
572	spin_lock(&host->lock);
573
574	idma_int  = mmc_readl(host, REG_IDST);
575	msk_int   = mmc_readl(host, REG_MISTA);
576
577	dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
578		host->mrq, msk_int, idma_int);
579
580	mrq = host->mrq;
581	if (mrq) {
582		if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
583			host->wait_dma = false;
584
585		host->int_sum |= msk_int;
586
587		/* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
588		if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
589				!(host->int_sum & SDXC_COMMAND_DONE))
590			mmc_writel(host, REG_IMASK,
591				   host->sdio_imask | SDXC_COMMAND_DONE);
592		/* Don't wait for dma on error */
593		else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
594			finalize = true;
595		else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
596				!host->wait_dma)
597			finalize = true;
598	}
599
600	if (msk_int & SDXC_SDIO_INTERRUPT)
601		sdio_int = true;
602
603	mmc_writel(host, REG_RINTR, msk_int);
604	mmc_writel(host, REG_IDST, idma_int);
605
606	if (finalize)
607		ret = sunxi_mmc_finalize_request(host);
608
609	spin_unlock(&host->lock);
610
611	if (finalize && ret == IRQ_HANDLED)
612		mmc_request_done(host->mmc, mrq);
613
614	if (sdio_int)
615		mmc_signal_sdio_irq(host->mmc);
616
617	return ret;
618}
619
620static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
621{
622	struct sunxi_mmc_host *host = dev_id;
623	struct mmc_request *mrq;
624	unsigned long iflags;
625
626	spin_lock_irqsave(&host->lock, iflags);
627	mrq = host->manual_stop_mrq;
628	spin_unlock_irqrestore(&host->lock, iflags);
629
630	if (!mrq) {
631		dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
632		return IRQ_HANDLED;
633	}
634
635	dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
636
637	/*
638	 * We will never have more than one outstanding request,
639	 * and we do not complete the request until after
640	 * we've cleared host->manual_stop_mrq so we do not need to
641	 * spin lock this function.
642	 * Additionally we have wait states within this function
643	 * so having it in a lock is a very bad idea.
644	 */
645	sunxi_mmc_send_manual_stop(host, mrq);
646
647	spin_lock_irqsave(&host->lock, iflags);
648	host->manual_stop_mrq = NULL;
649	spin_unlock_irqrestore(&host->lock, iflags);
650
651	mmc_request_done(host->mmc, mrq);
652
653	return IRQ_HANDLED;
654}
655
656static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
657{
658	unsigned long expire = jiffies + msecs_to_jiffies(750);
659	u32 rval;
660
661	dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
662		oclk_en ? "en" : "dis");
663
664	rval = mmc_readl(host, REG_CLKCR);
665	rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
666
667	if (oclk_en)
668		rval |= SDXC_CARD_CLOCK_ON;
669	if (host->cfg->mask_data0)
670		rval |= SDXC_MASK_DATA0;
671
672	mmc_writel(host, REG_CLKCR, rval);
673
674	rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
675	mmc_writel(host, REG_CMDR, rval);
676
677	do {
678		rval = mmc_readl(host, REG_CMDR);
679	} while (time_before(jiffies, expire) && (rval & SDXC_START));
680
681	/* clear irq status bits set by the command */
682	mmc_writel(host, REG_RINTR,
683		   mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
684
685	if (rval & SDXC_START) {
686		dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
687		return -EIO;
688	}
689
690	if (host->cfg->mask_data0) {
691		rval = mmc_readl(host, REG_CLKCR);
692		mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
693	}
694
695	return 0;
696}
697
698static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
699{
700	if (!host->cfg->can_calibrate)
701		return 0;
702
703	/*
704	 * FIXME:
705	 * This is not clear how the calibration is supposed to work
706	 * yet. The best rate have been obtained by simply setting the
707	 * delay to 0, as Allwinner does in its BSP.
708	 *
709	 * The only mode that doesn't have such a delay is HS400, that
710	 * is in itself a TODO.
