1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 *		Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 *		Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 *		Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13#include <linux/sched.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/dma-direction.h>
19#include <linux/crc7.h>
20#include <linux/crc-itu-t.h>
21#include <linux/scatterlist.h>
22
23#include <linux/mmc/host.h>
24#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
25#include <linux/mmc/slot-gpio.h>
26
27#include <linux/spi/spi.h>
28#include <linux/spi/mmc_spi.h>
29
30#include <asm/unaligned.h>
31
32
33/* NOTES:
34 *
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 *   controller, although some of them do have hardware support for
37 *   SPI protocol.  The main reason for such configs would be mmc-ish
38 *   cards like DataFlash, which don't support that "native" protocol.
39 *
40 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 *   switch between driver stacks, and in any case if "native" mode
42 *   is available, it will be faster and hence preferable.
43 *
44 * - MMC depends on a different chipselect management policy than the
45 *   SPI interface currently supports for shared bus segments:  it needs
46 *   to issue multiple spi_message requests with the chipselect active,
47 *   using the results of one message to decide the next one to issue.
48 *
49 *   Pending updates to the programming interface, this driver expects
50 *   that it not share the bus with other drivers (precluding conflicts).
51 *
52 * - We tell the controller to keep the chipselect active from the
53 *   beginning of an mmc_host_ops.request until the end.  So beware
54 *   of SPI controller drivers that mis-handle the cs_change flag!
55 *
56 *   However, many cards seem OK with chipselect flapping up/down
57 *   during that time ... at least on unshared bus segments.
58 */
59
60
61/*
62 * Local protocol constants, internal to data block protocols.
63 */
64
65/* Response tokens used to ack each block written: */
66#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
67#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
68#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
69#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
70
71/* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
73 */
74#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
75#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
76#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
77
78#define MMC_SPI_BLOCKSIZE	512
79
80#define MMC_SPI_R1B_TIMEOUT_MS	3000
81#define MMC_SPI_INIT_TIMEOUT_MS	3000
82
83/* One of the critical speed parameters is the amount of data which may
84 * be transferred in one command. If this value is too low, the SD card
85 * controller has to do multiple partial block writes (argggh!). With
86 * today (2008) SD cards there is little speed gain if we transfer more
87 * than 64 KBytes at a time. So use this value until there is any indication
88 * that we should do more here.
89 */
90#define MMC_SPI_BLOCKSATONCE	128
91
92/****************************************************************************/
93
94/*
95 * Local Data Structures
96 */
97
98/* "scratch" is per-{command,block} data exchanged with the card */
99struct scratch {
100	u8			status[29];
101	u8			data_token;
102	__be16			crc_val;
103};
104
105struct mmc_spi_host {
106	struct mmc_host		*mmc;
107	struct spi_device	*spi;
108
109	unsigned char		power_mode;
110	u16			powerup_msecs;
111
112	struct mmc_spi_platform_data	*pdata;
113
114	/* for bulk data transfers */
115	struct spi_transfer	token, t, crc, early_status;
116	struct spi_message	m;
117
118	/* for status readback */
119	struct spi_transfer	status;
120	struct spi_message	readback;
121
122	/* buffer used for commands and for message "overhead" */
123	struct scratch		*data;
124
125	/* Specs say to write ones most of the time, even when the card
126	 * has no need to read its input data; and many cards won't care.
127	 * This is our source of those ones.
128	 */
129	void			*ones;
130};
131
132
133/****************************************************************************/
134
135/*
136 * MMC-over-SPI protocol glue, used by the MMC stack interface
137 */
138
139static inline int mmc_cs_off(struct mmc_spi_host *host)
140{
141	/* chipselect will always be inactive after setup() */
142	return spi_setup(host->spi);
143}
144
145static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len)
146{
147	if (len > sizeof(*host->data)) {
148		WARN_ON(1);
149		return -EIO;
150	}
151
152	host->status.len = len;
153
154	return spi_sync_locked(host->spi, &host->readback);
155}
156
157static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
158			unsigned n, u8 byte)
159{
160	u8 *cp = host->data->status;
161	unsigned long start = jiffies;
162
163	while (1) {
164		int		status;
165		unsigned	i;
166
167		status = mmc_spi_readbytes(host, n);
168		if (status < 0)
169			return status;
170
171		for (i = 0; i < n; i++) {
172			if (cp[i] != byte)
173				return cp[i];
174		}
175
176		if (time_is_before_jiffies(start + timeout))
177			break;
178
179		/* If we need long timeouts, we may release the CPU.
180		 * We use jiffies here because we want to have a relation
181		 * between elapsed time and the blocking of the scheduler.
182		 */
183		if (time_is_before_jiffies(start + 1))
184			schedule();
185	}
186	return -ETIMEDOUT;
187}
188
189static inline int
190mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
191{
192	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
193}
194
195static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
196{
197	return mmc_spi_skip(host, timeout, 1, 0xff);
198}
199
200
201/*
202 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
203 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
204 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
205 *
206 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
207 * newer cards R7 (IF_COND).
