1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VMware VMCI Driver
4 *
5 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 */
7
8#include <linux/vmw_vmci_defs.h>
9#include <linux/vmw_vmci_api.h>
10#include <linux/highmem.h>
11#include <linux/kernel.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/pagemap.h>
16#include <linux/pci.h>
17#include <linux/sched.h>
18#include <linux/slab.h>
19#include <linux/uio.h>
20#include <linux/wait.h>
21#include <linux/vmalloc.h>
22#include <linux/skbuff.h>
23
24#include "vmci_handle_array.h"
25#include "vmci_queue_pair.h"
26#include "vmci_datagram.h"
27#include "vmci_resource.h"
28#include "vmci_context.h"
29#include "vmci_driver.h"
30#include "vmci_event.h"
31#include "vmci_route.h"
32
33/*
34 * In the following, we will distinguish between two kinds of VMX processes -
35 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
36 * VMCI page files in the VMX and supporting VM to VM communication and the
37 * newer ones that use the guest memory directly. We will in the following
38 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
39 * new-style VMX'en.
40 *
41 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
42 * removed for readability) - see below for more details on the transtions:
43 *
44 *            --------------  NEW  -------------
45 *            |                                |
46 *           \_/                              \_/
47 *     CREATED_NO_MEM <-----------------> CREATED_MEM
48 *            |    |                           |
49 *            |    o-----------------------o   |
50 *            |                            |   |
51 *           \_/                          \_/ \_/
52 *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
53 *            |                            |   |
54 *            |     o----------------------o   |
55 *            |     |                          |
56 *           \_/   \_/                        \_/
57 *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
58 *            |                                |
59 *            |                                |
60 *            -------------> gone <-------------
61 *
62 * In more detail. When a VMCI queue pair is first created, it will be in the
63 * VMCIQPB_NEW state. It will then move into one of the following states:
64 *
65 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
66 *
67 *     - the created was performed by a host endpoint, in which case there is
68 *       no backing memory yet.
69 *
70 *     - the create was initiated by an old-style VMX, that uses
71 *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
72 *       a later point in time. This state can be distinguished from the one
73 *       above by the context ID of the creator. A host side is not allowed to
74 *       attach until the page store has been set.
75 *
76 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
77 *     is created by a VMX using the queue pair device backend that
78 *     sets the UVAs of the queue pair immediately and stores the
79 *     information for later attachers. At this point, it is ready for
80 *     the host side to attach to it.
81 *
82 * Once the queue pair is in one of the created states (with the exception of
83 * the case mentioned for older VMX'en above), it is possible to attach to the
84 * queue pair. Again we have two new states possible:
85 *
86 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
87 *   paths:
88 *
89 *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
90 *       pair, and attaches to a queue pair previously created by the host side.
91 *
92 *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
93 *       already created by a guest.
94 *
95 *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
96 *       vmci_qp_broker_set_page_store (see below).
97 *
98 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
99 *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
100 *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
101 *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
102 *     will be entered.
103 *
104 * From the attached queue pair, the queue pair can enter the shutdown states
105 * when either side of the queue pair detaches. If the guest side detaches
106 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
107 * the content of the queue pair will no longer be available. If the host
108 * side detaches first, the queue pair will either enter the
109 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
110 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
111 * (e.g., the host detaches while a guest is stunned).
112 *
113 * New-style VMX'en will also unmap guest memory, if the guest is
114 * quiesced, e.g., during a snapshot operation. In that case, the guest
115 * memory will no longer be available, and the queue pair will transition from
116 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
117 * in which case the queue pair will transition from the *_NO_MEM state at that
118 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
119 * since the peer may have either attached or detached in the meantime. The
120 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
121 * *_MEM state, and vice versa.
122 */
123
124/* The Kernel specific component of the struct vmci_queue structure. */
125struct vmci_queue_kern_if {
126	struct mutex __mutex;	/* Protects the queue. */
127	struct mutex *mutex;	/* Shared by producer and consumer queues. */
128	size_t num_pages;	/* Number of pages incl. header. */
129	bool host;		/* Host or guest? */
130	union {
131		struct {
132			dma_addr_t *pas;
133			void **vas;
134		} g;		/* Used by the guest. */
135		struct {
136			struct page **page;
137			struct page **header_page;
138		} h;		/* Used by the host. */
139	} u;
140};
141
142/*
143 * This structure is opaque to the clients.
144 */
145struct vmci_qp {
146	struct vmci_handle handle;
147	struct vmci_queue *produce_q;
148	struct vmci_queue *consume_q;
149	u64 produce_q_size;
150	u64 consume_q_size;
151	u32 peer;
152	u32 flags;
153	u32 priv_flags;
154	bool guest_endpoint;
155	unsigned int blocked;
156	unsigned int generation;
157	wait_queue_head_t event;
158};
159
160enum qp_broker_state {
161	VMCIQPB_NEW,
162	VMCIQPB_CREATED_NO_MEM,
163	VMCIQPB_CREATED_MEM,
164	VMCIQPB_ATTACHED_NO_MEM,
165	VMCIQPB_ATTACHED_MEM,
166	VMCIQPB_SHUTDOWN_NO_MEM,
167	VMCIQPB_SHUTDOWN_MEM,
168	VMCIQPB_GONE
169};
170
171#define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
172				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
173				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
174
175/*
176 * In the queue pair broker, we always use the guest point of view for
177 * the produce and consume queue values and references, e.g., the
178 * produce queue size stored is the guests produce queue size. The
179 * host endpoint will need to swap these around. The only exception is
180 * the local queue pairs on the host, in which case the host endpoint
181 * that creates the queue pair will have the right orientation, and
182 * the attaching host endpoint will need to swap.
183 */
184struct qp_entry {
185	struct list_head list_item;
186	struct vmci_handle handle;
187	u32 peer;
188	u32 flags;
189	u64 produce_size;
190	u64 consume_size;
191	u32 ref_count;
192};
193
194struct qp_broker_entry {
195	struct vmci_resource resource;
196	struct qp_entry qp;
197	u32 create_id;
198	u32 attach_id;
199	enum qp_broker_state state;
200	bool require_trusted_attach;
201	bool created_by_trusted;
202	bool vmci_page_files;	/* Created by VMX using VMCI page files */
203	struct vmci_queue *produce_q;
204	struct vmci_queue *consume_q;
205	struct vmci_queue_header saved_produce_q;
206	struct vmci_queue_header saved_consume_q;
207	vmci_event_release_cb wakeup_cb;
208	void *client_data;
209	void *local_mem;	/* Kernel memory for local queue pair */
210};
211
212struct qp_guest_endpoint {
213	struct vmci_resource resource;
214	struct qp_entry qp;
215	u64 num_ppns;
216	void *produce_q;
217	void *consume_q;
218	struct ppn_set ppn_set;
219};
220
221struct qp_list {
222	struct list_head head;
223	struct mutex mutex;	/* Protect queue list. */
224};
225
226static struct qp_list qp_broker_list = {
227	.head = LIST_HEAD_INIT(qp_broker_list.head),
228	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
229};
230
231static struct qp_list qp_guest_endpoints = {
232	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
233	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
234};
235
236#define INVALID_VMCI_GUEST_MEM_ID  0
237#define QPE_NUM_PAGES(_QPE) ((u32) \
238			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
239			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
240
241
242/*
243 * Frees kernel VA space for a given queue and its queue header, and
244 * frees physical data pages.
245 */
246static void qp_free_queue(void *q, u64 size)
247{
248	struct vmci_queue *queue = q;
249
250	if (queue) {
251		u64 i;
252
253		/* Given size does not include header, so add in a page here. */
254		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
255			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
256					  queue->kernel_if->u.g.vas[i],
257					  queue->kernel_if->u.g.pas[i]);
258		}
259
260		vfree(queue);
261	}
262}
263
264/*
265 * Allocates kernel queue pages of specified size with IOMMU mappings,
266 * plus space for the queue structure/kernel interface and the queue
267 * header.
