1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Access SD/MMC cards through SPI master controllers 4 * 5 * (C) Copyright 2005, Intec Automation, 6 * Mike Lavender (mike@steroidmicros) 7 * (C) Copyright 2006-2007, David Brownell 8 * (C) Copyright 2007, Axis Communications, 9 * Hans-Peter Nilsson (hp@axis.com) 10 * (C) Copyright 2007, ATRON electronic GmbH, 11 * Jan Nikitenko <jan.nikitenko@gmail.com> 12 */ 13#include <linux/sched.h> 14#include <linux/delay.h> 15#include <linux/slab.h> 16#include <linux/module.h> 17#include <linux/bio.h> 18#include <linux/dma-direction.h> 19#include <linux/crc7.h> 20#include <linux/crc-itu-t.h> 21#include <linux/scatterlist.h> 22 23#include <linux/mmc/host.h> 24#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 25#include <linux/mmc/slot-gpio.h> 26 27#include <linux/spi/spi.h> 28#include <linux/spi/mmc_spi.h> 29 30#include <asm/unaligned.h> 31 32 33/* NOTES: 34 * 35 * - For now, we won't try to interoperate with a real mmc/sd/sdio 36 * controller, although some of them do have hardware support for 37 * SPI protocol. The main reason for such configs would be mmc-ish 38 * cards like DataFlash, which don't support that "native" protocol. 39 * 40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 41 * switch between driver stacks, and in any case if "native" mode 42 * is available, it will be faster and hence preferable. 43 * 44 * - MMC depends on a different chipselect management policy than the 45 * SPI interface currently supports for shared bus segments: it needs 46 * to issue multiple spi_message requests with the chipselect active, 47 * using the results of one message to decide the next one to issue. 48 * 49 * Pending updates to the programming interface, this driver expects 50 * that it not share the bus with other drivers (precluding conflicts). 51 * 52 * - We tell the controller to keep the chipselect active from the 53 * beginning of an mmc_host_ops.request until the end. So beware 54 * of SPI controller drivers that mis-handle the cs_change flag! 55 * 56 * However, many cards seem OK with chipselect flapping up/down 57 * during that time ... at least on unshared bus segments. 58 */ 59 60 61/* 62 * Local protocol constants, internal to data block protocols. 63 */ 64 65/* Response tokens used to ack each block written: */ 66#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 67#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 68#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 69#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 70 71/* Read and write blocks start with these tokens and end with crc; 72 * on error, read tokens act like a subset of R2_SPI_* values. 73 */ 74#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 75#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 76#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 77 78#define MMC_SPI_BLOCKSIZE 512 79 80#define MMC_SPI_R1B_TIMEOUT_MS 3000 81#define MMC_SPI_INIT_TIMEOUT_MS 3000 82 83/* One of the critical speed parameters is the amount of data which may 84 * be transferred in one command. If this value is too low, the SD card 85 * controller has to do multiple partial block writes (argggh!). With 86 * today (2008) SD cards there is little speed gain if we transfer more 87 * than 64 KBytes at a time. So use this value until there is any indication 88 * that we should do more here. 89 */ 90#define MMC_SPI_BLOCKSATONCE 128 91 92/****************************************************************************/ 93 94/* 95 * Local Data Structures 96 */ 97 98/* "scratch" is per-{command,block} data exchanged with the card */ 99struct scratch { 100 u8 status[29]; 101 u8 data_token; 102 __be16 crc_val; 103}; 104 105struct mmc_spi_host { 106 struct mmc_host *mmc; 107 struct spi_device *spi; 108 109 unsigned char power_mode; 110 u16 powerup_msecs; 111 112 struct mmc_spi_platform_data *pdata; 113 114 /* for bulk data transfers */ 115 struct spi_transfer token, t, crc, early_status; 116 struct spi_message m; 117 118 /* for status readback */ 119 struct spi_transfer status; 120 struct spi_message readback; 121 122 /* buffer used for commands and for message "overhead" */ 123 struct scratch *data; 124 125 /* Specs say to write ones most of the time, even when the card 126 * has no need to read its input data; and many cards won't care. 127 * This is our source of those ones. 128 */ 129 void *ones; 130}; 131 132 133/****************************************************************************/ 134 135/* 136 * MMC-over-SPI protocol glue, used by the MMC stack interface 137 */ 138 139static inline int mmc_cs_off(struct mmc_spi_host *host) 140{ 141 /* chipselect will always be inactive after setup() */ 142 return spi_setup(host->spi); 143} 144 145static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len) 146{ 147 if (len > sizeof(*host->data)) { 148 WARN_ON(1); 149 return -EIO; 150 } 151 152 host->status.len = len; 153 154 return spi_sync_locked(host->spi, &host->readback); 155} 156 157static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout, 158 unsigned n, u8 byte) 159{ 160 u8 *cp = host->data->status; 161 unsigned long start = jiffies; 162 163 while (1) { 164 int status; 165 unsigned i; 166 167 status = mmc_spi_readbytes(host, n); 168 if (status < 0) 169 return status; 170 171 for (i = 0; i < n; i++) { 172 if (cp[i] != byte) 173 return cp[i]; 174 } 175 176 if (time_is_before_jiffies(start + timeout)) 177 break; 178 179 /* If we need long timeouts, we may release the CPU. 180 * We use jiffies here because we want to have a relation 181 * between elapsed time and the blocking of the scheduler. 