208 */
209
210static char *maptype(struct mmc_command *cmd)
211{
212	switch (mmc_spi_resp_type(cmd)) {
213	case MMC_RSP_SPI_R1:	return "R1";
214	case MMC_RSP_SPI_R1B:	return "R1B";
215	case MMC_RSP_SPI_R2:	return "R2/R5";
216	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
217	default:		return "?";
218	}
219}
220
221/* return zero, else negative errno after setting cmd->error */
222static int mmc_spi_response_get(struct mmc_spi_host *host,
223		struct mmc_command *cmd, int cs_on)
224{
225	unsigned long timeout_ms;
226	u8	*cp = host->data->status;
227	u8	*end = cp + host->t.len;
228	int	value = 0;
229	int	bitshift;
230	u8 	leftover = 0;
231	unsigned short rotator;
232	int 	i;
233	char	tag[32];
234
235	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
236		cmd->opcode, maptype(cmd));
237
238	/* Except for data block reads, the whole response will already
239	 * be stored in the scratch buffer.  It's somewhere after the
240	 * command and the first byte we read after it.  We ignore that
241	 * first byte.  After STOP_TRANSMISSION command it may include
242	 * two data bits, but otherwise it's all ones.
243	 */
244	cp += 8;
245	while (cp < end && *cp == 0xff)
246		cp++;
247
248	/* Data block reads (R1 response types) may need more data... */
249	if (cp == end) {
250		cp = host->data->status;
251		end = cp+1;
252
253		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
254		 * status byte ... and we already scanned 2 bytes.
255		 *
256		 * REVISIT block read paths use nasty byte-at-a-time I/O
257		 * so it can always DMA directly into the target buffer.
258		 * It'd probably be better to memcpy() the first chunk and
259		 * avoid extra i/o calls...
260		 *
261		 * Note we check for more than 8 bytes, because in practice,
262		 * some SD cards are slow...
263		 */
264		for (i = 2; i < 16; i++) {
265			value = mmc_spi_readbytes(host, 1);
266			if (value < 0)
267				goto done;
268			if (*cp != 0xff)
269				goto checkstatus;
270		}
271		value = -ETIMEDOUT;
272		goto done;
273	}
274
275checkstatus:
276	bitshift = 0;
277	if (*cp & 0x80)	{
278		/* Houston, we have an ugly card with a bit-shifted response */
279		rotator = *cp++ << 8;
280		/* read the next byte */
281		if (cp == end) {
282			value = mmc_spi_readbytes(host, 1);
283			if (value < 0)
284				goto done;
285			cp = host->data->status;
286			end = cp+1;
287		}
288		rotator |= *cp++;
289		while (rotator & 0x8000) {
290			bitshift++;
291			rotator <<= 1;
292		}
293		cmd->resp[0] = rotator >> 8;
294		leftover = rotator;
295	} else {
296		cmd->resp[0] = *cp++;
297	}
298	cmd->error = 0;
299
300	/* Status byte: the entire seven-bit R1 response.  */
301	if (cmd->resp[0] != 0) {
302		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
303				& cmd->resp[0])
304			value = -EFAULT; /* Bad address */
305		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
306			value = -ENOSYS; /* Function not implemented */
307		else if (R1_SPI_COM_CRC & cmd->resp[0])
308			value = -EILSEQ; /* Illegal byte sequence */
309		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
310				& cmd->resp[0])
311			value = -EIO;    /* I/O error */
312		/* else R1_SPI_IDLE, "it's resetting" */
313	}
314
315	switch (mmc_spi_resp_type(cmd)) {
316
317	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
318	 * and less-common stuff like various erase operations.
319	 */
320	case MMC_RSP_SPI_R1B:
321		/* maybe we read all the busy tokens already */
322		while (cp < end && *cp == 0)
323			cp++;
324		if (cp == end) {
325			timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
326				MMC_SPI_R1B_TIMEOUT_MS;
327			mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
328		}
329		break;
330
331	/* SPI R2 == R1 + second status byte; SEND_STATUS
332	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
333	 */
334	case MMC_RSP_SPI_R2:
335		/* read the next byte */
336		if (cp == end) {
337			value = mmc_spi_readbytes(host, 1);
338			if (value < 0)
339				goto done;
340			cp = host->data->status;
341			end = cp+1;
342		}
343		if (bitshift) {
344			rotator = leftover << 8;
345			rotator |= *cp << bitshift;
346			cmd->resp[0] |= (rotator & 0xFF00);
347		} else {
348			cmd->resp[0] |= *cp << 8;
349		}
350		break;
351
352	/* SPI R3, R4, or R7 == R1 + 4 bytes */
353	case MMC_RSP_SPI_R3:
354		rotator = leftover << 8;
355		cmd->resp[1] = 0;
356		for (i = 0; i < 4; i++) {
357			cmd->resp[1] <<= 8;
358			/* read the next byte */
359			if (cp == end) {
360				value = mmc_spi_readbytes(host, 1);
361				if (value < 0)
362					goto done;
363				cp = host->data->status;
364				end = cp+1;
365			}
366			if (bitshift) {
367				rotator |= *cp++ << bitshift;
368				cmd->resp[1] |= (rotator >> 8);
369				rotator <<= 8;
370			} else {
371				cmd->resp[1] |= *cp++;
372			}
373		}
374		break;
375
376	/* SPI R1 == just one status byte */
377	case MMC_RSP_SPI_R1:
378		break;
379
380	default:
381		dev_dbg(&host->spi->dev, "bad response type %04x\n",
382			mmc_spi_resp_type(cmd));
383		if (value >= 0)
384			value = -EINVAL;
385		goto done;
386	}
387
388	if (value < 0)
389		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
390			tag, cmd->resp[0], cmd->resp[1]);
391
392	/* disable chipselect on errors and some success cases */
393	if (value >= 0 && cs_on)
394		return value;
395done:
396	if (value < 0)
397		cmd->error = value;
398	mmc_cs_off(host);
399	return value;
400}
401
402/* Issue command and read its response.