268 */
269static void *qp_alloc_queue(u64 size, u32 flags)
270{
271	u64 i;
272	struct vmci_queue *queue;
273	size_t pas_size;
274	size_t vas_size;
275	size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
276	u64 num_pages;
277
278	if (size > SIZE_MAX - PAGE_SIZE)
279		return NULL;
280	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
281	if (num_pages >
282		 (SIZE_MAX - queue_size) /
283		 (sizeof(*queue->kernel_if->u.g.pas) +
284		  sizeof(*queue->kernel_if->u.g.vas)))
285		return NULL;
286
287	pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
288	vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
289	queue_size += pas_size + vas_size;
290
291	queue = vmalloc(queue_size);
292	if (!queue)
293		return NULL;
294
295	queue->q_header = NULL;
296	queue->saved_header = NULL;
297	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
298	queue->kernel_if->mutex = NULL;
299	queue->kernel_if->num_pages = num_pages;
300	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
301	queue->kernel_if->u.g.vas =
302		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
303	queue->kernel_if->host = false;
304
305	for (i = 0; i < num_pages; i++) {
306		queue->kernel_if->u.g.vas[i] =
307			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
308					   &queue->kernel_if->u.g.pas[i],
309					   GFP_KERNEL);
310		if (!queue->kernel_if->u.g.vas[i]) {
311			/* Size excl. the header. */
312			qp_free_queue(queue, i * PAGE_SIZE);
313			return NULL;
314		}
315	}
316
317	/* Queue header is the first page. */
318	queue->q_header = queue->kernel_if->u.g.vas[0];
319
320	return queue;
321}
322
323/*
324 * Copies from a given buffer or iovector to a VMCI Queue.  Uses
325 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
326 * by traversing the offset -> page translation structure for the queue.
327 * Assumes that offset + size does not wrap around in the queue.
328 */
329static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
330				  u64 queue_offset,
331				  struct iov_iter *from,
332				  size_t size)
333{
334	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
335	size_t bytes_copied = 0;
336
337	while (bytes_copied < size) {
338		const u64 page_index =
339			(queue_offset + bytes_copied) / PAGE_SIZE;
340		const size_t page_offset =
341		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
342		void *va;
343		size_t to_copy;
344
345		if (kernel_if->host)
346			va = kmap(kernel_if->u.h.page[page_index]);
347		else
348			va = kernel_if->u.g.vas[page_index + 1];
349			/* Skip header. */
350
351		if (size - bytes_copied > PAGE_SIZE - page_offset)
352			/* Enough payload to fill up from this page. */
353			to_copy = PAGE_SIZE - page_offset;
354		else
355			to_copy = size - bytes_copied;
356
357		if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
358					 from)) {
359			if (kernel_if->host)
360				kunmap(kernel_if->u.h.page[page_index]);
361			return VMCI_ERROR_INVALID_ARGS;
362		}
363		bytes_copied += to_copy;
364		if (kernel_if->host)
365			kunmap(kernel_if->u.h.page[page_index]);
366	}
367
368	return VMCI_SUCCESS;
369}
370
371/*
372 * Copies to a given buffer or iovector from a VMCI Queue.  Uses
373 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
374 * by traversing the offset -> page translation structure for the queue.
375 * Assumes that offset + size does not wrap around in the queue.
376 */
377static int qp_memcpy_from_queue_iter(struct iov_iter *to,
378				    const struct vmci_queue *queue,
379				    u64 queue_offset, size_t size)
380{
381	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
382	size_t bytes_copied = 0;
383
384	while (bytes_copied < size) {
385		const u64 page_index =
386			(queue_offset + bytes_copied) / PAGE_SIZE;
387		const size_t page_offset =
388		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
389		void *va;
390		size_t to_copy;
391		int err;
392
393		if (kernel_if->host)
394			va = kmap(kernel_if->u.h.page[page_index]);
395		else
396			va = kernel_if->u.g.vas[page_index + 1];
397			/* Skip header. */
398
399		if (size - bytes_copied > PAGE_SIZE - page_offset)
400			/* Enough payload to fill up this page. */
401			to_copy = PAGE_SIZE - page_offset;
402		else
403			to_copy = size - bytes_copied;
404
405		err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
406		if (err != to_copy) {
407			if (kernel_if->host)
408				kunmap(kernel_if->u.h.page[page_index]);
409			return VMCI_ERROR_INVALID_ARGS;
410		}
411		bytes_copied += to_copy;
412		if (kernel_if->host)
413			kunmap(kernel_if->u.h.page[page_index]);
414	}
415
416	return VMCI_SUCCESS;
417}
418
419/*
420 * Allocates two list of PPNs --- one for the pages in the produce queue,
421 * and the other for the pages in the consume queue. Intializes the list
422 * of PPNs with the page frame numbers of the KVA for the two queues (and
423 * the queue headers).
424 */
425static int qp_alloc_ppn_set(void *prod_q,
426			    u64 num_produce_pages,
427			    void *cons_q,
428			    u64 num_consume_pages, struct ppn_set *ppn_set)
429{
430	u64 *produce_ppns;
431	u64 *consume_ppns;
432	struct vmci_queue *produce_q = prod_q;
433	struct vmci_queue *consume_q = cons_q;
434	u64 i;
435
436	if (!produce_q || !num_produce_pages || !consume_q ||
437	    !num_consume_pages || !ppn_set)
438		return VMCI_ERROR_INVALID_ARGS;
439
440	if (ppn_set->initialized)
441		return VMCI_ERROR_ALREADY_EXISTS;
442
443	produce_ppns =
444	    kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
445			  GFP_KERNEL);
446	if (!produce_ppns)
447		return VMCI_ERROR_NO_MEM;
448
449	consume_ppns =
450	    kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
451			  GFP_KERNEL);
452	if (!consume_ppns) {
453		kfree(produce_ppns);
454		return VMCI_ERROR_NO_MEM;
455	}
456
457	for (i = 0; i < num_produce_pages; i++)
458		produce_ppns[i] =
459			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
460
461	for (i = 0; i < num_consume_pages; i++)
462		consume_ppns[i] =
463			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
464
465	ppn_set->num_produce_pages = num_produce_pages;
466	ppn_set->num_consume_pages = num_consume_pages;
467	ppn_set->produce_ppns = produce_ppns;
468	ppn_set->consume_ppns = consume_ppns;
469	ppn_set->initialized = true;
470	return VMCI_SUCCESS;
471}
472
473/*
474 * Frees the two list of PPNs for a queue pair.
475 */
476static void qp_free_ppn_set(struct ppn_set *ppn_set)
477{
478	if (ppn_set->initialized) {
479		/* Do not call these functions on NULL inputs. */
480		kfree(ppn_set->produce_ppns);
481		kfree(ppn_set->consume_ppns);
482	}
483	memset(ppn_set, 0, sizeof(*ppn_set));
484}
485
486/*
487 * Populates the list of PPNs in the hypercall structure with the PPNS
488 * of the produce queue and the consume queue.
489 */
490static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
491{
492	if (vmci_use_ppn64()) {
493		memcpy(call_buf, ppn_set->produce_ppns,
494		       ppn_set->num_produce_pages *
495		       sizeof(*ppn_set->produce_ppns));
496		memcpy(call_buf +
497		       ppn_set->num_produce_pages *
498		       sizeof(*ppn_set->produce_ppns),
499		       ppn_set->consume_ppns,
500		       ppn_set->num_consume_pages *
501		       sizeof(*ppn_set->consume_ppns));
502	} else {
503		int i;
504		u32 *ppns = (u32 *) call_buf;
505
506		for (i = 0; i < ppn_set->num_produce_pages; i++)
507			ppns[i] = (u32) ppn_set->produce_ppns[i];
508
509		ppns = &ppns[ppn_set->num_produce_pages];
510
511		for (i = 0; i < ppn_set->num_consume_pages; i++)
512			ppns[i] = (u32) ppn_set->consume_ppns[i];
513	}
514
515	return VMCI_SUCCESS;
516}
517
518/*
519 * Allocates kernel VA space of specified size plus space for the queue
520 * and kernel interface.  This is different from the guest queue allocator,
521 * because we do not allocate our own queue header/data pages here but
522 * share those of the guest.
