1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4 *
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
7
8#include <linux/module.h>
9#include <linux/of_device.h>
10#include <linux/delay.h>
11#include <linux/mmc/mmc.h>
12#include <linux/pm_runtime.h>
13#include <linux/pm_opp.h>
14#include <linux/slab.h>
15#include <linux/iopoll.h>
16#include <linux/regulator/consumer.h>
17#include <linux/interconnect.h>
18#include <linux/pinctrl/consumer.h>
19#include <linux/reset.h>
20
21#include "sdhci-pltfm.h"
22#include "cqhci.h"
23
24#define CORE_MCI_VERSION		0x50
25#define CORE_VERSION_MAJOR_SHIFT	28
26#define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
27#define CORE_VERSION_MINOR_MASK		0xff
28
29#define CORE_MCI_GENERICS		0x70
30#define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
31
32#define HC_MODE_EN		0x1
33#define CORE_POWER		0x0
34#define CORE_SW_RST		BIT(7)
35#define FF_CLK_SW_RST_DIS	BIT(13)
36
37#define CORE_PWRCTL_BUS_OFF	BIT(0)
38#define CORE_PWRCTL_BUS_ON	BIT(1)
39#define CORE_PWRCTL_IO_LOW	BIT(2)
40#define CORE_PWRCTL_IO_HIGH	BIT(3)
41#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
42#define CORE_PWRCTL_BUS_FAIL    BIT(1)
43#define CORE_PWRCTL_IO_SUCCESS	BIT(2)
44#define CORE_PWRCTL_IO_FAIL     BIT(3)
45#define REQ_BUS_OFF		BIT(0)
46#define REQ_BUS_ON		BIT(1)
47#define REQ_IO_LOW		BIT(2)
48#define REQ_IO_HIGH		BIT(3)
49#define INT_MASK		0xf
50#define MAX_PHASES		16
51#define CORE_DLL_LOCK		BIT(7)
52#define CORE_DDR_DLL_LOCK	BIT(11)
53#define CORE_DLL_EN		BIT(16)
54#define CORE_CDR_EN		BIT(17)
55#define CORE_CK_OUT_EN		BIT(18)
56#define CORE_CDR_EXT_EN		BIT(19)
57#define CORE_DLL_PDN		BIT(29)
58#define CORE_DLL_RST		BIT(30)
59#define CORE_CMD_DAT_TRACK_SEL	BIT(0)
60
61#define CORE_DDR_CAL_EN		BIT(0)
62#define CORE_FLL_CYCLE_CNT	BIT(18)
63#define CORE_DLL_CLOCK_DISABLE	BIT(21)
64
65#define DLL_USR_CTL_POR_VAL	0x10800
66#define ENABLE_DLL_LOCK_STATUS	BIT(26)
67#define FINE_TUNE_MODE_EN	BIT(27)
68#define BIAS_OK_SIGNAL		BIT(29)
69
70#define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
71#define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
72
73#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
74#define CORE_CLK_PWRSAVE	BIT(1)
75#define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
76#define CORE_HC_MCLK_SEL_HS400	(3 << 8)
77#define CORE_HC_MCLK_SEL_MASK	(3 << 8)
78#define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
79#define CORE_IO_PAD_PWR_SWITCH	BIT(16)
80#define CORE_HC_SELECT_IN_EN	BIT(18)
81#define CORE_HC_SELECT_IN_HS400	(6 << 19)
82#define CORE_HC_SELECT_IN_MASK	(7 << 19)
83
84#define CORE_3_0V_SUPPORT	BIT(25)
85#define CORE_1_8V_SUPPORT	BIT(26)
86#define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
87
88#define CORE_CSR_CDC_CTLR_CFG0		0x130
89#define CORE_SW_TRIG_FULL_CALIB		BIT(16)
90#define CORE_HW_AUTOCAL_ENA		BIT(17)
91
92#define CORE_CSR_CDC_CTLR_CFG1		0x134
93#define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
94#define CORE_TIMER_ENA			BIT(16)
95
96#define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
97#define CORE_CSR_CDC_REFCOUNT_CFG	0x140
98#define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
99#define CORE_CDC_OFFSET_CFG		0x14C
100#define CORE_CSR_CDC_DELAY_CFG		0x150
101#define CORE_CDC_SLAVE_DDA_CFG		0x160
102#define CORE_CSR_CDC_STATUS0		0x164
103#define CORE_CALIBRATION_DONE		BIT(0)
104
105#define CORE_CDC_ERROR_CODE_MASK	0x7000000
106
107#define CORE_CSR_CDC_GEN_CFG		0x178
108#define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
109#define CORE_CDC_SWITCH_RC_EN		BIT(1)
110
111#define CORE_CDC_T4_DLY_SEL		BIT(0)
112#define CORE_CMDIN_RCLK_EN		BIT(1)
113#define CORE_START_CDC_TRAFFIC		BIT(6)
114
115#define CORE_PWRSAVE_DLL	BIT(3)
116
117#define DDR_CONFIG_POR_VAL	0x80040873
118
119
120#define INVALID_TUNING_PHASE	-1
121#define SDHCI_MSM_MIN_CLOCK	400000
122#define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
123
124#define CDR_SELEXT_SHIFT	20
125#define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
126#define CMUX_SHIFT_PHASE_SHIFT	24
127#define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
128
129#define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
130
131/* Timeout value to avoid infinite waiting for pwr_irq */
132#define MSM_PWR_IRQ_TIMEOUT_MS 5000
133
134/* Max load for eMMC Vdd-io supply */
135#define MMC_VQMMC_MAX_LOAD_UA	325000
136
137#define msm_host_readl(msm_host, host, offset) \
138	msm_host->var_ops->msm_readl_relaxed(host, offset)
139
140#define msm_host_writel(msm_host, val, host, offset) \
141	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
142
143/* CQHCI vendor specific registers */
144#define CQHCI_VENDOR_CFG1	0xA00
145#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
146
147struct sdhci_msm_offset {
148	u32 core_hc_mode;
149	u32 core_mci_data_cnt;
150	u32 core_mci_status;
151	u32 core_mci_fifo_cnt;
152	u32 core_mci_version;
153	u32 core_generics;
154	u32 core_testbus_config;
155	u32 core_testbus_sel2_bit;
156	u32 core_testbus_ena;
157	u32 core_testbus_sel2;
158	u32 core_pwrctl_status;
159	u32 core_pwrctl_mask;
160	u32 core_pwrctl_clear;
161	u32 core_pwrctl_ctl;
162	u32 core_sdcc_debug_reg;
163	u32 core_dll_config;
164	u32 core_dll_status;
165	u32 core_vendor_spec;
166	u32 core_vendor_spec_adma_err_addr0;
167	u32 core_vendor_spec_adma_err_addr1;
168	u32 core_vendor_spec_func2;
169	u32 core_vendor_spec_capabilities0;
170	u32 core_ddr_200_cfg;
171	u32 core_vendor_spec3;
172	u32 core_dll_config_2;
173	u32 core_dll_config_3;
174	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
175	u32 core_ddr_config;
176	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
177};
178
179static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
180	.core_mci_data_cnt = 0x35c,
181	.core_mci_status = 0x324,
182	.core_mci_fifo_cnt = 0x308,
183	.core_mci_version = 0x318,
184	.core_generics = 0x320,
185	.core_testbus_config = 0x32c,
186	.core_testbus_sel2_bit = 3,
187	.core_testbus_ena = (1 << 31),
188	.core_testbus_sel2 = (1 << 3),
189	.core_pwrctl_status = 0x240,
190	.core_pwrctl_mask = 0x244,
191	.core_pwrctl_clear = 0x248,
192	.core_pwrctl_ctl = 0x24c,
193	.core_sdcc_debug_reg = 0x358,
194	.core_dll_config = 0x200,
195	.core_dll_status = 0x208,
196	.core_vendor_spec = 0x20c,
197	.core_vendor_spec_adma_err_addr0 = 0x214,
198	.core_vendor_spec_adma_err_addr1 = 0x218,
199	.core_vendor_spec_func2 = 0x210,
200	.core_vendor_spec_capabilities0 = 0x21c,
201	.core_ddr_200_cfg = 0x224,
202	.core_vendor_spec3 = 0x250,
203	.core_dll_config_2 = 0x254,
204	.core_dll_config_3 = 0x258,
205	.core_ddr_config = 0x25c,
206	.core_dll_usr_ctl = 0x388,
207};
208
209static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
210	.core_hc_mode = 0x78,
211	.core_mci_data_cnt = 0x30,
212	.core_mci_status = 0x34,
213	.core_mci_fifo_cnt = 0x44,
214	.core_mci_version = 0x050,
215	.core_generics = 0x70,
216	.core_testbus_config = 0x0cc,
217	.core_testbus_sel2_bit = 4,
218	.core_testbus_ena = (1 << 3),
219	.core_testbus_sel2 = (1 << 4),
220	.core_pwrctl_status = 0xdc,
221	.core_pwrctl_mask = 0xe0,
222	.core_pwrctl_clear = 0xe4,
223	.core_pwrctl_ctl = 0xe8,
224	.core_sdcc_debug_reg = 0x124,
225	.core_dll_config = 0x100,
226	.core_dll_status = 0x108,
227	.core_vendor_spec = 0x10c,
228	.core_vendor_spec_adma_err_addr0 = 0x114,
229	.core_vendor_spec_adma_err_addr1 = 0x118,
230	.core_vendor_spec_func2 = 0x110,
231	.core_vendor_spec_capabilities0 = 0x11c,
232	.core_ddr_200_cfg = 0x184,
233	.core_vendor_spec3 = 0x1b0,
234	.core_dll_config_2 = 0x1b4,
235	.core_ddr_config_old = 0x1b8,
236	.core_ddr_config = 0x1bc,
237};
238
239struct sdhci_msm_variant_ops {
240	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
241	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
242			u32 offset);
243};
244
245/*
246 * From V5, register spaces have changed. Wrap this info in a structure
247 * and choose the data_structure based on version info mentioned in DT.
