1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale eSDHC controller driver.
4 *
5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6 * Copyright (c) 2009 MontaVista Software, Inc.
7 * Copyright 2020 NXP
8 *
9 * Authors: Xiaobo Xie <X.Xie@freescale.com>
10 *	    Anton Vorontsov <avorontsov@ru.mvista.com>
11 */
12
13#include <linux/err.h>
14#include <linux/io.h>
15#include <linux/of.h>
16#include <linux/of_address.h>
17#include <linux/delay.h>
18#include <linux/module.h>
19#include <linux/sys_soc.h>
20#include <linux/clk.h>
21#include <linux/ktime.h>
22#include <linux/dma-mapping.h>
23#include <linux/iopoll.h>
24#include <linux/mmc/host.h>
25#include <linux/mmc/mmc.h>
26#include "sdhci-pltfm.h"
27#include "sdhci-esdhc.h"
28
29#define VENDOR_V_22	0x12
30#define VENDOR_V_23	0x13
31
32#define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
33
34struct esdhc_clk_fixup {
35	const unsigned int sd_dflt_max_clk;
36	const unsigned int max_clk[MMC_TIMING_NUM];
37};
38
39static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
40	.sd_dflt_max_clk = 25000000,
41	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
42	.max_clk[MMC_TIMING_SD_HS] = 46500000,
43};
44
45static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
46	.sd_dflt_max_clk = 25000000,
47	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
48	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
49};
50
51static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
52	.sd_dflt_max_clk = 25000000,
53	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
54	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
55};
56
57static const struct esdhc_clk_fixup p1010_esdhc_clk = {
58	.sd_dflt_max_clk = 20000000,
59	.max_clk[MMC_TIMING_LEGACY] = 20000000,
60	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
61	.max_clk[MMC_TIMING_SD_HS] = 40000000,
62};
63
64static const struct of_device_id sdhci_esdhc_of_match[] = {
65	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
66	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
67	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
68	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
69	{ .compatible = "fsl,mpc8379-esdhc" },
70	{ .compatible = "fsl,mpc8536-esdhc" },
71	{ .compatible = "fsl,esdhc" },
72	{ }
73};
74MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
75
76struct sdhci_esdhc {
77	u8 vendor_ver;
78	u8 spec_ver;
79	bool quirk_incorrect_hostver;
80	bool quirk_limited_clk_division;
81	bool quirk_unreliable_pulse_detection;
82	bool quirk_tuning_erratum_type1;
83	bool quirk_tuning_erratum_type2;
84	bool quirk_ignore_data_inhibit;
85	bool quirk_delay_before_data_reset;
86	bool quirk_trans_complete_erratum;
87	bool in_sw_tuning;
88	unsigned int peripheral_clock;
89	const struct esdhc_clk_fixup *clk_fixup;
90	u32 div_ratio;
91};
92
93/**
94 * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
95 *		       to make it compatible with SD spec.
96 *
97 * @host: pointer to sdhci_host
98 * @spec_reg: SD spec register address
99 * @value: 32bit eSDHC register value on spec_reg address
100 *
101 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
102 * registers are 32 bits. There are differences in register size, register
103 * address, register function, bit position and function between eSDHC spec
104 * and SD spec.
105 *
106 * Return a fixed up register value
107 */
108static u32 esdhc_readl_fixup(struct sdhci_host *host,
109				     int spec_reg, u32 value)
110{
111	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
112	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
113	u32 ret;
114
115	/*
116	 * The bit of ADMA flag in eSDHC is not compatible with standard
117	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
118	 * supported by eSDHC.
119	 * And for many FSL eSDHC controller, the reset value of field
120	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
121	 * only these vendor version is greater than 2.2/0x12 support ADMA.
122	 */
123	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
124		if (esdhc->vendor_ver > VENDOR_V_22) {
125			ret = value | SDHCI_CAN_DO_ADMA2;
126			return ret;
127		}
128	}
129
130	/*
131	 * The DAT[3:0] line signal levels and the CMD line signal level are
132	 * not compatible with standard SDHC register. The line signal levels
133	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
134	 * bit 23. All other bits are the same as in the standard SDHC
135	 * register.
136	 */
137	if (spec_reg == SDHCI_PRESENT_STATE) {
138		ret = value & 0x000fffff;
139		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
140		ret |= (value << 1) & SDHCI_CMD_LVL;
141
142		/*
143		 * Some controllers have unreliable Data Line Active
144		 * bit for commands with busy signal. This affects
145		 * Command Inhibit (data) bit. Just ignore it since
146		 * MMC core driver has already polled card status
147		 * with CMD13 after any command with busy siganl.
148		 */
149		if (esdhc->quirk_ignore_data_inhibit)
150			ret &= ~SDHCI_DATA_INHIBIT;
151		return ret;
152	}
153
154	/*
155	 * DTS properties of mmc host are used to enable each speed mode
156	 * according to soc and board capability. So clean up
157	 * SDR50/SDR104/DDR50 support bits here.
158	 */
159	if (spec_reg == SDHCI_CAPABILITIES_1) {
160		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
161				SDHCI_SUPPORT_DDR50);
162		return ret;
163	}
164
165	ret = value;
166	return ret;
167}
168
169static u16 esdhc_readw_fixup(struct sdhci_host *host,
170				     int spec_reg, u32 value)
171{
172	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
173	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
174	u16 ret;
175	int shift = (spec_reg & 0x2) * 8;
176
177	if (spec_reg == SDHCI_TRANSFER_MODE)
178		return pltfm_host->xfer_mode_shadow;
179
180	if (spec_reg == SDHCI_HOST_VERSION)
181		ret = value & 0xffff;
182	else
183		ret = (value >> shift) & 0xffff;
184	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
185	 * vendor version and spec version information.
