1/*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 *	Syed Mohammed Khasim	<x0khasim@ti.com>
10 *	Madhusudhan		<madhu.cr@ti.com>
11 *	Mohit Jalori		<mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/debugfs.h>
22#include <linux/dmaengine.h>
23#include <linux/seq_file.h>
24#include <linux/sizes.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/timer.h>
30#include <linux/clk.h>
31#include <linux/of.h>
32#include <linux/of_irq.h>
33#include <linux/of_device.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/core.h>
36#include <linux/mmc/mmc.h>
37#include <linux/mmc/slot-gpio.h>
38#include <linux/io.h>
39#include <linux/irq.h>
40#include <linux/regulator/consumer.h>
41#include <linux/pinctrl/consumer.h>
42#include <linux/pm_runtime.h>
43#include <linux/pm_wakeirq.h>
44#include <linux/platform_data/hsmmc-omap.h>
45
46/* OMAP HSMMC Host Controller Registers */
47#define OMAP_HSMMC_SYSSTATUS	0x0014
48#define OMAP_HSMMC_CON		0x002C
49#define OMAP_HSMMC_SDMASA	0x0100
50#define OMAP_HSMMC_BLK		0x0104
51#define OMAP_HSMMC_ARG		0x0108
52#define OMAP_HSMMC_CMD		0x010C
53#define OMAP_HSMMC_RSP10	0x0110
54#define OMAP_HSMMC_RSP32	0x0114
55#define OMAP_HSMMC_RSP54	0x0118
56#define OMAP_HSMMC_RSP76	0x011C
57#define OMAP_HSMMC_DATA		0x0120
58#define OMAP_HSMMC_PSTATE	0x0124
59#define OMAP_HSMMC_HCTL		0x0128
60#define OMAP_HSMMC_SYSCTL	0x012C
61#define OMAP_HSMMC_STAT		0x0130
62#define OMAP_HSMMC_IE		0x0134
63#define OMAP_HSMMC_ISE		0x0138
64#define OMAP_HSMMC_AC12		0x013C
65#define OMAP_HSMMC_CAPA		0x0140
66
67#define VS18			(1 << 26)
68#define VS30			(1 << 25)
69#define HSS			(1 << 21)
70#define SDVS18			(0x5 << 9)
71#define SDVS30			(0x6 << 9)
72#define SDVS33			(0x7 << 9)
73#define SDVS_MASK		0x00000E00
74#define SDVSCLR			0xFFFFF1FF
75#define SDVSDET			0x00000400
76#define AUTOIDLE		0x1
77#define SDBP			(1 << 8)
78#define DTO			0xe
79#define ICE			0x1
80#define ICS			0x2
81#define CEN			(1 << 2)
82#define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
83#define CLKD_MASK		0x0000FFC0
84#define CLKD_SHIFT		6
85#define DTO_MASK		0x000F0000
86#define DTO_SHIFT		16
87#define INIT_STREAM		(1 << 1)
88#define ACEN_ACMD23		(2 << 2)
89#define DP_SELECT		(1 << 21)
90#define DDIR			(1 << 4)
91#define DMAE			0x1
92#define MSBS			(1 << 5)
93#define BCE			(1 << 1)
94#define FOUR_BIT		(1 << 1)
95#define HSPE			(1 << 2)
96#define IWE			(1 << 24)
97#define DDR			(1 << 19)
98#define CLKEXTFREE		(1 << 16)
99#define CTPL			(1 << 11)
100#define DW8			(1 << 5)
101#define OD			0x1
102#define STAT_CLEAR		0xFFFFFFFF
103#define INIT_STREAM_CMD		0x00000000
104#define DUAL_VOLT_OCR_BIT	7
105#define SRC			(1 << 25)
106#define SRD			(1 << 26)
107#define SOFTRESET		(1 << 1)
108
109/* PSTATE */
110#define DLEV_DAT(x)		(1 << (20 + (x)))
111
112/* Interrupt masks for IE and ISE register */
113#define CC_EN			(1 << 0)
114#define TC_EN			(1 << 1)
115#define BWR_EN			(1 << 4)
116#define BRR_EN			(1 << 5)
117#define CIRQ_EN			(1 << 8)
118#define ERR_EN			(1 << 15)
119#define CTO_EN			(1 << 16)
120#define CCRC_EN			(1 << 17)
121#define CEB_EN			(1 << 18)
122#define CIE_EN			(1 << 19)
123#define DTO_EN			(1 << 20)
124#define DCRC_EN			(1 << 21)
125#define DEB_EN			(1 << 22)
126#define ACE_EN			(1 << 24)
127#define CERR_EN			(1 << 28)
128#define BADA_EN			(1 << 29)
129
130#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
131		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
132		BRR_EN | BWR_EN | TC_EN | CC_EN)
133
134#define CNI	(1 << 7)
135#define ACIE	(1 << 4)
136#define ACEB	(1 << 3)
137#define ACCE	(1 << 2)
138#define ACTO	(1 << 1)
139#define ACNE	(1 << 0)
140
141#define MMC_AUTOSUSPEND_DELAY	100
142#define MMC_TIMEOUT_MS		20		/* 20 mSec */
143#define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
144#define OMAP_MMC_MIN_CLOCK	400000
145#define OMAP_MMC_MAX_CLOCK	52000000
146#define DRIVER_NAME		"omap_hsmmc"
147
148/*
149 * One controller can have multiple slots, like on some omap boards using
150 * omap.c controller driver. Luckily this is not currently done on any known
151 * omap_hsmmc.c device.
152 */
153#define mmc_pdata(host)		host->pdata
154
155/*
156 * MMC Host controller read/write API's
157 */
158#define OMAP_HSMMC_READ(base, reg)	\
159	__raw_readl((base) + OMAP_HSMMC_##reg)
160
161#define OMAP_HSMMC_WRITE(base, reg, val) \
162	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
163
164struct omap_hsmmc_next {
165	unsigned int	dma_len;
166	s32		cookie;
167};
168
169struct omap_hsmmc_host {
170	struct	device		*dev;
171	struct	mmc_host	*mmc;
172	struct	mmc_request	*mrq;
173	struct	mmc_command	*cmd;
174	struct	mmc_data	*data;
175	struct	clk		*fclk;
176	struct	clk		*dbclk;
177	struct	regulator	*pbias;
178	bool			pbias_enabled;
179	void	__iomem		*base;
180	int			vqmmc_enabled;
181	resource_size_t		mapbase;
182	spinlock_t		irq_lock; /* Prevent races with irq handler */
183	unsigned int		dma_len;
184	unsigned int		dma_sg_idx;
185	unsigned char		bus_mode;
186	unsigned char		power_mode;
187	int			suspended;
188	u32			con;
189	u32			hctl;
190	u32			sysctl;
191	u32			capa;
192	int			irq;
193	int			wake_irq;
194	int			use_dma, dma_ch;
195	struct dma_chan		*tx_chan;
196	struct dma_chan		*rx_chan;
197	int			response_busy;
198	int			context_loss;
199	int			reqs_blocked;
200	int			req_in_progress;
201	unsigned long		clk_rate;
202	unsigned int		flags;
203#define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
204#define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
205	struct omap_hsmmc_next	next_data;
206	struct	omap_hsmmc_platform_data	*pdata;
207};
208
209struct omap_mmc_of_data {
210	u32 reg_offset;
211	u8 controller_flags;
212};
213
214static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
215
216static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
217{
218	int ret;
219	struct omap_hsmmc_host *host = mmc_priv(mmc);
220	struct mmc_ios *ios = &mmc->ios;
221
222	if (!IS_ERR(mmc->supply.vmmc)) {
223		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
224		if (ret)
225			return ret;
226	}
227
228	/* Enable interface voltage rail, if needed */
229	if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
230		ret = regulator_enable(mmc->supply.vqmmc);
231		if (ret) {
232			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
233			goto err_vqmmc;
234		}
235		host->vqmmc_enabled = 1;
236	}
237
238	return 0;
239
240err_vqmmc:
241	if (!IS_ERR(mmc->supply.vmmc))
242		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
243
244	return ret;
245}
246
247static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
248{
249	int ret;
250	int status;
251	struct omap_hsmmc_host *host = mmc_priv(mmc);
252
253	if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
254		ret = regulator_disable(mmc->supply.vqmmc);
255		if (ret) {
256			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
257			return ret;
258		}
259		host->vqmmc_enabled = 0;
260	}
261
262	if (!IS_ERR(mmc->supply.vmmc)) {
263		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
264		if (ret)
265			goto err_set_ocr;
266	}
267
268	return 0;
269
270err_set_ocr:
271	if (!IS_ERR(mmc->supply.vqmmc)) {
272		status = regulator_enable(mmc->supply.vqmmc);
273		if (status)
274			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
275	}
276
277	return ret;
278}
279
280static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
281{
282	int ret;
283
284	if (IS_ERR(host->pbias))
285		return 0;
286
287	if (power_on) {
288		if (host->pbias_enabled == 0) {
289			ret = regulator_enable(host->pbias);
290			if (ret) {
291				dev_err(host->dev, "pbias reg enable fail\n");
292				return ret;
293			}
294			host->pbias_enabled = 1;
295		}
296	} else {
297		if (host->pbias_enabled == 1) {
298			ret = regulator_disable(host->pbias);
299			if (ret) {
300				dev_err(host->dev, "pbias reg disable fail\n");
301				return ret;
302			}
303			host->pbias_enabled = 0;
304		}
305	}
306
307	return 0;
308}
309
310static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
311{
312	struct mmc_host *mmc = host->mmc;
313	int ret = 0;
314
315	/*
316	 * If we don't see a Vcc regulator, assume it's a fixed
317	 * voltage always-on regulator.