403 * Returns zero on success, negative for error.
404 *
405 * On error, caller must cope with mmc core retry mechanism.  That
406 * means immediate low-level resubmit, which affects the bus lock...
407 */
408static int
409mmc_spi_command_send(struct mmc_spi_host *host,
410		struct mmc_request *mrq,
411		struct mmc_command *cmd, int cs_on)
412{
413	struct scratch		*data = host->data;
414	u8			*cp = data->status;
415	int			status;
416	struct spi_transfer	*t;
417
418	/* We can handle most commands (except block reads) in one full
419	 * duplex I/O operation before either starting the next transfer
420	 * (data block or command) or else deselecting the card.
421	 *
422	 * First, write 7 bytes:
423	 *  - an all-ones byte to ensure the card is ready
424	 *  - opcode byte (plus start and transmission bits)
425	 *  - four bytes of big-endian argument
426	 *  - crc7 (plus end bit) ... always computed, it's cheap
427	 *
428	 * We init the whole buffer to all-ones, which is what we need
429	 * to write while we're reading (later) response data.
430	 */
431	memset(cp, 0xff, sizeof(data->status));
432
433	cp[1] = 0x40 | cmd->opcode;
434	put_unaligned_be32(cmd->arg, cp + 2);
435	cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
436	cp += 7;
437
438	/* Then, read up to 13 bytes (while writing all-ones):
439	 *  - N(CR) (== 1..8) bytes of all-ones
440	 *  - status byte (for all response types)
441	 *  - the rest of the response, either:
442	 *      + nothing, for R1 or R1B responses
443	 *	+ second status byte, for R2 responses
444	 *	+ four data bytes, for R3 and R7 responses
445	 *
446	 * Finally, read some more bytes ... in the nice cases we know in
447	 * advance how many, and reading 1 more is always OK:
448	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
449	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
450	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
451	 *
452	 * So in those cases one full duplex I/O of at most 21 bytes will
453	 * handle the whole command, leaving the card ready to receive a
454	 * data block or new command.  We do that whenever we can, shaving
455	 * CPU and IRQ costs (especially when using DMA or FIFOs).
456	 *
457	 * There are two other cases, where it's not generally practical
458	 * to rely on a single I/O:
459	 *
460	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
461	 *
462	 *    In this case we can *try* to fit it into one I/O, then
463	 *    maybe read more data later.
464	 *
465	 *  - Data block reads are more troublesome, since a variable
466	 *    number of padding bytes precede the token and data.
467	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
468	 *      + N(AC) (== 1..many) bytes of all-ones
469	 *
470	 *    In this case we currently only have minimal speedups here:
471	 *    when N(CR) == 1 we can avoid I/O in response_get().
472	 */
473	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
474		cp += 2;	/* min(N(CR)) + status */
475		/* R1 */
476	} else {
477		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
478		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
479			cp++;
480		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
481			cp += 4;
482		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
483			cp = data->status + sizeof(data->status);
484		/* else:  R1 (most commands) */
485	}
486
487	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
488		cmd->opcode, maptype(cmd));
489
490	/* send command, leaving chipselect active */
491	spi_message_init(&host->m);
492
493	t = &host->t;
494	memset(t, 0, sizeof(*t));
495	t->tx_buf = t->rx_buf = data->status;
496	t->len = cp - data->status;
497	t->cs_change = 1;
498	spi_message_add_tail(t, &host->m);
499
500	status = spi_sync_locked(host->spi, &host->m);
501	if (status < 0) {
502		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
503		cmd->error = status;
504		return status;
505	}
506
507	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
508	return mmc_spi_response_get(host, cmd, cs_on);
509}
510
511/* Build data message with up to four separate transfers.  For TX, we
512 * start by writing the data token.  And in most cases, we finish with
513 * a status transfer.
514 *
515 * We always provide TX data for data and CRC.  The MMC/SD protocol
516 * requires us to write ones; but Linux defaults to writing zeroes;
517 * so we explicitly initialize it to all ones on RX paths.
518 */
519static void
520mmc_spi_setup_data_message(
521	struct mmc_spi_host	*host,
522	int			multiple,
523	enum dma_data_direction	direction)
524{
525	struct spi_transfer	*t;
526	struct scratch		*scratch = host->data;
527
528	spi_message_init(&host->m);
529
530	/* for reads, readblock() skips 0xff bytes before finding
531	 * the token; for writes, this transfer issues that token.
532	 */
533	if (direction == DMA_TO_DEVICE) {
534		t = &host->token;
535		memset(t, 0, sizeof(*t));
536		t->len = 1;
537		if (multiple)
538			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
539		else
540			scratch->data_token = SPI_TOKEN_SINGLE;
541		t->tx_buf = &scratch->data_token;
542		spi_message_add_tail(t, &host->m);
543	}
544
545	/* Body of transfer is buffer, then CRC ...