186	 */
187	if ((spec_reg == SDHCI_HOST_VERSION) &&
188	    (esdhc->quirk_incorrect_hostver))
189		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
190	return ret;
191}
192
193static u8 esdhc_readb_fixup(struct sdhci_host *host,
194				     int spec_reg, u32 value)
195{
196	u8 ret;
197	u8 dma_bits;
198	int shift = (spec_reg & 0x3) * 8;
199
200	ret = (value >> shift) & 0xff;
201
202	/*
203	 * "DMA select" locates at offset 0x28 in SD specification, but on
204	 * P5020 or P3041, it locates at 0x29.
205	 */
206	if (spec_reg == SDHCI_HOST_CONTROL) {
207		/* DMA select is 22,23 bits in Protocol Control Register */
208		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
209		/* fixup the result */
210		ret &= ~SDHCI_CTRL_DMA_MASK;
211		ret |= dma_bits;
212	}
213	return ret;
214}
215
216/**
217 * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
218 *			written into eSDHC register.
219 *
220 * @host: pointer to sdhci_host
221 * @spec_reg: SD spec register address
222 * @value: 8/16/32bit SD spec register value that would be written
223 * @old_value: 32bit eSDHC register value on spec_reg address
224 *
225 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
226 * registers are 32 bits. There are differences in register size, register
227 * address, register function, bit position and function between eSDHC spec
228 * and SD spec.
229 *
230 * Return a fixed up register value
231 */
232static u32 esdhc_writel_fixup(struct sdhci_host *host,
233				     int spec_reg, u32 value, u32 old_value)
234{
235	u32 ret;
236
237	/*
238	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
239	 * when SYSCTL[RSTD] is set for some special operations.
240	 * No any impact on other operation.
241	 */
242	if (spec_reg == SDHCI_INT_ENABLE)
243		ret = value | SDHCI_INT_BLK_GAP;
244	else
245		ret = value;
246
247	return ret;
248}
249
250static u32 esdhc_writew_fixup(struct sdhci_host *host,
251				     int spec_reg, u16 value, u32 old_value)
252{
253	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
254	int shift = (spec_reg & 0x2) * 8;
255	u32 ret;
256
257	switch (spec_reg) {
258	case SDHCI_TRANSFER_MODE:
259		/*
260		 * Postpone this write, we must do it together with a
261		 * command write that is down below. Return old value.
262		 */
263		pltfm_host->xfer_mode_shadow = value;
264		return old_value;
265	case SDHCI_COMMAND:
266		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
267		return ret;
268	}
269
270	ret = old_value & (~(0xffff << shift));
271	ret |= (value << shift);
272
273	if (spec_reg == SDHCI_BLOCK_SIZE) {
274		/*
275		 * Two last DMA bits are reserved, and first one is used for
276		 * non-standard blksz of 4096 bytes that we don't support
277		 * yet. So clear the DMA boundary bits.
278		 */
279		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
280	}
281	return ret;
282}
283
284static u32 esdhc_writeb_fixup(struct sdhci_host *host,
285				     int spec_reg, u8 value, u32 old_value)
286{
287	u32 ret;
288	u32 dma_bits;
289	u8 tmp;
290	int shift = (spec_reg & 0x3) * 8;
291
292	/*
293	 * eSDHC doesn't have a standard power control register, so we do
294	 * nothing here to avoid incorrect operation.
295	 */
296	if (spec_reg == SDHCI_POWER_CONTROL)
297		return old_value;
298	/*
299	 * "DMA select" location is offset 0x28 in SD specification, but on
300	 * P5020 or P3041, it's located at 0x29.
301	 */
302	if (spec_reg == SDHCI_HOST_CONTROL) {
303		/*
304		 * If host control register is not standard, exit
305		 * this function
306		 */
307		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
308			return old_value;
309
310		/* DMA select is 22,23 bits in Protocol Control Register */
311		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
312		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
313		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
314		      (old_value & SDHCI_CTRL_DMA_MASK);
315		ret = (ret & (~0xff)) | tmp;
316
317		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
318		ret &= ~ESDHC_HOST_CONTROL_RES;
319		return ret;
320	}
321
322	ret = (old_value & (~(0xff << shift))) | (value << shift);
323	return ret;
324}
325
326static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
327{
328	u32 ret;
329	u32 value;
330
331	if (reg == SDHCI_CAPABILITIES_1)
332		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
333	else
334		value = ioread32be(host->ioaddr + reg);
335
336	ret = esdhc_readl_fixup(host, reg, value);
337
338	return ret;
339}
340
341static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
342{
343	u32 ret;
344	u32 value;
345
346	if (reg == SDHCI_CAPABILITIES_1)
347		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
348	else
349		value = ioread32(host->ioaddr + reg);
350
351	ret = esdhc_readl_fixup(host, reg, value);
352
353	return ret;
354}
355
356static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
357{
358	u16 ret;
359	u32 value;
360	int base = reg & ~0x3;
361
362	value = ioread32be(host->ioaddr + base);
363	ret = esdhc_readw_fixup(host, reg, value);
364	return ret;
365}
366
367static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
368{
369	u16 ret;
370	u32 value;
371	int base = reg & ~0x3;
372
373	value = ioread32(host->ioaddr + base);
374	ret = esdhc_readw_fixup(host, reg, value);
375	return ret;
376}
377
378static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
379{
380	u8 ret;
381	u32 value;
382	int base = reg & ~0x3;
383
384	value = ioread32be(host->ioaddr + base);
385	ret = esdhc_readb_fixup(host, reg, value);
386	return ret;
387}
388
389static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
390{
391	u8 ret;
392	u32 value;
393	int base = reg & ~0x3;
394
395	value = ioread32(host->ioaddr + base);
396	ret = esdhc_readb_fixup(host, reg, value);
397	return ret;
398}
399
400static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
401{
402	u32 value;
403
404	value = esdhc_writel_fixup(host, reg, val, 0);
405	iowrite32be(value, host->ioaddr + reg);
406}
407
408static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
409{
410	u32 value;
411
412	value = esdhc_writel_fixup(host, reg, val, 0);
413	iowrite32(value, host->ioaddr + reg);
414}
415
416static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
417{
418	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
419	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
420	int base = reg & ~0x3;
421	u32 value;
422	u32 ret;
423
424	value = ioread32be(host->ioaddr + base);
425	ret = esdhc_writew_fixup(host, reg, val, value);
426	if (reg != SDHCI_TRANSFER_MODE)
427		iowrite32be(ret, host->ioaddr + base);
428
429	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
430	 * 1us later after ESDHC_EXTN is set.