318	 */
319	if (IS_ERR(mmc->supply.vmmc))
320		return 0;
321
322	ret = omap_hsmmc_set_pbias(host, false);
323	if (ret)
324		return ret;
325
326	/*
327	 * Assume Vcc regulator is used only to power the card ... OMAP
328	 * VDDS is used to power the pins, optionally with a transceiver to
329	 * support cards using voltages other than VDDS (1.8V nominal).  When a
330	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
331	 *
332	 * In some cases this regulator won't support enable/disable;
333	 * e.g. it's a fixed rail for a WLAN chip.
334	 *
335	 * In other cases vcc_aux switches interface power.  Example, for
336	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
337	 * chips/cards need an interface voltage rail too.
338	 */
339	if (power_on) {
340		ret = omap_hsmmc_enable_supply(mmc);
341		if (ret)
342			return ret;
343
344		ret = omap_hsmmc_set_pbias(host, true);
345		if (ret)
346			goto err_set_voltage;
347	} else {
348		ret = omap_hsmmc_disable_supply(mmc);
349		if (ret)
350			return ret;
351	}
352
353	return 0;
354
355err_set_voltage:
356	omap_hsmmc_disable_supply(mmc);
357
358	return ret;
359}
360
361static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
362{
363	int ret;
364
365	if (IS_ERR(reg))
366		return 0;
367
368	if (regulator_is_enabled(reg)) {
369		ret = regulator_enable(reg);
370		if (ret)
371			return ret;
372
373		ret = regulator_disable(reg);
374		if (ret)
375			return ret;
376	}
377
378	return 0;
379}
380
381static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
382{
383	struct mmc_host *mmc = host->mmc;
384	int ret;
385
386	/*
387	 * disable regulators enabled during boot and get the usecount
388	 * right so that regulators can be enabled/disabled by checking
389	 * the return value of regulator_is_enabled
390	 */
391	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
392	if (ret) {
393		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
394		return ret;
395	}
396
397	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
398	if (ret) {
399		dev_err(host->dev,
400			"fail to disable boot enabled vmmc_aux reg\n");
401		return ret;
402	}
403
404	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
405	if (ret) {
406		dev_err(host->dev,
407			"failed to disable boot enabled pbias reg\n");
408		return ret;
409	}
410
411	return 0;
412}
413
414static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
415{
416	int ret;
417	struct mmc_host *mmc = host->mmc;
418
419
420	ret = mmc_regulator_get_supply(mmc);
421	if (ret)
422		return ret;
423
424	/* Allow an aux regulator */
425	if (IS_ERR(mmc->supply.vqmmc)) {
426		mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
427								"vmmc_aux");
428		if (IS_ERR(mmc->supply.vqmmc)) {
429			ret = PTR_ERR(mmc->supply.vqmmc);
430			if ((ret != -ENODEV) && host->dev->of_node)
431				return ret;
432			dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
433				PTR_ERR(mmc->supply.vqmmc));
434		}
435	}
436
437	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
438	if (IS_ERR(host->pbias)) {
439		ret = PTR_ERR(host->pbias);
440		if ((ret != -ENODEV) && host->dev->of_node) {
441			dev_err(host->dev,
442			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
443			return ret;
444		}
445		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
446			PTR_ERR(host->pbias));
447	}
448
449	/* For eMMC do not power off when not in sleep state */
450	if (mmc_pdata(host)->no_regulator_off_init)
451		return 0;
452
453	ret = omap_hsmmc_disable_boot_regulators(host);
454	if (ret)
455		return ret;
456
457	return 0;
458}
459
460/*
461 * Start clock to the card
462 */
463static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
464{
465	OMAP_HSMMC_WRITE(host->base, SYSCTL,
466		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
467}
468
469/*
470 * Stop clock to the card
471 */
472static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
473{
474	OMAP_HSMMC_WRITE(host->base, SYSCTL,
475		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
476	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
477		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
478}
479
480static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
481				  struct mmc_command *cmd)
482{
483	u32 irq_mask = INT_EN_MASK;
484	unsigned long flags;
485
486	if (host->use_dma)
487		irq_mask &= ~(BRR_EN | BWR_EN);
488
489	/* Disable timeout for erases */
490	if (cmd->opcode == MMC_ERASE)
491		irq_mask &= ~DTO_EN;
492
493	spin_lock_irqsave(&host->irq_lock, flags);
494	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
495	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
496
497	/* latch pending CIRQ, but don't signal MMC core */
498	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
499		irq_mask |= CIRQ_EN;
500	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
501	spin_unlock_irqrestore(&host->irq_lock, flags);
502}
503
504static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
505{
506	u32 irq_mask = 0;
507	unsigned long flags;
508
509	spin_lock_irqsave(&host->irq_lock, flags);
510	/* no transfer running but need to keep cirq if enabled */
511	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
512		irq_mask |= CIRQ_EN;
513	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
514	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
515	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
516	spin_unlock_irqrestore(&host->irq_lock, flags);
517}
518
519/* Calculate divisor for the given clock frequency */
520static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
521{
522	u16 dsor = 0;
523
524	if (ios->clock) {
525		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
526		if (dsor > CLKD_MAX)
527			dsor = CLKD_MAX;
528	}
529
530	return dsor;
531}
532
533static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
534{
535	struct mmc_ios *ios = &host->mmc->ios;
536	unsigned long regval;
537	unsigned long timeout;
538	unsigned long clkdiv;
539
540	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
541
542	omap_hsmmc_stop_clock(host);
543
544	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
545	regval = regval & ~(CLKD_MASK | DTO_MASK);
546	clkdiv = calc_divisor(host, ios);
547	regval = regval | (clkdiv << 6) | (DTO << 16);
548	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
549	OMAP_HSMMC_WRITE(host->base, SYSCTL,
550		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
551
552	/* Wait till the ICS bit is set */
553	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
554	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
555		&& time_before(jiffies, timeout))
556		cpu_relax();
557
558	/*
559	 * Enable High-Speed Support
560	 * Pre-Requisites
561	 *	- Controller should support High-Speed-Enable Bit
562	 *	- Controller should not be using DDR Mode
563	 *	- Controller should advertise that it supports High Speed
564	 *	  in capabilities register
565	 *	- MMC/SD clock coming out of controller > 25MHz
566	 */
567	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
568	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
569	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
570	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
571		regval = OMAP_HSMMC_READ(host->base, HCTL);
572		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
573			regval |= HSPE;
574		else
575			regval &= ~HSPE;
576
577		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
578	}
579
580	omap_hsmmc_start_clock(host);
581}
582
583static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
584{
585	struct mmc_ios *ios = &host->mmc->ios;
586	u32 con;
587
588	con = OMAP_HSMMC_READ(host->base, CON);
589	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
590	    ios->timing == MMC_TIMING_UHS_DDR50)
591		con |= DDR;	/* configure in DDR mode */
592	else
593		con &= ~DDR;
594	switch (ios->bus_width) {
595	case MMC_BUS_WIDTH_8:
596		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
597		break;
598	case MMC_BUS_WIDTH_4:
599		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
600		OMAP_HSMMC_WRITE(host->base, HCTL,
601			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
602		break;
603	case MMC_BUS_WIDTH_1:
604		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
605		OMAP_HSMMC_WRITE(host->base, HCTL,
606			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
607		break;
608	}
609}
610
611static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
612{
613	struct mmc_ios *ios = &host->mmc->ios;
614	u32 con;
615
616	con = OMAP_HSMMC_READ(host->base, CON);
617	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
618		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
619	else
620		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
621}
622
623#ifdef CONFIG_PM
624
625/*
626 * Restore the MMC host context, if it was lost as result of a
627 * power state change.