546	 * either TX-only, or RX with TX-ones.
547	 */
548	t = &host->t;
549	memset(t, 0, sizeof(*t));
550	t->tx_buf = host->ones;
551	/* length and actual buffer info are written later */
552	spi_message_add_tail(t, &host->m);
553
554	t = &host->crc;
555	memset(t, 0, sizeof(*t));
556	t->len = 2;
557	if (direction == DMA_TO_DEVICE) {
558		/* the actual CRC may get written later */
559		t->tx_buf = &scratch->crc_val;
560	} else {
561		t->tx_buf = host->ones;
562		t->rx_buf = &scratch->crc_val;
563	}
564	spi_message_add_tail(t, &host->m);
565
566	/*
567	 * A single block read is followed by N(EC) [0+] all-ones bytes
568	 * before deselect ... don't bother.
569	 *
570	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
571	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
572	 * collect that single byte, so readblock() doesn't need to.
573	 *
574	 * For a write, the one-byte data response follows immediately, then
575	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
576	 * Then single block reads may deselect, and multiblock ones issue
577	 * the next token (next data block, or STOP_TRAN).  We can try to
578	 * minimize I/O ops by using a single read to collect end-of-busy.
579	 */
580	if (multiple || direction == DMA_TO_DEVICE) {
581		t = &host->early_status;
582		memset(t, 0, sizeof(*t));
583		t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
584		t->tx_buf = host->ones;
585		t->rx_buf = scratch->status;
586		t->cs_change = 1;
587		spi_message_add_tail(t, &host->m);
588	}
589}
590
591/*
592 * Write one block:
593 *  - caller handled preceding N(WR) [1+] all-ones bytes
594 *  - data block
595 *	+ token
596 *	+ data bytes
597 *	+ crc16
598 *  - an all-ones byte ... card writes a data-response byte
599 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
600 *
601 * Return negative errno, else success.
602 */
603static int
604mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
605	unsigned long timeout)
606{
607	struct spi_device	*spi = host->spi;
608	int			status, i;
609	struct scratch		*scratch = host->data;
610	u32			pattern;
611
612	if (host->mmc->use_spi_crc)
613		scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
614
615	status = spi_sync_locked(spi, &host->m);
616	if (status != 0) {
617		dev_dbg(&spi->dev, "write error (%d)\n", status);
618		return status;
619	}
620
621	/*
622	 * Get the transmission data-response reply.  It must follow
623	 * immediately after the data block we transferred.  This reply
624	 * doesn't necessarily tell whether the write operation succeeded;
625	 * it just says if the transmission was ok and whether *earlier*
626	 * writes succeeded; see the standard.
627	 *
628	 * In practice, there are (even modern SDHC-)cards which are late
629	 * in sending the response, and miss the time frame by a few bits,
630	 * so we have to cope with this situation and check the response
631	 * bit-by-bit. Arggh!!!
632	 */
633	pattern = get_unaligned_be32(scratch->status);
634
635	/* First 3 bit of pattern are undefined */
636	pattern |= 0xE0000000;
637
638	/* left-adjust to leading 0 bit */
639	while (pattern & 0x80000000)
640		pattern <<= 1;
641	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
642	pattern >>= 27;
643
644	switch (pattern) {
645	case SPI_RESPONSE_ACCEPTED:
646		status = 0;
647		break;
648	case SPI_RESPONSE_CRC_ERR:
649		/* host shall then issue MMC_STOP_TRANSMISSION */
650		status = -EILSEQ;
651		break;
652	case SPI_RESPONSE_WRITE_ERR:
653		/* host shall then issue MMC_STOP_TRANSMISSION,
654		 * and should MMC_SEND_STATUS to sort it out
655		 */
656		status = -EIO;
657		break;
658	default:
659		status = -EPROTO;
660		break;
661	}
662	if (status != 0) {
663		dev_dbg(&spi->dev, "write error %02x (%d)\n",
664			scratch->status[0], status);
665		return status;
666	}
667
668	t->tx_buf += t->len;
669
670	/* Return when not busy.  If we didn't collect that status yet,
671	 * we'll need some more I/O.
672	 */
673	for (i = 4; i < sizeof(scratch->status); i++) {
674		/* card is non-busy if the most recent bit is 1 */
675		if (scratch->status[i] & 0x01)
676			return 0;
677	}
678	return mmc_spi_wait_unbusy(host, timeout);
679}
680
681/*
682 * Read one block:
683 *  - skip leading all-ones bytes ... either
684 *      + N(AC) [1..f(clock,CSD)] usually, else
685 *      + N(CX) [0..8] when reading CSD or CID
686 *  - data block
687 *	+ token ... if error token, no data or crc
688 *	+ data bytes
689 *	+ crc16
690 *
691 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
692 * before dropping chipselect.
693 *
694 * For multiblock reads, caller either reads the next block or issues a
695 * STOP_TRANSMISSION command.
696 */
697static int
698mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
699	unsigned long timeout)
700{
701	struct spi_device	*spi = host->spi;
702	int			status;
703	struct scratch		*scratch = host->data;
704	unsigned int 		bitshift;
705	u8			leftover;
706
707	/* At least one SD card sends an all-zeroes byte when N(CX)
708	 * applies, before the all-ones bytes ... just cope with that.
