1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
4 *
5 * Copyright (c) 2016 BayLibre, SAS.
6 * Author: Kevin Hilman <khilman@baylibre.com>
7 */
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/iopoll.h>
14#include <linux/of_device.h>
15#include <linux/platform_device.h>
16#include <linux/ioport.h>
17#include <linux/dma-mapping.h>
18#include <linux/mmc/host.h>
19#include <linux/mmc/mmc.h>
20#include <linux/mmc/sdio.h>
21#include <linux/mmc/slot-gpio.h>
22#include <linux/io.h>
23#include <linux/clk.h>
24#include <linux/clk-provider.h>
25#include <linux/regulator/consumer.h>
26#include <linux/reset.h>
27#include <linux/interrupt.h>
28#include <linux/bitfield.h>
29#include <linux/pinctrl/consumer.h>
30
31#define DRIVER_NAME "meson-gx-mmc"
32
33#define SD_EMMC_CLOCK 0x0
34#define   CLK_DIV_MASK GENMASK(5, 0)
35#define   CLK_SRC_MASK GENMASK(7, 6)
36#define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
37#define   CLK_TX_PHASE_MASK GENMASK(11, 10)
38#define   CLK_RX_PHASE_MASK GENMASK(13, 12)
39#define   CLK_PHASE_0 0
40#define   CLK_PHASE_180 2
41#define   CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
42#define   CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
43#define   CLK_V2_ALWAYS_ON BIT(24)
44
45#define   CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
46#define   CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
47#define   CLK_V3_ALWAYS_ON BIT(28)
48
49#define   CLK_TX_DELAY_MASK(h)		(h->data->tx_delay_mask)
50#define   CLK_RX_DELAY_MASK(h)		(h->data->rx_delay_mask)
51#define   CLK_ALWAYS_ON(h)		(h->data->always_on)
52
53#define SD_EMMC_DELAY 0x4
54#define SD_EMMC_ADJUST 0x8
55#define   ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
56#define   ADJUST_DS_EN BIT(15)
57#define   ADJUST_ADJ_EN BIT(13)
58
59#define SD_EMMC_DELAY1 0x4
60#define SD_EMMC_DELAY2 0x8
61#define SD_EMMC_V3_ADJUST 0xc
62
63#define SD_EMMC_CALOUT 0x10
64#define SD_EMMC_START 0x40
65#define   START_DESC_INIT BIT(0)
66#define   START_DESC_BUSY BIT(1)
67#define   START_DESC_ADDR_MASK GENMASK(31, 2)
68
69#define SD_EMMC_CFG 0x44
70#define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
71#define   CFG_BUS_WIDTH_1 0x0
72#define   CFG_BUS_WIDTH_4 0x1
73#define   CFG_BUS_WIDTH_8 0x2
74#define   CFG_DDR BIT(2)
75#define   CFG_BLK_LEN_MASK GENMASK(7, 4)
76#define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
77#define   CFG_RC_CC_MASK GENMASK(15, 12)
78#define   CFG_STOP_CLOCK BIT(22)
79#define   CFG_CLK_ALWAYS_ON BIT(18)
80#define   CFG_CHK_DS BIT(20)
81#define   CFG_AUTO_CLK BIT(23)
82#define   CFG_ERR_ABORT BIT(27)
83
84#define SD_EMMC_STATUS 0x48
85#define   STATUS_BUSY BIT(31)
86#define   STATUS_DESC_BUSY BIT(30)
87#define   STATUS_DATI GENMASK(23, 16)
88
89#define SD_EMMC_IRQ_EN 0x4c
90#define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
91#define   IRQ_TXD_ERR BIT(8)
92#define   IRQ_DESC_ERR BIT(9)
93#define   IRQ_RESP_ERR BIT(10)
94#define   IRQ_CRC_ERR \
95	(IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
96#define   IRQ_RESP_TIMEOUT BIT(11)
97#define   IRQ_DESC_TIMEOUT BIT(12)
98#define   IRQ_TIMEOUTS \
99	(IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
100#define   IRQ_END_OF_CHAIN BIT(13)
101#define   IRQ_RESP_STATUS BIT(14)
102#define   IRQ_SDIO BIT(15)
103#define   IRQ_EN_MASK \
104	(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
105	 IRQ_SDIO)
106
107#define SD_EMMC_CMD_CFG 0x50
108#define SD_EMMC_CMD_ARG 0x54
109#define SD_EMMC_CMD_DAT 0x58
110#define SD_EMMC_CMD_RSP 0x5c
111#define SD_EMMC_CMD_RSP1 0x60
112#define SD_EMMC_CMD_RSP2 0x64
113#define SD_EMMC_CMD_RSP3 0x68
114
115#define SD_EMMC_RXD 0x94
116#define SD_EMMC_TXD 0x94
117#define SD_EMMC_LAST_REG SD_EMMC_TXD
118
119#define SD_EMMC_SRAM_DATA_BUF_LEN 1536
120#define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
121
122#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
123#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
124#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
125#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
126#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
127#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
128
129#define SD_EMMC_PRE_REQ_DONE BIT(0)
130#define SD_EMMC_DESC_CHAIN_MODE BIT(1)
131
132#define MUX_CLK_NUM_PARENTS 2
133
134struct meson_mmc_data {
135	unsigned int tx_delay_mask;
136	unsigned int rx_delay_mask;
137	unsigned int always_on;
138	unsigned int adjust;
139};
140
141struct sd_emmc_desc {
142	u32 cmd_cfg;
143	u32 cmd_arg;
144	u32 cmd_data;
145	u32 cmd_resp;
146};
147
148struct meson_host {
149	struct	device		*dev;
150	struct	meson_mmc_data *data;