628 */
629static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
630{
631	struct mmc_ios *ios = &host->mmc->ios;
632	u32 hctl, capa;
633	unsigned long timeout;
634
635	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
636	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
637	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
638	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
639		return 0;
640
641	host->context_loss++;
642
643	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
644		if (host->power_mode != MMC_POWER_OFF &&
645		    (1 << ios->vdd) <= MMC_VDD_23_24)
646			hctl = SDVS18;
647		else
648			hctl = SDVS30;
649		capa = VS30 | VS18;
650	} else {
651		hctl = SDVS18;
652		capa = VS18;
653	}
654
655	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
656		hctl |= IWE;
657
658	OMAP_HSMMC_WRITE(host->base, HCTL,
659			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
660
661	OMAP_HSMMC_WRITE(host->base, CAPA,
662			OMAP_HSMMC_READ(host->base, CAPA) | capa);
663
664	OMAP_HSMMC_WRITE(host->base, HCTL,
665			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
666
667	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
668	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
669		&& time_before(jiffies, timeout))
670		;
671
672	OMAP_HSMMC_WRITE(host->base, ISE, 0);
673	OMAP_HSMMC_WRITE(host->base, IE, 0);
674	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
675
676	/* Do not initialize card-specific things if the power is off */
677	if (host->power_mode == MMC_POWER_OFF)
678		goto out;
679
680	omap_hsmmc_set_bus_width(host);
681
682	omap_hsmmc_set_clock(host);
683
684	omap_hsmmc_set_bus_mode(host);
685
686out:
687	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
688		host->context_loss);
689	return 0;
690}
691
692/*
693 * Save the MMC host context (store the number of power state changes so far).
694 */
695static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
696{
697	host->con =  OMAP_HSMMC_READ(host->base, CON);
698	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
699	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
700	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
701}
702
703#else
704
705static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
706{
707	return 0;
708}
709
710static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
711{
712}
713
714#endif
715
716/*
717 * Send init stream sequence to card
718 * before sending IDLE command
719 */
720static void send_init_stream(struct omap_hsmmc_host *host)
721{
722	int reg = 0;
723	unsigned long timeout;
724
725	disable_irq(host->irq);
726
727	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
728	OMAP_HSMMC_WRITE(host->base, CON,
729		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
730	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
731
732	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
733	while ((reg != CC_EN) && time_before(jiffies, timeout))
734		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
735
736	OMAP_HSMMC_WRITE(host->base, CON,
737		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
738
739	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
740	OMAP_HSMMC_READ(host->base, STAT);
741
742	enable_irq(host->irq);
743}
744
745static ssize_t
746omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
747			char *buf)
748{
749	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
750	struct omap_hsmmc_host *host = mmc_priv(mmc);
751
752	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
753}
754
755static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
756
757/*
758 * Configure the response type and send the cmd.
759 */
760static void
761omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
762	struct mmc_data *data)
763{
764	int cmdreg = 0, resptype = 0, cmdtype = 0;
765
766	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
767		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
768	host->cmd = cmd;
769
770	omap_hsmmc_enable_irq(host, cmd);
771
772	host->response_busy = 0;
773	if (cmd->flags & MMC_RSP_PRESENT) {
774		if (cmd->flags & MMC_RSP_136)
775			resptype = 1;
776		else if (cmd->flags & MMC_RSP_BUSY) {
777			resptype = 3;
778			host->response_busy = 1;
779		} else
780			resptype = 2;
781	}
782
783	/*
784	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
785	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
786	 * a val of 0x3, rest 0x0.