709	 */
710	status = mmc_spi_readbytes(host, 1);
711	if (status < 0)
712		return status;
713	status = scratch->status[0];
714	if (status == 0xff || status == 0)
715		status = mmc_spi_readtoken(host, timeout);
716
717	if (status < 0) {
718		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
719		return status;
720	}
721
722	/* The token may be bit-shifted...
723	 * the first 0-bit precedes the data stream.
724	 */
725	bitshift = 7;
726	while (status & 0x80) {
727		status <<= 1;
728		bitshift--;
729	}
730	leftover = status << 1;
731
732	status = spi_sync_locked(spi, &host->m);
733	if (status < 0) {
734		dev_dbg(&spi->dev, "read error %d\n", status);
735		return status;
736	}
737
738	if (bitshift) {
739		/* Walk through the data and the crc and do
740		 * all the magic to get byte-aligned data.
741		 */
742		u8 *cp = t->rx_buf;
743		unsigned int len;
744		unsigned int bitright = 8 - bitshift;
745		u8 temp;
746		for (len = t->len; len; len--) {
747			temp = *cp;
748			*cp++ = leftover | (temp >> bitshift);
749			leftover = temp << bitright;
750		}
751		cp = (u8 *) &scratch->crc_val;
752		temp = *cp;
753		*cp++ = leftover | (temp >> bitshift);
754		leftover = temp << bitright;
755		temp = *cp;
756		*cp = leftover | (temp >> bitshift);
757	}
758
759	if (host->mmc->use_spi_crc) {
760		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
761
762		be16_to_cpus(&scratch->crc_val);
763		if (scratch->crc_val != crc) {
764			dev_dbg(&spi->dev,
765				"read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
766				scratch->crc_val, crc, t->len);
767			return -EILSEQ;
768		}
769	}
770
771	t->rx_buf += t->len;
772
773	return 0;
774}
775
776/*
777 * An MMC/SD data stage includes one or more blocks, optional CRCs,
778 * and inline handshaking.  That handhaking makes it unlike most
779 * other SPI protocol stacks.
780 */
781static void
782mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
783		struct mmc_data *data, u32 blk_size)
784{
785	struct spi_device	*spi = host->spi;
786	struct spi_transfer	*t;
787	enum dma_data_direction	direction;
788	struct scatterlist	*sg;
789	unsigned		n_sg;
790	int			multiple = (data->blocks > 1);
791	u32			clock_rate;
792	unsigned long		timeout;
793
794	direction = mmc_get_dma_dir(data);
795	mmc_spi_setup_data_message(host, multiple, direction);
796	t = &host->t;
797
798	if (t->speed_hz)
799		clock_rate = t->speed_hz;
800	else
801		clock_rate = spi->max_speed_hz;
802
803	timeout = data->timeout_ns / 1000 +
804		  data->timeout_clks * 1000000 / clock_rate;
805	timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
806
807	/* Handle scatterlist segments one at a time, with synch for
808	 * each 512-byte block
809	 */
810	for_each_sg(data->sg, sg, data->sg_len, n_sg) {
811		int			status = 0;
812		void			*kmap_addr;
813		unsigned		length = sg->length;
814
815		/* allow pio too; we don't allow highmem */
816		kmap_addr = kmap(sg_page(sg));
817		if (direction == DMA_TO_DEVICE)
818			t->tx_buf = kmap_addr + sg->offset;
819		else
820			t->rx_buf = kmap_addr + sg->offset;
821
822		/* transfer each block, and update request status */
823		while (length) {
824			t->len = min(length, blk_size);
825
826			dev_dbg(&host->spi->dev,
827				"    mmc_spi: %s block, %d bytes\n",
828				(direction == DMA_TO_DEVICE) ? "write" : "read",
829				t->len);
830
831			if (direction == DMA_TO_DEVICE)
832				status = mmc_spi_writeblock(host, t, timeout);
833			else
834				status = mmc_spi_readblock(host, t, timeout);
835			if (status < 0)
836				break;
837
838			data->bytes_xfered += t->len;
839			length -= t->len;
840
841			if (!multiple)
842				break;
843		}
844
845		/* discard mappings */
846		if (direction == DMA_FROM_DEVICE)
847			flush_kernel_dcache_page(sg_page(sg));
848		kunmap(sg_page(sg));
849
850		if (status < 0) {
851			data->error = status;
852			dev_dbg(&spi->dev, "%s status %d\n",
853				(direction == DMA_TO_DEVICE) ? "write" : "read",
854				status);
855			break;
856		}
857	}
858
859	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
860	 * can be issued before multiblock writes.  Unlike its more widely
861	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
862	 * that can affect the STOP_TRAN logic.   Complete (and current)
863	 * MMC specs should sort that out before Linux starts using CMD23.
864	 */
865	if (direction == DMA_TO_DEVICE && multiple) {
866		struct scratch	*scratch = host->data;
867		int		tmp;
868		const unsigned	statlen = sizeof(scratch->status);
869
870		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
871
872		/* Tweak the per-block message we set up earlier by morphing
873		 * it to hold single buffer with the token followed by some
874		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
875		 * "not busy any longer" status, and leave chip selected.