523 */
524static struct vmci_queue *qp_host_alloc_queue(u64 size)
525{
526	struct vmci_queue *queue;
527	size_t queue_page_size;
528	u64 num_pages;
529	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
530
531	if (size > SIZE_MAX - PAGE_SIZE)
532		return NULL;
533	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
534	if (num_pages > (SIZE_MAX - queue_size) /
535		 sizeof(*queue->kernel_if->u.h.page))
536		return NULL;
537
538	queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
539
540	if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
541		return NULL;
542
543	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
544	if (queue) {
545		queue->q_header = NULL;
546		queue->saved_header = NULL;
547		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
548		queue->kernel_if->host = true;
549		queue->kernel_if->mutex = NULL;
550		queue->kernel_if->num_pages = num_pages;
551		queue->kernel_if->u.h.header_page =
552		    (struct page **)((u8 *)queue + queue_size);
553		queue->kernel_if->u.h.page =
554			&queue->kernel_if->u.h.header_page[1];
555	}
556
557	return queue;
558}
559
560/*
561 * Frees kernel memory for a given queue (header plus translation
562 * structure).
563 */
564static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
565{
566	kfree(queue);
567}
568
569/*
570 * Initialize the mutex for the pair of queues.  This mutex is used to
571 * protect the q_header and the buffer from changing out from under any
572 * users of either queue.  Of course, it's only any good if the mutexes
573 * are actually acquired.  Queue structure must lie on non-paged memory
574 * or we cannot guarantee access to the mutex.
575 */
576static void qp_init_queue_mutex(struct vmci_queue *produce_q,
577				struct vmci_queue *consume_q)
578{
579	/*
580	 * Only the host queue has shared state - the guest queues do not
581	 * need to synchronize access using a queue mutex.
582	 */
583
584	if (produce_q->kernel_if->host) {
585		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
586		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
587		mutex_init(produce_q->kernel_if->mutex);
588	}
589}
590
591/*
592 * Cleans up the mutex for the pair of queues.
593 */
594static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
595				   struct vmci_queue *consume_q)
596{
597	if (produce_q->kernel_if->host) {
598		produce_q->kernel_if->mutex = NULL;
599		consume_q->kernel_if->mutex = NULL;
600	}
601}
602
603/*
604 * Acquire the mutex for the queue.  Note that the produce_q and
605 * the consume_q share a mutex.  So, only one of the two need to
606 * be passed in to this routine.  Either will work just fine.
607 */
608static void qp_acquire_queue_mutex(struct vmci_queue *queue)
609{
610	if (queue->kernel_if->host)
611		mutex_lock(queue->kernel_if->mutex);
612}
613
614/*
615 * Release the mutex for the queue.  Note that the produce_q and
616 * the consume_q share a mutex.  So, only one of the two need to
617 * be passed in to this routine.  Either will work just fine.
618 */
619static void qp_release_queue_mutex(struct vmci_queue *queue)
620{
621	if (queue->kernel_if->host)
622		mutex_unlock(queue->kernel_if->mutex);
623}
624
625/*
626 * Helper function to release pages in the PageStoreAttachInfo
627 * previously obtained using get_user_pages.
628 */
629static void qp_release_pages(struct page **pages,
630			     u64 num_pages, bool dirty)
631{
632	int i;
633
634	for (i = 0; i < num_pages; i++) {
635		if (dirty)
636			set_page_dirty_lock(pages[i]);
637
638		put_page(pages[i]);
639		pages[i] = NULL;
640	}
641}
642
643/*
644 * Lock the user pages referenced by the {produce,consume}Buffer
645 * struct into memory and populate the {produce,consume}Pages
646 * arrays in the attach structure with them.
647 */
648static int qp_host_get_user_memory(u64 produce_uva,
649				   u64 consume_uva,
650				   struct vmci_queue *produce_q,
651				   struct vmci_queue *consume_q)
652{
653	int retval;
654	int err = VMCI_SUCCESS;
655
656	retval = get_user_pages_fast((uintptr_t) produce_uva,
657				     produce_q->kernel_if->num_pages,
658				     FOLL_WRITE,
659				     produce_q->kernel_if->u.h.header_page);
660	if (retval < (int)produce_q->kernel_if->num_pages) {
661		pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
662			retval);
663		if (retval > 0)
664			qp_release_pages(produce_q->kernel_if->u.h.header_page,
665					retval, false);
666		err = VMCI_ERROR_NO_MEM;
667		goto out;
668	}
669
670	retval = get_user_pages_fast((uintptr_t) consume_uva,
671				     consume_q->kernel_if->num_pages,
672				     FOLL_WRITE,
673				     consume_q->kernel_if->u.h.header_page);
674	if (retval < (int)consume_q->kernel_if->num_pages) {
675		pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
676			retval);
677		if (retval > 0)
678			qp_release_pages(consume_q->kernel_if->u.h.header_page,
679					retval, false);
680		qp_release_pages(produce_q->kernel_if->u.h.header_page,
681				 produce_q->kernel_if->num_pages, false);
682		err = VMCI_ERROR_NO_MEM;
683	}
684
685 out:
686	return err;
687}
688
689/*
690 * Registers the specification of the user pages used for backing a queue
691 * pair. Enough information to map in pages is stored in the OS specific
692 * part of the struct vmci_queue structure.
693 */
694static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
695					struct vmci_queue *produce_q,
696					struct vmci_queue *consume_q)
697{
698	u64 produce_uva;
699	u64 consume_uva;
700
701	/*
702	 * The new style and the old style mapping only differs in
703	 * that we either get a single or two UVAs, so we split the
704	 * single UVA range at the appropriate spot.
705	 */
706	produce_uva = page_store->pages;
707	consume_uva = page_store->pages +
708	    produce_q->kernel_if->num_pages * PAGE_SIZE;
709	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
710				       consume_q);
711}
712
713/*
714 * Releases and removes the references to user pages stored in the attach
715 * struct.  Pages are released from the page cache and may become
716 * swappable again.
717 */
718static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
719					   struct vmci_queue *consume_q)
720{
721	qp_release_pages(produce_q->kernel_if->u.h.header_page,
722			 produce_q->kernel_if->num_pages, true);
723	memset(produce_q->kernel_if->u.h.header_page, 0,
724	       sizeof(*produce_q->kernel_if->u.h.header_page) *
725	       produce_q->kernel_if->num_pages);
726	qp_release_pages(consume_q->kernel_if->u.h.header_page,
727			 consume_q->kernel_if->num_pages, true);
728	memset(consume_q->kernel_if->u.h.header_page, 0,
729	       sizeof(*consume_q->kernel_if->u.h.header_page) *
730	       consume_q->kernel_if->num_pages);
731}
732
733/*
734 * Once qp_host_register_user_memory has been performed on a
735 * queue, the queue pair headers can be mapped into the
736 * kernel. Once mapped, they must be unmapped with
737 * qp_host_unmap_queues prior to calling
738 * qp_host_unregister_user_memory.
739 * Pages are pinned.
740 */
741static int qp_host_map_queues(struct vmci_queue *produce_q,
742			      struct vmci_queue *consume_q)
743{
744	int result;
745
746	if (!produce_q->q_header || !consume_q->q_header) {
747		struct page *headers[2];
748
749		if (produce_q->q_header != consume_q->q_header)
750			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
751
752		if (produce_q->kernel_if->u.h.header_page == NULL ||
753		    *produce_q->kernel_if->u.h.header_page == NULL)
754			return VMCI_ERROR_UNAVAILABLE;
755
756		headers[0] = *produce_q->kernel_if->u.h.header_page;
757		headers[1] = *consume_q->kernel_if->u.h.header_page;
758
759		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
760		if (produce_q->q_header != NULL) {
761			consume_q->q_header =
762			    (struct vmci_queue_header *)((u8 *)
763							 produce_q->q_header +
764							 PAGE_SIZE);
765			result = VMCI_SUCCESS;
766		} else {
767			pr_warn("vmap failed\n");
768			result = VMCI_ERROR_NO_MEM;
769		}
770	} else {
771		result = VMCI_SUCCESS;
772	}
773
774	return result;
775}
776
777/*
778 * Unmaps previously mapped queue pair headers from the kernel.
779 * Pages are unpinned.