787	 */
788	if (cmd == host->mrq->stop)
789		cmdtype = 0x3;
790
791	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
792
793	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
794	    host->mrq->sbc) {
795		cmdreg |= ACEN_ACMD23;
796		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
797	}
798	if (data) {
799		cmdreg |= DP_SELECT | MSBS | BCE;
800		if (data->flags & MMC_DATA_READ)
801			cmdreg |= DDIR;
802		else
803			cmdreg &= ~(DDIR);
804	}
805
806	if (host->use_dma)
807		cmdreg |= DMAE;
808
809	host->req_in_progress = 1;
810
811	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
812	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
813}
814
815static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
816	struct mmc_data *data)
817{
818	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
819}
820
821static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
822{
823	int dma_ch;
824	unsigned long flags;
825
826	spin_lock_irqsave(&host->irq_lock, flags);
827	host->req_in_progress = 0;
828	dma_ch = host->dma_ch;
829	spin_unlock_irqrestore(&host->irq_lock, flags);
830
831	omap_hsmmc_disable_irq(host);
832	/* Do not complete the request if DMA is still in progress */
833	if (mrq->data && host->use_dma && dma_ch != -1)
834		return;
835	host->mrq = NULL;
836	mmc_request_done(host->mmc, mrq);
837}
838
839/*
840 * Notify the transfer complete to MMC core
841 */
842static void
843omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
844{
845	if (!data) {
846		struct mmc_request *mrq = host->mrq;
847
848		/* TC before CC from CMD6 - don't know why, but it happens */
849		if (host->cmd && host->cmd->opcode == 6 &&
850		    host->response_busy) {
851			host->response_busy = 0;
852			return;
853		}
854
855		omap_hsmmc_request_done(host, mrq);
856		return;
857	}
858
859	host->data = NULL;
860
861	if (!data->error)
862		data->bytes_xfered += data->blocks * (data->blksz);
863	else
864		data->bytes_xfered = 0;
865
866	if (data->stop && (data->error || !host->mrq->sbc))
867		omap_hsmmc_start_command(host, data->stop, NULL);
868	else
869		omap_hsmmc_request_done(host, data->mrq);
870}
871
872/*
873 * Notify the core about command completion
874 */
875static void
876omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
877{
878	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
879	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
880		host->cmd = NULL;
881		omap_hsmmc_start_dma_transfer(host);
882		omap_hsmmc_start_command(host, host->mrq->cmd,
883						host->mrq->data);
884		return;
885	}
886
887	host->cmd = NULL;
888
889	if (cmd->flags & MMC_RSP_PRESENT) {
890		if (cmd->flags & MMC_RSP_136) {
891			/* response type 2 */
892			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
893			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
894			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
895			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
896		} else {
897			/* response types 1, 1b, 3, 4, 5, 6 */
898			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
899		}
900	}
901	if ((host->data == NULL && !host->response_busy) || cmd->error)
902		omap_hsmmc_request_done(host, host->mrq);
903}
904
905/*
906 * DMA clean up for command errors
907 */
908static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
909{
910	int dma_ch;
911	unsigned long flags;
912
913	host->data->error = errno;
914
915	spin_lock_irqsave(&host->irq_lock, flags);
916	dma_ch = host->dma_ch;
917	host->dma_ch = -1;
918	spin_unlock_irqrestore(&host->irq_lock, flags);
919
920	if (host->use_dma && dma_ch != -1) {
921		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
922
923		dmaengine_terminate_all(chan);
924		dma_unmap_sg(chan->device->dev,
925			host->data->sg, host->data->sg_len,
926			mmc_get_dma_dir(host->data));
927
928		host->data->host_cookie = 0;
929	}
930	host->data = NULL;
931}
932
933/*
934 * Readable error output
935 */
936#ifdef CONFIG_MMC_DEBUG
937static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
938{
939	/* --- means reserved bit without definition at documentation */
940	static const char *omap_hsmmc_status_bits[] = {
941		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
942		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
943		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
944		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
945	};
946	char res[256];
947	char *buf = res;
948	int len, i;
949
950	len = sprintf(buf, "MMC IRQ 0x%x :", status);
951	buf += len;
952
953	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
954		if (status & (1 << i)) {
955			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
956			buf += len;
957		}
958
959	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
960}
961#else
962static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
963					     u32 status)
964{
965}
966#endif  /* CONFIG_MMC_DEBUG */
967
968/*
969 * MMC controller internal state machines reset
970 *
971 * Used to reset command or data internal state machines, using respectively
972 *  SRC or SRD bit of SYSCTL register
973 * Can be called from interrupt context
974 */
975static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
976						   unsigned long bit)
977{
978	unsigned long i = 0;
979	unsigned long limit = MMC_TIMEOUT_US;
980
981	OMAP_HSMMC_WRITE(host->base, SYSCTL,
982			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
983
984	/*
985	 * OMAP4 ES2 and greater has an updated reset logic.
986	 * Monitor a 0->1 transition first
987	 */
988	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
989		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
990					&& (i++ < limit))
991			udelay(1);
992	}
993	i = 0;
994
995	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
996		(i++ < limit))
997		udelay(1);
998
999	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1000		dev_err(mmc_dev(host->mmc),
1001			"Timeout waiting on controller reset in %s\n",
1002			__func__);
1003}
1004
1005static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1006					int err, int end_cmd)
1007{
1008	if (end_cmd) {
1009		omap_hsmmc_reset_controller_fsm(host, SRC);
1010		if (host->cmd)
1011			host->cmd->error = err;
1012	}
1013
1014	if (host->data) {
1015		omap_hsmmc_reset_controller_fsm(host, SRD);
1016		omap_hsmmc_dma_cleanup(host, err);
1017	} else if (host->mrq && host->mrq->cmd)
1018		host->mrq->cmd->error = err;
1019}
1020
1021static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1022{
1023	struct mmc_data *data;
1024	int end_cmd = 0, end_trans = 0;
1025	int error = 0;
1026
1027	data = host->data;
1028	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1029
1030	if (status & ERR_EN) {
1031		omap_hsmmc_dbg_report_irq(host, status);
1032
1033		if (status & (CTO_EN | CCRC_EN | CEB_EN))
1034			end_cmd = 1;
1035		if (host->data || host->response_busy) {
1036			end_trans = !end_cmd;
1037			host->response_busy = 0;
1038		}
1039		if (status & (CTO_EN | DTO_EN))
1040			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1041		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1042				   BADA_EN))
1043			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1044
1045		if (status & ACE_EN) {
1046			u32 ac12;
1047			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1048			if (!(ac12 & ACNE) && host->mrq->sbc) {
1049				end_cmd = 1;
1050				if (ac12 & ACTO)
1051					error =  -ETIMEDOUT;
1052				else if (ac12 & (ACCE | ACEB | ACIE))
1053					error = -EILSEQ;
1054				host->mrq->sbc->error = error;
1055				hsmmc_command_incomplete(host, error, end_cmd);
1056			}
1057			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1058		}
1059	}
1060
1061	OMAP_HSMMC_WRITE(host->base, STAT, status);
1062	if (end_cmd || ((status & CC_EN) && host->cmd))
1063		omap_hsmmc_cmd_done(host, host->cmd);
1064	if ((end_trans || (status & TC_EN)) && host->mrq)
1065		omap_hsmmc_xfer_done(host, data);
1066}
1067
1068/*
1069 * MMC controller IRQ handler
1070 */
1071static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1072{
1073	struct omap_hsmmc_host *host = dev_id;
1074	int status;
1075
1076	status = OMAP_HSMMC_READ(host->base, STAT);
1077	while (status & (INT_EN_MASK | CIRQ_EN)) {
1078		if (host->req_in_progress)
1079			omap_hsmmc_do_irq(host, status);
1080
1081		if (status & CIRQ_EN)
1082			mmc_signal_sdio_irq(host->mmc);
1083
1084		/* Flush posted write */
1085		status = OMAP_HSMMC_READ(host->base, STAT);
1086	}
1087
1088	return IRQ_HANDLED;
1089}
1090
1091static void set_sd_bus_power(struct omap_hsmmc_host *host)
1092{
1093	unsigned long i;
1094
1095	OMAP_HSMMC_WRITE(host->base, HCTL,
1096			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1097	for (i = 0; i < loops_per_jiffy; i++) {
1098		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1099			break;
1100		cpu_relax();
1101	}
1102}
1103
1104/*
1105 * Switch MMC interface voltage ... only relevant for MMC1.
1106 *
1107 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1108 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1109 * Some chips, like eMMC ones, use internal transceivers.
1110 */
1111static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1112{
1113	u32 reg_val = 0;
1114	int ret;
1115
1116	/* Disable the clocks */
1117	clk_disable_unprepare(host->dbclk);
1118
1119	/* Turn the power off */
1120	ret = omap_hsmmc_set_power(host, 0);
1121
1122	/* Turn the power ON with given VDD 1.8 or 3.0v */
1123	if (!ret)
1124		ret = omap_hsmmc_set_power(host, 1);
1125	clk_prepare_enable(host->dbclk);
1126
1127	if (ret != 0)
1128		goto err;
1129
1130	OMAP_HSMMC_WRITE(host->base, HCTL,
1131		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1132	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1133
1134	/*
1135	 * If a MMC dual voltage card is detected, the set_ios fn calls
1136	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1137	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1138	 *
1139	 * Cope with a bit of slop in the range ... per data sheets:
1140	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1141	 *    but recommended values are 1.71V to 1.89V
1142	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1143	 *    but recommended values are 2.7V to 3.3V
1144	 *
1145	 * Board setup code shouldn't permit anything very out-of-range.