151	struct	mmc_host	*mmc;
152	struct	mmc_command	*cmd;
153
154	void __iomem *regs;
155	struct clk *core_clk;
156	struct clk *mux_clk;
157	struct clk *mmc_clk;
158	unsigned long req_rate;
159	bool ddr;
160
161	bool dram_access_quirk;
162
163	struct pinctrl *pinctrl;
164	struct pinctrl_state *pins_clk_gate;
165
166	unsigned int bounce_buf_size;
167	void *bounce_buf;
168	void __iomem *bounce_iomem_buf;
169	dma_addr_t bounce_dma_addr;
170	struct sd_emmc_desc *descs;
171	dma_addr_t descs_dma_addr;
172
173	int irq;
174
175	bool vqmmc_enabled;
176	bool needs_pre_post_req;
177
178};
179
180#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
181#define CMD_CFG_BLOCK_MODE BIT(9)
182#define CMD_CFG_R1B BIT(10)
183#define CMD_CFG_END_OF_CHAIN BIT(11)
184#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
185#define CMD_CFG_NO_RESP BIT(16)
186#define CMD_CFG_NO_CMD BIT(17)
187#define CMD_CFG_DATA_IO BIT(18)
188#define CMD_CFG_DATA_WR BIT(19)
189#define CMD_CFG_RESP_NOCRC BIT(20)
190#define CMD_CFG_RESP_128 BIT(21)
191#define CMD_CFG_RESP_NUM BIT(22)
192#define CMD_CFG_DATA_NUM BIT(23)
193#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
194#define CMD_CFG_ERROR BIT(30)
195#define CMD_CFG_OWNER BIT(31)
196
197#define CMD_DATA_MASK GENMASK(31, 2)
198#define CMD_DATA_BIG_ENDIAN BIT(1)
199#define CMD_DATA_SRAM BIT(0)
200#define CMD_RESP_MASK GENMASK(31, 1)
201#define CMD_RESP_SRAM BIT(0)
202
203static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
204{
205	unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
206
207	if (!timeout)
208		return SD_EMMC_CMD_TIMEOUT_DATA;
209
210	timeout = roundup_pow_of_two(timeout);
211
212	return min(timeout, 32768U); /* max. 2^15 ms */
213}
214
215static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
216{
217	if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
218		return cmd->mrq->cmd;
219	else if (mmc_op_multi(cmd->opcode) &&
220		 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
221		return cmd->mrq->stop;
222	else
223		return NULL;
224}
225
226static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
227					struct mmc_request *mrq)
228{
229	struct meson_host *host = mmc_priv(mmc);
230	struct mmc_data *data = mrq->data;
231	struct scatterlist *sg;
232	int i;
233	bool use_desc_chain_mode = true;
234
235	/*
236	 * When Controller DMA cannot directly access DDR memory, disable
237	 * support for Chain Mode to directly use the internal SRAM using
238	 * the bounce buffer mode.
239	 */
240	if (host->dram_access_quirk)
241		return;
242
243	/*
244	 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
245	 * reported. For some strange reason this occurs in descriptor
246	 * chain mode only. So let's fall back to bounce buffer mode
247	 * for command SD_IO_RW_EXTENDED.
248	 */
249	if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
250		return;
251
252	for_each_sg(data->sg, sg, data->sg_len, i)
253		/* check for 8 byte alignment */
254		if (sg->offset & 7) {
255			WARN_ONCE(1, "unaligned scatterlist buffer\n");
256			use_desc_chain_mode = false;
257			break;
258		}
259
260	if (use_desc_chain_mode)
261		data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
262}
263
264static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
265{
266	return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
267}
268
269static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
270{
271	return data && data->flags & MMC_DATA_READ &&
272	       !meson_mmc_desc_chain_mode(data);
273}
274
275static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
276{
277	struct mmc_data *data = mrq->data;
278
279	if (!data)
280		return;
281
282	meson_mmc_get_transfer_mode(mmc, mrq);
283	data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
284
285	if (!meson_mmc_desc_chain_mode(data))
286		return;
287
288	data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
289                                   mmc_get_dma_dir(data));
290	if (!data->sg_count)
291		dev_err(mmc_dev(mmc), "dma_map_sg failed");
292}
293
294static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
295			       int err)
296{
297	struct mmc_data *data = mrq->data;
298
299	if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
300		dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
301			     mmc_get_dma_dir(data));
302}
303
304/*
305 * Gating the clock on this controller is tricky.  It seems the mmc clock
306 * is also used by the controller.  It may crash during some operation if the
307 * clock is stopped.  The safest thing to do, whenever possible, is to keep
308 * clock running at stop it at the pad using the pinmux.