711	 */
712	writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
713
714	return 0;
715}
716
717static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
718				   struct mmc_ios *ios, u32 rate)
719{
720	int index;
721
722	/* clk controller delays not used under new timings mode */
723	if (host->use_new_timings)
724		return 0;
725
726	/* some old controllers don't support delays */
727	if (!host->cfg->clk_delays)
728		return 0;
729
730	/* determine delays */
731	if (rate <= 400000) {
732		index = SDXC_CLK_400K;
733	} else if (rate <= 25000000) {
734		index = SDXC_CLK_25M;
735	} else if (rate <= 52000000) {
736		if (ios->timing != MMC_TIMING_UHS_DDR50 &&
737		    ios->timing != MMC_TIMING_MMC_DDR52) {
738			index = SDXC_CLK_50M;
739		} else if (ios->bus_width == MMC_BUS_WIDTH_8) {
740			index = SDXC_CLK_50M_DDR_8BIT;
741		} else {
742			index = SDXC_CLK_50M_DDR;
743		}
744	} else {
745		dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
746		return -EINVAL;
747	}
748
749	clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
750	clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
751
752	return 0;
753}
754
755static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
756				  struct mmc_ios *ios)
757{
758	struct mmc_host *mmc = host->mmc;
759	long rate;
760	u32 rval, clock = ios->clock, div = 1;
761	int ret;
762
763	ret = sunxi_mmc_oclk_onoff(host, 0);
764	if (ret)
765		return ret;
766
767	/* Our clock is gated now */
768	mmc->actual_clock = 0;
769
770	if (!ios->clock)
771		return 0;
772
773	/*
774	 * Under the old timing mode, 8 bit DDR requires the module
775	 * clock to be double the card clock. Under the new timing
776	 * mode, all DDR modes require a doubled module clock.
777	 *
778	 * We currently only support the standard MMC DDR52 mode.
779	 * This block should be updated once support for other DDR
780	 * modes is added.
781	 */
782	if (ios->timing == MMC_TIMING_MMC_DDR52 &&
783	    (host->use_new_timings ||
784	     ios->bus_width == MMC_BUS_WIDTH_8)) {
785		div = 2;
786		clock <<= 1;
787	}
788
789	if (host->use_new_timings && host->cfg->ccu_has_timings_switch) {
790		ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
791		if (ret) {
792			dev_err(mmc_dev(mmc),
793				"error setting new timing mode\n");
794			return ret;
795		}
796	}
797
798	rate = clk_round_rate(host->clk_mmc, clock);
799	if (rate < 0) {
800		dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
801			clock, rate);
802		return rate;
803	}
804	dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
805		clock, rate);
806
807	/* setting clock rate */
808	ret = clk_set_rate(host->clk_mmc, rate);
809	if (ret) {
810		dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
811			rate, ret);
812		return ret;
813	}
814
815	/* set internal divider */
816	rval = mmc_readl(host, REG_CLKCR);
817	rval &= ~0xff;
818	rval |= div - 1;
819	mmc_writel(host, REG_CLKCR, rval);
820
821	/* update card clock rate to account for internal divider */
822	rate /= div;
823
824	/*
825	 * Configure the controller to use the new timing mode if needed.
826	 * On controllers that only support the new timing mode, such as
827	 * the eMMC controller on the A64, this register does not exist,
828	 * and any writes to it are ignored.
829	 */
830	if (host->use_new_timings) {
831		/* Don't touch the delay bits */
832		rval = mmc_readl(host, REG_SD_NTSR);
833		rval |= SDXC_2X_TIMING_MODE;
834		mmc_writel(host, REG_SD_NTSR, rval);
835	}
836
837	/* sunxi_mmc_clk_set_phase expects the actual card clock rate */
838	ret = sunxi_mmc_clk_set_phase(host, ios, rate);
839	if (ret)
840		return ret;
841
842	ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
843	if (ret)
844		return ret;
845
846	/*
847	 * FIXME:
848	 *
849	 * In HS400 we'll also need to calibrate the data strobe
850	 * signal. This should only happen on the MMC2 controller (at
851	 * least on the A64).