1146	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1147	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1148	 */
1149	if ((1 << vdd) <= MMC_VDD_23_24)
1150		reg_val |= SDVS18;
1151	else
1152		reg_val |= SDVS30;
1153
1154	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1155	set_sd_bus_power(host);
1156
1157	return 0;
1158err:
1159	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1160	return ret;
1161}
1162
1163static void omap_hsmmc_dma_callback(void *param)
1164{
1165	struct omap_hsmmc_host *host = param;
1166	struct dma_chan *chan;
1167	struct mmc_data *data;
1168	int req_in_progress;
1169
1170	spin_lock_irq(&host->irq_lock);
1171	if (host->dma_ch < 0) {
1172		spin_unlock_irq(&host->irq_lock);
1173		return;
1174	}
1175
1176	data = host->mrq->data;
1177	chan = omap_hsmmc_get_dma_chan(host, data);
1178	if (!data->host_cookie)
1179		dma_unmap_sg(chan->device->dev,
1180			     data->sg, data->sg_len,
1181			     mmc_get_dma_dir(data));
1182
1183	req_in_progress = host->req_in_progress;
1184	host->dma_ch = -1;
1185	spin_unlock_irq(&host->irq_lock);
1186
1187	/* If DMA has finished after TC, complete the request */
1188	if (!req_in_progress) {
1189		struct mmc_request *mrq = host->mrq;
1190
1191		host->mrq = NULL;
1192		mmc_request_done(host->mmc, mrq);
1193	}
1194}
1195
1196static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1197				       struct mmc_data *data,
1198				       struct omap_hsmmc_next *next,
1199				       struct dma_chan *chan)
1200{
1201	int dma_len;
1202
1203	if (!next && data->host_cookie &&
1204	    data->host_cookie != host->next_data.cookie) {
1205		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1206		       " host->next_data.cookie %d\n",
1207		       __func__, data->host_cookie, host->next_data.cookie);
1208		data->host_cookie = 0;
1209	}
1210
1211	/* Check if next job is already prepared */
1212	if (next || data->host_cookie != host->next_data.cookie) {
1213		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1214				     mmc_get_dma_dir(data));
1215
1216	} else {
1217		dma_len = host->next_data.dma_len;
1218		host->next_data.dma_len = 0;
1219	}
1220
1221
1222	if (dma_len == 0)
1223		return -EINVAL;
1224
1225	if (next) {
1226		next->dma_len = dma_len;
1227		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1228	} else
1229		host->dma_len = dma_len;
1230
1231	return 0;
1232}
1233
1234/*
1235 * Routine to configure and start DMA for the MMC card
1236 */
1237static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1238					struct mmc_request *req)
1239{
1240	struct dma_async_tx_descriptor *tx;
1241	int ret = 0, i;
1242	struct mmc_data *data = req->data;
1243	struct dma_chan *chan;
1244	struct dma_slave_config cfg = {
1245		.src_addr = host->mapbase + OMAP_HSMMC_DATA,
1246		.dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1247		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1248		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1249		.src_maxburst = data->blksz / 4,
1250		.dst_maxburst = data->blksz / 4,
1251	};
1252
1253	/* Sanity check: all the SG entries must be aligned by block size. */
1254	for (i = 0; i < data->sg_len; i++) {
1255		struct scatterlist *sgl;
1256
1257		sgl = data->sg + i;
1258		if (sgl->length % data->blksz)
1259			return -EINVAL;
1260	}
1261	if ((data->blksz % 4) != 0)
1262		/* REVISIT: The MMC buffer increments only when MSB is written.
1263		 * Return error for blksz which is non multiple of four.
1264		 */
1265		return -EINVAL;
1266
1267	BUG_ON(host->dma_ch != -1);
1268
1269	chan = omap_hsmmc_get_dma_chan(host, data);
1270
1271	ret = dmaengine_slave_config(chan, &cfg);
1272	if (ret)
1273		return ret;
1274
1275	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1276	if (ret)
1277		return ret;
1278
1279	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1280		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1281		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1282	if (!tx) {
1283		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1284		/* FIXME: cleanup */
1285		return -1;
1286	}
1287
1288	tx->callback = omap_hsmmc_dma_callback;
1289	tx->callback_param = host;
1290
1291	/* Does not fail */
1292	dmaengine_submit(tx);
1293
1294	host->dma_ch = 1;
1295
1296	return 0;
1297}
1298
1299static void set_data_timeout(struct omap_hsmmc_host *host,
1300			     unsigned long long timeout_ns,
1301			     unsigned int timeout_clks)
1302{
1303	unsigned long long timeout = timeout_ns;
1304	unsigned int cycle_ns;
1305	uint32_t reg, clkd, dto = 0;
1306
1307	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1308	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1309	if (clkd == 0)
1310		clkd = 1;
1311
1312	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1313	do_div(timeout, cycle_ns);
1314	timeout += timeout_clks;
1315	if (timeout) {
1316		while ((timeout & 0x80000000) == 0) {
1317			dto += 1;
1318			timeout <<= 1;
1319		}
1320		dto = 31 - dto;
1321		timeout <<= 1;
1322		if (timeout && dto)
1323			dto += 1;
1324		if (dto >= 13)
1325			dto -= 13;
1326		else
1327			dto = 0;
1328		if (dto > 14)
1329			dto = 14;
1330	}
1331
1332	reg &= ~DTO_MASK;
1333	reg |= dto << DTO_SHIFT;
1334	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1335}
1336
1337static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1338{
1339	struct mmc_request *req = host->mrq;
1340	struct dma_chan *chan;
1341
1342	if (!req->data)
1343		return;
1344	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1345				| (req->data->blocks << 16));
1346	set_data_timeout(host, req->data->timeout_ns,
1347				req->data->timeout_clks);
1348	chan = omap_hsmmc_get_dma_chan(host, req->data);
1349	dma_async_issue_pending(chan);
1350}
1351
1352/*
1353 * Configure block length for MMC/SD cards and initiate the transfer.
1354 */
1355static int
1356omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1357{
1358	int ret;
1359	unsigned long long timeout;
1360
1361	host->data = req->data;
1362
1363	if (req->data == NULL) {
1364		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1365		if (req->cmd->flags & MMC_RSP_BUSY) {
1366			timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1367
1368			/*
1369			 * Set an arbitrary 100ms data timeout for commands with
1370			 * busy signal and no indication of busy_timeout.
