1// SPDX-License-Identifier: GPL-2.0
2/*
3 * MMCIF eMMC driver.
4 *
5 * Copyright (C) 2010 Renesas Solutions Corp.
6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 */
8
9/*
10 * The MMCIF driver is now processing MMC requests asynchronously, according
11 * to the Linux MMC API requirement.
12 *
13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14 * data, and optional stop. To achieve asynchronous processing each of these
15 * stages is split into two halves: a top and a bottom half. The top half
16 * initialises the hardware, installs a timeout handler to handle completion
17 * timeouts, and returns. In case of the command stage this immediately returns
18 * control to the caller, leaving all further processing to run asynchronously.
19 * All further request processing is performed by the bottom halves.
20 *
21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
23 * request- and stage-specific handler methods.
24 *
25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
26 * invocation, or a timeout work run. In case of an error or a successful
27 * processing completion, the MMC core is informed and the request processing is
28 * finished. In case processing has to continue, i.e., if data has to be read
29 * from or written to the card, or if a stop command has to be sent, the next
30 * top half is called, which performs the necessary hardware handling and
31 * reschedules the timeout work. This returns the driver state machine into the
32 * bottom half waiting state.
33 */
34
35#include <linux/bitops.h>
36#include <linux/clk.h>
37#include <linux/completion.h>
38#include <linux/delay.h>
39#include <linux/dma-mapping.h>
40#include <linux/dmaengine.h>
41#include <linux/mmc/card.h>
42#include <linux/mmc/core.h>
43#include <linux/mmc/host.h>
44#include <linux/mmc/mmc.h>
45#include <linux/mmc/sdio.h>
46#include <linux/mmc/sh_mmcif.h>
47#include <linux/mmc/slot-gpio.h>
48#include <linux/mod_devicetable.h>
49#include <linux/mutex.h>
50#include <linux/of_device.h>
51#include <linux/pagemap.h>
52#include <linux/platform_device.h>
53#include <linux/pm_qos.h>
54#include <linux/pm_runtime.h>
55#include <linux/sh_dma.h>
56#include <linux/spinlock.h>
57#include <linux/module.h>
58
59#define DRIVER_NAME	"sh_mmcif"
60
61/* CE_CMD_SET */
62#define CMD_MASK		0x3f000000
63#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
64#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
65#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
66#define CMD_SET_RBSY		(1 << 21) /* R1b */
67#define CMD_SET_CCSEN		(1 << 20)
68#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
69#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
70#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
71#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
72#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
73#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
74#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
75#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
76#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
77#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
78#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
79#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
80#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
81#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
82#define CMD_SET_CCSH		(1 << 5)
83#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
84#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
85#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
86#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
87
88/* CE_CMD_CTRL */
89#define CMD_CTRL_BREAK		(1 << 0)
90
91/* CE_BLOCK_SET */
92#define BLOCK_SIZE_MASK		0x0000ffff
93
94/* CE_INT */
95#define INT_CCSDE		(1 << 29)
96#define INT_CMD12DRE		(1 << 26)
97#define INT_CMD12RBE		(1 << 25)
98#define INT_CMD12CRE		(1 << 24)
99#define INT_DTRANE		(1 << 23)
100#define INT_BUFRE		(1 << 22)
101#define INT_BUFWEN		(1 << 21)
102#define INT_BUFREN		(1 << 20)
103#define INT_CCSRCV		(1 << 19)
104#define INT_RBSYE		(1 << 17)
105#define INT_CRSPE		(1 << 16)
106#define INT_CMDVIO		(1 << 15)
107#define INT_BUFVIO		(1 << 14)
108#define INT_WDATERR		(1 << 11)
109#define INT_RDATERR		(1 << 10)
110#define INT_RIDXERR		(1 << 9)
111#define INT_RSPERR		(1 << 8)
112#define INT_CCSTO		(1 << 5)
113#define INT_CRCSTO		(1 << 4)
114#define INT_WDATTO		(1 << 3)
115#define INT_RDATTO		(1 << 2)
116#define INT_RBSYTO		(1 << 1)
117#define INT_RSPTO		(1 << 0)
118#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
119				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
121				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122
123#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
124				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126
127#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
128
129/* CE_INT_MASK */
130#define MASK_ALL		0x00000000
131#define MASK_MCCSDE		(1 << 29)
132#define MASK_MCMD12DRE		(1 << 26)
133#define MASK_MCMD12RBE		(1 << 25)
134#define MASK_MCMD12CRE		(1 << 24)
135#define MASK_MDTRANE		(1 << 23)
136#define MASK_MBUFRE		(1 << 22)
137#define MASK_MBUFWEN		(1 << 21)
138#define MASK_MBUFREN		(1 << 20)
139#define MASK_MCCSRCV		(1 << 19)
140#define MASK_MRBSYE		(1 << 17)
141#define MASK_MCRSPE		(1 << 16)
142#define MASK_MCMDVIO		(1 << 15)
143#define MASK_MBUFVIO		(1 << 14)
144#define MASK_MWDATERR		(1 << 11)
145#define MASK_MRDATERR		(1 << 10)
146#define MASK_MRIDXERR		(1 << 9)
147#define MASK_MRSPERR		(1 << 8)
148#define MASK_MCCSTO		(1 << 5)
149#define MASK_MCRCSTO		(1 << 4)
150#define MASK_MWDATTO		(1 << 3)
151#define MASK_MRDATTO		(1 << 2)
152#define MASK_MRBSYTO		(1 << 1)
153#define MASK_MRSPTO		(1 << 0)
154
155#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157				 MASK_MCRCSTO | MASK_MWDATTO | \
158				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159
160#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
161				 MASK_MBUFREN | MASK_MBUFWEN |			\
162				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
163				 MASK_MCMD12RBE | MASK_MCMD12CRE)
164
165/* CE_HOST_STS1 */
166#define STS1_CMDSEQ		(1 << 31)
167
168/* CE_HOST_STS2 */
169#define STS2_CRCSTE		(1 << 31)
170#define STS2_CRC16E		(1 << 30)
171#define STS2_AC12CRCE		(1 << 29)
172#define STS2_RSPCRC7E		(1 << 28)
173#define STS2_CRCSTEBE		(1 << 27)
174#define STS2_RDATEBE		(1 << 26)
175#define STS2_AC12REBE		(1 << 25)