780 */
781static int qp_host_unmap_queues(u32 gid,
782				struct vmci_queue *produce_q,
783				struct vmci_queue *consume_q)
784{
785	if (produce_q->q_header) {
786		if (produce_q->q_header < consume_q->q_header)
787			vunmap(produce_q->q_header);
788		else
789			vunmap(consume_q->q_header);
790
791		produce_q->q_header = NULL;
792		consume_q->q_header = NULL;
793	}
794
795	return VMCI_SUCCESS;
796}
797
798/*
799 * Finds the entry in the list corresponding to a given handle. Assumes
800 * that the list is locked.
801 */
802static struct qp_entry *qp_list_find(struct qp_list *qp_list,
803				     struct vmci_handle handle)
804{
805	struct qp_entry *entry;
806
807	if (vmci_handle_is_invalid(handle))
808		return NULL;
809
810	list_for_each_entry(entry, &qp_list->head, list_item) {
811		if (vmci_handle_is_equal(entry->handle, handle))
812			return entry;
813	}
814
815	return NULL;
816}
817
818/*
819 * Finds the entry in the list corresponding to a given handle.
820 */
821static struct qp_guest_endpoint *
822qp_guest_handle_to_entry(struct vmci_handle handle)
823{
824	struct qp_guest_endpoint *entry;
825	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
826
827	entry = qp ? container_of(
828		qp, struct qp_guest_endpoint, qp) : NULL;
829	return entry;
830}
831
832/*
833 * Finds the entry in the list corresponding to a given handle.
834 */
835static struct qp_broker_entry *
836qp_broker_handle_to_entry(struct vmci_handle handle)
837{
838	struct qp_broker_entry *entry;
839	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
840
841	entry = qp ? container_of(
842		qp, struct qp_broker_entry, qp) : NULL;
843	return entry;
844}
845
846/*
847 * Dispatches a queue pair event message directly into the local event
848 * queue.
849 */
850static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
851{
852	u32 context_id = vmci_get_context_id();
853	struct vmci_event_qp ev;
854
855	memset(&ev, 0, sizeof(ev));
856	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
857	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
858					  VMCI_CONTEXT_RESOURCE_ID);
859	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
860	ev.msg.event_data.event =
861	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
862	ev.payload.peer_id = context_id;
863	ev.payload.handle = handle;
864
865	return vmci_event_dispatch(&ev.msg.hdr);
866}
867
868/*
869 * Allocates and initializes a qp_guest_endpoint structure.
870 * Allocates a queue_pair rid (and handle) iff the given entry has
871 * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
872 * are reserved handles.  Assumes that the QP list mutex is held
873 * by the caller.
874 */
875static struct qp_guest_endpoint *
876qp_guest_endpoint_create(struct vmci_handle handle,
877			 u32 peer,
878			 u32 flags,
879			 u64 produce_size,
880			 u64 consume_size,
881			 void *produce_q,
882			 void *consume_q)
883{
884	int result;
885	struct qp_guest_endpoint *entry;
886	/* One page each for the queue headers. */
887	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
888	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
889
890	if (vmci_handle_is_invalid(handle)) {
891		u32 context_id = vmci_get_context_id();
892
893		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
894	}
895
896	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
897	if (entry) {
898		entry->qp.peer = peer;
899		entry->qp.flags = flags;
900		entry->qp.produce_size = produce_size;
901		entry->qp.consume_size = consume_size;
902		entry->qp.ref_count = 0;
903		entry->num_ppns = num_ppns;
904		entry->produce_q = produce_q;
905		entry->consume_q = consume_q;
906		INIT_LIST_HEAD(&entry->qp.list_item);
907
908		/* Add resource obj */
909		result = vmci_resource_add(&entry->resource,
910					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
911					   handle);
912		entry->qp.handle = vmci_resource_handle(&entry->resource);
913		if ((result != VMCI_SUCCESS) ||
914		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
915			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
916				handle.context, handle.resource, result);
917			kfree(entry);
918			entry = NULL;
919		}
920	}
921	return entry;
922}
923
924/*
925 * Frees a qp_guest_endpoint structure.
926 */
927static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
928{
929	qp_free_ppn_set(&entry->ppn_set);
930	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
931	qp_free_queue(entry->produce_q, entry->qp.produce_size);
932	qp_free_queue(entry->consume_q, entry->qp.consume_size);
933	/* Unlink from resource hash table and free callback */
934	vmci_resource_remove(&entry->resource);
935
936	kfree(entry);
937}
938
939/*
940 * Helper to make a queue_pairAlloc hypercall when the driver is
941 * supporting a guest device.
942 */
943static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
944{
945	struct vmci_qp_alloc_msg *alloc_msg;
946	size_t msg_size;
947	size_t ppn_size;
948	int result;
949
950	if (!entry || entry->num_ppns <= 2)
951		return VMCI_ERROR_INVALID_ARGS;
952
953	ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
954	msg_size = sizeof(*alloc_msg) +
955	    (size_t) entry->num_ppns * ppn_size;
956	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
957	if (!alloc_msg)
958		return VMCI_ERROR_NO_MEM;
959
960	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
961					      VMCI_QUEUEPAIR_ALLOC);
962	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
963	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
964	alloc_msg->handle = entry->qp.handle;
965	alloc_msg->peer = entry->qp.peer;
966	alloc_msg->flags = entry->qp.flags;
967	alloc_msg->produce_size = entry->qp.produce_size;
968	alloc_msg->consume_size = entry->qp.consume_size;
969	alloc_msg->num_ppns = entry->num_ppns;
970
971	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
972				     &entry->ppn_set);
973	if (result == VMCI_SUCCESS)
974		result = vmci_send_datagram(&alloc_msg->hdr);
975
976	kfree(alloc_msg);
977
978	return result;
979}
980
981/*
982 * Helper to make a queue_pairDetach hypercall when the driver is
983 * supporting a guest device.
984 */
985static int qp_detatch_hypercall(struct vmci_handle handle)
986{
987	struct vmci_qp_detach_msg detach_msg;
988
989	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
990					      VMCI_QUEUEPAIR_DETACH);
991	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
992	detach_msg.hdr.payload_size = sizeof(handle);
993	detach_msg.handle = handle;
994
995	return vmci_send_datagram(&detach_msg.hdr);
996}
997
998/*
999 * Adds the given entry to the list. Assumes that the list is locked.
1000 */
1001static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1002{
1003	if (entry)
1004		list_add(&entry->list_item, &qp_list->head);
1005}
1006
1007/*
1008 * Removes the given entry from the list. Assumes that the list is locked.
1009 */
1010static void qp_list_remove_entry(struct qp_list *qp_list,
1011				 struct qp_entry *entry)
1012{
1013	if (entry)
1014		list_del(&entry->list_item);
1015}
1016
1017/*
1018 * Helper for VMCI queue_pair detach interface. Frees the physical
1019 * pages for the queue pair.
1020 */
1021static int qp_detatch_guest_work(struct vmci_handle handle)
1022{
1023	int result;
1024	struct qp_guest_endpoint *entry;
1025	u32 ref_count = ~0;	/* To avoid compiler warning below */
1026
1027	mutex_lock(&qp_guest_endpoints.mutex);
1028
1029	entry = qp_guest_handle_to_entry(handle);
1030	if (!entry) {
1031		mutex_unlock(&qp_guest_endpoints.mutex);
1032		return VMCI_ERROR_NOT_FOUND;
1033	}
1034
1035	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1036		result = VMCI_SUCCESS;
1037
1038		if (entry->qp.ref_count > 1) {
1039			result = qp_notify_peer_local(false, handle);
1040			/*
1041			 * We can fail to notify a local queuepair
1042			 * because we can't allocate.  We still want
1043			 * to release the entry if that happens, so
1044			 * don't bail out yet.
1045			 */
1046		}
1047	} else {
1048		result = qp_detatch_hypercall(handle);
1049		if (result < VMCI_SUCCESS) {
1050			/*
1051			 * We failed to notify a non-local queuepair.
1052			 * That other queuepair might still be
1053			 * accessing the shared memory, so don't
1054			 * release the entry yet.  It will get cleaned
1055			 * up by VMCIqueue_pair_Exit() if necessary
1056			 * (assuming we are going away, otherwise why
1057			 * did this fail?).