1371			 */
1372			if (!timeout)
1373				timeout = 100000000U;
1374
1375			set_data_timeout(host, timeout, 0);
1376		}
1377		return 0;
1378	}
1379
1380	if (host->use_dma) {
1381		ret = omap_hsmmc_setup_dma_transfer(host, req);
1382		if (ret != 0) {
1383			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1384			return ret;
1385		}
1386	}
1387	return 0;
1388}
1389
1390static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1391				int err)
1392{
1393	struct omap_hsmmc_host *host = mmc_priv(mmc);
1394	struct mmc_data *data = mrq->data;
1395
1396	if (host->use_dma && data->host_cookie) {
1397		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1398
1399		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1400			     mmc_get_dma_dir(data));
1401		data->host_cookie = 0;
1402	}
1403}
1404
1405static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1406{
1407	struct omap_hsmmc_host *host = mmc_priv(mmc);
1408
1409	if (mrq->data->host_cookie) {
1410		mrq->data->host_cookie = 0;
1411		return ;
1412	}
1413
1414	if (host->use_dma) {
1415		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1416
1417		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1418						&host->next_data, c))
1419			mrq->data->host_cookie = 0;
1420	}
1421}
1422
1423/*
1424 * Request function. for read/write operation
1425 */
1426static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1427{
1428	struct omap_hsmmc_host *host = mmc_priv(mmc);
1429	int err;
1430
1431	BUG_ON(host->req_in_progress);
1432	BUG_ON(host->dma_ch != -1);
1433	if (host->reqs_blocked)
1434		host->reqs_blocked = 0;
1435	WARN_ON(host->mrq != NULL);
1436	host->mrq = req;
1437	host->clk_rate = clk_get_rate(host->fclk);
1438	err = omap_hsmmc_prepare_data(host, req);
1439	if (err) {
1440		req->cmd->error = err;
1441		if (req->data)
1442			req->data->error = err;
1443		host->mrq = NULL;
1444		mmc_request_done(mmc, req);
1445		return;
1446	}
1447	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1448		omap_hsmmc_start_command(host, req->sbc, NULL);
1449		return;
1450	}
1451
1452	omap_hsmmc_start_dma_transfer(host);
1453	omap_hsmmc_start_command(host, req->cmd, req->data);
1454}
1455
1456/* Routine to configure clock values. Exposed API to core */
1457static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1458{
1459	struct omap_hsmmc_host *host = mmc_priv(mmc);
1460	int do_send_init_stream = 0;
1461
1462	if (ios->power_mode != host->power_mode) {
1463		switch (ios->power_mode) {
1464		case MMC_POWER_OFF:
1465			omap_hsmmc_set_power(host, 0);
1466			break;
1467		case MMC_POWER_UP:
1468			omap_hsmmc_set_power(host, 1);
1469			break;
1470		case MMC_POWER_ON:
1471			do_send_init_stream = 1;
1472			break;
1473		}
1474		host->power_mode = ios->power_mode;
1475	}
1476
1477	/* FIXME: set registers based only on changes to ios */
1478
1479	omap_hsmmc_set_bus_width(host);
1480
1481	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1482		/* Only MMC1 can interface at 3V without some flavor
1483		 * of external transceiver; but they all handle 1.8V.
1484		 */
1485		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1486			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1487				/*
1488				 * The mmc_select_voltage fn of the core does
1489				 * not seem to set the power_mode to
1490				 * MMC_POWER_UP upon recalculating the voltage.
1491				 * vdd 1.8v.
1492				 */
1493			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1494				dev_dbg(mmc_dev(host->mmc),
1495						"Switch operation failed\n");
1496		}
1497	}
1498
1499	omap_hsmmc_set_clock(host);
1500
1501	if (do_send_init_stream)
1502		send_init_stream(host);
1503
1504	omap_hsmmc_set_bus_mode(host);
1505}
1506
1507static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1508{
1509	struct omap_hsmmc_host *host = mmc_priv(mmc);
1510
1511	if (card->type == MMC_TYPE_SDIO || card->type == MMC_TYPE_SD_COMBO) {
1512		struct device_node *np = mmc_dev(mmc)->of_node;
1513
1514		/*
1515		 * REVISIT: should be moved to sdio core and made more
1516		 * general e.g. by expanding the DT bindings of child nodes
1517		 * to provide a mechanism to provide this information:
1518		 * Documentation/devicetree/bindings/mmc/mmc-card.txt
1519		 */
1520
1521		np = of_get_compatible_child(np, "ti,wl1251");
1522		if (np) {
1523			/*
1524			 * We have TI wl1251 attached to MMC3. Pass this
1525			 * information to the SDIO core because it can't be
1526			 * probed by normal methods.
1527			 */
1528
1529			dev_info(host->dev, "found wl1251\n");
1530			card->quirks |= MMC_QUIRK_NONSTD_SDIO;
1531			card->cccr.wide_bus = 1;
1532			card->cis.vendor = 0x104c;
1533			card->cis.device = 0x9066;
1534			card->cis.blksize = 512;
1535			card->cis.max_dtr = 24000000;
1536			card->ocr = 0x80;
1537			of_node_put(np);
1538		}
1539	}
1540}
1541
1542static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1543{
1544	struct omap_hsmmc_host *host = mmc_priv(mmc);
1545	u32 irq_mask, con;
1546	unsigned long flags;
1547
1548	spin_lock_irqsave(&host->irq_lock, flags);
1549
1550	con = OMAP_HSMMC_READ(host->base, CON);
1551	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1552	if (enable) {
1553		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1554		irq_mask |= CIRQ_EN;
1555		con |= CTPL | CLKEXTFREE;
1556	} else {
1557		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1558		irq_mask &= ~CIRQ_EN;
1559		con &= ~(CTPL | CLKEXTFREE);
1560	}
1561	OMAP_HSMMC_WRITE(host->base, CON, con);
1562	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1563
1564	/*
1565	 * if enable, piggy back detection on current request
1566	 * but always disable immediately
1567	 */
1568	if (!host->req_in_progress || !enable)
1569		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1570
1571	/* flush posted write */
1572	OMAP_HSMMC_READ(host->base, IE);
1573
1574	spin_unlock_irqrestore(&host->irq_lock, flags);
1575}
1576
1577static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1578{
1579	int ret;
1580
1581	/*
1582	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1583	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1584	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1585	 * with functional clock disabled.
1586	 */
1587	if (!host->dev->of_node || !host->wake_irq)
1588		return -ENODEV;
1589
1590	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1591	if (ret) {
1592		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1593		goto err;
1594	}
1595
1596	/*
1597	 * Some omaps don't have wake-up path from deeper idle states
1598	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1599	 */
1600	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1601		struct pinctrl *p = devm_pinctrl_get(host->dev);
1602		if (IS_ERR(p)) {
1603			ret = PTR_ERR(p);
1604			goto err_free_irq;
1605		}
1606
1607		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1608			dev_info(host->dev, "missing idle pinctrl state\n");
1609			devm_pinctrl_put(p);
1610			ret = -EINVAL;
1611			goto err_free_irq;
1612		}
1613		devm_pinctrl_put(p);
1614	}
1615
1616	OMAP_HSMMC_WRITE(host->base, HCTL,
1617			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1618	return 0;
1619
1620err_free_irq:
1621	dev_pm_clear_wake_irq(host->dev);
1622err:
1623	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1624	host->wake_irq = 0;
1625	return ret;
1626}
1627
1628static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1629{
1630	u32 hctl, capa, value;
1631
1632	/* Only MMC1 supports 3.0V */
1633	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1634		hctl = SDVS30;
1635		capa = VS30 | VS18;
1636	} else {
1637		hctl = SDVS18;
1638		capa = VS18;
1639	}
1640
1641	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1642	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1643
1644	value = OMAP_HSMMC_READ(host->base, CAPA);
1645	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1646
1647	/* Set SD bus power bit */
1648	set_sd_bus_power(host);
1649}
1650
1651static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1652				     unsigned int direction, int blk_size)
1653{
1654	/* This controller can't do multiblock reads due to hw bugs */
1655	if (direction == MMC_DATA_READ)
1656		return 1;
1657
1658	return blk_size;
1659}
1660
1661static struct mmc_host_ops omap_hsmmc_ops = {
1662	.post_req = omap_hsmmc_post_req,
1663	.pre_req = omap_hsmmc_pre_req,
1664	.request = omap_hsmmc_request,
1665	.set_ios = omap_hsmmc_set_ios,
1666	.get_cd = mmc_gpio_get_cd,
1667	.get_ro = mmc_gpio_get_ro,
1668	.init_card = omap_hsmmc_init_card,
1669	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1670};