309 */
310static void meson_mmc_clk_gate(struct meson_host *host)
311{
312	u32 cfg;
313
314	if (host->pins_clk_gate) {
315		pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
316	} else {
317		/*
318		 * If the pinmux is not provided - default to the classic and
319		 * unsafe method
320		 */
321		cfg = readl(host->regs + SD_EMMC_CFG);
322		cfg |= CFG_STOP_CLOCK;
323		writel(cfg, host->regs + SD_EMMC_CFG);
324	}
325}
326
327static void meson_mmc_clk_ungate(struct meson_host *host)
328{
329	u32 cfg;
330
331	if (host->pins_clk_gate)
332		pinctrl_select_default_state(host->dev);
333
334	/* Make sure the clock is not stopped in the controller */
335	cfg = readl(host->regs + SD_EMMC_CFG);
336	cfg &= ~CFG_STOP_CLOCK;
337	writel(cfg, host->regs + SD_EMMC_CFG);
338}
339
340static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
341			     bool ddr)
342{
343	struct mmc_host *mmc = host->mmc;
344	int ret;
345	u32 cfg;
346
347	/* Same request - bail-out */
348	if (host->ddr == ddr && host->req_rate == rate)
349		return 0;
350
351	/* stop clock */
352	meson_mmc_clk_gate(host);
353	host->req_rate = 0;
354	mmc->actual_clock = 0;
355
356	/* return with clock being stopped */
357	if (!rate)
358		return 0;
359
360	/* Stop the clock during rate change to avoid glitches */
361	cfg = readl(host->regs + SD_EMMC_CFG);
362	cfg |= CFG_STOP_CLOCK;
363	writel(cfg, host->regs + SD_EMMC_CFG);
364
365	if (ddr) {
366		/* DDR modes require higher module clock */
367		rate <<= 1;
368		cfg |= CFG_DDR;
369	} else {
370		cfg &= ~CFG_DDR;
371	}
372	writel(cfg, host->regs + SD_EMMC_CFG);
373	host->ddr = ddr;
374
375	ret = clk_set_rate(host->mmc_clk, rate);
376	if (ret) {
377		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
378			rate, ret);
379		return ret;
380	}
381
382	host->req_rate = rate;
383	mmc->actual_clock = clk_get_rate(host->mmc_clk);
384
385	/* We should report the real output frequency of the controller */
386	if (ddr) {
387		host->req_rate >>= 1;
388		mmc->actual_clock >>= 1;
389	}
390
391	dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
392	if (rate != mmc->actual_clock)
393		dev_dbg(host->dev, "requested rate was %lu\n", rate);
394
395	/* (re)start clock */
396	meson_mmc_clk_ungate(host);
397
398	return 0;
399}
400
401/*
402 * The SD/eMMC IP block has an internal mux and divider used for
403 * generating the MMC clock.  Use the clock framework to create and
404 * manage these clocks.
405 */
406static int meson_mmc_clk_init(struct meson_host *host)
407{
408	struct clk_init_data init;
409	struct clk_mux *mux;
410	struct clk_divider *div;
411	char clk_name[32];
412	int i, ret = 0;
413	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
414	const char *clk_parent[1];
415	u32 clk_reg;
416
417	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
418	clk_reg = CLK_ALWAYS_ON(host);
419	clk_reg |= CLK_DIV_MASK;
420	clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
421	clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
422	clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
423	writel(clk_reg, host->regs + SD_EMMC_CLOCK);
424
425	/* get the mux parents */
426	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
427		struct clk *clk;
428		char name[16];
429
430		snprintf(name, sizeof(name), "clkin%d", i);
431		clk = devm_clk_get(host->dev, name);
432		if (IS_ERR(clk))
433			return dev_err_probe(host->dev, PTR_ERR(clk),
434					     "Missing clock %s\n", name);
435
436		mux_parent_names[i] = __clk_get_name(clk);
437	}
438
439	/* create the mux */
440	mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
441	if (!mux)
442		return -ENOMEM;
443
444	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
445	init.name = clk_name;
446	init.ops = &clk_mux_ops;
447	init.flags = 0;
448	init.parent_names = mux_parent_names;
449	init.num_parents = MUX_CLK_NUM_PARENTS;
450
451	mux->reg = host->regs + SD_EMMC_CLOCK;
452	mux->shift = __ffs(CLK_SRC_MASK);
453	mux->mask = CLK_SRC_MASK >> mux->shift;
454	mux->hw.init = &init;
455
456	host->mux_clk = devm_clk_register(host->dev, &mux->hw);
457	if (WARN_ON(IS_ERR(host->mux_clk)))
458		return PTR_ERR(host->mux_clk);
459
460	/* create the divider */
461	div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
462	if (!div)
463		return -ENOMEM;
464
465	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
466	init.name = clk_name;
467	init.ops = &clk_divider_ops;
468	init.flags = CLK_SET_RATE_PARENT;
469	clk_parent[0] = __clk_get_name(host->mux_clk);
470	init.parent_names = clk_parent;
471	init.num_parents = 1;
472
473	div->reg = host->regs + SD_EMMC_CLOCK;
474	div->shift = __ffs(CLK_DIV_MASK);
475	div->width = __builtin_popcountl(CLK_DIV_MASK);
476	div->hw.init = &init;
477	div->flags = CLK_DIVIDER_ONE_BASED;
478
479	host->mmc_clk = devm_clk_register(host->dev, &div->hw);
480	if (WARN_ON(IS_ERR(host->mmc_clk)))
481		return PTR_ERR(host->mmc_clk);
482
483	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
484	host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
485	ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
486	if (ret)
487		return ret;
488
489	return clk_prepare_enable(host->mmc_clk);
490}
491
492static void meson_mmc_disable_resampling(struct meson_host *host)
493{
494	unsigned int val = readl(host->regs + host->data->adjust);
495
496	val &= ~ADJUST_ADJ_EN;