176#define STS2_RSPEBE		(1 << 24)
177#define STS2_AC12IDXE		(1 << 23)
178#define STS2_RSPIDXE		(1 << 22)
179#define STS2_CCSTO		(1 << 15)
180#define STS2_RDATTO		(1 << 14)
181#define STS2_DATBSYTO		(1 << 13)
182#define STS2_CRCSTTO		(1 << 12)
183#define STS2_AC12BSYTO		(1 << 11)
184#define STS2_RSPBSYTO		(1 << 10)
185#define STS2_AC12RSPTO		(1 << 9)
186#define STS2_RSPTO		(1 << 8)
187#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
188				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
190				 STS2_DATBSYTO | STS2_CRCSTTO |		\
191				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
192				 STS2_AC12RSPTO | STS2_RSPTO)
193
194#define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
195#define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
196#define CLKDEV_INIT		400000   /* 400 kHz */
197
198enum sh_mmcif_state {
199	STATE_IDLE,
200	STATE_REQUEST,
201	STATE_IOS,
202	STATE_TIMEOUT,
203};
204
205enum sh_mmcif_wait_for {
206	MMCIF_WAIT_FOR_REQUEST,
207	MMCIF_WAIT_FOR_CMD,
208	MMCIF_WAIT_FOR_MREAD,
209	MMCIF_WAIT_FOR_MWRITE,
210	MMCIF_WAIT_FOR_READ,
211	MMCIF_WAIT_FOR_WRITE,
212	MMCIF_WAIT_FOR_READ_END,
213	MMCIF_WAIT_FOR_WRITE_END,
214	MMCIF_WAIT_FOR_STOP,
215};
216
217/*
218 * difference for each SoC
219 */
220struct sh_mmcif_host {
221	struct mmc_host *mmc;
222	struct mmc_request *mrq;
223	struct platform_device *pd;
224	struct clk *clk;
225	int bus_width;
226	unsigned char timing;
227	bool sd_error;
228	bool dying;
229	long timeout;
230	void __iomem *addr;
231	u32 *pio_ptr;
232	spinlock_t lock;		/* protect sh_mmcif_host::state */
233	enum sh_mmcif_state state;
234	enum sh_mmcif_wait_for wait_for;
235	struct delayed_work timeout_work;
236	size_t blocksize;
237	int sg_idx;
238	int sg_blkidx;
239	bool power;
240	bool ccs_enable;		/* Command Completion Signal support */
241	bool clk_ctrl2_enable;
242	struct mutex thread_lock;
243	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
244
245	/* DMA support */
246	struct dma_chan		*chan_rx;
247	struct dma_chan		*chan_tx;
248	struct completion	dma_complete;
249	bool			dma_active;
250};
251
252static const struct of_device_id sh_mmcif_of_match[] = {
253	{ .compatible = "renesas,sh-mmcif" },
254	{ }
255};
256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
257
258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
259
260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261					unsigned int reg, u32 val)
262{
263	writel(val | readl(host->addr + reg), host->addr + reg);
264}
265
266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267					unsigned int reg, u32 val)
268{
269	writel(~val & readl(host->addr + reg), host->addr + reg);
270}
271
272static void sh_mmcif_dma_complete(void *arg)
273{
274	struct sh_mmcif_host *host = arg;
275	struct mmc_request *mrq = host->mrq;
276	struct device *dev = sh_mmcif_host_to_dev(host);
277
278	dev_dbg(dev, "Command completed\n");
279
280	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
281		 dev_name(dev)))
282		return;
283
284	complete(&host->dma_complete);
285}
286
287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288{
289	struct mmc_data *data = host->mrq->data;
290	struct scatterlist *sg = data->sg;
291	struct dma_async_tx_descriptor *desc = NULL;
292	struct dma_chan *chan = host->chan_rx;
293	struct device *dev = sh_mmcif_host_to_dev(host);
294	dma_cookie_t cookie = -EINVAL;
295	int ret;
296
297	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298			 DMA_FROM_DEVICE);
299	if (ret > 0) {
300		host->dma_active = true;
301		desc = dmaengine_prep_slave_sg(chan, sg, ret,
302			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303	}
304
305	if (desc) {
306		desc->callback = sh_mmcif_dma_complete;
307		desc->callback_param = host;
308		cookie = dmaengine_submit(desc);
309		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
310		dma_async_issue_pending(chan);
311	}
312	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
313		__func__, data->sg_len, ret, cookie);
314
315	if (!desc) {
316		/* DMA failed, fall back to PIO */
317		if (ret >= 0)
318			ret = -EIO;
319		host->chan_rx = NULL;
320		host->dma_active = false;
321		dma_release_channel(chan);
322		/* Free the Tx channel too */
323		chan = host->chan_tx;
324		if (chan) {
325			host->chan_tx = NULL;
326			dma_release_channel(chan);
327		}
328		dev_warn(dev,
329			 "DMA failed: %d, falling back to PIO\n", ret);
330		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331	}
332
333	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
334		desc, cookie, data->sg_len);
335}
336
337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
338{
339	struct mmc_data *data = host->mrq->data;
340	struct scatterlist *sg = data->sg;
341	struct dma_async_tx_descriptor *desc = NULL;
342	struct dma_chan *chan = host->chan_tx;
343	struct device *dev = sh_mmcif_host_to_dev(host);
344	dma_cookie_t cookie = -EINVAL;
345	int ret;
346
347	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
348			 DMA_TO_DEVICE);
349	if (ret > 0) {
350		host->dma_active = true;
351		desc = dmaengine_prep_slave_sg(chan, sg, ret,
352			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
353	}
354
355	if (desc) {
356		desc->callback = sh_mmcif_dma_complete;
357		desc->callback_param = host;
358		cookie = dmaengine_submit(desc);
359		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
360		dma_async_issue_pending(chan);
361	}
362	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
363		__func__, data->sg_len, ret, cookie);
364
365	if (!desc) {
366		/* DMA failed, fall back to PIO */
367		if (ret >= 0)
368			ret = -EIO;
369		host->chan_tx = NULL;
370		host->dma_active = false;
371		dma_release_channel(chan);
372		/* Free the Rx channel too */
373		chan = host->chan_rx;
374		if (chan) {
375			host->chan_rx = NULL;
376			dma_release_channel(chan);
377		}
378		dev_warn(dev,
379			 "DMA failed: %d, falling back to PIO\n", ret);
380		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
381	}
382
383	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
384		desc, cookie);
385}
386
387static struct dma_chan *
388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
389{
390	dma_cap_mask_t mask;
391
392	dma_cap_zero(mask);
393	dma_cap_set(DMA_SLAVE, mask);
394	if (slave_id <= 0)
395		return NULL;
396
397	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
398}
399
400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