876		 */
877		INIT_LIST_HEAD(&host->m.transfers);
878		list_add(&host->early_status.transfer_list,
879				&host->m.transfers);
880
881		memset(scratch->status, 0xff, statlen);
882		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
883
884		host->early_status.tx_buf = host->early_status.rx_buf;
885		host->early_status.len = statlen;
886
887		tmp = spi_sync_locked(spi, &host->m);
888		if (tmp < 0) {
889			if (!data->error)
890				data->error = tmp;
891			return;
892		}
893
894		/* Ideally we collected "not busy" status with one I/O,
895		 * avoiding wasteful byte-at-a-time scanning... but more
896		 * I/O is often needed.
897		 */
898		for (tmp = 2; tmp < statlen; tmp++) {
899			if (scratch->status[tmp] != 0)
900				return;
901		}
902		tmp = mmc_spi_wait_unbusy(host, timeout);
903		if (tmp < 0 && !data->error)
904			data->error = tmp;
905	}
906}
907
908/****************************************************************************/
909
910/*
911 * MMC driver implementation -- the interface to the MMC stack
912 */
913
914static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
915{
916	struct mmc_spi_host	*host = mmc_priv(mmc);
917	int			status = -EINVAL;
918	int			crc_retry = 5;
919	struct mmc_command	stop;
920
921#ifdef DEBUG
922	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
923	{
924		struct mmc_command	*cmd;
925		int			invalid = 0;
926
927		cmd = mrq->cmd;
928		if (!mmc_spi_resp_type(cmd)) {
929			dev_dbg(&host->spi->dev, "bogus command\n");
930			cmd->error = -EINVAL;
931			invalid = 1;
932		}
933
934		cmd = mrq->stop;
935		if (cmd && !mmc_spi_resp_type(cmd)) {
936			dev_dbg(&host->spi->dev, "bogus STOP command\n");
937			cmd->error = -EINVAL;
938			invalid = 1;
939		}
940
941		if (invalid) {
942			dump_stack();
943			mmc_request_done(host->mmc, mrq);
944			return;
945		}
946	}
947#endif
948
949	/* request exclusive bus access */
950	spi_bus_lock(host->spi->master);
951
952crc_recover:
953	/* issue command; then optionally data and stop */
954	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
955	if (status == 0 && mrq->data) {
956		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
957
958		/*
959		 * The SPI bus is not always reliable for large data transfers.
960		 * If an occasional crc error is reported by the SD device with
961		 * data read/write over SPI, it may be recovered by repeating
962		 * the last SD command again. The retry count is set to 5 to
963		 * ensure the driver passes stress tests.
964		 */
965		if (mrq->data->error == -EILSEQ && crc_retry) {
966			stop.opcode = MMC_STOP_TRANSMISSION;
967			stop.arg = 0;
968			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
969			status = mmc_spi_command_send(host, mrq, &stop, 0);
970			crc_retry--;
971			mrq->data->error = 0;
972			goto crc_recover;
973		}
974
975		if (mrq->stop)
976			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
977		else
978			mmc_cs_off(host);
979	}
980
981	/* release the bus */
982	spi_bus_unlock(host->spi->master);
983
984	mmc_request_done(host->mmc, mrq);
985}
986
987/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
988 *
989 * NOTE that here we can't know that the card has just been powered up;
990 * not all MMC/SD sockets support power switching.
991 *
992 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
993 * this doesn't seem to do the right thing at all...
994 */
995static void mmc_spi_initsequence(struct mmc_spi_host *host)
996{
997	/* Try to be very sure any previous command has completed;
998	 * wait till not-busy, skip debris from any old commands.
999	 */
1000	mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1001	mmc_spi_readbytes(host, 10);
1002
1003	/*
1004	 * Do a burst with chipselect active-high.  We need to do this to
1005	 * meet the requirement of 74 clock cycles with both chipselect
1006	 * and CMD (MOSI) high before CMD0 ... after the card has been
1007	 * powered up to Vdd(min), and so is ready to take commands.
1008	 *
1009	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1010	 * while most others don't seem to care.
1011	 *
1012	 * Note that this is one of the places MMC/SD plays games with the
1013	 * SPI protocol.  Another is that when chipselect is released while
1014	 * the card returns BUSY status, the clock must issue several cycles
1015	 * with chipselect high before the card will stop driving its output.
1016	 *
1017	 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1018	 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1019	 * inverted by gpiolib, so if we want to ascertain to drive it high
1020	 * we should toggle the default with an XOR as we do here.
1021	 */
1022	host->spi->mode ^= SPI_CS_HIGH;
1023	if (spi_setup(host->spi) != 0) {
1024		/* Just warn; most cards work without it. */
1025		dev_warn(&host->spi->dev,
1026				"can't change chip-select polarity\n");
1027		host->spi->mode ^= SPI_CS_HIGH;
1028	} else {
1029		mmc_spi_readbytes(host, 18);
1030
1031		host->spi->mode ^= SPI_CS_HIGH;
1032		if (spi_setup(host->spi) != 0) {
1033			/* Wot, we can't get the same setup we had before? */
1034			dev_err(&host->spi->dev,
1035					"can't restore chip-select polarity\n");
1036		}
1037	}
1038}
1039
1040static char *mmc_powerstring(u8 power_mode)
1041{
1042	switch (power_mode) {
1043	case MMC_POWER_OFF: return "off";
1044	case MMC_POWER_UP:  return "up";
1045	case MMC_POWER_ON:  return "on";
1046	}
1047	return "?";
1048}
1049
1050static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1051{
1052	struct mmc_spi_host *host = mmc_priv(mmc);
1053
1054	if (host->power_mode != ios->power_mode) {
1055		int		canpower;
1056
1057		canpower = host->pdata && host->pdata->setpower;
1058
1059		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1060				mmc_powerstring(ios->power_mode),
1061				ios->vdd,
1062				canpower ? ", can switch" : "");
1063
1064		/* switch power on/off if possible, accounting for
1065		 * max 250msec powerup time if needed.