431	 */
432	if (base == ESDHC_SYSTEM_CONTROL_2) {
433		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
434		    esdhc->in_sw_tuning) {
435			udelay(1);
436			ret |= ESDHC_SMPCLKSEL;
437			iowrite32be(ret, host->ioaddr + base);
438		}
439	}
440}
441
442static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
443{
444	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
445	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
446	int base = reg & ~0x3;
447	u32 value;
448	u32 ret;
449
450	value = ioread32(host->ioaddr + base);
451	ret = esdhc_writew_fixup(host, reg, val, value);
452	if (reg != SDHCI_TRANSFER_MODE)
453		iowrite32(ret, host->ioaddr + base);
454
455	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
456	 * 1us later after ESDHC_EXTN is set.
457	 */
458	if (base == ESDHC_SYSTEM_CONTROL_2) {
459		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
460		    esdhc->in_sw_tuning) {
461			udelay(1);
462			ret |= ESDHC_SMPCLKSEL;
463			iowrite32(ret, host->ioaddr + base);
464		}
465	}
466}
467
468static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
469{
470	int base = reg & ~0x3;
471	u32 value;
472	u32 ret;
473
474	value = ioread32be(host->ioaddr + base);
475	ret = esdhc_writeb_fixup(host, reg, val, value);
476	iowrite32be(ret, host->ioaddr + base);
477}
478
479static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
480{
481	int base = reg & ~0x3;
482	u32 value;
483	u32 ret;
484
485	value = ioread32(host->ioaddr + base);
486	ret = esdhc_writeb_fixup(host, reg, val, value);
487	iowrite32(ret, host->ioaddr + base);
488}
489
490/*
491 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
492 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
493 * and Block Gap Event(IRQSTAT[BGE]) are also set.
494 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
495 * and re-issue the entire read transaction from beginning.
496 */
497static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
498{
499	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
500	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
501	bool applicable;
502	dma_addr_t dmastart;
503	dma_addr_t dmanow;
504
505	applicable = (intmask & SDHCI_INT_DATA_END) &&
506		     (intmask & SDHCI_INT_BLK_GAP) &&
507		     (esdhc->vendor_ver == VENDOR_V_23);
508	if (!applicable)
509		return;
510
511	host->data->error = 0;
512	dmastart = sg_dma_address(host->data->sg);
513	dmanow = dmastart + host->data->bytes_xfered;
514	/*
515	 * Force update to the next DMA block boundary.
516	 */
517	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
518		SDHCI_DEFAULT_BOUNDARY_SIZE;
519	host->data->bytes_xfered = dmanow - dmastart;
520	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
521}
522
523static int esdhc_of_enable_dma(struct sdhci_host *host)
524{
525	int ret;
526	u32 value;
527	struct device *dev = mmc_dev(host->mmc);
528
529	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
530	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc")) {
531		ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
532		if (ret)
533			return ret;
534	}
535
536	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
537
538	if (of_dma_is_coherent(dev->of_node))
539		value |= ESDHC_DMA_SNOOP;
540	else
541		value &= ~ESDHC_DMA_SNOOP;
542
543	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
544	return 0;
545}
546
547static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
548{
549	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
550	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
551
552	if (esdhc->peripheral_clock)
553		return esdhc->peripheral_clock;
554	else
555		return pltfm_host->clock;
556}
557
558static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
559{
560	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
561	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
562	unsigned int clock;
563
564	if (esdhc->peripheral_clock)
565		clock = esdhc->peripheral_clock;
566	else
567		clock = pltfm_host->clock;
568	return clock / 256 / 16;
569}
570
571static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
572{
573	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
574	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
575	ktime_t timeout;
576	u32 val, clk_en;
577
578	clk_en = ESDHC_CLOCK_SDCLKEN;
579
580	/*
581	 * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version
582	 * is 2.2 or lower.
583	 */
584	if (esdhc->vendor_ver <= VENDOR_V_22)
585		clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
586			   ESDHC_CLOCK_PEREN);
587
588	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
589
590	if (enable)
591		val |= clk_en;
592	else
593		val &= ~clk_en;
594
595	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
596
597	/*
598	 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
599	 * wait clock stable bit which does not exist.