497	writel(val, host->regs + host->data->adjust);
498}
499
500static void meson_mmc_reset_resampling(struct meson_host *host)
501{
502	unsigned int val;
503
504	meson_mmc_disable_resampling(host);
505
506	val = readl(host->regs + host->data->adjust);
507	val &= ~ADJUST_ADJ_DELAY_MASK;
508	writel(val, host->regs + host->data->adjust);
509}
510
511static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
512{
513	struct meson_host *host = mmc_priv(mmc);
514	unsigned int val, dly, max_dly, i;
515	int ret;
516
517	/* Resampling is done using the source clock */
518	max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
519			       clk_get_rate(host->mmc_clk));
520
521	val = readl(host->regs + host->data->adjust);
522	val |= ADJUST_ADJ_EN;
523	writel(val, host->regs + host->data->adjust);
524
525	if (mmc_doing_retune(mmc))
526		dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
527	else
528		dly = 0;
529
530	for (i = 0; i < max_dly; i++) {
531		val &= ~ADJUST_ADJ_DELAY_MASK;
532		val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
533		writel(val, host->regs + host->data->adjust);
534
535		ret = mmc_send_tuning(mmc, opcode, NULL);
536		if (!ret) {
537			dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
538				(dly + i) % max_dly);
539			return 0;
540		}
541	}
542
543	meson_mmc_reset_resampling(host);
544	return -EIO;
545}
546
547static int meson_mmc_prepare_ios_clock(struct meson_host *host,
548				       struct mmc_ios *ios)
549{
550	bool ddr;
551
552	switch (ios->timing) {
553	case MMC_TIMING_MMC_DDR52:
554	case MMC_TIMING_UHS_DDR50:
555		ddr = true;
556		break;
557
558	default:
559		ddr = false;
560		break;
561	}
562
563	return meson_mmc_clk_set(host, ios->clock, ddr);
564}
565
566static void meson_mmc_check_resampling(struct meson_host *host,
567				       struct mmc_ios *ios)
568{
569	switch (ios->timing) {
570	case MMC_TIMING_LEGACY:
571	case MMC_TIMING_MMC_HS:
572	case MMC_TIMING_SD_HS:
573	case MMC_TIMING_MMC_DDR52:
574		meson_mmc_disable_resampling(host);
575		break;
576	}
577}
578
579static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
580{
581	struct meson_host *host = mmc_priv(mmc);
582	u32 bus_width, val;
583	int err;
584
585	/*
586	 * GPIO regulator, only controls switching between 1v8 and
587	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
588	 */
589	switch (ios->power_mode) {
590	case MMC_POWER_OFF:
591		if (!IS_ERR(mmc->supply.vmmc))
592			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
593
594		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
595			regulator_disable(mmc->supply.vqmmc);
596			host->vqmmc_enabled = false;
597		}
598
599		break;
600
601	case MMC_POWER_UP:
602		if (!IS_ERR(mmc->supply.vmmc))
603			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
604
605		break;
606
607	case MMC_POWER_ON:
608		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
609			int ret = regulator_enable(mmc->supply.vqmmc);
610
611			if (ret < 0)
612				dev_err(host->dev,
613					"failed to enable vqmmc regulator\n");
614			else
615				host->vqmmc_enabled = true;
616		}
617
618		break;
619	}
620
621	/* Bus width */
622	switch (ios->bus_width) {
623	case MMC_BUS_WIDTH_1:
624		bus_width = CFG_BUS_WIDTH_1;
625		break;
626	case MMC_BUS_WIDTH_4:
627		bus_width = CFG_BUS_WIDTH_4;
628		break;
629	case MMC_BUS_WIDTH_8:
630		bus_width = CFG_BUS_WIDTH_8;
631		break;
632	default:
633		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
634			ios->bus_width);
635		bus_width = CFG_BUS_WIDTH_4;
636	}
637
638	val = readl(host->regs + SD_EMMC_CFG);
639	val &= ~CFG_BUS_WIDTH_MASK;
640	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
641	writel(val, host->regs + SD_EMMC_CFG);
642
643	meson_mmc_check_resampling(host, ios);
644	err = meson_mmc_prepare_ios_clock(host, ios);
645	if (err)
646		dev_err(host->dev, "Failed to set clock: %d\n,", err);
647
648	dev_dbg(host->dev, "SD_EMMC_CFG:  0x%08x\n", val);
649}
650
651static void meson_mmc_request_done(struct mmc_host *mmc,
652				   struct mmc_request *mrq)
653{
654	struct meson_host *host = mmc_priv(mmc);
655
656	host->cmd = NULL;
657	if (host->needs_pre_post_req)
658		meson_mmc_post_req(mmc, mrq, 0);
659	mmc_request_done(host->mmc, mrq);
660}
661
662static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
663{
664	struct meson_host *host = mmc_priv(mmc);
665	u32 cfg, blksz_old;
666
667	cfg = readl(host->regs + SD_EMMC_CFG);
668	blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
669
670	if (!is_power_of_2(blksz))
671		dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
672
673	blksz = ilog2(blksz);
674
675	/* check if block-size matches, if not update */
676	if (blksz == blksz_old)
677		return;
678
679	dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
680		blksz_old, blksz);
681
682	cfg &= ~CFG_BLK_LEN_MASK;
683	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
684	writel(cfg, host->regs + SD_EMMC_CFG);
685}
686
687static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
688{
689	if (cmd->flags & MMC_RSP_PRESENT) {
690		if (cmd->flags & MMC_RSP_136)
691			*cmd_cfg |= CMD_CFG_RESP_128;
692		*cmd_cfg |= CMD_CFG_RESP_NUM;
693
694		if (!(cmd->flags & MMC_RSP_CRC))
695			*cmd_cfg |= CMD_CFG_RESP_NOCRC;
696
697		if (cmd->flags & MMC_RSP_BUSY)
698			*cmd_cfg |= CMD_CFG_R1B;
699	} else {
700		*cmd_cfg |= CMD_CFG_NO_RESP;
701	}
702}