401				     struct dma_chan *chan,
402				     enum dma_transfer_direction direction)
403{
404	struct resource *res;
405	struct dma_slave_config cfg = { 0, };
406
407	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
408	cfg.direction = direction;
409
410	if (direction == DMA_DEV_TO_MEM) {
411		cfg.src_addr = res->start + MMCIF_CE_DATA;
412		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413	} else {
414		cfg.dst_addr = res->start + MMCIF_CE_DATA;
415		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416	}
417
418	return dmaengine_slave_config(chan, &cfg);
419}
420
421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422{
423	struct device *dev = sh_mmcif_host_to_dev(host);
424	host->dma_active = false;
425
426	/* We can only either use DMA for both Tx and Rx or not use it at all */
427	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428		struct sh_mmcif_plat_data *pdata = dev->platform_data;
429
430		host->chan_tx = sh_mmcif_request_dma_pdata(host,
431							pdata->slave_id_tx);
432		host->chan_rx = sh_mmcif_request_dma_pdata(host,
433							pdata->slave_id_rx);
434	} else {
435		host->chan_tx = dma_request_chan(dev, "tx");
436		if (IS_ERR(host->chan_tx))
437			host->chan_tx = NULL;
438		host->chan_rx = dma_request_chan(dev, "rx");
439		if (IS_ERR(host->chan_rx))
440			host->chan_rx = NULL;
441	}
442	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
443		host->chan_rx);
444
445	if (!host->chan_tx || !host->chan_rx ||
446	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
447	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
448		goto error;
449
450	return;
451
452error:
453	if (host->chan_tx)
454		dma_release_channel(host->chan_tx);
455	if (host->chan_rx)
456		dma_release_channel(host->chan_rx);
457	host->chan_tx = host->chan_rx = NULL;
458}
459
460static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
461{
462	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
463	/* Descriptors are freed automatically */
464	if (host->chan_tx) {
465		struct dma_chan *chan = host->chan_tx;
466		host->chan_tx = NULL;
467		dma_release_channel(chan);
468	}
469	if (host->chan_rx) {
470		struct dma_chan *chan = host->chan_rx;
471		host->chan_rx = NULL;
472		dma_release_channel(chan);
473	}
474
475	host->dma_active = false;
476}
477
478static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
479{
480	struct device *dev = sh_mmcif_host_to_dev(host);
481	struct sh_mmcif_plat_data *p = dev->platform_data;
482	bool sup_pclk = p ? p->sup_pclk : false;
483	unsigned int current_clk = clk_get_rate(host->clk);
484	unsigned int clkdiv;
485
486	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
487	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
488
489	if (!clk)
490		return;
491
492	if (host->clkdiv_map) {
493		unsigned int freq, best_freq, myclk, div, diff_min, diff;
494		int i;
495
496		clkdiv = 0;
497		diff_min = ~0;
498		best_freq = 0;
499		for (i = 31; i >= 0; i--) {
500			if (!((1 << i) & host->clkdiv_map))
501				continue;
502
503			/*
504			 * clk = parent_freq / div
505			 * -> parent_freq = clk x div
506			 */
507
508			div = 1 << (i + 1);
509			freq = clk_round_rate(host->clk, clk * div);
510			myclk = freq / div;
511			diff = (myclk > clk) ? myclk - clk : clk - myclk;
512
513			if (diff <= diff_min) {
514				best_freq = freq;
515				clkdiv = i;
516				diff_min = diff;
517			}
518		}
519
520		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
521			(best_freq / (1 << (clkdiv + 1))), clk,
522			best_freq, clkdiv);
523
524		clk_set_rate(host->clk, best_freq);
525		clkdiv = clkdiv << 16;
526	} else if (sup_pclk && clk == current_clk) {
527		clkdiv = CLK_SUP_PCLK;
528	} else {
529		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
530	}
531
532	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
533	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
534}
535
536static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
537{
538	u32 tmp;
539
540	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
541
542	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
543	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
544	if (host->ccs_enable)
545		tmp |= SCCSTO_29;
546	if (host->clk_ctrl2_enable)
547		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
548	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
549		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
550	/* byte swap on */
551	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
552}
553
554static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
555{
556	struct device *dev = sh_mmcif_host_to_dev(host);
557	u32 state1, state2;
558	int ret, timeout;
559
560	host->sd_error = false;
561
562	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
563	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
564	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
565	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
566
567	if (state1 & STS1_CMDSEQ) {
568		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
569		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
570		for (timeout = 10000; timeout; timeout--) {
571			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
572			      & STS1_CMDSEQ))
573				break;
574			mdelay(1);
575		}
576		if (!timeout) {
577			dev_err(dev,
578				"Forced end of command sequence timeout err\n");
579			return -EIO;
580		}
581		sh_mmcif_sync_reset(host);
582		dev_dbg(dev, "Forced end of command sequence\n");
583		return -EIO;
584	}
585
586	if (state2 & STS2_CRC_ERR) {
587		dev_err(dev, " CRC error: state %u, wait %u\n",
588			host->state, host->wait_for);
589		ret = -EIO;
590	} else if (state2 & STS2_TIMEOUT_ERR) {
591		dev_err(dev, " Timeout: state %u, wait %u\n",
592			host->state, host->wait_for);
593		ret = -ETIMEDOUT;
594	} else {
595		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
596			host->state, host->wait_for);
597		ret = -EIO;
598	}
599	return ret;
600}
601
602static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
603{
604	struct mmc_data *data = host->mrq->data;
605
606	host->sg_blkidx += host->blocksize;
607
608	/* data->sg->length must be a multiple of host->blocksize? */
609	BUG_ON(host->sg_blkidx > data->sg->length);
610
611	if (host->sg_blkidx == data->sg->length) {
612		host->sg_blkidx = 0;
613		if (++host->sg_idx < data->sg_len)
614			host->pio_ptr = sg_virt(++data->sg);
615	} else {
616		host->pio_ptr = p;
617	}
618