1058			 */
1059
1060			mutex_unlock(&qp_guest_endpoints.mutex);
1061			return result;
1062		}
1063	}
1064
1065	/*
1066	 * If we get here then we either failed to notify a local queuepair, or
1067	 * we succeeded in all cases.  Release the entry if required.
1068	 */
1069
1070	entry->qp.ref_count--;
1071	if (entry->qp.ref_count == 0)
1072		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1073
1074	/* If we didn't remove the entry, this could change once we unlock. */
1075	if (entry)
1076		ref_count = entry->qp.ref_count;
1077
1078	mutex_unlock(&qp_guest_endpoints.mutex);
1079
1080	if (ref_count == 0)
1081		qp_guest_endpoint_destroy(entry);
1082
1083	return result;
1084}
1085
1086/*
1087 * This functions handles the actual allocation of a VMCI queue
1088 * pair guest endpoint. Allocates physical pages for the queue
1089 * pair. It makes OS dependent calls through generic wrappers.
1090 */
1091static int qp_alloc_guest_work(struct vmci_handle *handle,
1092			       struct vmci_queue **produce_q,
1093			       u64 produce_size,
1094			       struct vmci_queue **consume_q,
1095			       u64 consume_size,
1096			       u32 peer,
1097			       u32 flags,
1098			       u32 priv_flags)
1099{
1100	const u64 num_produce_pages =
1101	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1102	const u64 num_consume_pages =
1103	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1104	void *my_produce_q = NULL;
1105	void *my_consume_q = NULL;
1106	int result;
1107	struct qp_guest_endpoint *queue_pair_entry = NULL;
1108
1109	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1110		return VMCI_ERROR_NO_ACCESS;
1111
1112	mutex_lock(&qp_guest_endpoints.mutex);
1113
1114	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1115	if (queue_pair_entry) {
1116		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1117			/* Local attach case. */
1118			if (queue_pair_entry->qp.ref_count > 1) {
1119				pr_devel("Error attempting to attach more than once\n");
1120				result = VMCI_ERROR_UNAVAILABLE;
1121				goto error_keep_entry;
1122			}
1123
1124			if (queue_pair_entry->qp.produce_size != consume_size ||
1125			    queue_pair_entry->qp.consume_size !=
1126			    produce_size ||
1127			    queue_pair_entry->qp.flags !=
1128			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1129				pr_devel("Error mismatched queue pair in local attach\n");
1130				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1131				goto error_keep_entry;
1132			}
1133
1134			/*
1135			 * Do a local attach.  We swap the consume and
1136			 * produce queues for the attacher and deliver
1137			 * an attach event.
1138			 */
1139			result = qp_notify_peer_local(true, *handle);
1140			if (result < VMCI_SUCCESS)
1141				goto error_keep_entry;
1142
1143			my_produce_q = queue_pair_entry->consume_q;
1144			my_consume_q = queue_pair_entry->produce_q;
1145			goto out;
1146		}
1147
1148		result = VMCI_ERROR_ALREADY_EXISTS;
1149		goto error_keep_entry;
1150	}
1151
1152	my_produce_q = qp_alloc_queue(produce_size, flags);
1153	if (!my_produce_q) {
1154		pr_warn("Error allocating pages for produce queue\n");
1155		result = VMCI_ERROR_NO_MEM;
1156		goto error;
1157	}
1158
1159	my_consume_q = qp_alloc_queue(consume_size, flags);
1160	if (!my_consume_q) {
1161		pr_warn("Error allocating pages for consume queue\n");
1162		result = VMCI_ERROR_NO_MEM;
1163		goto error;
1164	}
1165
1166	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1167						    produce_size, consume_size,
1168						    my_produce_q, my_consume_q);
1169	if (!queue_pair_entry) {
1170		pr_warn("Error allocating memory in %s\n", __func__);
1171		result = VMCI_ERROR_NO_MEM;
1172		goto error;
1173	}
1174
1175	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1176				  num_consume_pages,
1177				  &queue_pair_entry->ppn_set);
1178	if (result < VMCI_SUCCESS) {
1179		pr_warn("qp_alloc_ppn_set failed\n");
1180		goto error;
1181	}
1182
1183	/*
1184	 * It's only necessary to notify the host if this queue pair will be
1185	 * attached to from another context.
1186	 */
1187	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1188		/* Local create case. */
1189		u32 context_id = vmci_get_context_id();
1190
1191		/*
1192		 * Enforce similar checks on local queue pairs as we
1193		 * do for regular ones.  The handle's context must
1194		 * match the creator or attacher context id (here they
1195		 * are both the current context id) and the
1196		 * attach-only flag cannot exist during create.  We
1197		 * also ensure specified peer is this context or an
1198		 * invalid one.
1199		 */
1200		if (queue_pair_entry->qp.handle.context != context_id ||
1201		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1202		     queue_pair_entry->qp.peer != context_id)) {
1203			result = VMCI_ERROR_NO_ACCESS;
1204			goto error;
1205		}
1206
1207		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1208			result = VMCI_ERROR_NOT_FOUND;
1209			goto error;
1210		}
1211	} else {
1212		result = qp_alloc_hypercall(queue_pair_entry);
1213		if (result < VMCI_SUCCESS) {
1214			pr_warn("qp_alloc_hypercall result = %d\n", result);
1215			goto error;
1216		}
1217	}
1218
1219	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1220			    (struct vmci_queue *)my_consume_q);
1221
1222	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1223
1224 out:
1225	queue_pair_entry->qp.ref_count++;
1226	*handle = queue_pair_entry->qp.handle;
1227	*produce_q = (struct vmci_queue *)my_produce_q;
1228	*consume_q = (struct vmci_queue *)my_consume_q;
1229
1230	/*
1231	 * We should initialize the queue pair header pages on a local
1232	 * queue pair create.  For non-local queue pairs, the
1233	 * hypervisor initializes the header pages in the create step.
1234	 */
1235	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1236	    queue_pair_entry->qp.ref_count == 1) {
1237		vmci_q_header_init((*produce_q)->q_header, *handle);
1238		vmci_q_header_init((*consume_q)->q_header, *handle);
1239	}
1240
1241	mutex_unlock(&qp_guest_endpoints.mutex);
1242
1243	return VMCI_SUCCESS;
1244
1245 error:
1246	mutex_unlock(&qp_guest_endpoints.mutex);
1247	if (queue_pair_entry) {
1248		/* The queues will be freed inside the destroy routine. */
1249		qp_guest_endpoint_destroy(queue_pair_entry);
1250	} else {
1251		qp_free_queue(my_produce_q, produce_size);
1252		qp_free_queue(my_consume_q, consume_size);
1253	}
1254	return result;
1255
1256 error_keep_entry:
1257	/* This path should only be used when an existing entry was found. */
1258	mutex_unlock(&qp_guest_endpoints.mutex);
1259	return result;
1260}
1261
1262/*
1263 * The first endpoint issuing a queue pair allocation will create the state
1264 * of the queue pair in the queue pair broker.
1265 *
1266 * If the creator is a guest, it will associate a VMX virtual address range
1267 * with the queue pair as specified by the page_store. For compatibility with
1268 * older VMX'en, that would use a separate step to set the VMX virtual
1269 * address range, the virtual address range can be registered later using
1270 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1271 * used.
1272 *
1273 * If the creator is the host, a page_store of NULL should be used as well,
1274 * since the host is not able to supply a page store for the queue pair.
1275 *
1276 * For older VMX and host callers, the queue pair will be created in the
1277 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1278 * created in VMCOQPB_CREATED_MEM state.
1279 */
1280static int qp_broker_create(struct vmci_handle handle,
1281			    u32 peer,
1282			    u32 flags,
1283			    u32 priv_flags,
1284			    u64 produce_size,
1285			    u64 consume_size,
1286			    struct vmci_qp_page_store *page_store,
1287			    struct vmci_ctx *context,
1288			    vmci_event_release_cb wakeup_cb,
1289			    void *client_data, struct qp_broker_entry **ent)
1290{
1291	struct qp_broker_entry *entry = NULL;
1292	const u32 context_id = vmci_ctx_get_id(context);
1293	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1294	int result;
1295	u64 guest_produce_size;
1296	u64 guest_consume_size;
1297
1298	/* Do not create if the caller asked not to. */
1299	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1300		return VMCI_ERROR_NOT_FOUND;
1301
1302	/*
1303	 * Creator's context ID should match handle's context ID or the creator
1304	 * must allow the context in handle's context ID as the "peer".