182 */ 183 if (time_is_before_jiffies(start + 1)) 184 schedule(); 185 } 186 return -ETIMEDOUT; 187} 188 189static inline int 190mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout) 191{ 192 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 193} 194 195static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout) 196{ 197 return mmc_spi_skip(host, timeout, 1, 0xff); 198} 199 200 201/* 202 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 203 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 204 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 205 * 206 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 207 * newer cards R7 (IF_COND). 208 */ 209 210static char *maptype(struct mmc_command *cmd) 211{ 212 switch (mmc_spi_resp_type(cmd)) { 213 case MMC_RSP_SPI_R1: return "R1"; 214 case MMC_RSP_SPI_R1B: return "R1B"; 215 case MMC_RSP_SPI_R2: return "R2/R5"; 216 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 217 default: return "?"; 218 } 219} 220 221/* return zero, else negative errno after setting cmd->error */ 222static int mmc_spi_response_get(struct mmc_spi_host *host, 223 struct mmc_command *cmd, int cs_on) 224{ 225 unsigned long timeout_ms; 226 u8 *cp = host->data->status; 227 u8 *end = cp + host->t.len; 228 int value = 0; 229 int bitshift; 230 u8 leftover = 0; 231 unsigned short rotator; 232 int i; 233 char tag[32]; 234 235 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 236 cmd->opcode, maptype(cmd)); 237 238 /* Except for data block reads, the whole response will already 239 * be stored in the scratch buffer. It's somewhere after the 240 * command and the first byte we read after it. We ignore that 241 * first byte. After STOP_TRANSMISSION command it may include 242 * two data bits, but otherwise it's all ones. 243 */ 244 cp += 8; 245 while (cp < end && *cp == 0xff) 246 cp++; 247 248 /* Data block reads (R1 response types) may need more data... */ 249 if (cp == end) { 250 cp = host->data->status; 251 end = cp+1; 252 253 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 254 * status byte ... and we already scanned 2 bytes. 255 * 256 * REVISIT block read paths use nasty byte-at-a-time I/O 257 * so it can always DMA directly into the target buffer. 258 * It'd probably be better to memcpy() the first chunk and 259 * avoid extra i/o calls... 260 * 261 * Note we check for more than 8 bytes, because in practice, 262 * some SD cards are slow... 263 */ 264 for (i = 2; i < 16; i++) { 265 value = mmc_spi_readbytes(host, 1); 266 if (value < 0) 267 goto done; 268 if (*cp != 0xff) 269 goto checkstatus; 270 } 271 value = -ETIMEDOUT; 272 goto done; 273 } 274 275checkstatus: 276 bitshift = 0; 277 if (*cp & 0x80) { 278 /* Houston, we have an ugly card with a bit-shifted response */ 279 rotator = *cp++ << 8; 280 /* read the next byte */ 281 if (cp == end) { 282 value = mmc_spi_readbytes(host, 1); 283 if (value < 0) 284 goto done; 285 cp = host->data->status; 286 end = cp+1; 287 } 288 rotator |= *cp++; 289 while (rotator & 0x8000) { 290 bitshift++; 291 rotator <<= 1; 292 } 293 cmd->resp[0] = rotator >> 8; 294 leftover = rotator; 295 } else { 296 cmd->resp[0] = *cp++; 297 } 298 cmd->error = 0; 299 300 /* Status byte: the entire seven-bit R1 response. */ 301 if (cmd->resp[0] != 0) { 302 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS) 303 & cmd->resp[0]) 304 value = -EFAULT; /* Bad address */ 305 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0]) 306 value = -ENOSYS; /* Function not implemented */ 307 else if (R1_SPI_COM_CRC & cmd->resp[0]) 308 value = -EILSEQ; /* Illegal byte sequence */ 309 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 310 & cmd->resp[0]) 311 value = -EIO; /* I/O error */ 312 /* else R1_SPI_IDLE, "it's resetting" */ 313 } 314 315 switch (mmc_spi_resp_type(cmd)) { 316 317 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 318 * and less-common stuff like various erase operations. 