619	return host->sg_idx != data->sg_len;
620}
621
622static void sh_mmcif_single_read(struct sh_mmcif_host *host,
623				 struct mmc_request *mrq)
624{
625	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
626			   BLOCK_SIZE_MASK) + 3;
627
628	host->wait_for = MMCIF_WAIT_FOR_READ;
629
630	/* buf read enable */
631	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
632}
633
634static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
635{
636	struct device *dev = sh_mmcif_host_to_dev(host);
637	struct mmc_data *data = host->mrq->data;
638	u32 *p = sg_virt(data->sg);
639	int i;
640
641	if (host->sd_error) {
642		data->error = sh_mmcif_error_manage(host);
643		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
644		return false;
645	}
646
647	for (i = 0; i < host->blocksize / 4; i++)
648		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
649
650	/* buffer read end */
651	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
652	host->wait_for = MMCIF_WAIT_FOR_READ_END;
653
654	return true;
655}
656
657static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
658				struct mmc_request *mrq)
659{
660	struct mmc_data *data = mrq->data;
661
662	if (!data->sg_len || !data->sg->length)
663		return;
664
665	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
666		BLOCK_SIZE_MASK;
667
668	host->wait_for = MMCIF_WAIT_FOR_MREAD;
669	host->sg_idx = 0;
670	host->sg_blkidx = 0;
671	host->pio_ptr = sg_virt(data->sg);
672
673	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
674}
675
676static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
677{
678	struct device *dev = sh_mmcif_host_to_dev(host);
679	struct mmc_data *data = host->mrq->data;
680	u32 *p = host->pio_ptr;
681	int i;
682
683	if (host->sd_error) {
684		data->error = sh_mmcif_error_manage(host);
685		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
686		return false;
687	}
688
689	BUG_ON(!data->sg->length);
690
691	for (i = 0; i < host->blocksize / 4; i++)
692		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
693
694	if (!sh_mmcif_next_block(host, p))
695		return false;
696
697	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
698
699	return true;
700}
701
702static void sh_mmcif_single_write(struct sh_mmcif_host *host,
703					struct mmc_request *mrq)
704{
705	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
706			   BLOCK_SIZE_MASK) + 3;
707
708	host->wait_for = MMCIF_WAIT_FOR_WRITE;
709
710	/* buf write enable */
711	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
712}
713
714static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
715{
716	struct device *dev = sh_mmcif_host_to_dev(host);
717	struct mmc_data *data = host->mrq->data;
718	u32 *p = sg_virt(data->sg);
719	int i;
720
721	if (host->sd_error) {
722		data->error = sh_mmcif_error_manage(host);
723		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
724		return false;
725	}
726
727	for (i = 0; i < host->blocksize / 4; i++)
728		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
729
730	/* buffer write end */
731	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
732	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
733
734	return true;
735}
736
737static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
738				struct mmc_request *mrq)
739{
740	struct mmc_data *data = mrq->data;
741
742	if (!data->sg_len || !data->sg->length)
743		return;
744
745	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
746		BLOCK_SIZE_MASK;
747
748	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
749	host->sg_idx = 0;
750	host->sg_blkidx = 0;
751	host->pio_ptr = sg_virt(data->sg);
752
753	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
754}
755
756static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
757{
758	struct device *dev = sh_mmcif_host_to_dev(host);
759	struct mmc_data *data = host->mrq->data;
760	u32 *p = host->pio_ptr;
761	int i;
762
763	if (host->sd_error) {
764		data->error = sh_mmcif_error_manage(host);
765		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
766		return false;
767	}
768
769	BUG_ON(!data->sg->length);
770
771	for (i = 0; i < host->blocksize / 4; i++)
772		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
773
774	if (!sh_mmcif_next_block(host, p))
775		return false;
776
777	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
778
779	return true;
780}
781
782static void sh_mmcif_get_response(struct sh_mmcif_host *host,
783						struct mmc_command *cmd)
784{
785	if (cmd->flags & MMC_RSP_136) {
786		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
787		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
788		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
789		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
790	} else
791		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
792}
793
794static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
795						struct mmc_command *cmd)
796{
797	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
798}
799
800static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
801			    struct mmc_request *mrq)
802{
803	struct device *dev = sh_mmcif_host_to_dev(host);
804	struct mmc_data *data = mrq->data;
805	struct mmc_command *cmd = mrq->cmd;
806	u32 opc = cmd->opcode;
807	u32 tmp = 0;
808
809	/* Response Type check */
810	switch (mmc_resp_type(cmd)) {
811	case MMC_RSP_NONE:
812		tmp |= CMD_SET_RTYP_NO;
813		break;
814	case MMC_RSP_R1:
815	case MMC_RSP_R3:
816		tmp |= CMD_SET_RTYP_6B;
817		break;
818	case MMC_RSP_R1B:
819		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
820		break;
821	case MMC_RSP_R2:
822		tmp |= CMD_SET_RTYP_17B;
823		break;
824	default:
825		dev_err(dev, "Unsupported response type.\n");
826		break;
827	}
828
829	/* WDAT / DATW */
830	if (data) {
831		tmp |= CMD_SET_WDAT;
832		switch (host->bus_width) {
833		case MMC_BUS_WIDTH_1:
834			tmp |= CMD_SET_DATW_1;
835			break;
836		case MMC_BUS_WIDTH_4:
837			tmp |= CMD_SET_DATW_4;
838			break;
839		case MMC_BUS_WIDTH_8:
840			tmp |= CMD_SET_DATW_8;
841			break;
842		default:
843			dev_err(dev, "Unsupported bus width.\n");
844			break;
845		}
846		switch (host->timing) {
847		case MMC_TIMING_MMC_DDR52:
848			/*
849			 * MMC core will only set this timing, if the host
850			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
851			 * capability. MMCIF implementations with this
852			 * capability, e.g. sh73a0, will have to set it
853			 * in their platform data.