248 */
249struct sdhci_msm_variant_info {
250	bool mci_removed;
251	bool restore_dll_config;
252	bool uses_tassadar_dll;
253	const struct sdhci_msm_variant_ops *var_ops;
254	const struct sdhci_msm_offset *offset;
255};
256
257struct sdhci_msm_host {
258	struct platform_device *pdev;
259	void __iomem *core_mem;	/* MSM SDCC mapped address */
260	int pwr_irq;		/* power irq */
261	struct clk *bus_clk;	/* SDHC bus voter clock */
262	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
263	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
264	unsigned long clk_rate;
265	struct mmc_host *mmc;
266	struct opp_table *opp_table;
267	bool use_14lpp_dll_reset;
268	bool tuning_done;
269	bool calibration_done;
270	u8 saved_tuning_phase;
271	bool use_cdclp533;
272	u32 curr_pwr_state;
273	u32 curr_io_level;
274	wait_queue_head_t pwr_irq_wait;
275	bool pwr_irq_flag;
276	u32 caps_0;
277	bool mci_removed;
278	bool restore_dll_config;
279	const struct sdhci_msm_variant_ops *var_ops;
280	const struct sdhci_msm_offset *offset;
281	bool use_cdr;
282	u32 transfer_mode;
283	bool updated_ddr_cfg;
284	bool uses_tassadar_dll;
285	u32 dll_config;
286	u32 ddr_config;
287	bool vqmmc_enabled;
288};
289
290static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
291{
292	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
293	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
294
295	return msm_host->offset;
296}
297
298/*
299 * APIs to read/write to vendor specific registers which were there in the
300 * core_mem region before MCI was removed.
301 */
302static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
303		u32 offset)
304{
305	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
306	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
307
308	return readl_relaxed(msm_host->core_mem + offset);
309}
310
311static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
312		u32 offset)
313{
314	return readl_relaxed(host->ioaddr + offset);
315}
316
317static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
318		struct sdhci_host *host, u32 offset)
319{
320	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
321	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
322
323	writel_relaxed(val, msm_host->core_mem + offset);
324}
325
326static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
327		struct sdhci_host *host, u32 offset)
328{
329	writel_relaxed(val, host->ioaddr + offset);
330}
331
332static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
333						    unsigned int clock)
334{
335	struct mmc_ios ios = host->mmc->ios;
336	/*
337	 * The SDHC requires internal clock frequency to be double the
338	 * actual clock that will be set for DDR mode. The controller
339	 * uses the faster clock(100/400MHz) for some of its parts and
340	 * send the actual required clock (50/200MHz) to the card.
341	 */
342	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
343	    ios.timing == MMC_TIMING_MMC_DDR52 ||
344	    ios.timing == MMC_TIMING_MMC_HS400 ||
345	    host->flags & SDHCI_HS400_TUNING)
346		clock *= 2;
347	return clock;
348}
349
350static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
351					    unsigned int clock)
352{
353	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
354	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
355	struct mmc_ios curr_ios = host->mmc->ios;
356	struct clk *core_clk = msm_host->bulk_clks[0].clk;
357	int rc;
358
359	clock = msm_get_clock_rate_for_bus_mode(host, clock);
360	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock);
361	if (rc) {
362		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
363		       mmc_hostname(host->mmc), clock,
364		       curr_ios.timing);
365		return;
366	}
367	msm_host->clk_rate = clock;
368	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
369		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
370		 curr_ios.timing);
371}
372
373/* Platform specific tuning */
374static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
375{
376	u32 wait_cnt = 50;
377	u8 ck_out_en;
378	struct mmc_host *mmc = host->mmc;
379	const struct sdhci_msm_offset *msm_offset =
380					sdhci_priv_msm_offset(host);
381
382	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
383	ck_out_en = !!(readl_relaxed(host->ioaddr +
384			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
385
386	while (ck_out_en != poll) {
387		if (--wait_cnt == 0) {
388			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
389			       mmc_hostname(mmc), poll);
390			return -ETIMEDOUT;
391		}
392		udelay(1);
393
394		ck_out_en = !!(readl_relaxed(host->ioaddr +
395			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
396	}
397
398	return 0;
399}
400
401static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
402{
403	int rc;
404	static const u8 grey_coded_phase_table[] = {
405		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
406		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
407	};
408	unsigned long flags;
409	u32 config;
410	struct mmc_host *mmc = host->mmc;
411	const struct sdhci_msm_offset *msm_offset =
412					sdhci_priv_msm_offset(host);
413
414	if (phase > 0xf)
415		return -EINVAL;
416
417	spin_lock_irqsave(&host->lock, flags);
418
419	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
420	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
421	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
422	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
423
424	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
425	rc = msm_dll_poll_ck_out_en(host, 0);
426	if (rc)
427		goto err_out;
428
429	/*
430	 * Write the selected DLL clock output phase (0 ... 15)
431	 * to CDR_SELEXT bit field of DLL_CONFIG register.
432	 */
433	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
434	config &= ~CDR_SELEXT_MASK;
435	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
436	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
437
438	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
439	config |= CORE_CK_OUT_EN;
440	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
441
442	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
443	rc = msm_dll_poll_ck_out_en(host, 1);
444	if (rc)
445		goto err_out;
446
447	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
448	config |= CORE_CDR_EN;
449	config &= ~CORE_CDR_EXT_EN;
450	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
451	goto out;
452
453err_out:
454	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
455	       mmc_hostname(mmc), phase);
456out:
457	spin_unlock_irqrestore(&host->lock, flags);
458	return rc;
459}
460
461/*
462 * Find out the greatest range of consecuitive selected
463 * DLL clock output phases that can be used as sampling
464 * setting for SD3.0 UHS-I card read operation (in SDR104
465 * timing mode) or for eMMC4.5 card read operation (in
466 * HS400/HS200 timing mode).
467 * Select the 3/4 of the range and configure the DLL with the
468 * selected DLL clock output phase.
469 */
470
471static int msm_find_most_appropriate_phase(struct sdhci_host *host,
472					   u8 *phase_table, u8 total_phases)
473{
474	int ret;
475	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
476	u8 phases_per_row[MAX_PHASES] = { 0 };
477	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
478	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
479	bool phase_0_found = false, phase_15_found = false;
480	struct mmc_host *mmc = host->mmc;
481
482	if (!total_phases || (total_phases > MAX_PHASES)) {
483		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
484		       mmc_hostname(mmc), total_phases);
485		return -EINVAL;
486	}
487
488	for (cnt = 0; cnt < total_phases; cnt++) {
489		ranges[row_index][col_index] = phase_table[cnt];
490		phases_per_row[row_index] += 1;
491		col_index++;
492
493		if ((cnt + 1) == total_phases) {
494			continue;
495		/* check if next phase in phase_table is consecutive or not */
496		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
497			row_index++;
498			col_index = 0;
499		}
500	}
501
502	if (row_index >= MAX_PHASES)
503		return -EINVAL;
504
505	/* Check if phase-0 is present in first valid window? */
506	if (!ranges[0][0]) {
507		phase_0_found = true;
508		phase_0_raw_index = 0;
509		/* Check if cycle exist between 2 valid windows */
510		for (cnt = 1; cnt <= row_index; cnt++) {
511			if (phases_per_row[cnt]) {
512				for (i = 0; i < phases_per_row[cnt]; i++) {
513					if (ranges[cnt][i] == 15) {
514						phase_15_found = true;
515						phase_15_raw_index = cnt;
516						break;
517					}
518				}
519			}
520		}
521	}
522
523	/* If 2 valid windows form cycle then merge them as single window */
524	if (phase_0_found && phase_15_found) {
525		/* number of phases in raw where phase 0 is present */
526		u8 phases_0 = phases_per_row[phase_0_raw_index];
527		/* number of phases in raw where phase 15 is present */
528		u8 phases_15 = phases_per_row[phase_15_raw_index];
529
530		if (phases_0 + phases_15 >= MAX_PHASES)
531			/*
532			 * If there are more than 1 phase windows then total
533			 * number of phases in both the windows should not be
534			 * more than or equal to MAX_PHASES.
535			 */
536			return -EINVAL;
537
538		/* Merge 2 cyclic windows */
539		i = phases_15;
540		for (cnt = 0; cnt < phases_0; cnt++) {
541			ranges[phase_15_raw_index][i] =
542			    ranges[phase_0_raw_index][cnt];
543			if (++i >= MAX_PHASES)
544				break;
545		}
546
547		phases_per_row[phase_0_raw_index] = 0;
548		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
549	}
550
551	for (cnt = 0; cnt <= row_index; cnt++) {
552		if (phases_per_row[cnt] > curr_max) {
553			curr_max = phases_per_row[cnt];
554			selected_row_index = cnt;
555		}
556	}
557
558	i = (curr_max * 3) / 4;
559	if (i)
560		i--;
561
562	ret = ranges[selected_row_index][i];
563
564	if (ret >= MAX_PHASES) {
565		ret = -EINVAL;
566		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
567		       mmc_hostname(mmc), ret);
568	}
569
570	return ret;
571}
572
573static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
574{
575	u32 mclk_freq = 0, config;
576	const struct sdhci_msm_offset *msm_offset =
577					sdhci_priv_msm_offset(host);
578
579	/* Program the MCLK value to MCLK_FREQ bit field */
580	if (host->clock <= 112000000)
581		mclk_freq = 0;
582	else if (host->clock <= 125000000)
583		mclk_freq = 1;
584	else if (host->clock <= 137000000)
585		mclk_freq = 2;
586	else if (host->clock <= 150000000)
587		mclk_freq = 3;
588	else if (host->clock <= 162000000)
589		mclk_freq = 4;
590	else if (host->clock <= 175000000)
591		mclk_freq = 5;
592	else if (host->clock <= 187000000)
593		mclk_freq = 6;
594	else if (host->clock <= 200000000)
595		mclk_freq = 7;
596
597	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
598	config &= ~CMUX_SHIFT_PHASE_MASK;
599	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
600	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
601}
602
603/* Initialize the DLL (Programmable Delay Line) */
604static int msm_init_cm_dll(struct sdhci_host *host)
605{
606	struct mmc_host *mmc = host->mmc;
607	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
608	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
609	int wait_cnt = 50;
610	unsigned long flags, xo_clk = 0;
611	u32 config;
612	const struct sdhci_msm_offset *msm_offset =
613					msm_host->offset;
614
615	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
616		xo_clk = clk_get_rate(msm_host->xo_clk);
617
618	spin_lock_irqsave(&host->lock, flags);
619
620	/*
621	 * Make sure that clock is always enabled when DLL
622	 * tuning is in progress. Keeping PWRSAVE ON may
623	 * turn off the clock.