703
704static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
705{
706	struct meson_host *host = mmc_priv(mmc);
707	struct sd_emmc_desc *desc = host->descs;
708	struct mmc_data *data = host->cmd->data;
709	struct scatterlist *sg;
710	u32 start;
711	int i;
712
713	if (data->flags & MMC_DATA_WRITE)
714		cmd_cfg |= CMD_CFG_DATA_WR;
715
716	if (data->blocks > 1) {
717		cmd_cfg |= CMD_CFG_BLOCK_MODE;
718		meson_mmc_set_blksz(mmc, data->blksz);
719	}
720
721	for_each_sg(data->sg, sg, data->sg_count, i) {
722		unsigned int len = sg_dma_len(sg);
723
724		if (data->blocks > 1)
725			len /= data->blksz;
726
727		desc[i].cmd_cfg = cmd_cfg;
728		desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
729		if (i > 0)
730			desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
731		desc[i].cmd_arg = host->cmd->arg;
732		desc[i].cmd_resp = 0;
733		desc[i].cmd_data = sg_dma_address(sg);
734	}
735	desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
736
737	dma_wmb(); /* ensure descriptor is written before kicked */
738	start = host->descs_dma_addr | START_DESC_BUSY;
739	writel(start, host->regs + SD_EMMC_START);
740}
741
742/* local sg copy for dram_access_quirk */
743static void meson_mmc_copy_buffer(struct meson_host *host, struct mmc_data *data,
744				  size_t buflen, bool to_buffer)
745{
746	unsigned int sg_flags = SG_MITER_ATOMIC;
747	struct scatterlist *sgl = data->sg;
748	unsigned int nents = data->sg_len;
749	struct sg_mapping_iter miter;
750	unsigned int offset = 0;
751
752	if (to_buffer)
753		sg_flags |= SG_MITER_FROM_SG;
754	else
755		sg_flags |= SG_MITER_TO_SG;
756
757	sg_miter_start(&miter, sgl, nents, sg_flags);
758
759	while ((offset < buflen) && sg_miter_next(&miter)) {
760		unsigned int buf_offset = 0;
761		unsigned int len, left;
762		u32 *buf = miter.addr;
763
764		len = min(miter.length, buflen - offset);
765		left = len;
766
767		if (to_buffer) {
768			do {
769				writel(*buf++, host->bounce_iomem_buf + offset + buf_offset);
770
771				buf_offset += 4;
772				left -= 4;
773			} while (left);
774		} else {
775			do {
776				*buf++ = readl(host->bounce_iomem_buf + offset + buf_offset);
777
778				buf_offset += 4;
779				left -= 4;
780			} while (left);
781		}
782
783		offset += len;
784	}
785
786	sg_miter_stop(&miter);
787}
788
789static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
790{
791	struct meson_host *host = mmc_priv(mmc);
792	struct mmc_data *data = cmd->data;
793	u32 cmd_cfg = 0, cmd_data = 0;
794	unsigned int xfer_bytes = 0;
795
796	/* Setup descriptors */
797	dma_rmb();
798
799	host->cmd = cmd;
800
801	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
802	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
803
804	meson_mmc_set_response_bits(cmd, &cmd_cfg);
805
806	/* data? */
807	if (data) {
808		data->bytes_xfered = 0;
809		cmd_cfg |= CMD_CFG_DATA_IO;
810		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
811				      ilog2(meson_mmc_get_timeout_msecs(data)));
812
813		if (meson_mmc_desc_chain_mode(data)) {
814			meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
815			return;
816		}
817
818		if (data->blocks > 1) {
819			cmd_cfg |= CMD_CFG_BLOCK_MODE;
820			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
821					      data->blocks);
822			meson_mmc_set_blksz(mmc, data->blksz);
823		} else {
824			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
825		}
826
827		xfer_bytes = data->blksz * data->blocks;
828		if (data->flags & MMC_DATA_WRITE) {
829			cmd_cfg |= CMD_CFG_DATA_WR;
830			WARN_ON(xfer_bytes > host->bounce_buf_size);
831			if (host->dram_access_quirk)
832				meson_mmc_copy_buffer(host, data, xfer_bytes, true);
833			else
834				sg_copy_to_buffer(data->sg, data->sg_len,
835						  host->bounce_buf, xfer_bytes);
836			dma_wmb();
837		}
838
839		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
840	} else {
841		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
842				      ilog2(SD_EMMC_CMD_TIMEOUT));
843	}
844
845	/* Last descriptor */
846	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
847	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
848	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
849	writel(0, host->regs + SD_EMMC_CMD_RSP);
850	wmb(); /* ensure descriptor is written before kicked */
851	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
852}
853
854static int meson_mmc_validate_dram_access(struct mmc_host *mmc, struct mmc_data *data)
855{
856	struct scatterlist *sg;
857	int i;
858
859	/* Reject request if any element offset or size is not 32bit aligned */
860	for_each_sg(data->sg, sg, data->sg_len, i) {
861		if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
862		    !IS_ALIGNED(sg->length, sizeof(u32))) {
863			dev_err(mmc_dev(mmc), "unaligned sg offset %u len %u\n",
864				data->sg->offset, data->sg->length);
865			return -EINVAL;
866		}
867	}
868
869	return 0;
870}
871
872static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
873{
874	struct meson_host *host = mmc_priv(mmc);
875	host->needs_pre_post_req = mrq->data &&
876			!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
877
878	/*
879	 * The memory at the end of the controller used as bounce buffer for
880	 * the dram_access_quirk only accepts 32bit read/write access,
881	 * check the aligment and length of the data before starting the request.