1305	 */
1306	if (handle.context != context_id && handle.context != peer)
1307		return VMCI_ERROR_NO_ACCESS;
1308
1309	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1310		return VMCI_ERROR_DST_UNREACHABLE;
1311
1312	/*
1313	 * Creator's context ID for local queue pairs should match the
1314	 * peer, if a peer is specified.
1315	 */
1316	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1317		return VMCI_ERROR_NO_ACCESS;
1318
1319	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1320	if (!entry)
1321		return VMCI_ERROR_NO_MEM;
1322
1323	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1324		/*
1325		 * The queue pair broker entry stores values from the guest
1326		 * point of view, so a creating host side endpoint should swap
1327		 * produce and consume values -- unless it is a local queue
1328		 * pair, in which case no swapping is necessary, since the local
1329		 * attacher will swap queues.
1330		 */
1331
1332		guest_produce_size = consume_size;
1333		guest_consume_size = produce_size;
1334	} else {
1335		guest_produce_size = produce_size;
1336		guest_consume_size = consume_size;
1337	}
1338
1339	entry->qp.handle = handle;
1340	entry->qp.peer = peer;
1341	entry->qp.flags = flags;
1342	entry->qp.produce_size = guest_produce_size;
1343	entry->qp.consume_size = guest_consume_size;
1344	entry->qp.ref_count = 1;
1345	entry->create_id = context_id;
1346	entry->attach_id = VMCI_INVALID_ID;
1347	entry->state = VMCIQPB_NEW;
1348	entry->require_trusted_attach =
1349	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1350	entry->created_by_trusted =
1351	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1352	entry->vmci_page_files = false;
1353	entry->wakeup_cb = wakeup_cb;
1354	entry->client_data = client_data;
1355	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1356	if (entry->produce_q == NULL) {
1357		result = VMCI_ERROR_NO_MEM;
1358		goto error;
1359	}
1360	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1361	if (entry->consume_q == NULL) {
1362		result = VMCI_ERROR_NO_MEM;
1363		goto error;
1364	}
1365
1366	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1367
1368	INIT_LIST_HEAD(&entry->qp.list_item);
1369
1370	if (is_local) {
1371		u8 *tmp;
1372
1373		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1374					   PAGE_SIZE, GFP_KERNEL);
1375		if (entry->local_mem == NULL) {
1376			result = VMCI_ERROR_NO_MEM;
1377			goto error;
1378		}
1379		entry->state = VMCIQPB_CREATED_MEM;
1380		entry->produce_q->q_header = entry->local_mem;
1381		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1382		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1383		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1384	} else if (page_store) {
1385		/*
1386		 * The VMX already initialized the queue pair headers, so no
1387		 * need for the kernel side to do that.
1388		 */
1389		result = qp_host_register_user_memory(page_store,
1390						      entry->produce_q,
1391						      entry->consume_q);
1392		if (result < VMCI_SUCCESS)
1393			goto error;
1394
1395		entry->state = VMCIQPB_CREATED_MEM;
1396	} else {
1397		/*
1398		 * A create without a page_store may be either a host
1399		 * side create (in which case we are waiting for the
1400		 * guest side to supply the memory) or an old style
1401		 * queue pair create (in which case we will expect a
1402		 * set page store call as the next step).
1403		 */
1404		entry->state = VMCIQPB_CREATED_NO_MEM;
1405	}
1406
1407	qp_list_add_entry(&qp_broker_list, &entry->qp);
1408	if (ent != NULL)
1409		*ent = entry;
1410
1411	/* Add to resource obj */
1412	result = vmci_resource_add(&entry->resource,
1413				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1414				   handle);
1415	if (result != VMCI_SUCCESS) {
1416		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1417			handle.context, handle.resource, result);
1418		goto error;
1419	}
1420
1421	entry->qp.handle = vmci_resource_handle(&entry->resource);
1422	if (is_local) {
1423		vmci_q_header_init(entry->produce_q->q_header,
1424				   entry->qp.handle);
1425		vmci_q_header_init(entry->consume_q->q_header,
1426				   entry->qp.handle);
1427	}
1428
1429	vmci_ctx_qp_create(context, entry->qp.handle);
1430
1431	return VMCI_SUCCESS;
1432
1433 error:
1434	if (entry != NULL) {
1435		qp_host_free_queue(entry->produce_q, guest_produce_size);
1436		qp_host_free_queue(entry->consume_q, guest_consume_size);
1437		kfree(entry);
1438	}
1439
1440	return result;
1441}
1442
1443/*
1444 * Enqueues an event datagram to notify the peer VM attached to
1445 * the given queue pair handle about attach/detach event by the
1446 * given VM.  Returns Payload size of datagram enqueued on
1447 * success, error code otherwise.
1448 */
1449static int qp_notify_peer(bool attach,
1450			  struct vmci_handle handle,
1451			  u32 my_id,
1452			  u32 peer_id)
1453{
1454	int rv;
1455	struct vmci_event_qp ev;
1456
1457	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1458	    peer_id == VMCI_INVALID_ID)
1459		return VMCI_ERROR_INVALID_ARGS;
1460
1461	/*
1462	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1463	 * number of pending events from the hypervisor to a given VM
1464	 * otherwise a rogue VM could do an arbitrary number of attach
1465	 * and detach operations causing memory pressure in the host
1466	 * kernel.
1467	 */
1468
1469	memset(&ev, 0, sizeof(ev));
1470	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1471	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1472					  VMCI_CONTEXT_RESOURCE_ID);
1473	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1474	ev.msg.event_data.event = attach ?
1475	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1476	ev.payload.handle = handle;
1477	ev.payload.peer_id = my_id;
1478
1479	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1480				    &ev.msg.hdr, false);
1481	if (rv < VMCI_SUCCESS)
1482		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1483			attach ? "ATTACH" : "DETACH", peer_id);
1484
1485	return rv;
1486}
1487
1488/*
1489 * The second endpoint issuing a queue pair allocation will attach to
1490 * the queue pair registered with the queue pair broker.
1491 *
1492 * If the attacher is a guest, it will associate a VMX virtual address
1493 * range with the queue pair as specified by the page_store. At this
1494 * point, the already attach host endpoint may start using the queue
1495 * pair, and an attach event is sent to it. For compatibility with
1496 * older VMX'en, that used a separate step to set the VMX virtual
1497 * address range, the virtual address range can be registered later
1498 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1499 * NULL should be used, and the attach event will be generated once
1500 * the actual page store has been set.
1501 *
1502 * If the attacher is the host, a page_store of NULL should be used as
1503 * well, since the page store information is already set by the guest.
1504 *
1505 * For new VMX and host callers, the queue pair will be moved to the
1506 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1507 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1508 */
1509static int qp_broker_attach(struct qp_broker_entry *entry,
1510			    u32 peer,
1511			    u32 flags,
1512			    u32 priv_flags,
1513			    u64 produce_size,
1514			    u64 consume_size,
1515			    struct vmci_qp_page_store *page_store,
1516			    struct vmci_ctx *context,
1517			    vmci_event_release_cb wakeup_cb,
1518			    void *client_data,
1519			    struct qp_broker_entry **ent)
1520{
1521	const u32 context_id = vmci_ctx_get_id(context);
1522	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1523	int result;
1524
1525	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1526	    entry->state != VMCIQPB_CREATED_MEM)
1527		return VMCI_ERROR_UNAVAILABLE;
1528
1529	if (is_local) {
1530		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1531		    context_id != entry->create_id) {
1532			return VMCI_ERROR_INVALID_ARGS;
1533		}
1534	} else if (context_id == entry->create_id ||
1535		   context_id == entry->attach_id) {
1536		return VMCI_ERROR_ALREADY_EXISTS;
1537	}
1538
1539	if (VMCI_CONTEXT_IS_VM(context_id) &&
1540	    VMCI_CONTEXT_IS_VM(entry->create_id))
1541		return VMCI_ERROR_DST_UNREACHABLE;
1542
1543	/*
1544	 * If we are attaching from a restricted context then the queuepair
1545	 * must have been created by a trusted endpoint.