624	 */
625	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
626	config &= ~CORE_CLK_PWRSAVE;
627	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
628
629	if (msm_host->dll_config)
630		writel_relaxed(msm_host->dll_config,
631				host->ioaddr + msm_offset->core_dll_config);
632
633	if (msm_host->use_14lpp_dll_reset) {
634		config = readl_relaxed(host->ioaddr +
635				msm_offset->core_dll_config);
636		config &= ~CORE_CK_OUT_EN;
637		writel_relaxed(config, host->ioaddr +
638				msm_offset->core_dll_config);
639
640		config = readl_relaxed(host->ioaddr +
641				msm_offset->core_dll_config_2);
642		config |= CORE_DLL_CLOCK_DISABLE;
643		writel_relaxed(config, host->ioaddr +
644				msm_offset->core_dll_config_2);
645	}
646
647	config = readl_relaxed(host->ioaddr +
648			msm_offset->core_dll_config);
649	config |= CORE_DLL_RST;
650	writel_relaxed(config, host->ioaddr +
651			msm_offset->core_dll_config);
652
653	config = readl_relaxed(host->ioaddr +
654			msm_offset->core_dll_config);
655	config |= CORE_DLL_PDN;
656	writel_relaxed(config, host->ioaddr +
657			msm_offset->core_dll_config);
658
659	if (!msm_host->dll_config)
660		msm_cm_dll_set_freq(host);
661
662	if (msm_host->use_14lpp_dll_reset &&
663	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
664		u32 mclk_freq = 0;
665
666		config = readl_relaxed(host->ioaddr +
667				msm_offset->core_dll_config_2);
668		config &= CORE_FLL_CYCLE_CNT;
669		if (config)
670			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
671					xo_clk);
672		else
673			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
674					xo_clk);
675
676		config = readl_relaxed(host->ioaddr +
677				msm_offset->core_dll_config_2);
678		config &= ~(0xFF << 10);
679		config |= mclk_freq << 10;
680
681		writel_relaxed(config, host->ioaddr +
682				msm_offset->core_dll_config_2);
683		/* wait for 5us before enabling DLL clock */
684		udelay(5);
685	}
686
687	config = readl_relaxed(host->ioaddr +
688			msm_offset->core_dll_config);
689	config &= ~CORE_DLL_RST;
690	writel_relaxed(config, host->ioaddr +
691			msm_offset->core_dll_config);
692
693	config = readl_relaxed(host->ioaddr +
694			msm_offset->core_dll_config);
695	config &= ~CORE_DLL_PDN;
696	writel_relaxed(config, host->ioaddr +
697			msm_offset->core_dll_config);
698
699	if (msm_host->use_14lpp_dll_reset) {
700		if (!msm_host->dll_config)
701			msm_cm_dll_set_freq(host);
702		config = readl_relaxed(host->ioaddr +
703				msm_offset->core_dll_config_2);
704		config &= ~CORE_DLL_CLOCK_DISABLE;
705		writel_relaxed(config, host->ioaddr +
706				msm_offset->core_dll_config_2);
707	}
708
709	/*
710	 * Configure DLL user control register to enable DLL status.
711	 * This setting is applicable to SDCC v5.1 onwards only.
712	 */
713	if (msm_host->uses_tassadar_dll) {
714		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
715			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
716		writel_relaxed(config, host->ioaddr +
717				msm_offset->core_dll_usr_ctl);
718
719		config = readl_relaxed(host->ioaddr +
720				msm_offset->core_dll_config_3);
721		config &= ~0xFF;
722		if (msm_host->clk_rate < 150000000)
723			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
724		else
725			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
726		writel_relaxed(config, host->ioaddr +
727			msm_offset->core_dll_config_3);
728	}
729
730	config = readl_relaxed(host->ioaddr +
731			msm_offset->core_dll_config);
732	config |= CORE_DLL_EN;
733	writel_relaxed(config, host->ioaddr +
734			msm_offset->core_dll_config);
735
736	config = readl_relaxed(host->ioaddr +
737			msm_offset->core_dll_config);
738	config |= CORE_CK_OUT_EN;
739	writel_relaxed(config, host->ioaddr +
740			msm_offset->core_dll_config);
741
742	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
743	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
744		 CORE_DLL_LOCK)) {
745		/* max. wait for 50us sec for LOCK bit to be set */
746		if (--wait_cnt == 0) {
747			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
748			       mmc_hostname(mmc));
749			spin_unlock_irqrestore(&host->lock, flags);
750			return -ETIMEDOUT;
751		}
752		udelay(1);
753	}
754
755	spin_unlock_irqrestore(&host->lock, flags);
756	return 0;
757}
758
759static void msm_hc_select_default(struct sdhci_host *host)
760{
761	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
762	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
763	u32 config;
764	const struct sdhci_msm_offset *msm_offset =
765					msm_host->offset;
766
767	if (!msm_host->use_cdclp533) {
768		config = readl_relaxed(host->ioaddr +
769				msm_offset->core_vendor_spec3);
770		config &= ~CORE_PWRSAVE_DLL;
771		writel_relaxed(config, host->ioaddr +
772				msm_offset->core_vendor_spec3);
773	}
774
775	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
776	config &= ~CORE_HC_MCLK_SEL_MASK;
777	config |= CORE_HC_MCLK_SEL_DFLT;
778	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
779
780	/*
781	 * Disable HC_SELECT_IN to be able to use the UHS mode select
782	 * configuration from Host Control2 register for all other
783	 * modes.
784	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
785	 * in VENDOR_SPEC_FUNC
786	 */
787	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
788	config &= ~CORE_HC_SELECT_IN_EN;
789	config &= ~CORE_HC_SELECT_IN_MASK;
790	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
791
792	/*
793	 * Make sure above writes impacting free running MCLK are completed
794	 * before changing the clk_rate at GCC.
795	 */
796	wmb();
797}
798
799static void msm_hc_select_hs400(struct sdhci_host *host)
800{
801	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
802	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
803	struct mmc_ios ios = host->mmc->ios;
804	u32 config, dll_lock;
805	int rc;
806	const struct sdhci_msm_offset *msm_offset =
807					msm_host->offset;
808
809	/* Select the divided clock (free running MCLK/2) */
810	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
811	config &= ~CORE_HC_MCLK_SEL_MASK;
812	config |= CORE_HC_MCLK_SEL_HS400;
813
814	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
815	/*
816	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
817	 * register
818	 */
819	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
820	    !msm_host->calibration_done) {
821		config = readl_relaxed(host->ioaddr +
822				msm_offset->core_vendor_spec);
823		config |= CORE_HC_SELECT_IN_HS400;
824		config |= CORE_HC_SELECT_IN_EN;
825		writel_relaxed(config, host->ioaddr +
826				msm_offset->core_vendor_spec);
827	}
828	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
829		/*
830		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
831		 * core_dll_status to be set. This should get set
832		 * within 15 us at 200 MHz.
833		 */
834		rc = readl_relaxed_poll_timeout(host->ioaddr +
835						msm_offset->core_dll_status,
836						dll_lock,
837						(dll_lock &
838						(CORE_DLL_LOCK |
839						CORE_DDR_DLL_LOCK)), 10,
840						1000);
841		if (rc == -ETIMEDOUT)
842			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
843			       mmc_hostname(host->mmc), dll_lock);
844	}
845	/*
846	 * Make sure above writes impacting free running MCLK are completed
847	 * before changing the clk_rate at GCC.
848	 */
849	wmb();
850}
851
852/*
853 * sdhci_msm_hc_select_mode :- In general all timing modes are
854 * controlled via UHS mode select in Host Control2 register.
855 * eMMC specific HS200/HS400 doesn't have their respective modes
856 * defined here, hence we use these values.
857 *
858 * HS200 - SDR104 (Since they both are equivalent in functionality)
859 * HS400 - This involves multiple configurations
860 *		Initially SDR104 - when tuning is required as HS200
861 *		Then when switching to DDR @ 400MHz (HS400) we use
862 *		the vendor specific HC_SELECT_IN to control the mode.
863 *
864 * In addition to controlling the modes we also need to select the
865 * correct input clock for DLL depending on the mode.
866 *
867 * HS400 - divided clock (free running MCLK/2)
868 * All other modes - default (free running MCLK)
869 */
870static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
871{
872	struct mmc_ios ios = host->mmc->ios;
873
874	if (ios.timing == MMC_TIMING_MMC_HS400 ||
875	    host->flags & SDHCI_HS400_TUNING)
876		msm_hc_select_hs400(host);
877	else
878		msm_hc_select_default(host);
879}
880
881static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
882{
883	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
884	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
885	u32 config, calib_done;
886	int ret;
887	const struct sdhci_msm_offset *msm_offset =
888					msm_host->offset;
889
890	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
891
892	/*
893	 * Retuning in HS400 (DDR mode) will fail, just reset the
894	 * tuning block and restore the saved tuning phase.