854			 */
855			tmp |= CMD_SET_DARS;
856			break;
857		}
858	}
859	/* DWEN */
860	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
861		tmp |= CMD_SET_DWEN;
862	/* CMLTE/CMD12EN */
863	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
864		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
865		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
866				data->blocks << 16);
867	}
868	/* RIDXC[1:0] check bits */
869	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
870	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
871		tmp |= CMD_SET_RIDXC_BITS;
872	/* RCRC7C[1:0] check bits */
873	if (opc == MMC_SEND_OP_COND)
874		tmp |= CMD_SET_CRC7C_BITS;
875	/* RCRC7C[1:0] internal CRC7 */
876	if (opc == MMC_ALL_SEND_CID ||
877		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
878		tmp |= CMD_SET_CRC7C_INTERNAL;
879
880	return (opc << 24) | tmp;
881}
882
883static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
884			       struct mmc_request *mrq, u32 opc)
885{
886	struct device *dev = sh_mmcif_host_to_dev(host);
887
888	switch (opc) {
889	case MMC_READ_MULTIPLE_BLOCK:
890		sh_mmcif_multi_read(host, mrq);
891		return 0;
892	case MMC_WRITE_MULTIPLE_BLOCK:
893		sh_mmcif_multi_write(host, mrq);
894		return 0;
895	case MMC_WRITE_BLOCK:
896		sh_mmcif_single_write(host, mrq);
897		return 0;
898	case MMC_READ_SINGLE_BLOCK:
899	case MMC_SEND_EXT_CSD:
900		sh_mmcif_single_read(host, mrq);
901		return 0;
902	default:
903		dev_err(dev, "Unsupported CMD%d\n", opc);
904		return -EINVAL;
905	}
906}
907
908static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
909			       struct mmc_request *mrq)
910{
911	struct mmc_command *cmd = mrq->cmd;
912	u32 opc;
913	u32 mask = 0;
914	unsigned long flags;
915
916	if (cmd->flags & MMC_RSP_BUSY)
917		mask = MASK_START_CMD | MASK_MRBSYE;
918	else
919		mask = MASK_START_CMD | MASK_MCRSPE;
920
921	if (host->ccs_enable)
922		mask |= MASK_MCCSTO;
923
924	if (mrq->data) {
925		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
926		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
927				mrq->data->blksz);
928	}
929	opc = sh_mmcif_set_cmd(host, mrq);
930
931	if (host->ccs_enable)
932		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
933	else
934		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
935	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
936	/* set arg */
937	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
938	/* set cmd */
939	spin_lock_irqsave(&host->lock, flags);
940	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
941
942	host->wait_for = MMCIF_WAIT_FOR_CMD;
943	schedule_delayed_work(&host->timeout_work, host->timeout);
944	spin_unlock_irqrestore(&host->lock, flags);
945}
946
947static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
948			      struct mmc_request *mrq)
949{
950	struct device *dev = sh_mmcif_host_to_dev(host);
951
952	switch (mrq->cmd->opcode) {
953	case MMC_READ_MULTIPLE_BLOCK:
954		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
955		break;
956	case MMC_WRITE_MULTIPLE_BLOCK:
957		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
958		break;
959	default:
960		dev_err(dev, "unsupported stop cmd\n");
961		mrq->stop->error = sh_mmcif_error_manage(host);
962		return;
963	}
964
965	host->wait_for = MMCIF_WAIT_FOR_STOP;
966}
967
968static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
969{
970	struct sh_mmcif_host *host = mmc_priv(mmc);
971	struct device *dev = sh_mmcif_host_to_dev(host);
972	unsigned long flags;
973
974	spin_lock_irqsave(&host->lock, flags);
975	if (host->state != STATE_IDLE) {
976		dev_dbg(dev, "%s() rejected, state %u\n",
977			__func__, host->state);
978		spin_unlock_irqrestore(&host->lock, flags);
979		mrq->cmd->error = -EAGAIN;
980		mmc_request_done(mmc, mrq);
981		return;
982	}
983
984	host->state = STATE_REQUEST;
985	spin_unlock_irqrestore(&host->lock, flags);
986
987	host->mrq = mrq;
988
989	sh_mmcif_start_cmd(host, mrq);
990}
991
992static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
993{
994	struct device *dev = sh_mmcif_host_to_dev(host);
995
996	if (host->mmc->f_max) {
997		unsigned int f_max, f_min = 0, f_min_old;
998
999		f_max = host->mmc->f_max;
1000		for (f_min_old = f_max; f_min_old > 2;) {
1001			f_min = clk_round_rate(host->clk, f_min_old / 2);
1002			if (f_min == f_min_old)
1003				break;
1004			f_min_old = f_min;
1005		}
1006
1007		/*
1008		 * This driver assumes this SoC is R-Car Gen2 or later
1009		 */
1010		host->clkdiv_map = 0x3ff;
1011
1012		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1013		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1014	} else {
1015		unsigned int clk = clk_get_rate(host->clk);
1016
1017		host->mmc->f_max = clk / 2;
1018		host->mmc->f_min = clk / 512;
1019	}
1020
1021	dev_dbg(dev, "clk max/min = %d/%d\n",
1022		host->mmc->f_max, host->mmc->f_min);
1023}
1024
1025static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1026{
1027	struct sh_mmcif_host *host = mmc_priv(mmc);
1028	struct device *dev = sh_mmcif_host_to_dev(host);
1029	unsigned long flags;
1030
1031	spin_lock_irqsave(&host->lock, flags);
1032	if (host->state != STATE_IDLE) {