319 */ 320 case MMC_RSP_SPI_R1B: 321 /* maybe we read all the busy tokens already */ 322 while (cp < end && *cp == 0) 323 cp++; 324 if (cp == end) { 325 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout : 326 MMC_SPI_R1B_TIMEOUT_MS; 327 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms)); 328 } 329 break; 330 331 /* SPI R2 == R1 + second status byte; SEND_STATUS 332 * SPI R5 == R1 + data byte; IO_RW_DIRECT 333 */ 334 case MMC_RSP_SPI_R2: 335 /* read the next byte */ 336 if (cp == end) { 337 value = mmc_spi_readbytes(host, 1); 338 if (value < 0) 339 goto done; 340 cp = host->data->status; 341 end = cp+1; 342 } 343 if (bitshift) { 344 rotator = leftover << 8; 345 rotator |= *cp << bitshift; 346 cmd->resp[0] |= (rotator & 0xFF00); 347 } else { 348 cmd->resp[0] |= *cp << 8; 349 } 350 break; 351 352 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 353 case MMC_RSP_SPI_R3: 354 rotator = leftover << 8; 355 cmd->resp[1] = 0; 356 for (i = 0; i < 4; i++) { 357 cmd->resp[1] <<= 8; 358 /* read the next byte */ 359 if (cp == end) { 360 value = mmc_spi_readbytes(host, 1); 361 if (value < 0) 362 goto done; 363 cp = host->data->status; 364 end = cp+1; 365 } 366 if (bitshift) { 367 rotator |= *cp++ << bitshift; 368 cmd->resp[1] |= (rotator >> 8); 369 rotator <<= 8; 370 } else { 371 cmd->resp[1] |= *cp++; 372 } 373 } 374 break; 375 376 /* SPI R1 == just one status byte */ 377 case MMC_RSP_SPI_R1: 378 break; 379 380 default: 381 dev_dbg(&host->spi->dev, "bad response type %04x\n", 382 mmc_spi_resp_type(cmd)); 383 if (value >= 0) 384 value = -EINVAL; 385 goto done; 386 } 387 388 if (value < 0) 389 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 390 tag, cmd->resp[0], cmd->resp[1]); 391 392 /* disable chipselect on errors and some success cases */ 393 if (value >= 0 && cs_on) 394 return value; 395done: 396 if (value < 0) 397 cmd->error = value; 398 mmc_cs_off(host); 399 return value; 400} 401 402/* Issue command and read its response. 403 * Returns zero on success, negative for error. 404 * 405 * On error, caller must cope with mmc core retry mechanism. That 406 * means immediate low-level resubmit, which affects the bus lock... 407 */ 408static int 409mmc_spi_command_send(struct mmc_spi_host *host, 410 struct mmc_request *mrq, 411 struct mmc_command *cmd, int cs_on) 412{ 413 struct scratch *data = host->data; 414 u8 *cp = data->status; 415 int status; 416 struct spi_transfer *t; 417 418 /* We can handle most commands (except block reads) in one full 419 * duplex I/O operation before either starting the next transfer 420 * (data block or command) or else deselecting the card. 421 * 422 * First, write 7 bytes: 423 * - an all-ones byte to ensure the card is ready 424 * - opcode byte (plus start and transmission bits) 425 * - four bytes of big-endian argument 426 * - crc7 (plus end bit) ... always computed, it's cheap 427 * 428 * We init the whole buffer to all-ones, which is what we need 429 * to write while we're reading (later) response data. 430 */ 431 memset(cp, 0xff, sizeof(data->status)); 432 433 cp[1] = 0x40 | cmd->opcode; 434 put_unaligned_be32(cmd->arg, cp + 2); 435 cp[6] = crc7_be(0, cp + 1, 5) | 0x01; 436 cp += 7; 437 438 /* Then, read up to 13 bytes (while writing all-ones): 439 * - N(CR) (== 1..8) bytes of all-ones 440 * - status byte (for all response types) 441 * - the rest of the response, either: 442 * + nothing, for R1 or R1B responses 443 * + second status byte, for R2 responses 444 * + four data bytes, for R3 and R7 responses 445 * 446 * Finally, read some more bytes ... in the nice cases we know in 447 * advance how many, and reading 1 more is always OK: 448 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 449 * - N(RC) (== 1..N) bytes of all-ones, before next command 450 * - N(WR) (== 1..N) bytes of all-ones, before data write 451 * 452 * So in those cases one full duplex I/O of at most 21 bytes will 453 * handle the whole command, leaving the card ready to receive a 454 * data block or new command. We do that whenever we can, shaving 455 * CPU and IRQ costs (especially when using DMA or FIFOs). 456 * 457 * There are two other cases, where it's not generally practical 458 * to rely on a single I/O: 459 * 460 * - R1B responses need at least N(EC) bytes of all-zeroes. 461 * 462 * In this case we can *try* to fit it into one I/O, then 463 * maybe read more data later. 464 * 465 * - Data block reads are more troublesome, since a variable 466 * number of padding bytes precede the token and data. 467 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 468 * + N(AC) (== 1..many) bytes of all-ones 469 * 470 * In this case we currently only have minimal speedups here: 471 * when N(CR) == 1 we can avoid I/O in response_get(). 472 */ 473 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 474 cp += 2; /* min(N(CR)) + status */ 475 /* R1 */ 476 } else { 477 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 478 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 479 cp++; 480 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 481 cp += 4; 482 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 483 cp = data->status + sizeof(data->status); 484 /* else: R1 (most commands) */ 485 } 486 487 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n", 488 cmd->opcode, maptype(cmd)); 489 490 /* send command, leaving chipselect active */ 491 spi_message_init(&host->m); 492 493 t = &host->t; 494 memset(t, 0, sizeof(*t)); 495 t->tx_buf = t->rx_buf = data->status; 496 t->len = cp - data->status; 497 t->cs_change = 1; 498 spi_message_add_tail(t, &host->m); 499 500 status = spi_sync_locked(host->spi, &host->m); 501 if (status < 0) { 502 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 503 cmd->error = status; 504 return status; 505 } 506 507 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 508 return mmc_spi_response_get(host, cmd, cs_on); 509} 510 511/* Build data message with up to four separate transfers. For TX, we 512 * start by writing the data token. And in most cases, we finish with 513 * a status transfer. 