882	 */
883	if (host->dram_access_quirk && mrq->data) {
884		mrq->cmd->error = meson_mmc_validate_dram_access(mmc, mrq->data);
885		if (mrq->cmd->error) {
886			mmc_request_done(mmc, mrq);
887			return;
888		}
889	}
890
891	if (host->needs_pre_post_req) {
892		meson_mmc_get_transfer_mode(mmc, mrq);
893		if (!meson_mmc_desc_chain_mode(mrq->data))
894			host->needs_pre_post_req = false;
895	}
896
897	if (host->needs_pre_post_req)
898		meson_mmc_pre_req(mmc, mrq);
899
900	/* Stop execution */
901	writel(0, host->regs + SD_EMMC_START);
902
903	meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
904}
905
906static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
907{
908	struct meson_host *host = mmc_priv(mmc);
909
910	if (cmd->flags & MMC_RSP_136) {
911		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
912		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
913		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
914		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
915	} else if (cmd->flags & MMC_RSP_PRESENT) {
916		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
917	}
918}
919
920static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
921{
922	struct meson_host *host = dev_id;
923	struct mmc_command *cmd;
924	struct mmc_data *data;
925	u32 irq_en, status, raw_status;
926	irqreturn_t ret = IRQ_NONE;
927
928	irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
929	raw_status = readl(host->regs + SD_EMMC_STATUS);
930	status = raw_status & irq_en;
931
932	if (!status) {
933		dev_dbg(host->dev,
934			"Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
935			 irq_en, raw_status);
936		return IRQ_NONE;
937	}
938
939	if (WARN_ON(!host) || WARN_ON(!host->cmd))
940		return IRQ_NONE;
941
942	/* ack all raised interrupts */
943	writel(status, host->regs + SD_EMMC_STATUS);
944
945	cmd = host->cmd;
946	data = cmd->data;
947	cmd->error = 0;
948	if (status & IRQ_CRC_ERR) {
949		dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
950		cmd->error = -EILSEQ;
951		ret = IRQ_WAKE_THREAD;
952		goto out;
953	}
954
955	if (status & IRQ_TIMEOUTS) {
956		dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
957		cmd->error = -ETIMEDOUT;
958		ret = IRQ_WAKE_THREAD;
959		goto out;
960	}
961
962	meson_mmc_read_resp(host->mmc, cmd);
963
964	if (status & IRQ_SDIO) {
965		dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
966		ret = IRQ_HANDLED;
967	}
968
969	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
970		if (data && !cmd->error)
971			data->bytes_xfered = data->blksz * data->blocks;
972
973		return IRQ_WAKE_THREAD;
974	}
975
976out:
977	if (cmd->error) {
978		/* Stop desc in case of errors */
979		u32 start = readl(host->regs + SD_EMMC_START);
980
981		start &= ~START_DESC_BUSY;
982		writel(start, host->regs + SD_EMMC_START);
983	}
984
985	return ret;
986}
987
988static int meson_mmc_wait_desc_stop(struct meson_host *host)
989{
990	u32 status;
991
992	/*
993	 * It may sometimes take a while for it to actually halt. Here, we
994	 * are giving it 5ms to comply
995	 *
996	 * If we don't confirm the descriptor is stopped, it might raise new
997	 * IRQs after we have called mmc_request_done() which is bad.
998	 */
999
1000	return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
1001				  !(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
1002				  100, 5000);
1003}
1004
1005static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
1006{
1007	struct meson_host *host = dev_id;
1008	struct mmc_command *next_cmd, *cmd = host->cmd;
1009	struct mmc_data *data;
1010	unsigned int xfer_bytes;
1011
1012	if (WARN_ON(!cmd))
1013		return IRQ_NONE;
1014
1015	if (cmd->error) {
1016		meson_mmc_wait_desc_stop(host);
1017		meson_mmc_request_done(host->mmc, cmd->mrq);
1018
1019		return IRQ_HANDLED;
1020	}
1021
1022	data = cmd->data;
1023	if (meson_mmc_bounce_buf_read(data)) {
1024		xfer_bytes = data->blksz * data->blocks;
1025		WARN_ON(xfer_bytes > host->bounce_buf_size);
1026		if (host->dram_access_quirk)
1027			meson_mmc_copy_buffer(host, data, xfer_bytes, false);
1028		else
1029			sg_copy_from_buffer(data->sg, data->sg_len,
1030					    host->bounce_buf, xfer_bytes);
1031	}
1032
1033	next_cmd = meson_mmc_get_next_command(cmd);
1034	if (next_cmd)
1035		meson_mmc_start_cmd(host->mmc, next_cmd);
1036	else
1037		meson_mmc_request_done(host->mmc, cmd->mrq);
1038
1039	return IRQ_HANDLED;
1040}
1041
1042/*
1043 * NOTE: we only need this until the GPIO/pinctrl driver can handle
1044 * interrupts.  For now, the MMC core will use this for polling.