600	 */
601	timeout = ktime_add_ms(ktime_get(), 20);
602	while (esdhc->vendor_ver > VENDOR_V_22) {
603		bool timedout = ktime_after(ktime_get(), timeout);
604
605		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
606			break;
607		if (timedout) {
608			pr_err("%s: Internal clock never stabilised.\n",
609				mmc_hostname(host->mmc));
610			break;
611		}
612		usleep_range(10, 20);
613	}
614}
615
616static void esdhc_flush_async_fifo(struct sdhci_host *host)
617{
618	ktime_t timeout;
619	u32 val;
620
621	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
622	val |= ESDHC_FLUSH_ASYNC_FIFO;
623	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
624
625	/* Wait max 20 ms */
626	timeout = ktime_add_ms(ktime_get(), 20);
627	while (1) {
628		bool timedout = ktime_after(ktime_get(), timeout);
629
630		if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
631		      ESDHC_FLUSH_ASYNC_FIFO))
632			break;
633		if (timedout) {
634			pr_err("%s: flushing asynchronous FIFO timeout.\n",
635				mmc_hostname(host->mmc));
636			break;
637		}
638		usleep_range(10, 20);
639	}
640}
641
642static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
643{
644	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
645	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
646	unsigned int pre_div = 1, div = 1;
647	unsigned int clock_fixup = 0;
648	ktime_t timeout;
649	u32 temp;
650
651	if (clock == 0) {
652		host->mmc->actual_clock = 0;
653		esdhc_clock_enable(host, false);
654		return;
655	}
656
657	/* Start pre_div at 2 for vendor version < 2.3. */
658	if (esdhc->vendor_ver < VENDOR_V_23)
659		pre_div = 2;
660
661	/* Fix clock value. */
662	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
663	    esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
664		clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk;
665	else if (esdhc->clk_fixup)
666		clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
667
668	if (clock_fixup == 0 || clock < clock_fixup)
669		clock_fixup = clock;
670
671	/* Calculate pre_div and div. */
672	while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256)
673		pre_div *= 2;
674
675	while (host->max_clk / pre_div / div > clock_fixup && div < 16)
676		div++;
677
678	esdhc->div_ratio = pre_div * div;
679
680	/* Limit clock division for HS400 200MHz clock for quirk. */
681	if (esdhc->quirk_limited_clk_division &&
682	    clock == MMC_HS200_MAX_DTR &&
683	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
684	     host->flags & SDHCI_HS400_TUNING)) {
685		if (esdhc->div_ratio <= 4) {
686			pre_div = 4;
687			div = 1;
688		} else if (esdhc->div_ratio <= 8) {
689			pre_div = 4;
690			div = 2;
691		} else if (esdhc->div_ratio <= 12) {
692			pre_div = 4;
693			div = 3;
694		} else {
695			pr_warn("%s: using unsupported clock division.\n",
696				mmc_hostname(host->mmc));
697		}
698		esdhc->div_ratio = pre_div * div;
699	}
700
701	host->mmc->actual_clock = host->max_clk / esdhc->div_ratio;
702
703	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
704		clock, host->mmc->actual_clock);
705
706	/* Set clock division into register. */
707	pre_div >>= 1;
708	div--;
709
710	esdhc_clock_enable(host, false);
711
712	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
713	temp &= ~ESDHC_CLOCK_MASK;
714	temp |= ((div << ESDHC_DIVIDER_SHIFT) |
715		(pre_div << ESDHC_PREDIV_SHIFT));
716	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
717
718	/*
719	 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
720	 * wait clock stable bit which does not exist.
721	 */
722	timeout = ktime_add_ms(ktime_get(), 20);
723	while (esdhc->vendor_ver > VENDOR_V_22) {
724		bool timedout = ktime_after(ktime_get(), timeout);
725
726		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
727			break;
728		if (timedout) {
729			pr_err("%s: Internal clock never stabilised.\n",
730				mmc_hostname(host->mmc));
731			break;
732		}
733		usleep_range(10, 20);
734	}
735
736	/* Additional setting for HS400. */
737	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
738	    clock == MMC_HS200_MAX_DTR) {
739		temp = sdhci_readl(host, ESDHC_TBCTL);
740		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
741		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
742		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
743		esdhc_clock_enable(host, true);
744
745		temp = sdhci_readl(host, ESDHC_DLLCFG0);
746		temp |= ESDHC_DLL_ENABLE;
747		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
748			temp |= ESDHC_DLL_FREQ_SEL;
749		sdhci_writel(host, temp, ESDHC_DLLCFG0);
750
751		temp |= ESDHC_DLL_RESET;
752		sdhci_writel(host, temp, ESDHC_DLLCFG0);
753		udelay(1);
754		temp &= ~ESDHC_DLL_RESET;
755		sdhci_writel(host, temp, ESDHC_DLLCFG0);
756
757		/* Wait max 20 ms */
758		if (read_poll_timeout(sdhci_readl, temp,
759				      temp & ESDHC_DLL_STS_SLV_LOCK,
760				      10, 20000, false,
761				      host, ESDHC_DLLSTAT0))
762			pr_err("%s: timeout for delay chain lock.\n",
763			       mmc_hostname(host->mmc));
764
765		temp = sdhci_readl(host, ESDHC_TBCTL);
766		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
767
768		esdhc_clock_enable(host, false);
769		esdhc_flush_async_fifo(host);
770	}
771	esdhc_clock_enable(host, true);
772}
773
774static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
775{
776	u32 ctrl;
777
778	ctrl = sdhci_readl(host, ESDHC_PROCTL);
779	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
780	switch (width) {
781	case MMC_BUS_WIDTH_8:
782		ctrl |= ESDHC_CTRL_8BITBUS;
783		break;
784
785	case MMC_BUS_WIDTH_4:
786		ctrl |= ESDHC_CTRL_4BITBUS;
787		break;
788
789	default:
790		break;
791	}
792
793	sdhci_writel(host, ctrl, ESDHC_PROCTL);
794}
795
796static void esdhc_reset(struct sdhci_host *host, u8 mask)
797{
798	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
799	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
800	u32 val, bus_width = 0;
801
802	/*
803	 * Add delay to make sure all the DMA transfers are finished
804	 * for quirk.
805	 */
806	if (esdhc->quirk_delay_before_data_reset &&
807	    (mask & SDHCI_RESET_DATA) &&
808	    (host->flags & SDHCI_REQ_USE_DMA))
809		mdelay(5);
810
811	/*
812	 * Save bus-width for eSDHC whose vendor version is 2.2
813	 * or lower for data reset.
814	 */
815	if ((mask & SDHCI_RESET_DATA) &&
816	    (esdhc->vendor_ver <= VENDOR_V_22)) {
817		val = sdhci_readl(host, ESDHC_PROCTL);
818		bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK;
819	}
820
821	sdhci_reset(host, mask);
822
823	/*
824	 * Restore bus-width setting and interrupt registers for eSDHC
825	 * whose vendor version is 2.2 or lower for data reset.