514 * 515 * We always provide TX data for data and CRC. The MMC/SD protocol 516 * requires us to write ones; but Linux defaults to writing zeroes; 517 * so we explicitly initialize it to all ones on RX paths. 518 */ 519static void 520mmc_spi_setup_data_message( 521 struct mmc_spi_host *host, 522 int multiple, 523 enum dma_data_direction direction) 524{ 525 struct spi_transfer *t; 526 struct scratch *scratch = host->data; 527 528 spi_message_init(&host->m); 529 530 /* for reads, readblock() skips 0xff bytes before finding 531 * the token; for writes, this transfer issues that token. 532 */ 533 if (direction == DMA_TO_DEVICE) { 534 t = &host->token; 535 memset(t, 0, sizeof(*t)); 536 t->len = 1; 537 if (multiple) 538 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 539 else 540 scratch->data_token = SPI_TOKEN_SINGLE; 541 t->tx_buf = &scratch->data_token; 542 spi_message_add_tail(t, &host->m); 543 } 544 545 /* Body of transfer is buffer, then CRC ... 546 * either TX-only, or RX with TX-ones. 547 */ 548 t = &host->t; 549 memset(t, 0, sizeof(*t)); 550 t->tx_buf = host->ones; 551 /* length and actual buffer info are written later */ 552 spi_message_add_tail(t, &host->m); 553 554 t = &host->crc; 555 memset(t, 0, sizeof(*t)); 556 t->len = 2; 557 if (direction == DMA_TO_DEVICE) { 558 /* the actual CRC may get written later */ 559 t->tx_buf = &scratch->crc_val; 560 } else { 561 t->tx_buf = host->ones; 562 t->rx_buf = &scratch->crc_val; 563 } 564 spi_message_add_tail(t, &host->m); 565 566 /* 567 * A single block read is followed by N(EC) [0+] all-ones bytes 568 * before deselect ... don't bother. 569 * 570 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 571 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 572 * collect that single byte, so readblock() doesn't need to. 573 * 574 * For a write, the one-byte data response follows immediately, then 575 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 576 * Then single block reads may deselect, and multiblock ones issue 577 * the next token (next data block, or STOP_TRAN). We can try to 578 * minimize I/O ops by using a single read to collect end-of-busy. 579 */ 580 if (multiple || direction == DMA_TO_DEVICE) { 581 t = &host->early_status; 582 memset(t, 0, sizeof(*t)); 583 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1; 584 t->tx_buf = host->ones; 585 t->rx_buf = scratch->status; 586 t->cs_change = 1; 587 spi_message_add_tail(t, &host->m); 588 } 589} 590 591/* 592 * Write one block: 593 * - caller handled preceding N(WR) [1+] all-ones bytes 594 * - data block 595 * + token 596 * + data bytes 597 * + crc16 598 * - an all-ones byte ... card writes a data-response byte 599 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 600 * 601 * Return negative errno, else success. 602 */ 603static int 604mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t, 605 unsigned long timeout) 606{ 607 struct spi_device *spi = host->spi; 608 int status, i; 609 struct scratch *scratch = host->data; 610 u32 pattern; 611 612 if (host->mmc->use_spi_crc) 613 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len)); 614 615 status = spi_sync_locked(spi, &host->m); 616 if (status != 0) { 617 dev_dbg(&spi->dev, "write error (%d)\n", status); 618 return status; 619 } 620 621 /* 622 * Get the transmission data-response reply. It must follow 623 * immediately after the data block we transferred. This reply 624 * doesn't necessarily tell whether the write operation succeeded; 625 * it just says if the transmission was ok and whether *earlier* 626 * writes succeeded; see the standard. 627 * 628 * In practice, there are (even modern SDHC-)cards which are late 629 * in sending the response, and miss the time frame by a few bits, 630 * so we have to cope with this situation and check the response 631 * bit-by-bit. Arggh!!! 632 */ 633 pattern = get_unaligned_be32(scratch->status); 634 635 /* First 3 bit of pattern are undefined */ 636 pattern |= 0xE0000000; 637 638 /* left-adjust to leading 0 bit */ 639 while (pattern & 0x80000000) 640 pattern <<= 1; 641 /* right-adjust for pattern matching. Code is in bit 4..0 now. */ 642 pattern >>= 27; 643 644 switch (pattern) { 645 case SPI_RESPONSE_ACCEPTED: 646 status = 0; 647 break; 648 case SPI_RESPONSE_CRC_ERR: 649 /* host shall then issue MMC_STOP_TRANSMISSION */ 650 status = -EILSEQ; 651 break; 652 case SPI_RESPONSE_WRITE_ERR: 653 /* host shall then issue MMC_STOP_TRANSMISSION, 654 * and should MMC_SEND_STATUS to sort it out 655 */ 656 status = -EIO; 657 break; 658 default: 659 status = -EPROTO; 660 break; 661 } 662 if (status != 0) { 663 dev_dbg(&spi->dev, "write error %02x (%d)\n", 664 scratch->status[0], status); 665 return status; 666 } 667 668 t->tx_buf += t->len; 669 670 /* Return when not busy. If we didn't collect that status yet, 671 * we'll need some more I/O. 672 */ 673 for (i = 4; i < sizeof(scratch->status); i++) { 674 /* card is non-busy if the most recent bit is 1 */ 675 if (scratch->status[i] & 0x01) 676 return 0; 677 } 678 return mmc_spi_wait_unbusy(host, timeout); 679} 680 681/* 682 * Read one block: 683 * - skip leading all-ones bytes ... either 684 * + N(AC) [1..f(clock,CSD)] usually, else 685 * + N(CX) [0..8] when reading CSD or CID 686 * - data block 687 * + token ... if error token, no data or crc 688 * + data bytes 689 * + crc16 690 * 691 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 692 * before dropping chipselect. 