1671
1672#ifdef CONFIG_DEBUG_FS
1673
1674static int mmc_regs_show(struct seq_file *s, void *data)
1675{
1676	struct mmc_host *mmc = s->private;
1677	struct omap_hsmmc_host *host = mmc_priv(mmc);
1678
1679	seq_printf(s, "mmc%d:\n", mmc->index);
1680	seq_printf(s, "sdio irq mode\t%s\n",
1681		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1682
1683	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1684		seq_printf(s, "sdio irq \t%s\n",
1685			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1686			   : "disabled");
1687	}
1688	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1689
1690	pm_runtime_get_sync(host->dev);
1691	seq_puts(s, "\nregs:\n");
1692	seq_printf(s, "CON:\t\t0x%08x\n",
1693			OMAP_HSMMC_READ(host->base, CON));
1694	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1695		   OMAP_HSMMC_READ(host->base, PSTATE));
1696	seq_printf(s, "HCTL:\t\t0x%08x\n",
1697			OMAP_HSMMC_READ(host->base, HCTL));
1698	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1699			OMAP_HSMMC_READ(host->base, SYSCTL));
1700	seq_printf(s, "IE:\t\t0x%08x\n",
1701			OMAP_HSMMC_READ(host->base, IE));
1702	seq_printf(s, "ISE:\t\t0x%08x\n",
1703			OMAP_HSMMC_READ(host->base, ISE));
1704	seq_printf(s, "CAPA:\t\t0x%08x\n",
1705			OMAP_HSMMC_READ(host->base, CAPA));
1706
1707	pm_runtime_mark_last_busy(host->dev);
1708	pm_runtime_put_autosuspend(host->dev);
1709
1710	return 0;
1711}
1712
1713DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1714
1715static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1716{
1717	if (mmc->debugfs_root)
1718		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1719			mmc, &mmc_regs_fops);
1720}
1721
1722#else
1723
1724static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1725{
1726}
1727
1728#endif
1729
1730#ifdef CONFIG_OF
1731static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1732	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1733	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1734};
1735
1736static const struct omap_mmc_of_data omap4_mmc_of_data = {
1737	.reg_offset = 0x100,
1738};
1739static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1740	.reg_offset = 0x100,
1741	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1742};
1743
1744static const struct of_device_id omap_mmc_of_match[] = {
1745	{
1746		.compatible = "ti,omap2-hsmmc",
1747	},
1748	{
1749		.compatible = "ti,omap3-pre-es3-hsmmc",
1750		.data = &omap3_pre_es3_mmc_of_data,
1751	},
1752	{
1753		.compatible = "ti,omap3-hsmmc",
1754	},
1755	{
1756		.compatible = "ti,omap4-hsmmc",
1757		.data = &omap4_mmc_of_data,
1758	},
1759	{
1760		.compatible = "ti,am33xx-hsmmc",
1761		.data = &am33xx_mmc_of_data,
1762	},
1763	{},
1764};
1765MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1766
1767static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1768{
1769	struct omap_hsmmc_platform_data *pdata, *legacy;
1770	struct device_node *np = dev->of_node;
1771
1772	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1773	if (!pdata)
1774		return ERR_PTR(-ENOMEM); /* out of memory */
1775
1776	legacy = dev_get_platdata(dev);
1777	if (legacy && legacy->name)
1778		pdata->name = legacy->name;
1779
1780	if (of_find_property(np, "ti,dual-volt", NULL))
1781		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1782
1783	if (of_find_property(np, "ti,non-removable", NULL)) {
1784		pdata->nonremovable = true;
1785		pdata->no_regulator_off_init = true;
1786	}
1787
1788	if (of_find_property(np, "ti,needs-special-reset", NULL))
1789		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1790
1791	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1792		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1793
1794	return pdata;
1795}
1796#else
1797static inline struct omap_hsmmc_platform_data
1798			*of_get_hsmmc_pdata(struct device *dev)
1799{
1800	return ERR_PTR(-EINVAL);
1801}
1802#endif
1803
1804static int omap_hsmmc_probe(struct platform_device *pdev)
1805{
1806	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1807	struct mmc_host *mmc;
1808	struct omap_hsmmc_host *host = NULL;
1809	struct resource *res;
1810	int ret, irq;
1811	const struct of_device_id *match;
1812	const struct omap_mmc_of_data *data;
1813	void __iomem *base;
1814
1815	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1816	if (match) {
1817		pdata = of_get_hsmmc_pdata(&pdev->dev);
1818
1819		if (IS_ERR(pdata))
1820			return PTR_ERR(pdata);
1821
1822		if (match->data) {
1823			data = match->data;
1824			pdata->reg_offset = data->reg_offset;
1825			pdata->controller_flags |= data->controller_flags;
1826		}
1827	}
1828
1829	if (pdata == NULL) {
1830		dev_err(&pdev->dev, "Platform Data is missing\n");
1831		return -ENXIO;
1832	}
1833
1834	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1835	if (!res)
1836		return -ENXIO;
1837	irq = platform_get_irq(pdev, 0);
1838	if (irq < 0)
1839		return irq;
1840
1841	base = devm_ioremap_resource(&pdev->dev, res);
1842	if (IS_ERR(base))
1843		return PTR_ERR(base);
1844
1845	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1846	if (!mmc) {
1847		ret = -ENOMEM;
1848		goto err;
1849	}
1850
1851	ret = mmc_of_parse(mmc);
1852	if (ret)
1853		goto err1;
1854
1855	host		= mmc_priv(mmc);
1856	host->mmc	= mmc;
1857	host->pdata	= pdata;
1858	host->dev	= &pdev->dev;
1859	host->use_dma	= 1;
1860	host->dma_ch	= -1;
1861	host->irq	= irq;
1862	host->mapbase	= res->start + pdata->reg_offset;
1863	host->base	= base + pdata->reg_offset;
1864	host->power_mode = MMC_POWER_OFF;
1865	host->next_data.cookie = 1;
1866	host->pbias_enabled = 0;
1867	host->vqmmc_enabled = 0;
1868
1869	platform_set_drvdata(pdev, host);
1870
1871	if (pdev->dev.of_node)
1872		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1873
1874	mmc->ops	= &omap_hsmmc_ops;
1875
1876	mmc->f_min = OMAP_MMC_MIN_CLOCK;
1877
1878	if (pdata->max_freq > 0)
1879		mmc->f_max = pdata->max_freq;
1880	else if (mmc->f_max == 0)
1881		mmc->f_max = OMAP_MMC_MAX_CLOCK;
1882
1883	spin_lock_init(&host->irq_lock);
1884
1885	host->fclk = devm_clk_get(&pdev->dev, "fck");
1886	if (IS_ERR(host->fclk)) {
1887		ret = PTR_ERR(host->fclk);
1888		host->fclk = NULL;
1889		goto err1;
1890	}
1891
1892	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1893		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1894		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1895	}
1896
1897	device_init_wakeup(&pdev->dev, true);
1898	pm_runtime_enable(host->dev);
1899	pm_runtime_get_sync(host->dev);
1900	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1901	pm_runtime_use_autosuspend(host->dev);
1902
1903	omap_hsmmc_context_save(host);
1904
1905	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1906	/*
1907	 * MMC can still work without debounce clock.
1908	 */
1909	if (IS_ERR(host->dbclk)) {
1910		host->dbclk = NULL;
1911	} else if (clk_prepare_enable(host->dbclk) != 0) {
1912		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1913		host->dbclk = NULL;
1914	}
1915
1916	/* Set this to a value that allows allocating an entire descriptor
1917	 * list within a page (zero order allocation). */
1918	mmc->max_segs = 64;
1919
1920	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
1921	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
1922	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1923
1924	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1925		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23;
1926
1927	mmc->caps |= mmc_pdata(host)->caps;
1928	if (mmc->caps & MMC_CAP_8_BIT_DATA)
1929		mmc->caps |= MMC_CAP_4_BIT_DATA;
1930
1931	if (mmc_pdata(host)->nonremovable)
1932		mmc->caps |= MMC_CAP_NONREMOVABLE;
1933
1934	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1935
1936	omap_hsmmc_conf_bus_power(host);
1937
1938	host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1939	if (IS_ERR(host->rx_chan)) {
1940		dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1941		ret = PTR_ERR(host->rx_chan);
1942		goto err_irq;
1943	}
1944
1945	host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1946	if (IS_ERR(host->tx_chan)) {
1947		dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1948		ret = PTR_ERR(host->tx_chan);
1949		goto err_irq;
1950	}
1951
1952	/*
1953	 * Limit the maximum segment size to the lower of the request size
1954	 * and the DMA engine device segment size limits.  In reality, with
1955	 * 32-bit transfers, the DMA engine can do longer segments than this
1956	 * but there is no way to represent that in the DMA model - if we
1957	 * increase this figure here, we get warnings from the DMA API debug.