852	 */
853
854	ret = sunxi_mmc_oclk_onoff(host, 1);
855	if (ret)
856		return ret;
857
858	/* And we just enabled our clock back */
859	mmc->actual_clock = rate;
860
861	return 0;
862}
863
864static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
865				   unsigned char width)
866{
867	switch (width) {
868	case MMC_BUS_WIDTH_1:
869		mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
870		break;
871	case MMC_BUS_WIDTH_4:
872		mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
873		break;
874	case MMC_BUS_WIDTH_8:
875		mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
876		break;
877	}
878}
879
880static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
881{
882	u32 rval;
883
884	/* set ddr mode */
885	rval = mmc_readl(host, REG_GCTRL);
886	if (ios->timing == MMC_TIMING_UHS_DDR50 ||
887	    ios->timing == MMC_TIMING_MMC_DDR52)
888		rval |= SDXC_DDR_MODE;
889	else
890		rval &= ~SDXC_DDR_MODE;
891	mmc_writel(host, REG_GCTRL, rval);
892
893	host->ferror = sunxi_mmc_clk_set_rate(host, ios);
894	/* Android code had a usleep_range(50000, 55000); here */
895}
896
897static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
898				 struct mmc_ios *ios)
899{
900	struct mmc_host *mmc = host->mmc;
901
902	switch (ios->power_mode) {
903	case MMC_POWER_UP:
904		dev_dbg(mmc_dev(mmc), "Powering card up\n");
905
906		if (!IS_ERR(mmc->supply.vmmc)) {
907			host->ferror = mmc_regulator_set_ocr(mmc,
908							     mmc->supply.vmmc,
909							     ios->vdd);
910			if (host->ferror)
911				return;
912		}
913
914		if (!IS_ERR(mmc->supply.vqmmc)) {
915			host->ferror = regulator_enable(mmc->supply.vqmmc);
916			if (host->ferror) {
917				dev_err(mmc_dev(mmc),
918					"failed to enable vqmmc\n");
919				return;
920			}
921			host->vqmmc_enabled = true;
922		}
923		break;
924
925	case MMC_POWER_OFF:
926		dev_dbg(mmc_dev(mmc), "Powering card off\n");
927
928		if (!IS_ERR(mmc->supply.vmmc))
929			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
930
931		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
932			regulator_disable(mmc->supply.vqmmc);
933
934		host->vqmmc_enabled = false;
935		break;
936
937	default:
938		dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
939		break;
940	}
941}
942
943static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
944{
945	struct sunxi_mmc_host *host = mmc_priv(mmc);
946
947	sunxi_mmc_card_power(host, ios);
948	sunxi_mmc_set_bus_width(host, ios->bus_width);
949	sunxi_mmc_set_clk(host, ios);
950}
951
952static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
953{
954	int ret;
955
956	/* vqmmc regulator is available */
957	if (!IS_ERR(mmc->supply.vqmmc)) {
958		ret = mmc_regulator_set_vqmmc(mmc, ios);
959		return ret < 0 ? ret : 0;
960	}
961
962	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
963	if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
964		return 0;
965
966	return -EINVAL;
967}
968
969static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
970{
971	struct sunxi_mmc_host *host = mmc_priv(mmc);
972	unsigned long flags;
973	u32 imask;
974
975	if (enable)
976		pm_runtime_get_noresume(host->dev);
977
978	spin_lock_irqsave(&host->lock, flags);
979
980	imask = mmc_readl(host, REG_IMASK);
981	if (enable) {
982		host->sdio_imask = SDXC_SDIO_INTERRUPT;
983		imask |= SDXC_SDIO_INTERRUPT;
984	} else {
985		host->sdio_imask = 0;
986		imask &= ~SDXC_SDIO_INTERRUPT;
987	}
988	mmc_writel(host, REG_IMASK, imask);
989	spin_unlock_irqrestore(&host->lock, flags);
990
991	if (!enable)
992		pm_runtime_put_noidle(host->mmc->parent);
993}
994
995static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
996{
997	struct sunxi_mmc_host *host = mmc_priv(mmc);
998	mmc_writel(host, REG_HWRST, 0);
999	udelay(10);
1000	mmc_writel(host, REG_HWRST, 1);
1001	udelay(300);
1002}
1003
1004static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
1005{
1006	struct sunxi_mmc_host *host = mmc_priv(mmc);
1007	struct mmc_command *cmd = mrq->cmd;
1008	struct mmc_data *data = mrq->data;
1009	unsigned long iflags;