693 * 694 * For multiblock reads, caller either reads the next block or issues a 695 * STOP_TRANSMISSION command. 696 */ 697static int 698mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t, 699 unsigned long timeout) 700{ 701 struct spi_device *spi = host->spi; 702 int status; 703 struct scratch *scratch = host->data; 704 unsigned int bitshift; 705 u8 leftover; 706 707 /* At least one SD card sends an all-zeroes byte when N(CX) 708 * applies, before the all-ones bytes ... just cope with that. 709 */ 710 status = mmc_spi_readbytes(host, 1); 711 if (status < 0) 712 return status; 713 status = scratch->status[0]; 714 if (status == 0xff || status == 0) 715 status = mmc_spi_readtoken(host, timeout); 716 717 if (status < 0) { 718 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 719 return status; 720 } 721 722 /* The token may be bit-shifted... 723 * the first 0-bit precedes the data stream. 724 */ 725 bitshift = 7; 726 while (status & 0x80) { 727 status <<= 1; 728 bitshift--; 729 } 730 leftover = status << 1; 731 732 status = spi_sync_locked(spi, &host->m); 733 if (status < 0) { 734 dev_dbg(&spi->dev, "read error %d\n", status); 735 return status; 736 } 737 738 if (bitshift) { 739 /* Walk through the data and the crc and do 740 * all the magic to get byte-aligned data. 741 */ 742 u8 *cp = t->rx_buf; 743 unsigned int len; 744 unsigned int bitright = 8 - bitshift; 745 u8 temp; 746 for (len = t->len; len; len--) { 747 temp = *cp; 748 *cp++ = leftover | (temp >> bitshift); 749 leftover = temp << bitright; 750 } 751 cp = (u8 *) &scratch->crc_val; 752 temp = *cp; 753 *cp++ = leftover | (temp >> bitshift); 754 leftover = temp << bitright; 755 temp = *cp; 756 *cp = leftover | (temp >> bitshift); 757 } 758 759 if (host->mmc->use_spi_crc) { 760 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 761 762 be16_to_cpus(&scratch->crc_val); 763 if (scratch->crc_val != crc) { 764 dev_dbg(&spi->dev, 765 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n", 766 scratch->crc_val, crc, t->len); 767 return -EILSEQ; 768 } 769 } 770 771 t->rx_buf += t->len; 772 773 return 0; 774} 775 776/* 777 * An MMC/SD data stage includes one or more blocks, optional CRCs, 778 * and inline handshaking. That handhaking makes it unlike most 779 * other SPI protocol stacks. 780 */ 781static void 782mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 783 struct mmc_data *data, u32 blk_size) 784{ 785 struct spi_device *spi = host->spi; 786 struct spi_transfer *t; 787 enum dma_data_direction direction; 788 struct scatterlist *sg; 789 unsigned n_sg; 790 int multiple = (data->blocks > 1); 791 u32 clock_rate; 792 unsigned long timeout; 793 794 direction = mmc_get_dma_dir(data); 795 mmc_spi_setup_data_message(host, multiple, direction); 796 t = &host->t; 797 798 if (t->speed_hz) 799 clock_rate = t->speed_hz; 800 else 801 clock_rate = spi->max_speed_hz; 802 803 timeout = data->timeout_ns / 1000 + 804 data->timeout_clks * 1000000 / clock_rate; 805 timeout = usecs_to_jiffies((unsigned int)timeout) + 1; 806 807 /* Handle scatterlist segments one at a time, with synch for 808 * each 512-byte block 809 */ 810 for_each_sg(data->sg, sg, data->sg_len, n_sg) { 811 int status = 0; 812 void *kmap_addr; 813 unsigned length = sg->length; 814 815 /* allow pio too; we don't allow highmem */ 816 kmap_addr = kmap(sg_page(sg)); 817 if (direction == DMA_TO_DEVICE) 818 t->tx_buf = kmap_addr + sg->offset; 819 else 820 t->rx_buf = kmap_addr + sg->offset; 821 822 /* transfer each block, and update request status */ 823 while (length) { 824 t->len = min(length, blk_size); 825 826 dev_dbg(&host->spi->dev, 827 " mmc_spi: %s block, %d bytes\n", 828 (direction == DMA_TO_DEVICE) ? "write" : "read", 829 t->len); 830 831 if (direction == DMA_TO_DEVICE) 832 status = mmc_spi_writeblock(host, t, timeout); 833 else 834 status = mmc_spi_readblock(host, t, timeout); 835 if (status < 0) 836 break; 837 838 data->bytes_xfered += t->len; 839 length -= t->len; 840 841 if (!multiple) 842 break; 843 } 844 845 /* discard mappings */ 846 if (direction == DMA_FROM_DEVICE) 847 flush_kernel_dcache_page(sg_page(sg)); 848 kunmap(sg_page(sg)); 849 850 if (status < 0) { 851 data->error = status; 852 dev_dbg(&spi->dev, "%s status %d\n", 853 (direction == DMA_TO_DEVICE) ? "write" : "read", 854 status); 855 break; 856 } 857 } 858 859 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 860 * can be issued before multiblock writes. Unlike its more widely 861 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 862 * that can affect the STOP_TRAN logic. Complete (and current) 863 * MMC specs should sort that out before Linux starts using CMD23. 