1045 */
1046static int meson_mmc_get_cd(struct mmc_host *mmc)
1047{
1048	int status = mmc_gpio_get_cd(mmc);
1049
1050	if (status == -ENOSYS)
1051		return 1; /* assume present */
1052
1053	return status;
1054}
1055
1056static void meson_mmc_cfg_init(struct meson_host *host)
1057{
1058	u32 cfg = 0;
1059
1060	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
1061			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
1062	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
1063	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
1064
1065	/* abort chain on R/W errors */
1066	cfg |= CFG_ERR_ABORT;
1067
1068	writel(cfg, host->regs + SD_EMMC_CFG);
1069}
1070
1071static int meson_mmc_card_busy(struct mmc_host *mmc)
1072{
1073	struct meson_host *host = mmc_priv(mmc);
1074	u32 regval;
1075
1076	regval = readl(host->regs + SD_EMMC_STATUS);
1077
1078	/* We are only interrested in lines 0 to 3, so mask the other ones */
1079	return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1080}
1081
1082static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1083{
1084	int ret;
1085
1086	/* vqmmc regulator is available */
1087	if (!IS_ERR(mmc->supply.vqmmc)) {
1088		/*
1089		 * The usual amlogic setup uses a GPIO to switch from one
1090		 * regulator to the other. While the voltage ramp up is
1091		 * pretty fast, care must be taken when switching from 3.3v
1092		 * to 1.8v. Please make sure the regulator framework is aware
1093		 * of your own regulator constraints
1094		 */
1095		ret = mmc_regulator_set_vqmmc(mmc, ios);
1096		return ret < 0 ? ret : 0;
1097	}
1098
1099	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1100	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1101		return 0;
1102
1103	return -EINVAL;
1104}
1105
1106static const struct mmc_host_ops meson_mmc_ops = {
1107	.request	= meson_mmc_request,
1108	.set_ios	= meson_mmc_set_ios,
1109	.get_cd         = meson_mmc_get_cd,
1110	.pre_req	= meson_mmc_pre_req,
1111	.post_req	= meson_mmc_post_req,
1112	.execute_tuning = meson_mmc_resampling_tuning,
1113	.card_busy	= meson_mmc_card_busy,
1114	.start_signal_voltage_switch = meson_mmc_voltage_switch,
1115};
1116
1117static int meson_mmc_probe(struct platform_device *pdev)
1118{
1119	struct resource *res;
1120	struct meson_host *host;
1121	struct mmc_host *mmc;
1122	int ret;
1123
1124	mmc = devm_mmc_alloc_host(&pdev->dev, sizeof(struct meson_host));
1125	if (!mmc)
1126		return -ENOMEM;
1127	host = mmc_priv(mmc);
1128	host->mmc = mmc;
1129	host->dev = &pdev->dev;
1130	dev_set_drvdata(&pdev->dev, host);
1131
1132	/* The G12A SDIO Controller needs an SRAM bounce buffer */
1133	host->dram_access_quirk = device_property_read_bool(&pdev->dev,
1134					"amlogic,dram-access-quirk");
1135
1136	/* Get regulators and the supported OCR mask */
1137	host->vqmmc_enabled = false;
1138	ret = mmc_regulator_get_supply(mmc);
1139	if (ret)
1140		return ret;
1141
1142	ret = mmc_of_parse(mmc);
1143	if (ret)
1144		return dev_err_probe(&pdev->dev, ret, "error parsing DT\n");
1145
1146	host->data = (struct meson_mmc_data *)
1147		of_device_get_match_data(&pdev->dev);
1148	if (!host->data)
1149		return -EINVAL;
1150
1151	ret = device_reset_optional(&pdev->dev);
1152	if (ret)
1153		return dev_err_probe(&pdev->dev, ret, "device reset failed\n");
1154
1155	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1156	host->regs = devm_ioremap_resource(&pdev->dev, res);
1157	if (IS_ERR(host->regs))
1158		return PTR_ERR(host->regs);
1159
1160	host->irq = platform_get_irq(pdev, 0);
1161	if (host->irq < 0)
1162		return host->irq;
1163
1164	host->pinctrl = devm_pinctrl_get(&pdev->dev);
1165	if (IS_ERR(host->pinctrl))
1166		return PTR_ERR(host->pinctrl);
1167
1168	host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1169						   "clk-gate");
1170	if (IS_ERR(host->pins_clk_gate)) {
1171		dev_warn(&pdev->dev,
1172			 "can't get clk-gate pinctrl, using clk_stop bit\n");
1173		host->pins_clk_gate = NULL;
1174	}
1175
1176	host->core_clk = devm_clk_get(&pdev->dev, "core");
1177	if (IS_ERR(host->core_clk))
1178		return PTR_ERR(host->core_clk);
1179
1180	ret = clk_prepare_enable(host->core_clk);
1181	if (ret)
1182		return ret;
1183
1184	ret = meson_mmc_clk_init(host);
1185	if (ret)
1186		goto err_core_clk;
1187
1188	/* set config to sane default */
1189	meson_mmc_cfg_init(host);
1190
1191	/* Stop execution */
1192	writel(0, host->regs + SD_EMMC_START);
1193
1194	/* clear, ack and enable interrupts */
1195	writel(0, host->regs + SD_EMMC_IRQ_EN);
1196	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1197	       host->regs + SD_EMMC_STATUS);
1198	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1199	       host->regs + SD_EMMC_IRQ_EN);
1200
1201	ret = request_threaded_irq(host->irq, meson_mmc_irq,
1202				   meson_mmc_irq_thread, IRQF_ONESHOT,
1203				   dev_name(&pdev->dev), host);
1204	if (ret)
1205		goto err_init_clk;
1206
1207	mmc->caps |= MMC_CAP_CMD23;
1208	if (host->dram_access_quirk) {
1209		/* Limit segments to 1 due to low available sram memory */
1210		mmc->max_segs = 1;
1211		/* Limit to the available sram memory */
1212		mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN /
1213				     mmc->max_blk_size;
1214	} else {
1215		mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1216		mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
1217				sizeof(struct sd_emmc_desc);
1218	}
1219	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1220	mmc->max_seg_size = mmc->max_req_size;
1221
1222	/*
1223	 * At the moment, we don't know how to reliably enable HS400.