826	 */
827	if ((mask & SDHCI_RESET_DATA) &&
828	    (esdhc->vendor_ver <= VENDOR_V_22)) {
829		val = sdhci_readl(host, ESDHC_PROCTL);
830		val &= ~ESDHC_CTRL_BUSWIDTH_MASK;
831		val |= bus_width;
832		sdhci_writel(host, val, ESDHC_PROCTL);
833
834		sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
835		sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
836	}
837
838	/*
839	 * Some bits have to be cleaned manually for eSDHC whose spec
840	 * version is higher than 3.0 for all reset.
841	 */
842	if ((mask & SDHCI_RESET_ALL) &&
843	    (esdhc->spec_ver >= SDHCI_SPEC_300)) {
844		val = sdhci_readl(host, ESDHC_TBCTL);
845		val &= ~ESDHC_TB_EN;
846		sdhci_writel(host, val, ESDHC_TBCTL);
847
848		/*
849		 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to
850		 * 0 for quirk.
851		 */
852		if (esdhc->quirk_unreliable_pulse_detection) {
853			val = sdhci_readl(host, ESDHC_DLLCFG1);
854			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
855			sdhci_writel(host, val, ESDHC_DLLCFG1);
856		}
857	}
858}
859
860/* The SCFG, Supplemental Configuration Unit, provides SoC specific
861 * configuration and status registers for the device. There is a
862 * SDHC IO VSEL control register on SCFG for some platforms. It's
863 * used to support SDHC IO voltage switching.
864 */
865static const struct of_device_id scfg_device_ids[] = {
866	{ .compatible = "fsl,t1040-scfg", },
867	{ .compatible = "fsl,ls1012a-scfg", },
868	{ .compatible = "fsl,ls1046a-scfg", },
869	{}
870};
871
872/* SDHC IO VSEL control register definition */
873#define SCFG_SDHCIOVSELCR	0x408
874#define SDHCIOVSELCR_TGLEN	0x80000000
875#define SDHCIOVSELCR_VSELVAL	0x60000000
876#define SDHCIOVSELCR_SDHC_VS	0x00000001
877
878static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
879				       struct mmc_ios *ios)
880{
881	struct sdhci_host *host = mmc_priv(mmc);
882	struct device_node *scfg_node;
883	void __iomem *scfg_base = NULL;
884	u32 sdhciovselcr;
885	u32 val;
886
887	/*
888	 * Signal Voltage Switching is only applicable for Host Controllers
889	 * v3.00 and above.
890	 */
891	if (host->version < SDHCI_SPEC_300)
892		return 0;
893
894	val = sdhci_readl(host, ESDHC_PROCTL);
895
896	switch (ios->signal_voltage) {
897	case MMC_SIGNAL_VOLTAGE_330:
898		val &= ~ESDHC_VOLT_SEL;
899		sdhci_writel(host, val, ESDHC_PROCTL);
900		return 0;
901	case MMC_SIGNAL_VOLTAGE_180:
902		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
903		if (scfg_node)
904			scfg_base = of_iomap(scfg_node, 0);
905		of_node_put(scfg_node);
906		if (scfg_base) {
907			sdhciovselcr = SDHCIOVSELCR_TGLEN |
908				       SDHCIOVSELCR_VSELVAL;
909			iowrite32be(sdhciovselcr,
910				scfg_base + SCFG_SDHCIOVSELCR);
911
912			val |= ESDHC_VOLT_SEL;
913			sdhci_writel(host, val, ESDHC_PROCTL);
914			mdelay(5);
915
916			sdhciovselcr = SDHCIOVSELCR_TGLEN |
917				       SDHCIOVSELCR_SDHC_VS;
918			iowrite32be(sdhciovselcr,
919				scfg_base + SCFG_SDHCIOVSELCR);
920			iounmap(scfg_base);
921		} else {
922			val |= ESDHC_VOLT_SEL;
923			sdhci_writel(host, val, ESDHC_PROCTL);
924		}
925		return 0;
926	default:
927		return 0;
928	}
929}
930
931static struct soc_device_attribute soc_tuning_erratum_type1[] = {
932	{ .family = "QorIQ T1023", },
933	{ .family = "QorIQ T1040", },
934	{ .family = "QorIQ T2080", },
935	{ .family = "QorIQ LS1021A", },
936	{ },
937};
938
939static struct soc_device_attribute soc_tuning_erratum_type2[] = {
940	{ .family = "QorIQ LS1012A", },
941	{ .family = "QorIQ LS1043A", },
942	{ .family = "QorIQ LS1046A", },
943	{ .family = "QorIQ LS1080A", },
944	{ .family = "QorIQ LS2080A", },
945	{ .family = "QorIQ LA1575A", },
946	{ },
947};
948
949static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
950{
951	u32 val;
952
953	esdhc_clock_enable(host, false);
954	esdhc_flush_async_fifo(host);
955
956	val = sdhci_readl(host, ESDHC_TBCTL);
957	if (enable)
958		val |= ESDHC_TB_EN;
959	else
960		val &= ~ESDHC_TB_EN;
961	sdhci_writel(host, val, ESDHC_TBCTL);
962
963	esdhc_clock_enable(host, true);
964}
965
966static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start,
967				    u8 *window_end)
968{
969	u32 val;
970
971	/* Write TBCTL[11:8]=4'h8 */
972	val = sdhci_readl(host, ESDHC_TBCTL);
973	val &= ~(0xf << 8);
974	val |= 8 << 8;
975	sdhci_writel(host, val, ESDHC_TBCTL);
976
977	mdelay(1);
978
979	/* Read TBCTL[31:0] register and rewrite again */
980	val = sdhci_readl(host, ESDHC_TBCTL);
981	sdhci_writel(host, val, ESDHC_TBCTL);
982
983	mdelay(1);
984
985	/* Read the TBSTAT[31:0] register twice */
986	val = sdhci_readl(host, ESDHC_TBSTAT);
987	val = sdhci_readl(host, ESDHC_TBSTAT);
988
989	*window_end = val & 0xff;
990	*window_start = (val >> 8) & 0xff;
991}
992
993static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
994				    u8 *window_end)
995{
996	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
997	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
998	u8 start_ptr, end_ptr;
999
1000	if (esdhc->quirk_tuning_erratum_type1) {
1001		*window_start = 5 * esdhc->div_ratio;
1002		*window_end = 3 * esdhc->div_ratio;
1003		return;
1004	}
1005
1006	esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr);
1007
1008	/* Reset data lines by setting ESDHCCTL[RSTD] */
1009	sdhci_reset(host, SDHCI_RESET_DATA);
1010	/* Write 32'hFFFF_FFFF to IRQSTAT register */