895	 */
896	ret = msm_init_cm_dll(host);
897	if (ret)
898		goto out;
899
900	/* Set the selected phase in delay line hw block */
901	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
902	if (ret)
903		goto out;
904
905	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
906	config |= CORE_CMD_DAT_TRACK_SEL;
907	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
908
909	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
910	config &= ~CORE_CDC_T4_DLY_SEL;
911	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
912
913	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
914	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
915	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
916
917	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
918	config |= CORE_CDC_SWITCH_RC_EN;
919	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
920
921	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
922	config &= ~CORE_START_CDC_TRAFFIC;
923	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
924
925	/* Perform CDC Register Initialization Sequence */
926
927	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
928	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
929	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
930	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
931	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
932	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
933	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
934	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
935	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
936
937	/* CDC HW Calibration */
938
939	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
940	config |= CORE_SW_TRIG_FULL_CALIB;
941	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
942
943	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
944	config &= ~CORE_SW_TRIG_FULL_CALIB;
945	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
946
947	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
948	config |= CORE_HW_AUTOCAL_ENA;
949	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
950
951	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
952	config |= CORE_TIMER_ENA;
953	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
954
955	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
956					 calib_done,
957					 (calib_done & CORE_CALIBRATION_DONE),
958					 1, 50);
959
960	if (ret == -ETIMEDOUT) {
961		pr_err("%s: %s: CDC calibration was not completed\n",
962		       mmc_hostname(host->mmc), __func__);
963		goto out;
964	}
965
966	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
967			& CORE_CDC_ERROR_CODE_MASK;
968	if (ret) {
969		pr_err("%s: %s: CDC error code %d\n",
970		       mmc_hostname(host->mmc), __func__, ret);
971		ret = -EINVAL;
972		goto out;
973	}
974
975	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
976	config |= CORE_START_CDC_TRAFFIC;
977	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
978out:
979	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
980		 __func__, ret);
981	return ret;
982}
983
984static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
985{
986	struct mmc_host *mmc = host->mmc;
987	u32 dll_status, config, ddr_cfg_offset;
988	int ret;
989	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
990	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
991	const struct sdhci_msm_offset *msm_offset =
992					sdhci_priv_msm_offset(host);
993
994	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
995
996	/*
997	 * Currently the core_ddr_config register defaults to desired
998	 * configuration on reset. Currently reprogramming the power on
999	 * reset (POR) value in case it might have been modified by
1000	 * bootloaders. In the future, if this changes, then the desired
1001	 * values will need to be programmed appropriately.
1002	 */
1003	if (msm_host->updated_ddr_cfg)
1004		ddr_cfg_offset = msm_offset->core_ddr_config;
1005	else
1006		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1007	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1008
1009	if (mmc->ios.enhanced_strobe) {
1010		config = readl_relaxed(host->ioaddr +
1011				msm_offset->core_ddr_200_cfg);
1012		config |= CORE_CMDIN_RCLK_EN;
1013		writel_relaxed(config, host->ioaddr +
1014				msm_offset->core_ddr_200_cfg);
1015	}
1016
1017	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1018	config |= CORE_DDR_CAL_EN;
1019	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1020
1021	ret = readl_relaxed_poll_timeout(host->ioaddr +
1022					msm_offset->core_dll_status,
1023					dll_status,
1024					(dll_status & CORE_DDR_DLL_LOCK),
1025					10, 1000);
1026
1027	if (ret == -ETIMEDOUT) {
1028		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1029		       mmc_hostname(host->mmc), __func__);
1030		goto out;
1031	}
1032
1033	/*
1034	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1035	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1036	 * and MCLK must be switched on for at-least 1us before DATA
1037	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1038	 * guarantee above requirement. So PWRSAVE_DLL should not be
1039	 * turned on for host controllers using this DLL.
1040	 */
1041	if (!msm_host->use_14lpp_dll_reset) {
1042		config = readl_relaxed(host->ioaddr +
1043				msm_offset->core_vendor_spec3);
1044		config |= CORE_PWRSAVE_DLL;
1045		writel_relaxed(config, host->ioaddr +
1046				msm_offset->core_vendor_spec3);
1047	}
1048
1049	/*
1050	 * Drain writebuffer to ensure above DLL calibration
1051	 * and PWRSAVE DLL is enabled.
1052	 */
1053	wmb();
1054out:
1055	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1056		 __func__, ret);
1057	return ret;
1058}
1059
1060static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1061{
1062	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1063	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1064	struct mmc_host *mmc = host->mmc;
1065	int ret;
1066	u32 config;
1067	const struct sdhci_msm_offset *msm_offset =
1068					msm_host->offset;
1069
1070	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1071
1072	/*
1073	 * Retuning in HS400 (DDR mode) will fail, just reset the
1074	 * tuning block and restore the saved tuning phase.
1075	 */
1076	ret = msm_init_cm_dll(host);
1077	if (ret)
1078		goto out;
1079
1080	if (!mmc->ios.enhanced_strobe) {
1081		/* Set the selected phase in delay line hw block */
1082		ret = msm_config_cm_dll_phase(host,
1083					      msm_host->saved_tuning_phase);
1084		if (ret)
1085			goto out;
1086		config = readl_relaxed(host->ioaddr +
1087				msm_offset->core_dll_config);
1088		config |= CORE_CMD_DAT_TRACK_SEL;
1089		writel_relaxed(config, host->ioaddr +
1090				msm_offset->core_dll_config);
1091	}
1092
1093	if (msm_host->use_cdclp533)
1094		ret = sdhci_msm_cdclp533_calibration(host);
1095	else
1096		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1097out:
1098	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1099		 __func__, ret);
1100	return ret;
1101}
1102
1103static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1104{
1105	struct mmc_ios *ios = &host->mmc->ios;
1106
1107	/*
1108	 * Tuning is required for SDR104, HS200 and HS400 cards and
1109	 * if clock frequency is greater than 100MHz in these modes.
1110	 */
1111	if (host->clock <= CORE_FREQ_100MHZ ||
1112	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1113	    ios->timing == MMC_TIMING_MMC_HS200 ||
1114	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1115	    ios->enhanced_strobe)
1116		return false;
1117
1118	return true;
1119}
1120
1121static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1122{
1123	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1124	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1125	int ret;
1126
1127	/*
1128	 * SDR DLL comes into picture only for timing modes which needs
1129	 * tuning.
1130	 */
1131	if (!sdhci_msm_is_tuning_needed(host))
1132		return 0;
1133
1134	/* Reset the tuning block */
1135	ret = msm_init_cm_dll(host);
1136	if (ret)
1137		return ret;
1138
1139	/* Restore the tuning block */
1140	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1141
1142	return ret;
1143}
1144
1145static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1146{
1147	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1148	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1149					      msm_offset->core_dll_config);
1150
1151	config = oldconfig;
1152	if (enable) {
1153		config |= CORE_CDR_EN;
1154		config &= ~CORE_CDR_EXT_EN;
1155	} else {
1156		config &= ~CORE_CDR_EN;
1157		config |= CORE_CDR_EXT_EN;
1158	}
1159
1160	if (config != oldconfig) {
1161		writel_relaxed(config, host->ioaddr +
1162			       msm_offset->core_dll_config);
1163	}
1164}
1165
1166static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1167{
1168	struct sdhci_host *host = mmc_priv(mmc);
1169	int tuning_seq_cnt = 10;
1170	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1171	int rc;
1172	struct mmc_ios ios = host->mmc->ios;
1173	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1174	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1175
1176	if (!sdhci_msm_is_tuning_needed(host)) {
1177		msm_host->use_cdr = false;
1178		sdhci_msm_set_cdr(host, false);
1179		return 0;
1180	}
1181
1182	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1183	msm_host->use_cdr = true;
1184
1185	/*
1186	 * Clear tuning_done flag before tuning to ensure proper
1187	 * HS400 settings.
1188	 */
1189	msm_host->tuning_done = 0;
1190
1191	/*
1192	 * For HS400 tuning in HS200 timing requires:
1193	 * - select MCLK/2 in VENDOR_SPEC
1194	 * - program MCLK to 400MHz (or nearest supported) in GCC
1195	 */
1196	if (host->flags & SDHCI_HS400_TUNING) {
1197		sdhci_msm_hc_select_mode(host);
1198		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1199		host->flags &= ~SDHCI_HS400_TUNING;
1200	}
1201
1202retry:
1203	/* First of all reset the tuning block */
1204	rc = msm_init_cm_dll(host);
1205	if (rc)
1206		return rc;
1207
1208	phase = 0;
1209	do {
1210		/* Set the phase in delay line hw block */
1211		rc = msm_config_cm_dll_phase(host, phase);
1212		if (rc)
1213			return rc;
1214
1215		rc = mmc_send_tuning(mmc, opcode, NULL);
1216		if (!rc) {
1217			/* Tuning is successful at this tuning point */
1218			tuned_phases[tuned_phase_cnt++] = phase;
1219			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1220				 mmc_hostname(mmc), phase);
1221		}
1222	} while (++phase < ARRAY_SIZE(tuned_phases));
1223
1224	if (tuned_phase_cnt) {
1225		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1226			/*
1227			 * All phases valid is _almost_ as bad as no phases
1228			 * valid.  Probably all phases are not really reliable
1229			 * but we didn't detect where the unreliable place is.
1230			 * That means we'll essentially be guessing and hoping
1231			 * we get a good phase.  Better to try a few times.
1232			 */
1233			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1234				mmc_hostname(mmc));
1235			if (--tuning_seq_cnt) {
1236				tuned_phase_cnt = 0;
1237				goto retry;
1238			}
1239		}
1240
1241		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1242						     tuned_phase_cnt);
1243		if (rc < 0)
1244			return rc;
1245		else
1246			phase = rc;
1247
1248		/*
1249		 * Finally set the selected phase in delay
1250		 * line hw block.
1251		 */
1252		rc = msm_config_cm_dll_phase(host, phase);
1253		if (rc)
1254			return rc;
1255		msm_host->saved_tuning_phase = phase;
1256		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1257			 mmc_hostname(mmc), phase);
1258	} else {
1259		if (--tuning_seq_cnt)
1260			goto retry;
1261		/* Tuning failed */
1262		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1263		       mmc_hostname(mmc));
1264		rc = -EIO;
1265	}
1266
1267	if (!rc)
1268		msm_host->tuning_done = true;
1269	return rc;
1270}
1271
1272/*
1273 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1274 * This needs to be done for both tuning and enhanced_strobe mode.