1066		 */
1067		if (canpower) {
1068			switch (ios->power_mode) {
1069			case MMC_POWER_OFF:
1070			case MMC_POWER_UP:
1071				host->pdata->setpower(&host->spi->dev,
1072						ios->vdd);
1073				if (ios->power_mode == MMC_POWER_UP)
1074					msleep(host->powerup_msecs);
1075			}
1076		}
1077
1078		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1079		if (ios->power_mode == MMC_POWER_ON)
1080			mmc_spi_initsequence(host);
1081
1082		/* If powering down, ground all card inputs to avoid power
1083		 * delivery from data lines!  On a shared SPI bus, this
1084		 * will probably be temporary; 6.4.2 of the simplified SD
1085		 * spec says this must last at least 1msec.
1086		 *
1087		 *   - Clock low means CPOL 0, e.g. mode 0
1088		 *   - MOSI low comes from writing zero
1089		 *   - Chipselect is usually active low...
1090		 */
1091		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1092			int mres;
1093			u8 nullbyte = 0;
1094
1095			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1096			mres = spi_setup(host->spi);
1097			if (mres < 0)
1098				dev_dbg(&host->spi->dev,
1099					"switch to SPI mode 0 failed\n");
1100
1101			if (spi_write(host->spi, &nullbyte, 1) < 0)
1102				dev_dbg(&host->spi->dev,
1103					"put spi signals to low failed\n");
1104
1105			/*
1106			 * Now clock should be low due to spi mode 0;
1107			 * MOSI should be low because of written 0x00;
1108			 * chipselect should be low (it is active low)
1109			 * power supply is off, so now MMC is off too!
1110			 *
1111			 * FIXME no, chipselect can be high since the
1112			 * device is inactive and SPI_CS_HIGH is clear...
1113			 */
1114			msleep(10);
1115			if (mres == 0) {
1116				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1117				mres = spi_setup(host->spi);
1118				if (mres < 0)
1119					dev_dbg(&host->spi->dev,
1120						"switch back to SPI mode 3 failed\n");
1121			}
1122		}
1123
1124		host->power_mode = ios->power_mode;
1125	}
1126
1127	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1128		int		status;
1129
1130		host->spi->max_speed_hz = ios->clock;
1131		status = spi_setup(host->spi);
1132		dev_dbg(&host->spi->dev,
1133			"mmc_spi:  clock to %d Hz, %d\n",
1134			host->spi->max_speed_hz, status);
1135	}
1136}
1137
1138static const struct mmc_host_ops mmc_spi_ops = {
1139	.request	= mmc_spi_request,
1140	.set_ios	= mmc_spi_set_ios,
1141	.get_ro		= mmc_gpio_get_ro,
1142	.get_cd		= mmc_gpio_get_cd,
1143};
1144
1145
1146/****************************************************************************/
1147
1148/*
1149 * SPI driver implementation
1150 */
1151
1152static irqreturn_t
1153mmc_spi_detect_irq(int irq, void *mmc)
1154{
1155	struct mmc_spi_host *host = mmc_priv(mmc);
1156	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1157
1158	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1159	return IRQ_HANDLED;
1160}
1161
1162static int mmc_spi_probe(struct spi_device *spi)
1163{
1164	void			*ones;
1165	struct mmc_host		*mmc;
1166	struct mmc_spi_host	*host;
1167	int			status;
1168	bool			has_ro = false;
1169
1170	/* We rely on full duplex transfers, mostly to reduce
1171	 * per-transfer overheads (by making fewer transfers).
1172	 */
1173	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1174		return -EINVAL;
1175
1176	/* MMC and SD specs only seem to care that sampling is on the
1177	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1178	 * should be legit.  We'll use mode 0 since the steady state is 0,
1179	 * which is appropriate for hotplugging, unless the platform data
1180	 * specify mode 3 (if hardware is not compatible to mode 0).
1181	 */
1182	if (spi->mode != SPI_MODE_3)
1183		spi->mode = SPI_MODE_0;
1184	spi->bits_per_word = 8;
1185
1186	status = spi_setup(spi);
1187	if (status < 0) {
1188		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1189				spi->mode, spi->max_speed_hz / 1000,
1190				status);
1191		return status;
1192	}
1193
1194	/* We need a supply of ones to transmit.  This is the only time
1195	 * the CPU touches these, so cache coherency isn't a concern.
1196	 *
1197	 * NOTE if many systems use more than one MMC-over-SPI connector
1198	 * it'd save some memory to share this.  That's evidently rare.