1958	 */
1959	mmc->max_seg_size = min3(mmc->max_req_size,
1960			dma_get_max_seg_size(host->rx_chan->device->dev),
1961			dma_get_max_seg_size(host->tx_chan->device->dev));
1962
1963	/* Request IRQ for MMC operations */
1964	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1965			mmc_hostname(mmc), host);
1966	if (ret) {
1967		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1968		goto err_irq;
1969	}
1970
1971	ret = omap_hsmmc_reg_get(host);
1972	if (ret)
1973		goto err_irq;
1974
1975	if (!mmc->ocr_avail)
1976		mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1977
1978	omap_hsmmc_disable_irq(host);
1979
1980	/*
1981	 * For now, only support SDIO interrupt if we have a separate
1982	 * wake-up interrupt configured from device tree. This is because
1983	 * the wake-up interrupt is needed for idle state and some
1984	 * platforms need special quirks. And we don't want to add new
1985	 * legacy mux platform init code callbacks any longer as we
1986	 * are moving to DT based booting anyways.
1987	 */
1988	ret = omap_hsmmc_configure_wake_irq(host);
1989	if (!ret)
1990		mmc->caps |= MMC_CAP_SDIO_IRQ;
1991
1992	ret = mmc_add_host(mmc);
1993	if (ret)
1994		goto err_irq;
1995
1996	if (mmc_pdata(host)->name != NULL) {
1997		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1998		if (ret < 0)
1999			goto err_slot_name;
2000	}
2001
2002	omap_hsmmc_debugfs(mmc);
2003	pm_runtime_mark_last_busy(host->dev);
2004	pm_runtime_put_autosuspend(host->dev);
2005
2006	return 0;
2007
2008err_slot_name:
2009	mmc_remove_host(mmc);
2010err_irq:
2011	device_init_wakeup(&pdev->dev, false);
2012	if (!IS_ERR_OR_NULL(host->tx_chan))
2013		dma_release_channel(host->tx_chan);
2014	if (!IS_ERR_OR_NULL(host->rx_chan))
2015		dma_release_channel(host->rx_chan);
2016	pm_runtime_dont_use_autosuspend(host->dev);
2017	pm_runtime_put_sync(host->dev);
2018	pm_runtime_disable(host->dev);
2019	clk_disable_unprepare(host->dbclk);
2020err1:
2021	mmc_free_host(mmc);
2022err:
2023	return ret;
2024}
2025
2026static int omap_hsmmc_remove(struct platform_device *pdev)
2027{
2028	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2029
2030	pm_runtime_get_sync(host->dev);
2031	mmc_remove_host(host->mmc);
2032
2033	dma_release_channel(host->tx_chan);
2034	dma_release_channel(host->rx_chan);
2035
2036	dev_pm_clear_wake_irq(host->dev);
2037	pm_runtime_dont_use_autosuspend(host->dev);
2038	pm_runtime_put_sync(host->dev);
2039	pm_runtime_disable(host->dev);
2040	device_init_wakeup(&pdev->dev, false);
2041	clk_disable_unprepare(host->dbclk);
2042
2043	mmc_free_host(host->mmc);
2044
2045	return 0;
2046}
2047
2048#ifdef CONFIG_PM_SLEEP
2049static int omap_hsmmc_suspend(struct device *dev)
2050{
2051	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2052
2053	if (!host)
2054		return 0;
2055
2056	pm_runtime_get_sync(host->dev);
2057
2058	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2059		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2060		OMAP_HSMMC_WRITE(host->base, IE, 0);
2061		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2062		OMAP_HSMMC_WRITE(host->base, HCTL,
2063				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2064	}
2065
2066	clk_disable_unprepare(host->dbclk);
2067
2068	pm_runtime_put_sync(host->dev);
2069	return 0;
2070}
2071
2072/* Routine to resume the MMC device */
2073static int omap_hsmmc_resume(struct device *dev)
2074{
2075	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2076
2077	if (!host)
2078		return 0;
2079
2080	pm_runtime_get_sync(host->dev);
2081
2082	clk_prepare_enable(host->dbclk);
2083
2084	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2085		omap_hsmmc_conf_bus_power(host);
2086
2087	pm_runtime_mark_last_busy(host->dev);
2088	pm_runtime_put_autosuspend(host->dev);
2089	return 0;
2090}
2091#endif
2092
2093static int omap_hsmmc_runtime_suspend(struct device *dev)
2094{
2095	struct omap_hsmmc_host *host;
2096	unsigned long flags;
2097	int ret = 0;
2098
2099	host = dev_get_drvdata(dev);
2100	omap_hsmmc_context_save(host);
2101	dev_dbg(dev, "disabled\n");
2102
2103	spin_lock_irqsave(&host->irq_lock, flags);
2104	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2105	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2106		/* disable sdio irq handling to prevent race */
2107		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2108		OMAP_HSMMC_WRITE(host->base, IE, 0);
2109
2110		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2111			/*
2112			 * dat1 line low, pending sdio irq
2113			 * race condition: possible irq handler running on
2114			 * multi-core, abort
2115			 */
2116			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2117			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2118			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2119			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2120			pm_runtime_mark_last_busy(dev);
2121			ret = -EBUSY;
2122			goto abort;
2123		}
2124
2125		pinctrl_pm_select_idle_state(dev);
2126	} else {
2127		pinctrl_pm_select_idle_state(dev);
2128	}
2129
2130abort:
2131	spin_unlock_irqrestore(&host->irq_lock, flags);
2132	return ret;
2133}
2134
2135static int omap_hsmmc_runtime_resume(struct device *dev)
2136{
2137	struct omap_hsmmc_host *host;
2138	unsigned long flags;
2139
2140	host = dev_get_drvdata(dev);
2141	omap_hsmmc_context_restore(host);
2142	dev_dbg(dev, "enabled\n");
2143
2144	spin_lock_irqsave(&host->irq_lock, flags);
2145	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2146	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2147
2148		pinctrl_select_default_state(host->dev);
2149
2150		/* irq lost, if pinmux incorrect */
2151		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2152		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2153		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2154	} else {
2155		pinctrl_select_default_state(host->dev);
2156	}
2157	spin_unlock_irqrestore(&host->irq_lock, flags);
2158	return 0;
2159}
2160
2161static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2162	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2163	.runtime_suspend = omap_hsmmc_runtime_suspend,
2164	.runtime_resume = omap_hsmmc_runtime_resume,
2165};
2166
2167static struct platform_driver omap_hsmmc_driver = {
2168	.probe		= omap_hsmmc_probe,
2169	.remove		= omap_hsmmc_remove,
2170	.driver		= {
2171		.name = DRIVER_NAME,
2172		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2173		.pm = &omap_hsmmc_dev_pm_ops,
2174		.of_match_table = of_match_ptr(omap_mmc_of_match),
2175	},
2176};
2177
2178module_platform_driver(omap_hsmmc_driver);
2179MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2180MODULE_LICENSE("GPL");
2181MODULE_ALIAS("platform:" DRIVER_NAME);
2182MODULE_AUTHOR("Texas Instruments Inc");
2183