1033		dev_dbg(dev, "%s() rejected, state %u\n",
1034			__func__, host->state);
1035		spin_unlock_irqrestore(&host->lock, flags);
1036		return;
1037	}
1038
1039	host->state = STATE_IOS;
1040	spin_unlock_irqrestore(&host->lock, flags);
1041
1042	switch (ios->power_mode) {
1043	case MMC_POWER_UP:
1044		if (!IS_ERR(mmc->supply.vmmc))
1045			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1046		if (!host->power) {
1047			clk_prepare_enable(host->clk);
1048			pm_runtime_get_sync(dev);
1049			sh_mmcif_sync_reset(host);
1050			sh_mmcif_request_dma(host);
1051			host->power = true;
1052		}
1053		break;
1054	case MMC_POWER_OFF:
1055		if (!IS_ERR(mmc->supply.vmmc))
1056			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1057		if (host->power) {
1058			sh_mmcif_clock_control(host, 0);
1059			sh_mmcif_release_dma(host);
1060			pm_runtime_put(dev);
1061			clk_disable_unprepare(host->clk);
1062			host->power = false;
1063		}
1064		break;
1065	case MMC_POWER_ON:
1066		sh_mmcif_clock_control(host, ios->clock);
1067		break;
1068	}
1069
1070	host->timing = ios->timing;
1071	host->bus_width = ios->bus_width;
1072	host->state = STATE_IDLE;
1073}
1074
1075static const struct mmc_host_ops sh_mmcif_ops = {
1076	.request	= sh_mmcif_request,
1077	.set_ios	= sh_mmcif_set_ios,
1078	.get_cd		= mmc_gpio_get_cd,
1079};
1080
1081static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1082{
1083	struct mmc_command *cmd = host->mrq->cmd;
1084	struct mmc_data *data = host->mrq->data;
1085	struct device *dev = sh_mmcif_host_to_dev(host);
1086	long time;
1087
1088	if (host->sd_error) {
1089		switch (cmd->opcode) {
1090		case MMC_ALL_SEND_CID:
1091		case MMC_SELECT_CARD:
1092		case MMC_APP_CMD:
1093			cmd->error = -ETIMEDOUT;
1094			break;
1095		default:
1096			cmd->error = sh_mmcif_error_manage(host);
1097			break;
1098		}
1099		dev_dbg(dev, "CMD%d error %d\n",
1100			cmd->opcode, cmd->error);
1101		host->sd_error = false;
1102		return false;
1103	}
1104	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1105		cmd->error = 0;
1106		return false;
1107	}
1108
1109	sh_mmcif_get_response(host, cmd);
1110
1111	if (!data)
1112		return false;
1113
1114	/*
1115	 * Completion can be signalled from DMA callback and error, so, have to
1116	 * reset here, before setting .dma_active
1117	 */
1118	init_completion(&host->dma_complete);
1119
1120	if (data->flags & MMC_DATA_READ) {
1121		if (host->chan_rx)
1122			sh_mmcif_start_dma_rx(host);
1123	} else {
1124		if (host->chan_tx)
1125			sh_mmcif_start_dma_tx(host);
1126	}
1127
1128	if (!host->dma_active) {
1129		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1130		return !data->error;
1131	}
1132
1133	/* Running in the IRQ thread, can sleep */
1134	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1135							 host->timeout);
1136
1137	if (data->flags & MMC_DATA_READ)
1138		dma_unmap_sg(host->chan_rx->device->dev,
1139			     data->sg, data->sg_len,
1140			     DMA_FROM_DEVICE);
1141	else
1142		dma_unmap_sg(host->chan_tx->device->dev,
1143			     data->sg, data->sg_len,
1144			     DMA_TO_DEVICE);
1145
1146	if (host->sd_error) {
1147		dev_err(host->mmc->parent,
1148			"Error IRQ while waiting for DMA completion!\n");
1149		/* Woken up by an error IRQ: abort DMA */
1150		data->error = sh_mmcif_error_manage(host);
1151	} else if (!time) {
1152		dev_err(host->mmc->parent, "DMA timeout!\n");
1153		data->error = -ETIMEDOUT;
1154	} else if (time < 0) {
1155		dev_err(host->mmc->parent,
1156			"wait_for_completion_...() error %ld!\n", time);
1157		data->error = time;
1158	}
1159	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1160			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1161	host->dma_active = false;
1162
1163	if (data->error) {
1164		data->bytes_xfered = 0;
1165		/* Abort DMA */
1166		if (data->flags & MMC_DATA_READ)
1167			dmaengine_terminate_all(host->chan_rx);
1168		else
1169			dmaengine_terminate_all(host->chan_tx);
1170	}
1171
1172	return false;
1173}
1174
1175static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1176{
1177	struct sh_mmcif_host *host = dev_id;
1178	struct mmc_request *mrq;
1179	struct device *dev = sh_mmcif_host_to_dev(host);
1180	bool wait = false;
1181	unsigned long flags;
1182	int wait_work;
1183
1184	spin_lock_irqsave(&host->lock, flags);
1185	wait_work = host->wait_for;
1186	spin_unlock_irqrestore(&host->lock, flags);
1187
1188	cancel_delayed_work_sync(&host->timeout_work);
1189
1190	mutex_lock(&host->thread_lock);
1191
1192	mrq = host->mrq;
1193	if (!mrq) {
1194		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1195			host->state, host->wait_for);
1196		mutex_unlock(&host->thread_lock);
1197		return IRQ_HANDLED;
1198	}
1199
1200	/*
1201	 * All handlers return true, if processing continues, and false, if the
1202	 * request has to be completed - successfully or not
1203	 */
1204	switch (wait_work) {
1205	case MMCIF_WAIT_FOR_REQUEST:
1206		/* We're too late, the timeout has already kicked in */
1207		mutex_unlock(&host->thread_lock);
1208		return IRQ_HANDLED;
1209	case MMCIF_WAIT_FOR_CMD:
1210		/* Wait for data? */
1211		wait = sh_mmcif_end_cmd(host);
1212		break;
1213	case MMCIF_WAIT_FOR_MREAD:
1214		/* Wait for more data? */
1215		wait = sh_mmcif_mread_block(host);
1216		break;
1217	case MMCIF_WAIT_FOR_READ:
1218		/* Wait for data end? */
1219		wait = sh_mmcif_read_block(host);
1220		break;
1221	case MMCIF_WAIT_FOR_MWRITE:
1222		/* Wait data to write? */
1223		wait = sh_mmcif_mwrite_block(host);
1224		break;
1225	case MMCIF_WAIT_FOR_WRITE:
1226		/* Wait for data end? */
1227		wait = sh_mmcif_write_block(host);
1228		break;
1229	case MMCIF_WAIT_FOR_STOP:
1230		if (host->sd_error) {
1231			mrq->stop->error = sh_mmcif_error_manage(host);
1232			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1233			break;
1234		}
1235		sh_mmcif_get_cmd12response(host, mrq->stop);
1236		mrq->stop->error = 0;
1237		break;
1238	case MMCIF_WAIT_FOR_READ_END:
1239	case MMCIF_WAIT_FOR_WRITE_END:
1240		if (host->sd_error) {
1241			mrq->data->error = sh_mmcif_error_manage(host);
1242			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1243		}
1244		break;
1245	default:
1246		BUG();
1247	}
1248
1249	if (wait) {
1250		schedule_delayed_work(&host->timeout_work, host->timeout);
1251		/* Wait for more data */
1252		mutex_unlock(&host->thread_lock);
1253		return IRQ_HANDLED;
1254	}
1255
1256	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1257		struct mmc_data *data = mrq->data;
1258		if (!mrq->cmd->error && data && !data->error)
1259			data->bytes_xfered =
1260				data->blocks * data->blksz;
1261
1262		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1263			sh_mmcif_stop_cmd(host, mrq);
1264			if (!mrq->stop->error) {
1265				schedule_delayed_work(&host->timeout_work, host->timeout);
1266				mutex_unlock(&host->thread_lock);
1267				return IRQ_HANDLED;
1268			}
1269		}
1270	}
1271
1272	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1273	host->state = STATE_IDLE;
1274	host->mrq = NULL;
1275	mmc_request_done(host->mmc, mrq);
1276
1277	mutex_unlock(&host->thread_lock);
1278
1279	return IRQ_HANDLED;
1280}
1281
1282static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1283{
1284	struct sh_mmcif_host *host = dev_id;
1285	struct device *dev = sh_mmcif_host_to_dev(host);
1286	u32 state, mask;
1287
1288	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1289	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1290	if (host->ccs_enable)
1291		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1292	else
1293		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1294	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1295
1296	if (state & ~MASK_CLEAN)
1297		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1298			state);
1299
1300	if (state & INT_ERR_STS || state & ~INT_ALL) {
1301		host->sd_error = true;
1302		dev_dbg(dev, "int err state = 0x%08x\n", state);
1303	}
1304	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1305		if (!host->mrq)
1306			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1307		if (!host->dma_active)
1308			return IRQ_WAKE_THREAD;
1309		else if (host->sd_error)
1310			sh_mmcif_dma_complete(host);
1311	} else {
1312		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1313	}
1314
1315	return IRQ_HANDLED;
1316}
1317
1318static void sh_mmcif_timeout_work(struct work_struct *work)
1319{
1320	struct delayed_work *d = to_delayed_work(work);
1321	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1322	struct mmc_request *mrq = host->mrq;
1323	struct device *dev = sh_mmcif_host_to_dev(host);
1324	unsigned long flags;
1325
1326	if (host->dying)
1327		/* Don't run after mmc_remove_host() */
1328		return;
1329
1330	spin_lock_irqsave(&host->lock, flags);
1331	if (host->state == STATE_IDLE) {
1332		spin_unlock_irqrestore(&host->lock, flags);
1333		return;
1334	}
1335
1336	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1337		host->wait_for, mrq->cmd->opcode);
1338
1339	host->state = STATE_TIMEOUT;
1340	spin_unlock_irqrestore(&host->lock, flags);
1341
1342	/*
1343	 * Handle races with cancel_delayed_work(), unless
1344	 * cancel_delayed_work_sync() is used
1345	 */
1346	switch (host->wait_for) {
1347	case MMCIF_WAIT_FOR_CMD:
1348		mrq->cmd->error = sh_mmcif_error_manage(host);
1349		break;
1350	case MMCIF_WAIT_FOR_STOP:
1351		mrq->stop->error = sh_mmcif_error_manage(host);
1352		break;
1353	case MMCIF_WAIT_FOR_MREAD:
1354	case MMCIF_WAIT_FOR_MWRITE:
1355	case MMCIF_WAIT_FOR_READ:
1356	case MMCIF_WAIT_FOR_WRITE:
1357	case MMCIF_WAIT_FOR_READ_END:
1358	case MMCIF_WAIT_FOR_WRITE_END:
1359		mrq->data->error = sh_mmcif_error_manage(host);
1360		break;
1361	default:
1362		BUG();
1363	}
1364
1365	host->state = STATE_IDLE;
1366	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1367	host->mrq = NULL;
1368	mmc_request_done(host->mmc, mrq);
1369}
1370
1371static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1372{
1373	struct device *dev = sh_mmcif_host_to_dev(host);
1374	struct sh_mmcif_plat_data *pd = dev->platform_data;
1375	struct mmc_host *mmc = host->mmc;
1376
1377	mmc_regulator_get_supply(mmc);
1378
1379	if (!pd)
1380		return;
1381
1382	if (!mmc->ocr_avail)
1383		mmc->ocr_avail = pd->ocr;
1384	else if (pd->ocr)
1385		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1386}
1387