1011	sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
1012
1013	/* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2
1014	 * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2,
1015	 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
1016	 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
1017	 */
1018
1019	if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) {
1020		*window_start = 8 * esdhc->div_ratio;
1021		*window_end = 4 * esdhc->div_ratio;
1022	} else {
1023		*window_start = 5 * esdhc->div_ratio;
1024		*window_end = 3 * esdhc->div_ratio;
1025	}
1026}
1027
1028static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
1029				   u8 window_start, u8 window_end)
1030{
1031	struct sdhci_host *host = mmc_priv(mmc);
1032	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1033	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1034	u32 val;
1035	int ret;
1036
1037	/* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
1038	val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
1039	      ESDHC_WNDW_STRT_PTR_MASK;
1040	val |= window_end & ESDHC_WNDW_END_PTR_MASK;
1041	sdhci_writel(host, val, ESDHC_TBPTR);
1042
1043	/* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
1044	val = sdhci_readl(host, ESDHC_TBCTL);
1045	val &= ~ESDHC_TB_MODE_MASK;
1046	val |= ESDHC_TB_MODE_SW;
1047	sdhci_writel(host, val, ESDHC_TBCTL);
1048
1049	esdhc->in_sw_tuning = true;
1050	ret = sdhci_execute_tuning(mmc, opcode);
1051	esdhc->in_sw_tuning = false;
1052	return ret;
1053}
1054
1055static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
1056{
1057	struct sdhci_host *host = mmc_priv(mmc);
1058	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1059	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1060	u8 window_start, window_end;
1061	int ret, retries = 1;
1062	bool hs400_tuning;
1063	unsigned int clk;
1064	u32 val;
1065
1066	/* For tuning mode, the sd clock divisor value
1067	 * must be larger than 3 according to reference manual.
1068	 */
1069	clk = esdhc->peripheral_clock / 3;
1070	if (host->clock > clk)
1071		esdhc_of_set_clock(host, clk);
1072
1073	esdhc_tuning_block_enable(host, true);
1074
1075	/*
1076	 * The eSDHC controller takes the data timeout value into account
1077	 * during tuning. If the SD card is too slow sending the response, the
1078	 * timer will expire and a "Buffer Read Ready" interrupt without data
1079	 * is triggered. This leads to tuning errors.
1080	 *
1081	 * Just set the timeout to the maximum value because the core will
1082	 * already take care of it in sdhci_send_tuning().
1083	 */
1084	sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL);
1085
1086	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
1087
1088	do {
1089		if (esdhc->quirk_limited_clk_division &&
1090		    hs400_tuning)
1091			esdhc_of_set_clock(host, host->clock);
1092
1093		/* Do HW tuning */
1094		val = sdhci_readl(host, ESDHC_TBCTL);
1095		val &= ~ESDHC_TB_MODE_MASK;
1096		val |= ESDHC_TB_MODE_3;
1097		sdhci_writel(host, val, ESDHC_TBCTL);
1098
1099		ret = sdhci_execute_tuning(mmc, opcode);
1100		if (ret)
1101			break;
1102
1103		/* For type2 affected platforms of the tuning erratum,
1104		 * tuning may succeed although eSDHC might not have
1105		 * tuned properly. Need to check tuning window.
1106		 */
1107		if (esdhc->quirk_tuning_erratum_type2 &&
1108		    !host->tuning_err) {
1109			esdhc_tuning_window_ptr(host, &window_start,
1110						&window_end);
1111			if (abs(window_start - window_end) >
1112			    (4 * esdhc->div_ratio + 2))
1113				host->tuning_err = -EAGAIN;
1114		}
1115
1116		/* If HW tuning fails and triggers erratum,
1117		 * try workaround.
1118		 */
1119		ret = host->tuning_err;
1120		if (ret == -EAGAIN &&
1121		    (esdhc->quirk_tuning_erratum_type1 ||
1122		     esdhc->quirk_tuning_erratum_type2)) {
1123			/* Recover HS400 tuning flag */
1124			if (hs400_tuning)
1125				host->flags |= SDHCI_HS400_TUNING;
1126			pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1127				mmc_hostname(mmc));
1128			/* Do SW tuning */
1129			esdhc_prepare_sw_tuning(host, &window_start,
1130						&window_end);
1131			ret = esdhc_execute_sw_tuning(mmc, opcode,
1132						      window_start,
1133						      window_end);
1134			if (ret)
1135				break;
1136
1137			/* Retry both HW/SW tuning with reduced clock. */
1138			ret = host->tuning_err;
1139			if (ret == -EAGAIN && retries) {
1140				/* Recover HS400 tuning flag */
1141				if (hs400_tuning)
1142					host->flags |= SDHCI_HS400_TUNING;
1143
1144				clk = host->max_clk / (esdhc->div_ratio + 1);
1145				esdhc_of_set_clock(host, clk);
1146				pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1147					mmc_hostname(mmc));
1148			} else {
1149				break;
1150			}
1151		} else {
1152			break;
1153		}
1154	} while (retries--);
1155
1156	if (ret) {
1157		esdhc_tuning_block_enable(host, false);
1158	} else if (hs400_tuning) {
1159		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1160		val |= ESDHC_FLW_CTL_BG;
1161		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1162	}
1163
1164	return ret;
1165}
1166
1167static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1168				   unsigned int timing)
1169{
1170	u32 val;
1171
1172	/*
1173	 * There are specific registers setting for HS400 mode.