1010	u32 imask = SDXC_INTERRUPT_ERROR_BIT;
1011	u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
1012	bool wait_dma = host->wait_dma;
1013	int ret;
1014
1015	/* Check for set_ios errors (should never happen) */
1016	if (host->ferror) {
1017		mrq->cmd->error = host->ferror;
1018		mmc_request_done(mmc, mrq);
1019		return;
1020	}
1021
1022	if (data) {
1023		ret = sunxi_mmc_map_dma(host, data);
1024		if (ret < 0) {
1025			dev_err(mmc_dev(mmc), "map DMA failed\n");
1026			cmd->error = ret;
1027			data->error = ret;
1028			mmc_request_done(mmc, mrq);
1029			return;
1030		}
1031	}
1032
1033	if (cmd->opcode == MMC_GO_IDLE_STATE) {
1034		cmd_val |= SDXC_SEND_INIT_SEQUENCE;
1035		imask |= SDXC_COMMAND_DONE;
1036	}
1037
1038	if (cmd->flags & MMC_RSP_PRESENT) {
1039		cmd_val |= SDXC_RESP_EXPIRE;
1040		if (cmd->flags & MMC_RSP_136)
1041			cmd_val |= SDXC_LONG_RESPONSE;
1042		if (cmd->flags & MMC_RSP_CRC)
1043			cmd_val |= SDXC_CHECK_RESPONSE_CRC;
1044
1045		if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
1046			cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
1047
1048			if (cmd->data->stop) {
1049				imask |= SDXC_AUTO_COMMAND_DONE;
1050				cmd_val |= SDXC_SEND_AUTO_STOP;
1051			} else {
1052				imask |= SDXC_DATA_OVER;
1053			}
1054
1055			if (cmd->data->flags & MMC_DATA_WRITE)
1056				cmd_val |= SDXC_WRITE;
1057			else
1058				wait_dma = true;
1059		} else {
1060			imask |= SDXC_COMMAND_DONE;
1061		}
1062	} else {
1063		imask |= SDXC_COMMAND_DONE;
1064	}
1065
1066	dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
1067		cmd_val & 0x3f, cmd_val, cmd->arg, imask,
1068		mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
1069
1070	spin_lock_irqsave(&host->lock, iflags);
1071
1072	if (host->mrq || host->manual_stop_mrq) {
1073		spin_unlock_irqrestore(&host->lock, iflags);
1074
1075		if (data)
1076			dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
1077				     mmc_get_dma_dir(data));
1078
1079		dev_err(mmc_dev(mmc), "request already pending\n");
1080		mrq->cmd->error = -EBUSY;
1081		mmc_request_done(mmc, mrq);
1082		return;
1083	}
1084
1085	if (data) {
1086		mmc_writel(host, REG_BLKSZ, data->blksz);
1087		mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
1088		sunxi_mmc_start_dma(host, data);
1089	}
1090
1091	host->mrq = mrq;
1092	host->wait_dma = wait_dma;
1093	mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
1094	mmc_writel(host, REG_CARG, cmd->arg);
1095	mmc_writel(host, REG_CMDR, cmd_val);
1096
1097	spin_unlock_irqrestore(&host->lock, iflags);
1098}
1099
1100static int sunxi_mmc_card_busy(struct mmc_host *mmc)
1101{
1102	struct sunxi_mmc_host *host = mmc_priv(mmc);
1103
1104	return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
1105}
1106
1107static const struct mmc_host_ops sunxi_mmc_ops = {
1108	.request	 = sunxi_mmc_request,
1109	.set_ios	 = sunxi_mmc_set_ios,
1110	.get_ro		 = mmc_gpio_get_ro,
1111	.get_cd		 = mmc_gpio_get_cd,
1112	.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
1113	.start_signal_voltage_switch = sunxi_mmc_volt_switch,
1114	.hw_reset	 = sunxi_mmc_hw_reset,
1115	.card_busy	 = sunxi_mmc_card_busy,
1116};
1117
1118static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
1119	[SDXC_CLK_400K]		= { .output = 180, .sample = 180 },
1120	[SDXC_CLK_25M]		= { .output = 180, .sample =  75 },
1121	[SDXC_CLK_50M]		= { .output =  90, .sample = 120 },
1122	[SDXC_CLK_50M_DDR]	= { .output =  60, .sample = 120 },
1123	/* Value from A83T "new timing mode". Works but might not be right. */
1124	[SDXC_CLK_50M_DDR_8BIT]	= { .output =  90, .sample = 180 },
1125};
1126
1127static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
1128	[SDXC_CLK_400K]		= { .output = 180, .sample = 180 },
1129	[SDXC_CLK_25M]		= { .output = 180, .sample =  75 },
1130	[SDXC_CLK_50M]		= { .output = 150, .sample = 120 },
1131	[SDXC_CLK_50M_DDR]	= { .output =  54, .sample =  36 },
1132	[SDXC_CLK_50M_DDR_8BIT]	= { .output =  72, .sample =  72 },
1133};
1134
1135static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
1136	.idma_des_size_bits = 13,