864 */ 865 if (direction == DMA_TO_DEVICE && multiple) { 866 struct scratch *scratch = host->data; 867 int tmp; 868 const unsigned statlen = sizeof(scratch->status); 869 870 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n"); 871 872 /* Tweak the per-block message we set up earlier by morphing 873 * it to hold single buffer with the token followed by some 874 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 875 * "not busy any longer" status, and leave chip selected. 876 */ 877 INIT_LIST_HEAD(&host->m.transfers); 878 list_add(&host->early_status.transfer_list, 879 &host->m.transfers); 880 881 memset(scratch->status, 0xff, statlen); 882 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 883 884 host->early_status.tx_buf = host->early_status.rx_buf; 885 host->early_status.len = statlen; 886 887 tmp = spi_sync_locked(spi, &host->m); 888 if (tmp < 0) { 889 if (!data->error) 890 data->error = tmp; 891 return; 892 } 893 894 /* Ideally we collected "not busy" status with one I/O, 895 * avoiding wasteful byte-at-a-time scanning... but more 896 * I/O is often needed. 897 */ 898 for (tmp = 2; tmp < statlen; tmp++) { 899 if (scratch->status[tmp] != 0) 900 return; 901 } 902 tmp = mmc_spi_wait_unbusy(host, timeout); 903 if (tmp < 0 && !data->error) 904 data->error = tmp; 905 } 906} 907 908/****************************************************************************/ 909 910/* 911 * MMC driver implementation -- the interface to the MMC stack 912 */ 913 914static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 915{ 916 struct mmc_spi_host *host = mmc_priv(mmc); 917 int status = -EINVAL; 918 int crc_retry = 5; 919 struct mmc_command stop; 920 921#ifdef DEBUG 922 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 923 { 924 struct mmc_command *cmd; 925 int invalid = 0; 926 927 cmd = mrq->cmd; 928 if (!mmc_spi_resp_type(cmd)) { 929 dev_dbg(&host->spi->dev, "bogus command\n"); 930 cmd->error = -EINVAL; 931 invalid = 1; 932 } 933 934 cmd = mrq->stop; 935 if (cmd && !mmc_spi_resp_type(cmd)) { 936 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 937 cmd->error = -EINVAL; 938 invalid = 1; 939 } 940 941 if (invalid) { 942 dump_stack(); 943 mmc_request_done(host->mmc, mrq); 944 return; 945 } 946 } 947#endif 948 949 /* request exclusive bus access */ 950 spi_bus_lock(host->spi->master); 951 952crc_recover: 953 /* issue command; then optionally data and stop */ 954 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 955 if (status == 0 && mrq->data) { 956 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 957 958 /* 959 * The SPI bus is not always reliable for large data transfers. 960 * If an occasional crc error is reported by the SD device with 961 * data read/write over SPI, it may be recovered by repeating 962 * the last SD command again. The retry count is set to 5 to 963 * ensure the driver passes stress tests. 964 */ 965 if (mrq->data->error == -EILSEQ && crc_retry) { 966 stop.opcode = MMC_STOP_TRANSMISSION; 967 stop.arg = 0; 968 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 969 status = mmc_spi_command_send(host, mrq, &stop, 0); 970 crc_retry--; 971 mrq->data->error = 0; 972 goto crc_recover; 973 } 974 975 if (mrq->stop) 976 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 977 else 978 mmc_cs_off(host); 979 } 980 981 /* release the bus */ 982 spi_bus_unlock(host->spi->master); 983 984 mmc_request_done(host->mmc, mrq); 985} 986 987/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 988 * 989 * NOTE that here we can't know that the card has just been powered up; 990 * not all MMC/SD sockets support power switching. 991 * 992 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 993 * this doesn't seem to do the right thing at all... 994 */ 995static void mmc_spi_initsequence(struct mmc_spi_host *host) 996{ 997 /* Try to be very sure any previous command has completed; 998 * wait till not-busy, skip debris from any old commands. 999 */ 1000 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS)); 1001 mmc_spi_readbytes(host, 10); 1002 1003 /* 1004 * Do a burst with chipselect active-high. We need to do this to 1005 * meet the requirement of 74 clock cycles with both chipselect 1006 * and CMD (MOSI) high before CMD0 ... after the card has been 1007 * powered up to Vdd(min), and so is ready to take commands. 1008 * 1009 * Some cards are particularly needy of this (e.g. Viking "SD256") 1010 * while most others don't seem to care. 1011 * 1012 * Note that this is one of the places MMC/SD plays games with the 1013 * SPI protocol. Another is that when chipselect is released while 1014 * the card returns BUSY status, the clock must issue several cycles 1015 * with chipselect high before the card will stop driving its output. 