1174	 * Clean all of them if controller is in HS400 mode to
1175	 * exit HS400 mode before re-setting any speed mode.
1176	 */
1177	val = sdhci_readl(host, ESDHC_TBCTL);
1178	if (val & ESDHC_HS400_MODE) {
1179		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1180		val &= ~ESDHC_FLW_CTL_BG;
1181		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1182
1183		val = sdhci_readl(host, ESDHC_SDCLKCTL);
1184		val &= ~ESDHC_CMD_CLK_CTL;
1185		sdhci_writel(host, val, ESDHC_SDCLKCTL);
1186
1187		esdhc_clock_enable(host, false);
1188		val = sdhci_readl(host, ESDHC_TBCTL);
1189		val &= ~ESDHC_HS400_MODE;
1190		sdhci_writel(host, val, ESDHC_TBCTL);
1191		esdhc_clock_enable(host, true);
1192
1193		val = sdhci_readl(host, ESDHC_DLLCFG0);
1194		val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL);
1195		sdhci_writel(host, val, ESDHC_DLLCFG0);
1196
1197		val = sdhci_readl(host, ESDHC_TBCTL);
1198		val &= ~ESDHC_HS400_WNDW_ADJUST;
1199		sdhci_writel(host, val, ESDHC_TBCTL);
1200
1201		esdhc_tuning_block_enable(host, false);
1202	}
1203
1204	if (timing == MMC_TIMING_MMC_HS400)
1205		esdhc_tuning_block_enable(host, true);
1206	else
1207		sdhci_set_uhs_signaling(host, timing);
1208}
1209
1210static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1211{
1212	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1213	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1214	u32 command;
1215
1216	if (esdhc->quirk_trans_complete_erratum) {
1217		command = SDHCI_GET_CMD(sdhci_readw(host,
1218					SDHCI_COMMAND));
1219		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1220				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1221				intmask & SDHCI_INT_DATA_END) {
1222			intmask &= ~SDHCI_INT_DATA_END;
1223			sdhci_writel(host, SDHCI_INT_DATA_END,
1224					SDHCI_INT_STATUS);
1225		}
1226	}
1227	return intmask;
1228}
1229
1230#ifdef CONFIG_PM_SLEEP
1231static u32 esdhc_proctl;
1232static int esdhc_of_suspend(struct device *dev)
1233{
1234	struct sdhci_host *host = dev_get_drvdata(dev);
1235
1236	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1237
1238	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1239		mmc_retune_needed(host->mmc);
1240
1241	return sdhci_suspend_host(host);
1242}
1243
1244static int esdhc_of_resume(struct device *dev)
1245{
1246	struct sdhci_host *host = dev_get_drvdata(dev);
1247	int ret = sdhci_resume_host(host);
1248
1249	if (ret == 0) {
1250		/* Isn't this already done by sdhci_resume_host() ? --rmk */
1251		esdhc_of_enable_dma(host);
1252		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1253	}
1254	return ret;
1255}
1256#endif
1257
1258static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1259			esdhc_of_suspend,
1260			esdhc_of_resume);
1261
1262static const struct sdhci_ops sdhci_esdhc_be_ops = {
1263	.read_l = esdhc_be_readl,
1264	.read_w = esdhc_be_readw,
1265	.read_b = esdhc_be_readb,
1266	.write_l = esdhc_be_writel,
1267	.write_w = esdhc_be_writew,
1268	.write_b = esdhc_be_writeb,
1269	.set_clock = esdhc_of_set_clock,
1270	.enable_dma = esdhc_of_enable_dma,
1271	.get_max_clock = esdhc_of_get_max_clock,
1272	.get_min_clock = esdhc_of_get_min_clock,
1273	.adma_workaround = esdhc_of_adma_workaround,
1274	.set_bus_width = esdhc_pltfm_set_bus_width,
1275	.reset = esdhc_reset,
1276	.set_uhs_signaling = esdhc_set_uhs_signaling,
1277	.irq = esdhc_irq,
1278};
1279
1280static const struct sdhci_ops sdhci_esdhc_le_ops = {
1281	.read_l = esdhc_le_readl,
1282	.read_w = esdhc_le_readw,
1283	.read_b = esdhc_le_readb,
1284	.write_l = esdhc_le_writel,
1285	.write_w = esdhc_le_writew,
1286	.write_b = esdhc_le_writeb,
1287	.set_clock = esdhc_of_set_clock,
1288	.enable_dma = esdhc_of_enable_dma,
1289	.get_max_clock = esdhc_of_get_max_clock,
1290	.get_min_clock = esdhc_of_get_min_clock,
1291	.adma_workaround = esdhc_of_adma_workaround,
1292	.set_bus_width = esdhc_pltfm_set_bus_width,
1293	.reset = esdhc_reset,
1294	.set_uhs_signaling = esdhc_set_uhs_signaling,
1295	.irq = esdhc_irq,
1296};
1297
1298static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1299	.quirks = ESDHC_DEFAULT_QUIRKS |
1300#ifdef CONFIG_PPC
1301		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1302#endif
1303		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1304		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1305	.ops = &sdhci_esdhc_be_ops,
1306};
1307
1308static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1309	.quirks = ESDHC_DEFAULT_QUIRKS |
1310		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1311		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1312	.ops = &sdhci_esdhc_le_ops,
1313};
1314
1315static struct soc_device_attribute soc_incorrect_hostver[] = {
1316	{ .family = "QorIQ T4240", .revision = "1.0", },
1317	{ .family = "QorIQ T4240", .revision = "2.0", },
1318	{ },
1319};
1320
1321static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1322	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1323	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1324	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1325	{ },
1326};
1327
1328static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1329	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1330	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1331	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1332	{ },
1333};
1334
1335static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1336{
1337	const struct of_device_id *match;
1338	struct sdhci_pltfm_host *pltfm_host;
1339	struct sdhci_esdhc *esdhc;
1340	struct device_node *np;
1341	struct clk *clk;
1342	u32 val;
1343	u16 host_ver;
1344
1345	pltfm_host = sdhci_priv(host);
1346	esdhc = sdhci_pltfm_priv(pltfm_host);
1347
1348	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1349	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1350			     SDHCI_VENDOR_VER_SHIFT;
1351	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1352	if (soc_device_match(soc_incorrect_hostver))
1353		esdhc->quirk_incorrect_hostver = true;
1354	else
1355		esdhc->quirk_incorrect_hostver = false;
1356
1357	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1358		esdhc->quirk_limited_clk_division = true;
1359	else
1360		esdhc->quirk_limited_clk_division = false;
1361
1362	if (soc_device_match(soc_unreliable_pulse_detection))
1363		esdhc->quirk_unreliable_pulse_detection = true;
1364	else
1365		esdhc->quirk_unreliable_pulse_detection = false;
1366
1367	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1368	if (match)
1369		esdhc->clk_fixup = match->data;
1370	np = pdev->dev.of_node;
1371
1372	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1373		esdhc->quirk_delay_before_data_reset = true;
1374		esdhc->quirk_trans_complete_erratum = true;
1375	}
1376
1377	clk = of_clk_get(np, 0);
1378	if (!IS_ERR(clk)) {
1379		/*
1380		 * esdhc->peripheral_clock would be assigned with a value
1381		 * which is eSDHC base clock when use periperal clock.