1224	 * From the different datasheets, it is not even clear if this mode
1225	 * is officially supported by any of the SoCs
1226	 */
1227	mmc->caps2 &= ~MMC_CAP2_HS400;
1228
1229	if (host->dram_access_quirk) {
1230		/*
1231		 * The MMC Controller embeds 1,5KiB of internal SRAM
1232		 * that can be used to be used as bounce buffer.
1233		 * In the case of the G12A SDIO controller, use these
1234		 * instead of the DDR memory
1235		 */
1236		host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
1237		host->bounce_iomem_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
1238		host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
1239	} else {
1240		/* data bounce buffer */
1241		host->bounce_buf_size = mmc->max_req_size;
1242		host->bounce_buf =
1243			dma_alloc_coherent(host->dev, host->bounce_buf_size,
1244					   &host->bounce_dma_addr, GFP_KERNEL);
1245		if (host->bounce_buf == NULL) {
1246			dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1247			ret = -ENOMEM;
1248			goto err_free_irq;
1249		}
1250	}
1251
1252	host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1253		      &host->descs_dma_addr, GFP_KERNEL);
1254	if (!host->descs) {
1255		dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1256		ret = -ENOMEM;
1257		goto err_bounce_buf;
1258	}
1259
1260	mmc->ops = &meson_mmc_ops;
1261	ret = mmc_add_host(mmc);
1262	if (ret)
1263		goto err_free_irq;
1264
1265	return 0;
1266
1267err_bounce_buf:
1268	if (!host->dram_access_quirk)
1269		dma_free_coherent(host->dev, host->bounce_buf_size,
1270				  host->bounce_buf, host->bounce_dma_addr);
1271err_free_irq:
1272	free_irq(host->irq, host);
1273err_init_clk:
1274	clk_disable_unprepare(host->mmc_clk);
1275err_core_clk:
1276	clk_disable_unprepare(host->core_clk);
1277	return ret;
1278}
1279
1280static int meson_mmc_remove(struct platform_device *pdev)
1281{
1282	struct meson_host *host = dev_get_drvdata(&pdev->dev);
1283
1284	mmc_remove_host(host->mmc);
1285
1286	/* disable interrupts */
1287	writel(0, host->regs + SD_EMMC_IRQ_EN);
1288	free_irq(host->irq, host);
1289
1290	dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1291			  host->descs, host->descs_dma_addr);
1292
1293	if (!host->dram_access_quirk)
1294		dma_free_coherent(host->dev, host->bounce_buf_size,
1295				  host->bounce_buf, host->bounce_dma_addr);
1296
1297	clk_disable_unprepare(host->mmc_clk);
1298	clk_disable_unprepare(host->core_clk);
1299
1300	return 0;
1301}
1302
1303static const struct meson_mmc_data meson_gx_data = {
1304	.tx_delay_mask	= CLK_V2_TX_DELAY_MASK,
1305	.rx_delay_mask	= CLK_V2_RX_DELAY_MASK,
1306	.always_on	= CLK_V2_ALWAYS_ON,
1307	.adjust		= SD_EMMC_ADJUST,
1308};
1309
1310static const struct meson_mmc_data meson_axg_data = {
1311	.tx_delay_mask	= CLK_V3_TX_DELAY_MASK,
1312	.rx_delay_mask	= CLK_V3_RX_DELAY_MASK,
1313	.always_on	= CLK_V3_ALWAYS_ON,
1314	.adjust		= SD_EMMC_V3_ADJUST,
1315};
1316
1317static const struct of_device_id meson_mmc_of_match[] = {
1318	{ .compatible = "amlogic,meson-gx-mmc",		.data = &meson_gx_data },
1319	{ .compatible = "amlogic,meson-gxbb-mmc", 	.data = &meson_gx_data },
1320	{ .compatible = "amlogic,meson-gxl-mmc",	.data = &meson_gx_data },
1321	{ .compatible = "amlogic,meson-gxm-mmc",	.data = &meson_gx_data },
1322	{ .compatible = "amlogic,meson-axg-mmc",	.data = &meson_axg_data },
1323	{}
1324};
1325MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1326
1327static struct platform_driver meson_mmc_driver = {
1328	.probe		= meson_mmc_probe,
1329	.remove		= meson_mmc_remove,
1330	.driver		= {
1331		.name = DRIVER_NAME,
1332		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1333		.of_match_table = of_match_ptr(meson_mmc_of_match),
1334	},
1335};
1336
1337module_platform_driver(meson_mmc_driver);
1338
1339MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1340MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1341MODULE_LICENSE("GPL v2");
1342