1137	.clk_delays = NULL,
1138	.can_calibrate = false,
1139};
1140
1141static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
1142	.idma_des_size_bits = 16,
1143	.clk_delays = NULL,
1144	.can_calibrate = false,
1145};
1146
1147static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
1148	.idma_des_size_bits = 16,
1149	.clk_delays = sunxi_mmc_clk_delays,
1150	.can_calibrate = false,
1151};
1152
1153static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
1154	.idma_des_size_bits = 16,
1155	.clk_delays = sunxi_mmc_clk_delays,
1156	.can_calibrate = false,
1157	.ccu_has_timings_switch = true,
1158};
1159
1160static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
1161	.idma_des_size_bits = 16,
1162	.clk_delays = sun9i_mmc_clk_delays,
1163	.can_calibrate = false,
1164};
1165
1166static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
1167	.idma_des_size_bits = 16,
1168	.clk_delays = NULL,
1169	.can_calibrate = true,
1170	.mask_data0 = true,
1171	.needs_new_timings = true,
1172};
1173
1174static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
1175	.idma_des_size_bits = 13,
1176	.clk_delays = NULL,
1177	.can_calibrate = true,
1178	.needs_new_timings = true,
1179};
1180
1181static const struct of_device_id sunxi_mmc_of_match[] = {
1182	{ .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
1183	{ .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
1184	{ .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
1185	{ .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
1186	{ .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
1187	{ .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
1188	{ .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
1189	{ /* sentinel */ }
1190};
1191MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
1192
1193static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
1194{
1195	int ret;
1196
1197	if (!IS_ERR(host->reset)) {
1198		ret = reset_control_reset(host->reset);
1199		if (ret) {
1200			dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
1201				ret);
1202			return ret;
1203		}
1204	}
1205
1206	ret = clk_prepare_enable(host->clk_ahb);
1207	if (ret) {
1208		dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
1209		goto error_assert_reset;
1210	}
1211
1212	ret = clk_prepare_enable(host->clk_mmc);
1213	if (ret) {
1214		dev_err(host->dev, "Enable mmc clk err %d\n", ret);
1215		goto error_disable_clk_ahb;
1216	}
1217
1218	ret = clk_prepare_enable(host->clk_output);
1219	if (ret) {
1220		dev_err(host->dev, "Enable output clk err %d\n", ret);
1221		goto error_disable_clk_mmc;
1222	}
1223
1224	ret = clk_prepare_enable(host->clk_sample);
1225	if (ret) {
1226		dev_err(host->dev, "Enable sample clk err %d\n", ret);
1227		goto error_disable_clk_output;
1228	}
1229
1230	/*
1231	 * Sometimes the controller asserts the irq on boot for some reason,
1232	 * make sure the controller is in a sane state before enabling irqs.
1233	 */
1234	ret = sunxi_mmc_reset_host(host);
1235	if (ret)
1236		goto error_disable_clk_sample;
1237
1238	return 0;
1239
1240error_disable_clk_sample:
1241	clk_disable_unprepare(host->clk_sample);
1242error_disable_clk_output:
1243	clk_disable_unprepare(host->clk_output);
1244error_disable_clk_mmc:
1245	clk_disable_unprepare(host->clk_mmc);
1246error_disable_clk_ahb:
1247	clk_disable_unprepare(host->clk_ahb);
1248error_assert_reset:
1249	if (!IS_ERR(host->reset))
1250		reset_control_assert(host->reset);
1251	return ret;
1252}
1253
1254static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
1255{
1256	sunxi_mmc_reset_host(host);
1257
1258	clk_disable_unprepare(host->clk_sample);
1259	clk_disable_unprepare(host->clk_output);
1260	clk_disable_unprepare(host->clk_mmc);
1261	clk_disable_unprepare(host->clk_ahb);
1262
1263	if (!IS_ERR(host->reset))
1264		reset_control_assert(host->reset);
1265}
1266
1267static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
1268				      struct platform_device *pdev)
1269{
1270	int ret;
1271
1272	host->cfg = of_device_get_match_data(&pdev->dev);