1546	 */
1547	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1548	    !entry->created_by_trusted)
1549		return VMCI_ERROR_NO_ACCESS;
1550
1551	/*
1552	 * If we are attaching to a queuepair that was created by a restricted
1553	 * context then we must be trusted.
1554	 */
1555	if (entry->require_trusted_attach &&
1556	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1557		return VMCI_ERROR_NO_ACCESS;
1558
1559	/*
1560	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1561	 * control check is not performed.
1562	 */
1563	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1564		return VMCI_ERROR_NO_ACCESS;
1565
1566	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1567		/*
1568		 * Do not attach if the caller doesn't support Host Queue Pairs
1569		 * and a host created this queue pair.
1570		 */
1571
1572		if (!vmci_ctx_supports_host_qp(context))
1573			return VMCI_ERROR_INVALID_RESOURCE;
1574
1575	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1576		struct vmci_ctx *create_context;
1577		bool supports_host_qp;
1578
1579		/*
1580		 * Do not attach a host to a user created queue pair if that
1581		 * user doesn't support host queue pair end points.
1582		 */
1583
1584		create_context = vmci_ctx_get(entry->create_id);
1585		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1586		vmci_ctx_put(create_context);
1587
1588		if (!supports_host_qp)
1589			return VMCI_ERROR_INVALID_RESOURCE;
1590	}
1591
1592	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1593		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1594
1595	if (context_id != VMCI_HOST_CONTEXT_ID) {
1596		/*
1597		 * The queue pair broker entry stores values from the guest
1598		 * point of view, so an attaching guest should match the values
1599		 * stored in the entry.
1600		 */
1601
1602		if (entry->qp.produce_size != produce_size ||
1603		    entry->qp.consume_size != consume_size) {
1604			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1605		}
1606	} else if (entry->qp.produce_size != consume_size ||
1607		   entry->qp.consume_size != produce_size) {
1608		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1609	}
1610
1611	if (context_id != VMCI_HOST_CONTEXT_ID) {
1612		/*
1613		 * If a guest attached to a queue pair, it will supply
1614		 * the backing memory.  If this is a pre NOVMVM vmx,
1615		 * the backing memory will be supplied by calling
1616		 * vmci_qp_broker_set_page_store() following the
1617		 * return of the vmci_qp_broker_alloc() call. If it is
1618		 * a vmx of version NOVMVM or later, the page store
1619		 * must be supplied as part of the
1620		 * vmci_qp_broker_alloc call.  Under all circumstances
1621		 * must the initially created queue pair not have any
1622		 * memory associated with it already.
1623		 */
1624
1625		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1626			return VMCI_ERROR_INVALID_ARGS;
1627
1628		if (page_store != NULL) {
1629			/*
1630			 * Patch up host state to point to guest
1631			 * supplied memory. The VMX already
1632			 * initialized the queue pair headers, so no
1633			 * need for the kernel side to do that.
1634			 */
1635
1636			result = qp_host_register_user_memory(page_store,
1637							      entry->produce_q,
1638							      entry->consume_q);
1639			if (result < VMCI_SUCCESS)
1640				return result;
1641
1642			entry->state = VMCIQPB_ATTACHED_MEM;
1643		} else {
1644			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1645		}
1646	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1647		/*
1648		 * The host side is attempting to attach to a queue
1649		 * pair that doesn't have any memory associated with
1650		 * it. This must be a pre NOVMVM vmx that hasn't set
1651		 * the page store information yet, or a quiesced VM.
1652		 */
1653
1654		return VMCI_ERROR_UNAVAILABLE;
1655	} else {
1656		/* The host side has successfully attached to a queue pair. */
1657		entry->state = VMCIQPB_ATTACHED_MEM;
1658	}
1659
1660	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1661		result =
1662		    qp_notify_peer(true, entry->qp.handle, context_id,
1663				   entry->create_id);
1664		if (result < VMCI_SUCCESS)
1665			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1666				entry->create_id, entry->qp.handle.context,
1667				entry->qp.handle.resource);
1668	}
1669
1670	entry->attach_id = context_id;
1671	entry->qp.ref_count++;
1672	if (wakeup_cb) {
1673		entry->wakeup_cb = wakeup_cb;
1674		entry->client_data = client_data;
1675	}
1676
1677	/*
1678	 * When attaching to local queue pairs, the context already has
1679	 * an entry tracking the queue pair, so don't add another one.
1680	 */
1681	if (!is_local)
1682		vmci_ctx_qp_create(context, entry->qp.handle);
1683
1684	if (ent != NULL)
1685		*ent = entry;
1686
1687	return VMCI_SUCCESS;
1688}
1689
1690/*
1691 * queue_pair_Alloc for use when setting up queue pair endpoints
1692 * on the host.
1693 */
1694static int qp_broker_alloc(struct vmci_handle handle,
1695			   u32 peer,
1696			   u32 flags,
1697			   u32 priv_flags,
1698			   u64 produce_size,
1699			   u64 consume_size,
1700			   struct vmci_qp_page_store *page_store,
1701			   struct vmci_ctx *context,
1702			   vmci_event_release_cb wakeup_cb,
1703			   void *client_data,
1704			   struct qp_broker_entry **ent,
1705			   bool *swap)
1706{
1707	const u32 context_id = vmci_ctx_get_id(context);
1708	bool create;
1709	struct qp_broker_entry *entry = NULL;
1710	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1711	int result;
1712
1713	if (vmci_handle_is_invalid(handle) ||
1714	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1715	    !(produce_size || consume_size) ||
1716	    !context || context_id == VMCI_INVALID_ID ||
1717	    handle.context == VMCI_INVALID_ID) {
1718		return VMCI_ERROR_INVALID_ARGS;
1719	}
1720
1721	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1722		return VMCI_ERROR_INVALID_ARGS;
1723
1724	/*
1725	 * In the initial argument check, we ensure that non-vmkernel hosts
1726	 * are not allowed to create local queue pairs.
1727	 */
1728
1729	mutex_lock(&qp_broker_list.mutex);
1730
1731	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1732		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1733			 context_id, handle.context, handle.resource);
1734		mutex_unlock(&qp_broker_list.mutex);
1735		return VMCI_ERROR_ALREADY_EXISTS;
1736	}
1737
1738	if (handle.resource != VMCI_INVALID_ID)
1739		entry = qp_broker_handle_to_entry(handle);
1740
1741	if (!entry) {
1742		create = true;
1743		result =
1744		    qp_broker_create(handle, peer, flags, priv_flags,
1745				     produce_size, consume_size, page_store,
1746				     context, wakeup_cb, client_data, ent);
1747	} else {
1748		create = false;
1749		result =
1750		    qp_broker_attach(entry, peer, flags, priv_flags,
1751				     produce_size, consume_size, page_store,
1752				     context, wakeup_cb, client_data, ent);
1753	}
1754
1755	mutex_unlock(&qp_broker_list.mutex);
1756
1757	if (swap)
1758		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1759		    !(create && is_local);
1760
1761	return result;
1762}
1763
1764/*
1765 * This function implements the kernel API for allocating a queue
1766 * pair.
1767 */
1768static int qp_alloc_host_work(struct vmci_handle *handle,
1769			      struct vmci_queue **produce_q,
1770			      u64 produce_size,
1771			      struct vmci_queue **consume_q,
1772			      u64 consume_size,
1773			      u32 peer,
1774			      u32 flags,
1775			      u32 priv_flags,
1776			      vmci_event_release_cb wakeup_cb,
1777			      void *client_data)
1778{
1779	struct vmci_handle new_handle;
1780	struct vmci_ctx *context;
1781	struct qp_broker_entry *entry;
1782	int result;
1783	bool swap;
1784
1785	if (vmci_handle_is_invalid(*handle)) {
1786		new_handle = vmci_make_handle(
1787			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1788	} else
1789		new_handle = *handle;
1790
1791	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1792	entry = NULL;
1793	result =
1794	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1795			    produce_size, consume_size, NULL, context,
1796			    wakeup_cb, client_data, &entry, &swap);
1797	if (result == VMCI_SUCCESS) {
1798		if (swap) {
1799			/*
1800			 * If this is a local queue pair, the attacher
1801			 * will swap around produce and consume
1802			 * queues.