1016 * 1017 * SPI_CS_HIGH means "asserted" here. In some cases like when using 1018 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically 1019 * inverted by gpiolib, so if we want to ascertain to drive it high 1020 * we should toggle the default with an XOR as we do here. 1021 */ 1022 host->spi->mode ^= SPI_CS_HIGH; 1023 if (spi_setup(host->spi) != 0) { 1024 /* Just warn; most cards work without it. */ 1025 dev_warn(&host->spi->dev, 1026 "can't change chip-select polarity\n"); 1027 host->spi->mode ^= SPI_CS_HIGH; 1028 } else { 1029 mmc_spi_readbytes(host, 18); 1030 1031 host->spi->mode ^= SPI_CS_HIGH; 1032 if (spi_setup(host->spi) != 0) { 1033 /* Wot, we can't get the same setup we had before? */ 1034 dev_err(&host->spi->dev, 1035 "can't restore chip-select polarity\n"); 1036 } 1037 } 1038} 1039 1040static char *mmc_powerstring(u8 power_mode) 1041{ 1042 switch (power_mode) { 1043 case MMC_POWER_OFF: return "off"; 1044 case MMC_POWER_UP: return "up"; 1045 case MMC_POWER_ON: return "on"; 1046 } 1047 return "?"; 1048} 1049 1050static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1051{ 1052 struct mmc_spi_host *host = mmc_priv(mmc); 1053 1054 if (host->power_mode != ios->power_mode) { 1055 int canpower; 1056 1057 canpower = host->pdata && host->pdata->setpower; 1058 1059 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", 1060 mmc_powerstring(ios->power_mode), 1061 ios->vdd, 1062 canpower ? ", can switch" : ""); 1063 1064 /* switch power on/off if possible, accounting for 1065 * max 250msec powerup time if needed. 1066 */ 1067 if (canpower) { 1068 switch (ios->power_mode) { 1069 case MMC_POWER_OFF: 1070 case MMC_POWER_UP: 1071 host->pdata->setpower(&host->spi->dev, 1072 ios->vdd); 1073 if (ios->power_mode == MMC_POWER_UP) 1074 msleep(host->powerup_msecs); 1075 } 1076 } 1077 1078 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1079 if (ios->power_mode == MMC_POWER_ON) 1080 mmc_spi_initsequence(host); 1081 1082 /* If powering down, ground all card inputs to avoid power 1083 * delivery from data lines! On a shared SPI bus, this 1084 * will probably be temporary; 6.4.2 of the simplified SD 1085 * spec says this must last at least 1msec. 1086 * 1087 * - Clock low means CPOL 0, e.g. mode 0 1088 * - MOSI low comes from writing zero 1089 * - Chipselect is usually active low... 1090 */ 1091 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1092 int mres; 1093 u8 nullbyte = 0; 1094 1095 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1096 mres = spi_setup(host->spi); 1097 if (mres < 0) 1098 dev_dbg(&host->spi->dev, 1099 "switch to SPI mode 0 failed\n"); 1100 1101 if (spi_write(host->spi, &nullbyte, 1) < 0) 1102 dev_dbg(&host->spi->dev, 1103 "put spi signals to low failed\n"); 1104 1105 /* 1106 * Now clock should be low due to spi mode 0; 1107 * MOSI should be low because of written 0x00; 1108 * chipselect should be low (it is active low) 1109 * power supply is off, so now MMC is off too! 1110 * 1111 * FIXME no, chipselect can be high since the 1112 * device is inactive and SPI_CS_HIGH is clear... 1113 */ 1114 msleep(10); 1115 if (mres == 0) { 1116 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1117 mres = spi_setup(host->spi); 1118 if (mres < 0) 1119 dev_dbg(&host->spi->dev, 1120 "switch back to SPI mode 3 failed\n"); 1121 } 1122 } 1123 1124 host->power_mode = ios->power_mode; 1125 } 1126 1127 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1128 int status; 1129 1130 host->spi->max_speed_hz = ios->clock; 1131 status = spi_setup(host->spi); 1132 dev_dbg(&host->spi->dev, 1133 "mmc_spi: clock to %d Hz, %d\n", 1134 host->spi->max_speed_hz, status); 1135 } 1136} 1137 1138static const struct mmc_host_ops mmc_spi_ops = { 1139 .request = mmc_spi_request, 1140 .set_ios = mmc_spi_set_ios, 1141 .get_ro = mmc_gpio_get_ro, 1142 .get_cd = mmc_gpio_get_cd, 1143}; 1144 1145 1146/****************************************************************************/ 1147 1148/* 1149 * SPI driver implementation 1150 */ 1151 1152static irqreturn_t 1153mmc_spi_detect_irq(int irq, void *mmc) 1154{ 1155 struct mmc_spi_host *host = mmc_priv(mmc); 1156 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1157 1158 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1159 return IRQ_HANDLED; 1160} 1161 1162static int mmc_spi_probe(struct spi_device *spi) 1163{ 1164 void *ones; 1165 struct mmc_host *mmc; 1166 struct mmc_spi_host *host; 1167 int status; 1168 bool has_ro = false; 1169 1170 /* We rely on full duplex transfers, mostly to reduce 1171 * per-transfer overheads (by making fewer transfers). 1172 */ 1173 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX) 1174 return -EINVAL; 1175 1176 /* MMC and SD specs only seem to care that sampling is on the 1177 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1178 * should be legit. We'll use mode 0 since the steady state is 0, 1179 * which is appropriate for hotplugging, unless the platform data 1180 * specify mode 3 (if hardware is not compatible to mode 0). 1181 */ 1182 if (spi->mode != SPI_MODE_3) 1183 spi->mode = SPI_MODE_0; 1184 spi->bits_per_word = 8; 1185 1186 status = spi_setup(spi); 1187 if (status < 0) { 1188 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1189 spi->mode, spi->max_speed_hz / 1000, 1190 status); 1191 return status; 1192 } 1193 1194 /* We need a supply of ones to transmit. This is the only time 1195 * the CPU touches these, so cache coherency isn't a concern. 