1382		 * For some platforms, the clock value got by common clk
1383		 * API is peripheral clock while the eSDHC base clock is
1384		 * 1/2 peripheral clock.
1385		 */
1386		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1387		    of_device_is_compatible(np, "fsl,ls1028a-esdhc") ||
1388		    of_device_is_compatible(np, "fsl,ls1088a-esdhc"))
1389			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1390		else
1391			esdhc->peripheral_clock = clk_get_rate(clk);
1392
1393		clk_put(clk);
1394	}
1395
1396	esdhc_clock_enable(host, false);
1397	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1398	/*
1399	 * This bit is not able to be reset by SDHCI_RESET_ALL. Need to
1400	 * initialize it as 1 or 0 once, to override the different value
1401	 * which may be configured in bootloader.
1402	 */
1403	if (esdhc->peripheral_clock)
1404		val |= ESDHC_PERIPHERAL_CLK_SEL;
1405	else
1406		val &= ~ESDHC_PERIPHERAL_CLK_SEL;
1407	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1408	esdhc_clock_enable(host, true);
1409}
1410
1411static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1412{
1413	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1414	return 0;
1415}
1416
1417static int sdhci_esdhc_probe(struct platform_device *pdev)
1418{
1419	struct sdhci_host *host;
1420	struct device_node *np;
1421	struct sdhci_pltfm_host *pltfm_host;
1422	struct sdhci_esdhc *esdhc;
1423	int ret;
1424
1425	np = pdev->dev.of_node;
1426
1427	if (of_property_read_bool(np, "little-endian"))
1428		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1429					sizeof(struct sdhci_esdhc));
1430	else
1431		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1432					sizeof(struct sdhci_esdhc));
1433
1434	if (IS_ERR(host))
1435		return PTR_ERR(host);
1436
1437	host->mmc_host_ops.start_signal_voltage_switch =
1438		esdhc_signal_voltage_switch;
1439	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1440	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1441	host->tuning_delay = 1;
1442
1443	esdhc_init(pdev, host);
1444
1445	sdhci_get_of_property(pdev);
1446
1447	pltfm_host = sdhci_priv(host);
1448	esdhc = sdhci_pltfm_priv(pltfm_host);
1449	if (soc_device_match(soc_tuning_erratum_type1))
1450		esdhc->quirk_tuning_erratum_type1 = true;
1451	else
1452		esdhc->quirk_tuning_erratum_type1 = false;
1453
1454	if (soc_device_match(soc_tuning_erratum_type2))
1455		esdhc->quirk_tuning_erratum_type2 = true;
1456	else
1457		esdhc->quirk_tuning_erratum_type2 = false;
1458
1459	if (esdhc->vendor_ver == VENDOR_V_22)
1460		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1461
1462	if (esdhc->vendor_ver > VENDOR_V_22)
1463		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1464
1465	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1466		host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1467		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1468	}
1469
1470	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1471	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1472	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1473	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1474	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1475		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1476
1477	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1478		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1479
1480	esdhc->quirk_ignore_data_inhibit = false;
1481	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1482		/*
1483		 * Freescale messed up with P2020 as it has a non-standard
1484		 * host control register
1485		 */
1486		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1487		esdhc->quirk_ignore_data_inhibit = true;
1488	}
1489
1490	/* call to generic mmc_of_parse to support additional capabilities */
1491	ret = mmc_of_parse(host->mmc);
1492	if (ret)
1493		goto err;
1494
1495	mmc_of_parse_voltage(np, &host->ocr_mask);
1496
1497	ret = sdhci_add_host(host);
1498	if (ret)
1499		goto err;
1500
1501	return 0;
1502 err:
1503	sdhci_pltfm_free(pdev);
1504	return ret;
1505}
1506
1507static struct platform_driver sdhci_esdhc_driver = {
1508	.driver = {
1509		.name = "sdhci-esdhc",
1510		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1511		.of_match_table = sdhci_esdhc_of_match,
1512		.pm = &esdhc_of_dev_pm_ops,
1513	},
1514	.probe = sdhci_esdhc_probe,
1515	.remove = sdhci_pltfm_unregister,
1516};
1517
1518module_platform_driver(sdhci_esdhc_driver);
1519
1520MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1521MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1522	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1523MODULE_LICENSE("GPL v2");
1524