1388static int sh_mmcif_probe(struct platform_device *pdev)
1389{
1390	int ret = 0, irq[2];
1391	struct mmc_host *mmc;
1392	struct sh_mmcif_host *host;
1393	struct device *dev = &pdev->dev;
1394	struct sh_mmcif_plat_data *pd = dev->platform_data;
1395	void __iomem *reg;
1396	const char *name;
1397
1398	irq[0] = platform_get_irq(pdev, 0);
1399	irq[1] = platform_get_irq_optional(pdev, 1);
1400	if (irq[0] < 0)
1401		return irq[0];
1402
1403	reg = devm_platform_ioremap_resource(pdev, 0);
1404	if (IS_ERR(reg))
1405		return PTR_ERR(reg);
1406
1407	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1408	if (!mmc)
1409		return -ENOMEM;
1410
1411	ret = mmc_of_parse(mmc);
1412	if (ret < 0)
1413		goto err_host;
1414
1415	host		= mmc_priv(mmc);
1416	host->mmc	= mmc;
1417	host->addr	= reg;
1418	host->timeout	= msecs_to_jiffies(10000);
1419	host->ccs_enable = true;
1420	host->clk_ctrl2_enable = false;
1421
1422	host->pd = pdev;
1423
1424	spin_lock_init(&host->lock);
1425
1426	mmc->ops = &sh_mmcif_ops;
1427	sh_mmcif_init_ocr(host);
1428
1429	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1430	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1431	mmc->max_busy_timeout = 10000;
1432
1433	if (pd && pd->caps)
1434		mmc->caps |= pd->caps;
1435	mmc->max_segs = 32;
1436	mmc->max_blk_size = 512;
1437	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1438	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1439	mmc->max_seg_size = mmc->max_req_size;
1440
1441	platform_set_drvdata(pdev, host);
1442
1443	host->clk = devm_clk_get(dev, NULL);
1444	if (IS_ERR(host->clk)) {
1445		ret = PTR_ERR(host->clk);
1446		dev_err(dev, "cannot get clock: %d\n", ret);
1447		goto err_host;
1448	}
1449
1450	ret = clk_prepare_enable(host->clk);
1451	if (ret < 0)
1452		goto err_host;
1453
1454	sh_mmcif_clk_setup(host);
1455
1456	pm_runtime_enable(dev);
1457	host->power = false;
1458
1459	ret = pm_runtime_get_sync(dev);
1460	if (ret < 0)
1461		goto err_clk;
1462
1463	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1464
1465	sh_mmcif_sync_reset(host);
1466	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1467
1468	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1469	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1470					sh_mmcif_irqt, 0, name, host);
1471	if (ret) {
1472		dev_err(dev, "request_irq error (%s)\n", name);
1473		goto err_clk;
1474	}
1475	if (irq[1] >= 0) {
1476		ret = devm_request_threaded_irq(dev, irq[1],
1477						sh_mmcif_intr, sh_mmcif_irqt,
1478						0, "sh_mmc:int", host);
1479		if (ret) {
1480			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1481			goto err_clk;
1482		}
1483	}
1484
1485	mutex_init(&host->thread_lock);
1486
1487	ret = mmc_add_host(mmc);
1488	if (ret < 0)
1489		goto err_clk;
1490
1491	dev_pm_qos_expose_latency_limit(dev, 100);
1492
1493	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1494		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1495		 clk_get_rate(host->clk) / 1000000UL);
1496
1497	pm_runtime_put(dev);
1498	clk_disable_unprepare(host->clk);
1499	return ret;
1500
1501err_clk:
1502	clk_disable_unprepare(host->clk);
1503	pm_runtime_put_sync(dev);
1504	pm_runtime_disable(dev);
1505err_host:
1506	mmc_free_host(mmc);
1507	return ret;
1508}
1509
1510static int sh_mmcif_remove(struct platform_device *pdev)
1511{
1512	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1513
1514	host->dying = true;
1515	clk_prepare_enable(host->clk);
1516	pm_runtime_get_sync(&pdev->dev);
1517
1518	dev_pm_qos_hide_latency_limit(&pdev->dev);
1519
1520	mmc_remove_host(host->mmc);
1521	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1522
1523	/*
1524	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1525	 * mmc_remove_host() call above. But swapping order doesn't help either
1526	 * (a query on the linux-mmc mailing list didn't bring any replies).
1527	 */
1528	cancel_delayed_work_sync(&host->timeout_work);
1529
1530	clk_disable_unprepare(host->clk);
1531	mmc_free_host(host->mmc);
1532	pm_runtime_put_sync(&pdev->dev);
1533	pm_runtime_disable(&pdev->dev);
1534
1535	return 0;
1536}
1537
1538#ifdef CONFIG_PM_SLEEP
1539static int sh_mmcif_suspend(struct device *dev)
1540{
1541	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1542
1543	pm_runtime_get_sync(dev);
1544	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1545	pm_runtime_put(dev);
1546
1547	return 0;
1548}
1549
1550static int sh_mmcif_resume(struct device *dev)
1551{
1552	return 0;
1553}
1554#endif
1555
1556static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1557	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1558};
1559
1560static struct platform_driver sh_mmcif_driver = {
1561	.probe		= sh_mmcif_probe,
1562	.remove		= sh_mmcif_remove,
1563	.driver		= {
1564		.name	= DRIVER_NAME,
1565		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1566		.pm	= &sh_mmcif_dev_pm_ops,
1567		.of_match_table = sh_mmcif_of_match,
1568	},
1569};
1570
1571module_platform_driver(sh_mmcif_driver);
1572
1573MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1574MODULE_LICENSE("GPL v2");
1575MODULE_ALIAS("platform:" DRIVER_NAME);
1576MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1577