1275 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1276 * fixed feedback clock is used.
1277 */
1278static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1279{
1280	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1281	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1282	int ret;
1283
1284	if (host->clock > CORE_FREQ_100MHZ &&
1285	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1286	    !msm_host->calibration_done) {
1287		ret = sdhci_msm_hs400_dll_calibration(host);
1288		if (!ret)
1289			msm_host->calibration_done = true;
1290		else
1291			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1292			       mmc_hostname(host->mmc), ret);
1293	}
1294}
1295
1296static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1297					unsigned int uhs)
1298{
1299	struct mmc_host *mmc = host->mmc;
1300	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1301	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1302	u16 ctrl_2;
1303	u32 config;
1304	const struct sdhci_msm_offset *msm_offset =
1305					msm_host->offset;
1306
1307	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1308	/* Select Bus Speed Mode for host */
1309	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1310	switch (uhs) {
1311	case MMC_TIMING_UHS_SDR12:
1312		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1313		break;
1314	case MMC_TIMING_UHS_SDR25:
1315		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1316		break;
1317	case MMC_TIMING_UHS_SDR50:
1318		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1319		break;
1320	case MMC_TIMING_MMC_HS400:
1321	case MMC_TIMING_MMC_HS200:
1322	case MMC_TIMING_UHS_SDR104:
1323		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1324		break;
1325	case MMC_TIMING_UHS_DDR50:
1326	case MMC_TIMING_MMC_DDR52:
1327		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1328		break;
1329	}
1330
1331	/*
1332	 * When clock frequency is less than 100MHz, the feedback clock must be
1333	 * provided and DLL must not be used so that tuning can be skipped. To
1334	 * provide feedback clock, the mode selection can be any value less
1335	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1336	 */
1337	if (host->clock <= CORE_FREQ_100MHZ) {
1338		if (uhs == MMC_TIMING_MMC_HS400 ||
1339		    uhs == MMC_TIMING_MMC_HS200 ||
1340		    uhs == MMC_TIMING_UHS_SDR104)
1341			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1342		/*
1343		 * DLL is not required for clock <= 100MHz
1344		 * Thus, make sure DLL it is disabled when not required
1345		 */
1346		config = readl_relaxed(host->ioaddr +
1347				msm_offset->core_dll_config);
1348		config |= CORE_DLL_RST;
1349		writel_relaxed(config, host->ioaddr +
1350				msm_offset->core_dll_config);
1351
1352		config = readl_relaxed(host->ioaddr +
1353				msm_offset->core_dll_config);
1354		config |= CORE_DLL_PDN;
1355		writel_relaxed(config, host->ioaddr +
1356				msm_offset->core_dll_config);
1357
1358		/*
1359		 * The DLL needs to be restored and CDCLP533 recalibrated
1360		 * when the clock frequency is set back to 400MHz.
1361		 */
1362		msm_host->calibration_done = false;
1363	}
1364
1365	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1366		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1367	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1368
1369	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1370		sdhci_msm_hs400(host, &mmc->ios);
1371}
1372
1373static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1374{
1375	struct platform_device *pdev = msm_host->pdev;
1376	int ret;
1377
1378	if (level)
1379		ret = pinctrl_pm_select_default_state(&pdev->dev);
1380	else
1381		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1382
1383	return ret;
1384}
1385
1386static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1387{
1388	if (IS_ERR(mmc->supply.vmmc))
1389		return 0;
1390
1391	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1392}
1393
1394static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1395			      struct mmc_host *mmc, bool level)
1396{
1397	int ret;
1398	struct mmc_ios ios;
1399
1400	if (msm_host->vqmmc_enabled == level)
1401		return 0;
1402
1403	if (level) {
1404		/* Set the IO voltage regulator to default voltage level */
1405		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1406			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1407		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1408			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1409
1410		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1411			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1412			if (ret < 0) {
1413				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1414					mmc_hostname(mmc), ret);
1415				goto out;
1416			}
1417		}
1418		ret = regulator_enable(mmc->supply.vqmmc);
1419	} else {
1420		ret = regulator_disable(mmc->supply.vqmmc);
1421	}
1422
1423	if (ret)
1424		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1425			mmc_hostname(mmc), level ? "en":"dis", ret);
1426	else
1427		msm_host->vqmmc_enabled = level;
1428out:
1429	return ret;
1430}
1431
1432static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1433			      struct mmc_host *mmc, bool hpm)
1434{
1435	int load, ret;
1436
1437	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1438	ret = regulator_set_load(mmc->supply.vqmmc, load);
1439	if (ret)
1440		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1441			mmc_hostname(mmc), ret);
1442	return ret;
1443}
1444
1445static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1446			      struct mmc_host *mmc, bool level)
1447{
1448	int ret;
1449	bool always_on;
1450
1451	if (IS_ERR(mmc->supply.vqmmc) ||
1452			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1453		return 0;
1454	/*
1455	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1456	 * and HPM modes by setting the corresponding load.
1457	 *
1458	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1459	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1460	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1461	 * Vqmmc should remain ON, So just set the load instead of turning it
1462	 * off/on.
1463	 */
1464	always_on = !mmc_card_is_removable(mmc) &&
1465			mmc->card && mmc_card_mmc(mmc->card);
1466
1467	if (always_on)
1468		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1469	else
1470		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1471
1472	return ret;
1473}
1474
1475static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1476{
1477	init_waitqueue_head(&msm_host->pwr_irq_wait);
1478}
1479
1480static inline void sdhci_msm_complete_pwr_irq_wait(
1481		struct sdhci_msm_host *msm_host)
1482{
1483	wake_up(&msm_host->pwr_irq_wait);
1484}
1485
1486/*
1487 * sdhci_msm_check_power_status API should be called when registers writes
1488 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1489 * To what state the register writes will change the IO lines should be passed
1490 * as the argument req_type. This API will check whether the IO line's state
1491 * is already the expected state and will wait for power irq only if
1492 * power irq is expected to be triggered based on the current IO line state
1493 * and expected IO line state.
1494 */
1495static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1496{
1497	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1498	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1499	bool done = false;
1500	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1501	const struct sdhci_msm_offset *msm_offset =
1502					msm_host->offset;
1503
1504	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1505			mmc_hostname(host->mmc), __func__, req_type,
1506			msm_host->curr_pwr_state, msm_host->curr_io_level);
1507
1508	/*
1509	 * The power interrupt will not be generated for signal voltage
1510	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1511	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1512	 * it as always set.
1513	 */
1514	if (!msm_host->mci_removed)
1515		val = msm_host_readl(msm_host, host,
1516				msm_offset->core_generics);
1517	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1518	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1519		return;
1520	}
1521
1522	/*
1523	 * The IRQ for request type IO High/LOW will be generated when -
1524	 * there is a state change in 1.8V enable bit (bit 3) of
1525	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1526	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1527	 * to set it to 3.3V before card detection happens, the
1528	 * IRQ doesn't get triggered as there is no state change in this bit.
1529	 * The driver already handles this case by changing the IO voltage
1530	 * level to high as part of controller power up sequence. Hence, check
1531	 * for host->pwr to handle a case where IO voltage high request is
1532	 * issued even before controller power up.
1533	 */
1534	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1535		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1536				mmc_hostname(host->mmc), req_type);
1537		return;
1538	}
1539	if ((req_type & msm_host->curr_pwr_state) ||
1540			(req_type & msm_host->curr_io_level))
1541		done = true;
1542	/*
1543	 * This is needed here to handle cases where register writes will
1544	 * not change the current bus state or io level of the controller.
1545	 * In this case, no power irq will be triggerred and we should
1546	 * not wait.
1547	 */
1548	if (!done) {
1549		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1550				msm_host->pwr_irq_flag,
1551				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1552			dev_warn(&msm_host->pdev->dev,
1553				 "%s: pwr_irq for req: (%d) timed out\n",
1554				 mmc_hostname(host->mmc), req_type);
1555	}
1556	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1557			__func__, req_type);
1558}
1559
1560static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1561{
1562	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1563	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1564	const struct sdhci_msm_offset *msm_offset =
1565					msm_host->offset;
1566
1567	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1568		mmc_hostname(host->mmc),
1569		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1570		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1571		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1572}
1573
1574static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1575{
1576	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1577	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1578	struct mmc_host *mmc = host->mmc;
1579	u32 irq_status, irq_ack = 0;
1580	int retry = 10, ret;
1581	u32 pwr_state = 0, io_level = 0;
1582	u32 config;
1583	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1584
1585	irq_status = msm_host_readl(msm_host, host,
1586			msm_offset->core_pwrctl_status);
1587	irq_status &= INT_MASK;
1588
1589	msm_host_writel(msm_host, irq_status, host,
1590			msm_offset->core_pwrctl_clear);
1591
1592	/*
1593	 * There is a rare HW scenario where the first clear pulse could be
1594	 * lost when actual reset and clear/read of status register is
1595	 * happening at a time. Hence, retry for at least 10 times to make
1596	 * sure status register is cleared. Otherwise, this will result in
1597	 * a spurious power IRQ resulting in system instability.