1199	 */
1200	status = -ENOMEM;
1201	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1202	if (!ones)
1203		goto nomem;
1204	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1205
1206	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1207	if (!mmc)
1208		goto nomem;
1209
1210	mmc->ops = &mmc_spi_ops;
1211	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1212	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1213	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1214	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1215
1216	mmc->caps = MMC_CAP_SPI;
1217
1218	/* SPI doesn't need the lowspeed device identification thing for
1219	 * MMC or SD cards, since it never comes up in open drain mode.
1220	 * That's good; some SPI masters can't handle very low speeds!
1221	 *
1222	 * However, low speed SDIO cards need not handle over 400 KHz;
1223	 * that's the only reason not to use a few MHz for f_min (until
1224	 * the upper layer reads the target frequency from the CSD).
1225	 */
1226	mmc->f_min = 400000;
1227	mmc->f_max = spi->max_speed_hz;
1228
1229	host = mmc_priv(mmc);
1230	host->mmc = mmc;
1231	host->spi = spi;
1232
1233	host->ones = ones;
1234
1235	/* Platform data is used to hook up things like card sensing
1236	 * and power switching gpios.
1237	 */
1238	host->pdata = mmc_spi_get_pdata(spi);
1239	if (host->pdata)
1240		mmc->ocr_avail = host->pdata->ocr_mask;
1241	if (!mmc->ocr_avail) {
1242		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1243		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1244	}
1245	if (host->pdata && host->pdata->setpower) {
1246		host->powerup_msecs = host->pdata->powerup_msecs;
1247		if (!host->powerup_msecs || host->powerup_msecs > 250)
1248			host->powerup_msecs = 250;
1249	}
1250
1251	dev_set_drvdata(&spi->dev, mmc);
1252
1253	/* Preallocate buffers */
1254	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1255	if (!host->data)
1256		goto fail_nobuf1;
1257
1258	/* setup message for status/busy readback */
1259	spi_message_init(&host->readback);
1260
1261	spi_message_add_tail(&host->status, &host->readback);
1262	host->status.tx_buf = host->ones;
1263	host->status.rx_buf = &host->data->status;
1264	host->status.cs_change = 1;
1265
1266	/* register card detect irq */
1267	if (host->pdata && host->pdata->init) {
1268		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1269		if (status != 0)
1270			goto fail_glue_init;
1271	}
1272
1273	/* pass platform capabilities, if any */
1274	if (host->pdata) {
1275		mmc->caps |= host->pdata->caps;
1276		mmc->caps2 |= host->pdata->caps2;
1277	}
1278
1279	status = mmc_add_host(mmc);
1280	if (status != 0)
1281		goto fail_glue_init;
1282
1283	/*
1284	 * Index 0 is card detect
1285	 * Old boardfiles were specifying 1 ms as debounce
1286	 */
1287	status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1288	if (status == -EPROBE_DEFER)
1289		goto fail_gpiod_request;
1290	if (!status) {
1291		/*
1292		 * The platform has a CD GPIO signal that may support
1293		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1294		 * if polling is needed or not.
1295		 */
1296		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1297		mmc_gpiod_request_cd_irq(mmc);
1298	}
1299	mmc_detect_change(mmc, 0);
1300
1301	/* Index 1 is write protect/read only */
1302	status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1303	if (status == -EPROBE_DEFER)
1304		goto fail_gpiod_request;
1305	if (!status)
1306		has_ro = true;
1307
1308	dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1309			dev_name(&mmc->class_dev),
1310			has_ro ? "" : ", no WP",
1311			(host->pdata && host->pdata->setpower)
1312				? "" : ", no poweroff",
1313			(mmc->caps & MMC_CAP_NEEDS_POLL)
1314				? ", cd polling" : "");
1315	return 0;
1316
1317fail_gpiod_request:
1318	mmc_remove_host(mmc);
1319fail_glue_init:
1320	kfree(host->data);
1321fail_nobuf1:
1322	mmc_free_host(mmc);
1323	mmc_spi_put_pdata(spi);
1324nomem:
1325	kfree(ones);
1326	return status;
1327}
1328
1329
1330static int mmc_spi_remove(struct spi_device *spi)
1331{
1332	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1333	struct mmc_spi_host	*host = mmc_priv(mmc);
1334
1335	/* prevent new mmc_detect_change() calls */
1336	if (host->pdata && host->pdata->exit)
1337		host->pdata->exit(&spi->dev, mmc);
1338
1339	mmc_remove_host(mmc);
1340
1341	kfree(host->data);
1342	kfree(host->ones);
1343
1344	spi->max_speed_hz = mmc->f_max;
1345	mmc_free_host(mmc);
1346	mmc_spi_put_pdata(spi);
1347	return 0;
1348}
1349
1350static const struct of_device_id mmc_spi_of_match_table[] = {
1351	{ .compatible = "mmc-spi-slot", },
1352	{},
1353};
1354MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1355
1356static struct spi_driver mmc_spi_driver = {
1357	.driver = {
1358		.name =		"mmc_spi",
1359		.of_match_table = mmc_spi_of_match_table,
1360	},
1361	.probe =	mmc_spi_probe,
1362	.remove =	mmc_spi_remove,
1363};
1364
1365module_spi_driver(mmc_spi_driver);
1366
1367MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1368MODULE_DESCRIPTION("SPI SD/MMC host driver");
1369MODULE_LICENSE("GPL");
1370MODULE_ALIAS("spi:mmc_spi");
1371