1273	if (!host->cfg)
1274		return -EINVAL;
1275
1276	ret = mmc_regulator_get_supply(host->mmc);
1277	if (ret)
1278		return ret;
1279
1280	host->reg_base = devm_platform_ioremap_resource(pdev, 0);
1281	if (IS_ERR(host->reg_base))
1282		return PTR_ERR(host->reg_base);
1283
1284	host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1285	if (IS_ERR(host->clk_ahb)) {
1286		dev_err(&pdev->dev, "Could not get ahb clock\n");
1287		return PTR_ERR(host->clk_ahb);
1288	}
1289
1290	host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
1291	if (IS_ERR(host->clk_mmc)) {
1292		dev_err(&pdev->dev, "Could not get mmc clock\n");
1293		return PTR_ERR(host->clk_mmc);
1294	}
1295
1296	if (host->cfg->clk_delays) {
1297		host->clk_output = devm_clk_get(&pdev->dev, "output");
1298		if (IS_ERR(host->clk_output)) {
1299			dev_err(&pdev->dev, "Could not get output clock\n");
1300			return PTR_ERR(host->clk_output);
1301		}
1302
1303		host->clk_sample = devm_clk_get(&pdev->dev, "sample");
1304		if (IS_ERR(host->clk_sample)) {
1305			dev_err(&pdev->dev, "Could not get sample clock\n");
1306			return PTR_ERR(host->clk_sample);
1307		}
1308	}
1309
1310	host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
1311								"ahb");
1312	if (PTR_ERR(host->reset) == -EPROBE_DEFER)
1313		return PTR_ERR(host->reset);
1314
1315	ret = sunxi_mmc_enable(host);
1316	if (ret)
1317		return ret;
1318
1319	host->irq = platform_get_irq(pdev, 0);
1320	if (host->irq < 0) {
1321		ret = host->irq;
1322		goto error_disable_mmc;
1323	}
1324
1325	return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
1326			sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
1327
1328error_disable_mmc:
1329	sunxi_mmc_disable(host);
1330	return ret;
1331}
1332
1333static int sunxi_mmc_probe(struct platform_device *pdev)
1334{
1335	struct sunxi_mmc_host *host;
1336	struct mmc_host *mmc;
1337	int ret;
1338
1339	mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
1340	if (!mmc) {
1341		dev_err(&pdev->dev, "mmc alloc host failed\n");
1342		return -ENOMEM;
1343	}
1344	platform_set_drvdata(pdev, mmc);
1345
1346	host = mmc_priv(mmc);
1347	host->dev = &pdev->dev;
1348	host->mmc = mmc;
1349	spin_lock_init(&host->lock);
1350
1351	ret = sunxi_mmc_resource_request(host, pdev);
1352	if (ret)
1353		goto error_free_host;
1354
1355	host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
1356					  &host->sg_dma, GFP_KERNEL);
1357	if (!host->sg_cpu) {
1358		dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
1359		ret = -ENOMEM;
1360		goto error_free_host;
1361	}
1362
1363	if (host->cfg->ccu_has_timings_switch) {
1364		/*
1365		 * Supports both old and new timing modes.
1366		 * Try setting the clk to new timing mode.
1367		 */
1368		sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
1369
1370		/* And check the result */
1371		ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
1372		if (ret < 0) {
1373			/*
1374			 * For whatever reason we were not able to get
1375			 * the current active mode. Default to old mode.
1376			 */
1377			dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
1378			host->use_new_timings = false;
1379		} else {
1380			host->use_new_timings = !!ret;
1381		}
1382	} else if (host->cfg->needs_new_timings) {
1383		/* Supports new timing mode only */
1384		host->use_new_timings = true;
1385	}
1386
1387	mmc->ops		= &sunxi_mmc_ops;
1388	mmc->max_blk_count	= 8192;
1389	mmc->max_blk_size	= 4096;
1390	mmc->max_segs		= PAGE_SIZE / sizeof(struct sunxi_idma_des);
1391	mmc->max_seg_size	= (1 << host->cfg->idma_des_size_bits);
1392	mmc->max_req_size	= mmc->max_seg_size * mmc->max_segs;
1393	/* 400kHz ~ 52MHz */
1394	mmc->f_min		=   400000;
1395	mmc->f_max		= 52000000;
1396	mmc->caps	       |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1397				  MMC_CAP_SDIO_IRQ;
1398
1399	/*
1400	 * Some H5 devices do not have signal traces precise enough to
1401	 * use HS DDR mode for their eMMC chips.
1402	 *
1403	 * We still enable HS DDR modes for all the other controller
1404	 * variants that support them.