1598	 */
1599	while (irq_status & msm_host_readl(msm_host, host,
1600				msm_offset->core_pwrctl_status)) {
1601		if (retry == 0) {
1602			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1603					mmc_hostname(host->mmc), irq_status);
1604			sdhci_msm_dump_pwr_ctrl_regs(host);
1605			WARN_ON(1);
1606			break;
1607		}
1608		msm_host_writel(msm_host, irq_status, host,
1609			msm_offset->core_pwrctl_clear);
1610		retry--;
1611		udelay(10);
1612	}
1613
1614	/* Handle BUS ON/OFF*/
1615	if (irq_status & CORE_PWRCTL_BUS_ON) {
1616		pwr_state = REQ_BUS_ON;
1617		io_level = REQ_IO_HIGH;
1618	}
1619	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1620		pwr_state = REQ_BUS_OFF;
1621		io_level = REQ_IO_LOW;
1622	}
1623
1624	if (pwr_state) {
1625		ret = sdhci_msm_set_vmmc(mmc);
1626		if (!ret)
1627			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1628					pwr_state & REQ_BUS_ON);
1629		if (!ret)
1630			ret = sdhci_msm_set_pincfg(msm_host,
1631					pwr_state & REQ_BUS_ON);
1632		if (!ret)
1633			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1634		else
1635			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1636	}
1637
1638	/* Handle IO LOW/HIGH */
1639	if (irq_status & CORE_PWRCTL_IO_LOW)
1640		io_level = REQ_IO_LOW;
1641
1642	if (irq_status & CORE_PWRCTL_IO_HIGH)
1643		io_level = REQ_IO_HIGH;
1644
1645	if (io_level)
1646		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1647
1648	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1649		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1650		if (ret < 0) {
1651			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1652					mmc_hostname(mmc), ret,
1653					mmc->ios.signal_voltage, mmc->ios.vdd,
1654					irq_status);
1655			irq_ack |= CORE_PWRCTL_IO_FAIL;
1656		}
1657	}
1658
1659	/*
1660	 * The driver has to acknowledge the interrupt, switch voltages and
1661	 * report back if it succeded or not to this register. The voltage
1662	 * switches are handled by the sdhci core, so just report success.
1663	 */
1664	msm_host_writel(msm_host, irq_ack, host,
1665			msm_offset->core_pwrctl_ctl);
1666
1667	/*
1668	 * If we don't have info regarding the voltage levels supported by
1669	 * regulators, don't change the IO PAD PWR SWITCH.
1670	 */
1671	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1672		u32 new_config;
1673		/*
1674		 * We should unset IO PAD PWR switch only if the register write
1675		 * can set IO lines high and the regulator also switches to 3 V.
1676		 * Else, we should keep the IO PAD PWR switch set.
1677		 * This is applicable to certain targets where eMMC vccq supply
1678		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1679		 * IO PAD PWR switch must be kept set to reflect actual
1680		 * regulator voltage. This way, during initialization of
1681		 * controllers with only 1.8V, we will set the IO PAD bit
1682		 * without waiting for a REQ_IO_LOW.
1683		 */
1684		config = readl_relaxed(host->ioaddr +
1685				msm_offset->core_vendor_spec);
1686		new_config = config;
1687
1688		if ((io_level & REQ_IO_HIGH) &&
1689				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1690			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1691		else if ((io_level & REQ_IO_LOW) ||
1692				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1693			new_config |= CORE_IO_PAD_PWR_SWITCH;
1694
1695		if (config ^ new_config)
1696			writel_relaxed(new_config, host->ioaddr +
1697					msm_offset->core_vendor_spec);
1698	}
1699
1700	if (pwr_state)
1701		msm_host->curr_pwr_state = pwr_state;
1702	if (io_level)
1703		msm_host->curr_io_level = io_level;
1704
1705	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1706		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1707		irq_ack);
1708}
1709
1710static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1711{
1712	struct sdhci_host *host = (struct sdhci_host *)data;
1713	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1714	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1715
1716	sdhci_msm_handle_pwr_irq(host, irq);
1717	msm_host->pwr_irq_flag = 1;
1718	sdhci_msm_complete_pwr_irq_wait(msm_host);
1719
1720
1721	return IRQ_HANDLED;
1722}
1723
1724static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1725{
1726	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1727	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1728	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1729
1730	return clk_round_rate(core_clk, ULONG_MAX);
1731}
1732
1733static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1734{
1735	return SDHCI_MSM_MIN_CLOCK;
1736}
1737
1738/*
1739 * __sdhci_msm_set_clock - sdhci_msm clock control.
1740 *
1741 * Description:
1742 * MSM controller does not use internal divider and
1743 * instead directly control the GCC clock as per
1744 * HW recommendation.
1745 **/
1746static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1747{
1748	u16 clk;
1749	/*
1750	 * Keep actual_clock as zero -
1751	 * - since there is no divider used so no need of having actual_clock.
1752	 * - MSM controller uses SDCLK for data timeout calculation. If
1753	 *   actual_clock is zero, host->clock is taken for calculation.
1754	 */
1755	host->mmc->actual_clock = 0;
1756
1757	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1758
1759	if (clock == 0)
1760		return;
1761
1762	/*
1763	 * MSM controller do not use clock divider.
1764	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1765	 * clock with no divider value programmed.
1766	 */
1767	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1768	sdhci_enable_clk(host, clk);
1769}
1770
1771/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1772static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1773{
1774	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1775	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1776
1777	if (!clock) {
1778		msm_host->clk_rate = clock;
1779		goto out;
1780	}
1781
1782	sdhci_msm_hc_select_mode(host);
1783
1784	msm_set_clock_rate_for_bus_mode(host, clock);
1785out:
1786	__sdhci_msm_set_clock(host, clock);
1787}
1788
1789/*****************************************************************************\
1790 *                                                                           *
1791 * MSM Command Queue Engine (CQE)                                            *
1792 *                                                                           *
1793\*****************************************************************************/
1794
1795static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1796{
1797	int cmd_error = 0;
1798	int data_error = 0;
1799
1800	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1801		return intmask;
1802
1803	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1804	return 0;
1805}
1806
1807static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1808{
1809	struct sdhci_host *host = mmc_priv(mmc);
1810	unsigned long flags;
1811	u32 ctrl;
1812
1813	/*
1814	 * When CQE is halted, the legacy SDHCI path operates only
1815	 * on 16-byte descriptors in 64bit mode.
1816	 */
1817	if (host->flags & SDHCI_USE_64_BIT_DMA)
1818		host->desc_sz = 16;
1819
1820	spin_lock_irqsave(&host->lock, flags);
1821
1822	/*
1823	 * During CQE command transfers, command complete bit gets latched.
1824	 * So s/w should clear command complete interrupt status when CQE is
1825	 * either halted or disabled. Otherwise unexpected SDCHI legacy
1826	 * interrupt gets triggered when CQE is halted/disabled.
1827	 */
1828	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1829	ctrl |= SDHCI_INT_RESPONSE;
1830	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
1831	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1832
1833	spin_unlock_irqrestore(&host->lock, flags);
1834
1835	sdhci_cqe_disable(mmc, recovery);
1836}
1837
1838static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
1839{
1840	u32 count, start = 15;
1841
1842	__sdhci_set_timeout(host, cmd);
1843	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
1844	/*
1845	 * Update software timeout value if its value is less than hardware data
1846	 * timeout value. Qcom SoC hardware data timeout value was calculated
1847	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
1848	 */
1849	if (cmd && cmd->data && host->clock > 400000 &&
1850	    host->clock <= 50000000 &&
1851	    ((1 << (count + start)) > (10 * host->clock)))
1852		host->data_timeout = 22LL * NSEC_PER_SEC;
1853}
1854
1855static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1856	.enable		= sdhci_cqe_enable,
1857	.disable	= sdhci_msm_cqe_disable,
1858};
1859
1860static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1861				struct platform_device *pdev)
1862{
1863	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1864	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1865	struct cqhci_host *cq_host;
1866	bool dma64;
1867	u32 cqcfg;
1868	int ret;
1869
1870	/*
1871	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
1872	 * So ensure ADMA table is allocated for 16byte descriptors.
1873	 */
1874	if (host->caps & SDHCI_CAN_64BIT)
1875		host->alloc_desc_sz = 16;
1876
1877	ret = sdhci_setup_host(host);
1878	if (ret)
1879		return ret;
1880
1881	cq_host = cqhci_pltfm_init(pdev);
1882	if (IS_ERR(cq_host)) {
1883		ret = PTR_ERR(cq_host);
1884		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
1885		goto cleanup;
1886	}
1887
1888	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
1889	cq_host->ops = &sdhci_msm_cqhci_ops;
1890
1891	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
1892
1893	ret = cqhci_init(cq_host, host->mmc, dma64);
1894	if (ret) {
1895		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
1896				mmc_hostname(host->mmc), ret);
1897		goto cleanup;
1898	}
1899
1900	/* Disable cqe reset due to cqe enable signal */
1901	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
1902	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
1903	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
1904
1905	/*
1906	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
1907	 * So limit desc_sz to 12 so that the data commands that are sent
1908	 * during card initialization (before CQE gets enabled) would
1909	 * get executed without any issues.
1910	 */
1911	if (host->flags & SDHCI_USE_64_BIT_DMA)
1912		host->desc_sz = 12;
1913
1914	ret = __sdhci_add_host(host);
1915	if (ret)
1916		goto cleanup;
1917
1918	dev_info(&pdev->dev, "%s: CQE init: success\n",
1919			mmc_hostname(host->mmc));
1920	return ret;
1921
1922cleanup:
1923	sdhci_cleanup_host(host);
1924	return ret;
1925}
1926
1927/*
1928 * Platform specific register write functions. This is so that, if any
1929 * register write needs to be followed up by platform specific actions,
1930 * they can be added here. These functions can go to sleep when writes
1931 * to certain registers are done.
1932 * These functions are relying on sdhci_set_ios not using spinlock.
1933 */
1934static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1935{
1936	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1937	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1938	u32 req_type = 0;
1939
1940	switch (reg) {
1941	case SDHCI_HOST_CONTROL2:
1942		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1943			REQ_IO_HIGH;
1944		break;
1945	case SDHCI_SOFTWARE_RESET:
1946		if (host->pwr && (val & SDHCI_RESET_ALL))
1947			req_type = REQ_BUS_OFF;
1948		break;
1949	case SDHCI_POWER_CONTROL:
1950		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1951		break;
1952	case SDHCI_TRANSFER_MODE:
1953		msm_host->transfer_mode = val;
1954		break;
1955	case SDHCI_COMMAND:
1956		if (!msm_host->use_cdr)
1957			break;
1958		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
1959		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
1960		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
1961			sdhci_msm_set_cdr(host, true);
1962		else
1963			sdhci_msm_set_cdr(host, false);
1964		break;
1965	}
1966
1967	if (req_type) {
1968		msm_host->pwr_irq_flag = 0;
1969		/*
1970		 * Since this register write may trigger a power irq, ensure
1971		 * all previous register writes are complete by this point.