1196 * 1197 * NOTE if many systems use more than one MMC-over-SPI connector 1198 * it'd save some memory to share this. That's evidently rare. 1199 */ 1200 status = -ENOMEM; 1201 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1202 if (!ones) 1203 goto nomem; 1204 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1205 1206 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1207 if (!mmc) 1208 goto nomem; 1209 1210 mmc->ops = &mmc_spi_ops; 1211 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1212 mmc->max_segs = MMC_SPI_BLOCKSATONCE; 1213 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE; 1214 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE; 1215 1216 mmc->caps = MMC_CAP_SPI; 1217 1218 /* SPI doesn't need the lowspeed device identification thing for 1219 * MMC or SD cards, since it never comes up in open drain mode. 1220 * That's good; some SPI masters can't handle very low speeds! 1221 * 1222 * However, low speed SDIO cards need not handle over 400 KHz; 1223 * that's the only reason not to use a few MHz for f_min (until 1224 * the upper layer reads the target frequency from the CSD). 1225 */ 1226 mmc->f_min = 400000; 1227 mmc->f_max = spi->max_speed_hz; 1228 1229 host = mmc_priv(mmc); 1230 host->mmc = mmc; 1231 host->spi = spi; 1232 1233 host->ones = ones; 1234 1235 /* Platform data is used to hook up things like card sensing 1236 * and power switching gpios. 1237 */ 1238 host->pdata = mmc_spi_get_pdata(spi); 1239 if (host->pdata) 1240 mmc->ocr_avail = host->pdata->ocr_mask; 1241 if (!mmc->ocr_avail) { 1242 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1243 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1244 } 1245 if (host->pdata && host->pdata->setpower) { 1246 host->powerup_msecs = host->pdata->powerup_msecs; 1247 if (!host->powerup_msecs || host->powerup_msecs > 250) 1248 host->powerup_msecs = 250; 1249 } 1250 1251 dev_set_drvdata(&spi->dev, mmc); 1252 1253 /* Preallocate buffers */ 1254 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1255 if (!host->data) 1256 goto fail_nobuf1; 1257 1258 /* setup message for status/busy readback */ 1259 spi_message_init(&host->readback); 1260 1261 spi_message_add_tail(&host->status, &host->readback); 1262 host->status.tx_buf = host->ones; 1263 host->status.rx_buf = &host->data->status; 1264 host->status.cs_change = 1; 1265 1266 /* register card detect irq */ 1267 if (host->pdata && host->pdata->init) { 1268 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1269 if (status != 0) 1270 goto fail_glue_init; 1271 } 1272 1273 /* pass platform capabilities, if any */ 1274 if (host->pdata) { 1275 mmc->caps |= host->pdata->caps; 1276 mmc->caps2 |= host->pdata->caps2; 1277 } 1278 1279 status = mmc_add_host(mmc); 1280 if (status != 0) 1281 goto fail_glue_init; 1282 1283 /* 1284 * Index 0 is card detect 1285 * Old boardfiles were specifying 1 ms as debounce 1286 */ 1287 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000); 1288 if (status == -EPROBE_DEFER) 1289 goto fail_gpiod_request; 1290 if (!status) { 1291 /* 1292 * The platform has a CD GPIO signal that may support 1293 * interrupts, so let mmc_gpiod_request_cd_irq() decide 1294 * if polling is needed or not. 1295 */ 1296 mmc->caps &= ~MMC_CAP_NEEDS_POLL; 1297 mmc_gpiod_request_cd_irq(mmc); 1298 } 1299 mmc_detect_change(mmc, 0); 1300 1301 /* Index 1 is write protect/read only */ 1302 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0); 1303 if (status == -EPROBE_DEFER) 1304 goto fail_gpiod_request; 1305 if (!status) 1306 has_ro = true; 1307 1308 dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n", 1309 dev_name(&mmc->class_dev), 1310 has_ro ? "" : ", no WP", 1311 (host->pdata && host->pdata->setpower) 1312 ? "" : ", no poweroff", 1313 (mmc->caps & MMC_CAP_NEEDS_POLL) 1314 ? ", cd polling" : ""); 1315 return 0; 1316 1317fail_gpiod_request: 1318 mmc_remove_host(mmc); 1319fail_glue_init: 1320 kfree(host->data); 1321fail_nobuf1: 1322 mmc_free_host(mmc); 1323 mmc_spi_put_pdata(spi); 1324nomem: 1325 kfree(ones); 1326 return status; 1327} 1328 1329 1330static int mmc_spi_remove(struct spi_device *spi) 1331{ 1332 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1333 struct mmc_spi_host *host = mmc_priv(mmc); 1334 1335 /* prevent new mmc_detect_change() calls */ 1336 if (host->pdata && host->pdata->exit) 1337 host->pdata->exit(&spi->dev, mmc); 1338 1339 mmc_remove_host(mmc); 1340 1341 kfree(host->data); 1342 kfree(host->ones); 1343 1344 spi->max_speed_hz = mmc->f_max; 1345 mmc_free_host(mmc); 1346 mmc_spi_put_pdata(spi); 1347 return 0; 1348} 1349 1350static const struct of_device_id mmc_spi_of_match_table[] = { 1351 { .compatible = "mmc-spi-slot", }, 1352 {}, 1353}; 1354MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table); 1355 1356static struct spi_driver mmc_spi_driver = { 1357 .driver = { 1358 .name = "mmc_spi", 1359 .of_match_table = mmc_spi_of_match_table, 1360 }, 1361 .probe = mmc_spi_probe, 1362 .remove = mmc_spi_remove, 1363}; 1364 1365module_spi_driver(mmc_spi_driver); 1366 1367MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko"); 1368MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1369MODULE_LICENSE("GPL"); 1370MODULE_ALIAS("spi:mmc_spi"); 1371