1405	 */
1406	if ((host->cfg->clk_delays || host->use_new_timings) &&
1407	    !of_device_is_compatible(pdev->dev.of_node,
1408				     "allwinner,sun50i-h5-emmc"))
1409		mmc->caps      |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
1410
1411	ret = mmc_of_parse(mmc);
1412	if (ret)
1413		goto error_free_dma;
1414
1415	/*
1416	 * If we don't support delay chains in the SoC, we can't use any
1417	 * of the higher speed modes. Mask them out in case the device
1418	 * tree specifies the properties for them, which gets added to
1419	 * the caps by mmc_of_parse() above.
1420	 */
1421	if (!(host->cfg->clk_delays || host->use_new_timings)) {
1422		mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR |
1423			       MMC_CAP_1_2V_DDR | MMC_CAP_UHS);
1424		mmc->caps2 &= ~MMC_CAP2_HS200;
1425	}
1426
1427	/* TODO: This driver doesn't support HS400 mode yet */
1428	mmc->caps2 &= ~MMC_CAP2_HS400;
1429
1430	ret = sunxi_mmc_init_host(host);
1431	if (ret)
1432		goto error_free_dma;
1433
1434	pm_runtime_set_active(&pdev->dev);
1435	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1436	pm_runtime_use_autosuspend(&pdev->dev);
1437	pm_runtime_enable(&pdev->dev);
1438
1439	ret = mmc_add_host(mmc);
1440	if (ret)
1441		goto error_free_dma;
1442
1443	dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
1444		 mmc->max_req_size >> 10,
1445		 host->use_new_timings ? ", uses new timings mode" : "");
1446
1447	return 0;
1448
1449error_free_dma:
1450	dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1451error_free_host:
1452	mmc_free_host(mmc);
1453	return ret;
1454}
1455
1456static int sunxi_mmc_remove(struct platform_device *pdev)
1457{
1458	struct mmc_host	*mmc = platform_get_drvdata(pdev);
1459	struct sunxi_mmc_host *host = mmc_priv(mmc);
1460
1461	mmc_remove_host(mmc);
1462	pm_runtime_disable(&pdev->dev);
1463	if (!pm_runtime_status_suspended(&pdev->dev)) {
1464		disable_irq(host->irq);
1465		sunxi_mmc_disable(host);
1466	}
1467	dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1468	mmc_free_host(mmc);
1469
1470	return 0;
1471}
1472
1473#ifdef CONFIG_PM
1474static int sunxi_mmc_runtime_resume(struct device *dev)
1475{
1476	struct mmc_host	*mmc = dev_get_drvdata(dev);
1477	struct sunxi_mmc_host *host = mmc_priv(mmc);
1478	int ret;
1479
1480	ret = sunxi_mmc_enable(host);
1481	if (ret)
1482		return ret;
1483
1484	sunxi_mmc_init_host(host);
1485	sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
1486	sunxi_mmc_set_clk(host, &mmc->ios);
1487	enable_irq(host->irq);
1488
1489	return 0;
1490}
1491
1492static int sunxi_mmc_runtime_suspend(struct device *dev)
1493{
1494	struct mmc_host	*mmc = dev_get_drvdata(dev);
1495	struct sunxi_mmc_host *host = mmc_priv(mmc);
1496
1497	/*
1498	 * When clocks are off, it's possible receiving
1499	 * fake interrupts, which will stall the system.
1500	 * Disabling the irq  will prevent this.
1501	 */
1502	disable_irq(host->irq);
1503	sunxi_mmc_reset_host(host);
1504	sunxi_mmc_disable(host);
1505
1506	return 0;
1507}
1508#endif
1509
1510static const struct dev_pm_ops sunxi_mmc_pm_ops = {
1511	SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
1512			   sunxi_mmc_runtime_resume,
1513			   NULL)
1514};
1515
1516static struct platform_driver sunxi_mmc_driver = {
1517	.driver = {
1518		.name	= "sunxi-mmc",
1519		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1520		.of_match_table = of_match_ptr(sunxi_mmc_of_match),
1521		.pm = &sunxi_mmc_pm_ops,
1522	},
1523	.probe		= sunxi_mmc_probe,
1524	.remove		= sunxi_mmc_remove,
1525};
1526module_platform_driver(sunxi_mmc_driver);
1527
1528MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
1529MODULE_LICENSE("GPL v2");
1530MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
1531MODULE_ALIAS("platform:sunxi-mmc");
1532