1972		 */
1973		mb();
1974	}
1975	return req_type;
1976}
1977
1978/* This function may sleep*/
1979static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1980{
1981	u32 req_type = 0;
1982
1983	req_type = __sdhci_msm_check_write(host, val, reg);
1984	writew_relaxed(val, host->ioaddr + reg);
1985
1986	if (req_type)
1987		sdhci_msm_check_power_status(host, req_type);
1988}
1989
1990/* This function may sleep*/
1991static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1992{
1993	u32 req_type = 0;
1994
1995	req_type = __sdhci_msm_check_write(host, val, reg);
1996
1997	writeb_relaxed(val, host->ioaddr + reg);
1998
1999	if (req_type)
2000		sdhci_msm_check_power_status(host, req_type);
2001}
2002
2003static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2004{
2005	struct mmc_host *mmc = msm_host->mmc;
2006	struct regulator *supply = mmc->supply.vqmmc;
2007	u32 caps = 0, config;
2008	struct sdhci_host *host = mmc_priv(mmc);
2009	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2010
2011	if (!IS_ERR(mmc->supply.vqmmc)) {
2012		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2013			caps |= CORE_1_8V_SUPPORT;
2014		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2015			caps |= CORE_3_0V_SUPPORT;
2016
2017		if (!caps)
2018			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2019					mmc_hostname(mmc));
2020	}
2021
2022	if (caps) {
2023		/*
2024		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2025		 * bit can be used as required later on.
2026		 */
2027		u32 io_level = msm_host->curr_io_level;
2028
2029		config = readl_relaxed(host->ioaddr +
2030				msm_offset->core_vendor_spec);
2031		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2032
2033		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2034			config &= ~CORE_IO_PAD_PWR_SWITCH;
2035		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2036			config |= CORE_IO_PAD_PWR_SWITCH;
2037
2038		writel_relaxed(config,
2039				host->ioaddr + msm_offset->core_vendor_spec);
2040	}
2041	msm_host->caps_0 |= caps;
2042	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2043}
2044
2045static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2046{
2047	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2048		cqhci_deactivate(host->mmc);
2049	sdhci_reset(host, mask);
2050}
2051
2052static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2053{
2054	int ret;
2055
2056	ret = mmc_regulator_get_supply(msm_host->mmc);
2057	if (ret)
2058		return ret;
2059
2060	sdhci_msm_set_regulator_caps(msm_host);
2061
2062	return 0;
2063}
2064
2065static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2066				      struct mmc_ios *ios)
2067{
2068	struct sdhci_host *host = mmc_priv(mmc);
2069	u16 ctrl, status;
2070
2071	/*
2072	 * Signal Voltage Switching is only applicable for Host Controllers
2073	 * v3.00 and above.
2074	 */
2075	if (host->version < SDHCI_SPEC_300)
2076		return 0;
2077
2078	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2079
2080	switch (ios->signal_voltage) {
2081	case MMC_SIGNAL_VOLTAGE_330:
2082		if (!(host->flags & SDHCI_SIGNALING_330))
2083			return -EINVAL;
2084
2085		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2086		ctrl &= ~SDHCI_CTRL_VDD_180;
2087		break;
2088	case MMC_SIGNAL_VOLTAGE_180:
2089		if (!(host->flags & SDHCI_SIGNALING_180))
2090			return -EINVAL;
2091
2092		/* Enable 1.8V Signal Enable in the Host Control2 register */
2093		ctrl |= SDHCI_CTRL_VDD_180;
2094		break;
2095
2096	default:
2097		return -EINVAL;
2098	}
2099
2100	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2101
2102	/* Wait for 5ms */
2103	usleep_range(5000, 5500);
2104
2105	/* regulator output should be stable within 5 ms */
2106	status = ctrl & SDHCI_CTRL_VDD_180;
2107	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2108	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2109		return 0;
2110
2111	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2112		mmc_hostname(mmc));
2113
2114	return -EAGAIN;
2115}
2116
2117#define DRIVER_NAME "sdhci_msm"
2118#define SDHCI_MSM_DUMP(f, x...) \
2119	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2120
2121static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2122{
2123	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2124	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2125	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2126
2127	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2128
2129	SDHCI_MSM_DUMP(
2130			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2131		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2132		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2133		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2134	SDHCI_MSM_DUMP(
2135			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2136		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2137		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2138		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2139	SDHCI_MSM_DUMP(
2140			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2141		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2142		readl_relaxed(host->ioaddr +
2143			msm_offset->core_vendor_spec_func2),
2144		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2145}
2146
2147static const struct sdhci_msm_variant_ops mci_var_ops = {
2148	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2149	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2150};
2151
2152static const struct sdhci_msm_variant_ops v5_var_ops = {
2153	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2154	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2155};
2156
2157static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2158	.var_ops = &mci_var_ops,
2159	.offset = &sdhci_msm_mci_offset,
2160};
2161
2162static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2163	.mci_removed = true,
2164	.var_ops = &v5_var_ops,
2165	.offset = &sdhci_msm_v5_offset,
2166};
2167
2168static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2169	.mci_removed = true,
2170	.restore_dll_config = true,
2171	.var_ops = &v5_var_ops,
2172	.offset = &sdhci_msm_v5_offset,
2173};
2174
2175static const struct sdhci_msm_variant_info sm8250_sdhci_var = {
2176	.mci_removed = true,
2177	.uses_tassadar_dll = true,
2178	.var_ops = &v5_var_ops,
2179	.offset = &sdhci_msm_v5_offset,
2180};
2181
2182static const struct of_device_id sdhci_msm_dt_match[] = {
2183	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2184	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2185	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2186	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2187	{.compatible = "qcom,sm8250-sdhci", .data = &sm8250_sdhci_var},
2188	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2189	{},
2190};
2191
2192MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2193
2194static const struct sdhci_ops sdhci_msm_ops = {
2195	.reset = sdhci_msm_reset,
2196	.set_clock = sdhci_msm_set_clock,
2197	.get_min_clock = sdhci_msm_get_min_clock,
2198	.get_max_clock = sdhci_msm_get_max_clock,
2199	.set_bus_width = sdhci_set_bus_width,
2200	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2201	.write_w = sdhci_msm_writew,
2202	.write_b = sdhci_msm_writeb,
2203	.irq	= sdhci_msm_cqe_irq,
2204	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2205	.set_power = sdhci_set_power_noreg,
2206	.set_timeout = sdhci_msm_set_timeout,
2207};
2208
2209static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2210	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2211		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2212		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2213		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2214
2215	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2216	.ops = &sdhci_msm_ops,
2217};
2218
2219static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2220		struct sdhci_host *host)
2221{
2222	struct device_node *node = pdev->dev.of_node;
2223	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2224	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2225
2226	if (of_property_read_u32(node, "qcom,ddr-config",
2227				&msm_host->ddr_config))
2228		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2229
2230	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2231
2232	if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
2233		host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
2234}
2235
2236static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2237{
2238	struct reset_control *reset;
2239	int ret = 0;
2240
2241	reset = reset_control_get_optional_exclusive(dev, NULL);
2242	if (IS_ERR(reset))
2243		return dev_err_probe(dev, PTR_ERR(reset),
2244				"unable to acquire core_reset\n");
2245
2246	if (!reset)
2247		return ret;
2248
2249	ret = reset_control_assert(reset);
2250	if (ret) {
2251		reset_control_put(reset);
2252		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2253	}
2254
2255	/*
2256	 * The hardware requirement for delay between assert/deassert
2257	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2258	 * ~125us (4/32768). To be on the safe side add 200us delay.
2259	 */
2260	usleep_range(200, 210);
2261
2262	ret = reset_control_deassert(reset);
2263	if (ret) {
2264		reset_control_put(reset);
2265		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2266	}
2267
2268	usleep_range(200, 210);
2269	reset_control_put(reset);
2270
2271	return ret;
2272}
2273
2274static int sdhci_msm_probe(struct platform_device *pdev)
2275{
2276	struct sdhci_host *host;
2277	struct sdhci_pltfm_host *pltfm_host;
2278	struct sdhci_msm_host *msm_host;
2279	struct clk *clk;
2280	int ret;
2281	u16 host_version, core_minor;
2282	u32 core_version, config;
2283	u8 core_major;
2284	const struct sdhci_msm_offset *msm_offset;
2285	const struct sdhci_msm_variant_info *var_info;
2286	struct device_node *node = pdev->dev.of_node;
2287
2288	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2289	if (IS_ERR(host))
2290		return PTR_ERR(host);
2291
2292	host->sdma_boundary = 0;
2293	pltfm_host = sdhci_priv(host);
2294	msm_host = sdhci_pltfm_priv(pltfm_host);
2295	msm_host->mmc = host->mmc;
2296	msm_host->pdev = pdev;
2297
2298	ret = mmc_of_parse(host->mmc);
2299	if (ret)
2300		goto pltfm_free;
2301
2302	/*
2303	 * Based on the compatible string, load the required msm host info from
2304	 * the data associated with the version info.
2305	 */
2306	var_info = of_device_get_match_data(&pdev->dev);
2307
2308	msm_host->mci_removed = var_info->mci_removed;
2309	msm_host->restore_dll_config = var_info->restore_dll_config;
2310	msm_host->var_ops = var_info->var_ops;
2311	msm_host->offset = var_info->offset;
2312	msm_host->uses_tassadar_dll = var_info->uses_tassadar_dll;
2313
2314	msm_offset = msm_host->offset;
2315
2316	sdhci_get_of_property(pdev);
2317	sdhci_msm_get_of_property(pdev, host);
2318
2319	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2320
2321	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2322	if (ret)
2323		goto pltfm_free;
2324
2325	/* Setup SDCC bus voter clock. */
2326	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2327	if (!IS_ERR(msm_host->bus_clk)) {
2328		/* Vote for max. clk rate for max. performance */
2329		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2330		if (ret)
2331			goto pltfm_free;
2332		ret = clk_prepare_enable(msm_host->bus_clk);
2333		if (ret)
2334			goto pltfm_free;
2335	}
2336
2337	/* Setup main peripheral bus clock */
2338	clk = devm_clk_get(&pdev->dev, "iface");
2339	if (IS_ERR(clk)) {
2340		ret = PTR_ERR(clk);
2341		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2342		goto bus_clk_disable;
2343	}
2344	msm_host->bulk_clks[1].clk = clk;
2345
2346	/* Setup SDC MMC clock */
2347	clk = devm_clk_get(&pdev->dev, "core");
2348	if (IS_ERR(clk)) {
2349		ret = PTR_ERR(clk);
2350		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2351		goto bus_clk_disable;
2352	}
2353	msm_host->bulk_clks[0].clk = clk;
2354
2355	 /* Check for optional interconnect paths */
2356	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2357	if (ret)
2358		goto bus_clk_disable;
2359
2360	msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core");
2361	if (IS_ERR(msm_host->opp_table)) {
2362		ret = PTR_ERR(msm_host->opp_table);
2363		goto bus_clk_disable;
2364	}
2365
2366	/* OPP table is optional */
2367	ret = dev_pm_opp_of_add_table(&pdev->dev);
2368	if (ret && ret != -ENODEV) {
2369		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2370		goto opp_put_clkname;
2371	}
2372
2373	/* Vote for maximum clock rate for maximum performance */
2374	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2375	if (ret)
2376		dev_warn(&pdev->dev, "core clock boost failed\n");
2377
2378	clk = devm_clk_get(&pdev->dev, "cal");
2379	if (IS_ERR(clk))
2380		clk = NULL;
2381	msm_host->bulk_clks[2].clk = clk;
2382
2383	clk = devm_clk_get(&pdev->dev, "sleep");
2384	if (IS_ERR(clk))
2385		clk = NULL;
2386	msm_host->bulk_clks[3].clk = clk;
2387
2388	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2389				      msm_host->bulk_clks);
2390	if (ret)
2391		goto opp_cleanup;
2392
2393	/*
2394	 * xo clock is needed for FLL feature of cm_dll.
2395	 * In case if xo clock is not mentioned in DT, warn and proceed.
2396	 */
2397	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2398	if (IS_ERR(msm_host->xo_clk)) {
2399		ret = PTR_ERR(msm_host->xo_clk);
2400		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2401	}
2402
2403	if (!msm_host->mci_removed) {
2404		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2405		if (IS_ERR(msm_host->core_mem)) {
2406			ret = PTR_ERR(msm_host->core_mem);
2407			goto clk_disable;
2408		}
2409	}
2410
2411	/* Reset the vendor spec register to power on reset state */
2412	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2413			host->ioaddr + msm_offset->core_vendor_spec);
2414
2415	if (!msm_host->mci_removed) {
2416		/* Set HC_MODE_EN bit in HC_MODE register */
2417		msm_host_writel(msm_host, HC_MODE_EN, host,
2418				msm_offset->core_hc_mode);
2419		config = msm_host_readl(msm_host, host,
2420				msm_offset->core_hc_mode);
2421		config |= FF_CLK_SW_RST_DIS;
2422		msm_host_writel(msm_host, config, host,
2423				msm_offset->core_hc_mode);
2424	}
2425
2426	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2427	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2428		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2429			       SDHCI_VENDOR_VER_SHIFT));
2430
2431	core_version = msm_host_readl(msm_host, host,
2432			msm_offset->core_mci_version);
2433	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2434		      CORE_VERSION_MAJOR_SHIFT;
2435	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2436	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2437		core_version, core_major, core_minor);
2438
2439	if (core_major == 1 && core_minor >= 0x42)
2440		msm_host->use_14lpp_dll_reset = true;
2441
2442	/*
2443	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2444	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2445	 */
2446	if (core_major == 1 && core_minor < 0x34)
2447		msm_host->use_cdclp533 = true;
2448
2449	/*
2450	 * Support for some capabilities is not advertised by newer
2451	 * controller versions and must be explicitly enabled.
2452	 */
2453	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2454		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2455		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2456		writel_relaxed(config, host->ioaddr +
2457				msm_offset->core_vendor_spec_capabilities0);
2458	}
2459
2460	if (core_major == 1 && core_minor >= 0x49)
2461		msm_host->updated_ddr_cfg = true;
2462
2463	ret = sdhci_msm_register_vreg(msm_host);
2464	if (ret)
2465		goto clk_disable;
2466
2467	/*
2468	 * Power on reset state may trigger power irq if previous status of
2469	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2470	 * interrupt in GIC, any pending power irq interrupt should be
2471	 * acknowledged. Otherwise power irq interrupt handler would be
2472	 * fired prematurely.
2473	 */
2474	sdhci_msm_handle_pwr_irq(host, 0);
2475
2476	/*
2477	 * Ensure that above writes are propogated before interrupt enablement
2478	 * in GIC.
2479	 */
2480	mb();
2481
2482	/* Setup IRQ for handling power/voltage tasks with PMIC */
2483	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2484	if (msm_host->pwr_irq < 0) {
2485		ret = msm_host->pwr_irq;
2486		goto clk_disable;
2487	}
2488
2489	sdhci_msm_init_pwr_irq_wait(msm_host);
2490	/* Enable pwr irq interrupts */
2491	msm_host_writel(msm_host, INT_MASK, host,
2492		msm_offset->core_pwrctl_mask);
2493
2494	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2495					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2496					dev_name(&pdev->dev), host);
2497	if (ret) {
2498		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2499		goto clk_disable;
2500	}
2501
2502	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2503
2504	pm_runtime_get_noresume(&pdev->dev);
2505	pm_runtime_set_active(&pdev->dev);
2506	pm_runtime_enable(&pdev->dev);
2507	pm_runtime_set_autosuspend_delay(&pdev->dev,
2508					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2509	pm_runtime_use_autosuspend(&pdev->dev);
2510
2511	host->mmc_host_ops.start_signal_voltage_switch =
2512		sdhci_msm_start_signal_voltage_switch;
2513	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2514	if (of_property_read_bool(node, "supports-cqe"))
2515		ret = sdhci_msm_cqe_add_host(host, pdev);
2516	else
2517		ret = sdhci_add_host(host);
2518	if (ret)
2519		goto pm_runtime_disable;
2520
2521	pm_runtime_mark_last_busy(&pdev->dev);
2522	pm_runtime_put_autosuspend(&pdev->dev);
2523
2524	return 0;
2525
2526pm_runtime_disable:
2527	pm_runtime_disable(&pdev->dev);
2528	pm_runtime_set_suspended(&pdev->dev);
2529	pm_runtime_put_noidle(&pdev->dev);
2530clk_disable:
2531	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2532				   msm_host->bulk_clks);
2533opp_cleanup:
2534	dev_pm_opp_of_remove_table(&pdev->dev);
2535opp_put_clkname:
2536	dev_pm_opp_put_clkname(msm_host->opp_table);
2537bus_clk_disable:
2538	if (!IS_ERR(msm_host->bus_clk))
2539		clk_disable_unprepare(msm_host->bus_clk);
2540pltfm_free:
2541	sdhci_pltfm_free(pdev);
2542	return ret;
2543}
2544
2545static int sdhci_msm_remove(struct platform_device *pdev)
2546{
2547	struct sdhci_host *host = platform_get_drvdata(pdev);
2548	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2549	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2550	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2551		    0xffffffff);
2552
2553	sdhci_remove_host(host, dead);
2554
2555	dev_pm_opp_of_remove_table(&pdev->dev);
2556	dev_pm_opp_put_clkname(msm_host->opp_table);
2557	pm_runtime_get_sync(&pdev->dev);
2558	pm_runtime_disable(&pdev->dev);
2559	pm_runtime_put_noidle(&pdev->dev);
2560
2561	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2562				   msm_host->bulk_clks);
2563	if (!IS_ERR(msm_host->bus_clk))
2564		clk_disable_unprepare(msm_host->bus_clk);
2565	sdhci_pltfm_free(pdev);
2566	return 0;
2567}
2568
2569static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2570{
2571	struct sdhci_host *host = dev_get_drvdata(dev);
2572	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2573	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2574
2575	/* Drop the performance vote */
2576	dev_pm_opp_set_rate(dev, 0);
2577	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2578				   msm_host->bulk_clks);
2579
2580	return 0;
2581}
2582
2583static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2584{
2585	struct sdhci_host *host = dev_get_drvdata(dev);
2586	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2587	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2588	int ret;
2589
2590	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2591				       msm_host->bulk_clks);
2592	if (ret)
2593		return ret;
2594	/*
2595	 * Whenever core-clock is gated dynamically, it's needed to
2596	 * restore the SDR DLL settings when the clock is ungated.
2597	 */
2598	if (msm_host->restore_dll_config && msm_host->clk_rate)
2599		ret = sdhci_msm_restore_sdr_dll_config(host);
2600
2601	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2602
2603	return ret;
2604}
2605
2606static const struct dev_pm_ops sdhci_msm_pm_ops = {
2607	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2608				pm_runtime_force_resume)
2609	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2610			   sdhci_msm_runtime_resume,
2611			   NULL)
2612};
2613
2614static struct platform_driver sdhci_msm_driver = {
2615	.probe = sdhci_msm_probe,
2616	.remove = sdhci_msm_remove,
2617	.driver = {
2618		   .name = "sdhci_msm",
2619		   .of_match_table = sdhci_msm_dt_match,
2620		   .pm = &sdhci_msm_pm_ops,
2621		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2622	},
2623};
2624
2625module_platform_driver(sdhci_msm_driver);
2626
2627MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2628MODULE_LICENSE("GPL v2");
2629