1803			 */
1804
1805			*produce_q = entry->consume_q;
1806			*consume_q = entry->produce_q;
1807		} else {
1808			*produce_q = entry->produce_q;
1809			*consume_q = entry->consume_q;
1810		}
1811
1812		*handle = vmci_resource_handle(&entry->resource);
1813	} else {
1814		*handle = VMCI_INVALID_HANDLE;
1815		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1816			 result);
1817	}
1818	vmci_ctx_put(context);
1819	return result;
1820}
1821
1822/*
1823 * Allocates a VMCI queue_pair. Only checks validity of input
1824 * arguments. The real work is done in the host or guest
1825 * specific function.
1826 */
1827int vmci_qp_alloc(struct vmci_handle *handle,
1828		  struct vmci_queue **produce_q,
1829		  u64 produce_size,
1830		  struct vmci_queue **consume_q,
1831		  u64 consume_size,
1832		  u32 peer,
1833		  u32 flags,
1834		  u32 priv_flags,
1835		  bool guest_endpoint,
1836		  vmci_event_release_cb wakeup_cb,
1837		  void *client_data)
1838{
1839	if (!handle || !produce_q || !consume_q ||
1840	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1841		return VMCI_ERROR_INVALID_ARGS;
1842
1843	if (guest_endpoint) {
1844		return qp_alloc_guest_work(handle, produce_q,
1845					   produce_size, consume_q,
1846					   consume_size, peer,
1847					   flags, priv_flags);
1848	} else {
1849		return qp_alloc_host_work(handle, produce_q,
1850					  produce_size, consume_q,
1851					  consume_size, peer, flags,
1852					  priv_flags, wakeup_cb, client_data);
1853	}
1854}
1855
1856/*
1857 * This function implements the host kernel API for detaching from
1858 * a queue pair.
1859 */
1860static int qp_detatch_host_work(struct vmci_handle handle)
1861{
1862	int result;
1863	struct vmci_ctx *context;
1864
1865	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1866
1867	result = vmci_qp_broker_detach(handle, context);
1868
1869	vmci_ctx_put(context);
1870	return result;
1871}
1872
1873/*
1874 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1875 * Real work is done in the host or guest specific function.
1876 */
1877static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1878{
1879	if (vmci_handle_is_invalid(handle))
1880		return VMCI_ERROR_INVALID_ARGS;
1881
1882	if (guest_endpoint)
1883		return qp_detatch_guest_work(handle);
1884	else
1885		return qp_detatch_host_work(handle);
1886}
1887
1888/*
1889 * Returns the entry from the head of the list. Assumes that the list is
1890 * locked.
1891 */
1892static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1893{
1894	if (!list_empty(&qp_list->head)) {
1895		struct qp_entry *entry =
1896		    list_first_entry(&qp_list->head, struct qp_entry,
1897				     list_item);
1898		return entry;
1899	}
1900
1901	return NULL;
1902}
1903
1904void vmci_qp_broker_exit(void)
1905{
1906	struct qp_entry *entry;
1907	struct qp_broker_entry *be;
1908
1909	mutex_lock(&qp_broker_list.mutex);
1910
1911	while ((entry = qp_list_get_head(&qp_broker_list))) {
1912		be = (struct qp_broker_entry *)entry;
1913
1914		qp_list_remove_entry(&qp_broker_list, entry);
1915		kfree(be);
1916	}
1917
1918	mutex_unlock(&qp_broker_list.mutex);
1919}
1920
1921/*
1922 * Requests that a queue pair be allocated with the VMCI queue
1923 * pair broker. Allocates a queue pair entry if one does not
1924 * exist. Attaches to one if it exists, and retrieves the page
1925 * files backing that queue_pair.  Assumes that the queue pair
1926 * broker lock is held.
1927 */
1928int vmci_qp_broker_alloc(struct vmci_handle handle,
1929			 u32 peer,
1930			 u32 flags,
1931			 u32 priv_flags,
1932			 u64 produce_size,
1933			 u64 consume_size,
1934			 struct vmci_qp_page_store *page_store,
1935			 struct vmci_ctx *context)
1936{
1937	return qp_broker_alloc(handle, peer, flags, priv_flags,
1938			       produce_size, consume_size,
1939			       page_store, context, NULL, NULL, NULL, NULL);
1940}
1941
1942/*
1943 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1944 * step to add the UVAs of the VMX mapping of the queue pair. This function
1945 * provides backwards compatibility with such VMX'en, and takes care of
1946 * registering the page store for a queue pair previously allocated by the
1947 * VMX during create or attach. This function will move the queue pair state
1948 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1949 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1950 * attached state with memory, the queue pair is ready to be used by the
1951 * host peer, and an attached event will be generated.
1952 *
1953 * Assumes that the queue pair broker lock is held.
1954 *
1955 * This function is only used by the hosted platform, since there is no
1956 * issue with backwards compatibility for vmkernel.
1957 */
1958int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1959				  u64 produce_uva,
1960				  u64 consume_uva,
1961				  struct vmci_ctx *context)
1962{
1963	struct qp_broker_entry *entry;
1964	int result;
1965	const u32 context_id = vmci_ctx_get_id(context);
1966
1967	if (vmci_handle_is_invalid(handle) || !context ||
1968	    context_id == VMCI_INVALID_ID)
1969		return VMCI_ERROR_INVALID_ARGS;
1970
1971	/*
1972	 * We only support guest to host queue pairs, so the VMX must
1973	 * supply UVAs for the mapped page files.
1974	 */
1975
1976	if (produce_uva == 0 || consume_uva == 0)
1977		return VMCI_ERROR_INVALID_ARGS;
1978
1979	mutex_lock(&qp_broker_list.mutex);
1980
1981	if (!vmci_ctx_qp_exists(context, handle)) {
1982		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1983			context_id, handle.context, handle.resource);
1984		result = VMCI_ERROR_NOT_FOUND;
1985		goto out;
1986	}
1987
1988	entry = qp_broker_handle_to_entry(handle);
1989	if (!entry) {
1990		result = VMCI_ERROR_NOT_FOUND;
1991		goto out;
1992	}
1993
1994	/*
1995	 * If I'm the owner then I can set the page store.
1996	 *
1997	 * Or, if a host created the queue_pair and I'm the attached peer
1998	 * then I can set the page store.
1999	 */
2000	if (entry->create_id != context_id &&
2001	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2002	     entry->attach_id != context_id)) {
2003		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2004		goto out;
2005	}
2006
2007	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2008	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2009		result = VMCI_ERROR_UNAVAILABLE;
2010		goto out;
2011	}
2012
2013	result = qp_host_get_user_memory(produce_uva, consume_uva,
2014					 entry->produce_q, entry->consume_q);
2015	if (result < VMCI_SUCCESS)
2016		goto out;
2017
2018	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2019	if (result < VMCI_SUCCESS) {
2020		qp_host_unregister_user_memory(entry->produce_q,
2021					       entry->consume_q);
2022		goto out;
2023	}
2024
2025	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2026		entry->state = VMCIQPB_CREATED_MEM;
2027	else
2028		entry->state = VMCIQPB_ATTACHED_MEM;
2029
2030	entry->vmci_page_files = true;
2031
2032	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2033		result =
2034		    qp_notify_peer(true, handle, context_id, entry->create_id);
2035		if (result < VMCI_SUCCESS) {
2036			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2037				entry->create_id, entry->qp.handle.context,
2038				entry->qp.handle.resource);
2039		}
2040	}
2041
2042	result = VMCI_SUCCESS;
2043 out:
2044	mutex_unlock(&qp_broker_list.mutex);
2045	return result;
2046}
2047
2048/*
2049 * Resets saved queue headers for the given QP broker
2050 * entry. Should be used when guest memory becomes available
2051 * again, or the guest detaches.
2052 */
2053static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2054{
2055	entry->produce_q->saved_header = NULL;
2056	entry->consume_q->saved_header = NULL;
2057}
2058
2059/*
2060 * The main entry point for detaching from a queue pair registered with the
2061 * queue pair broker. If more than one endpoint is attached to the queue
2062 * pair, the first endpoint will mainly decrement a reference count and
2063 * generate a notification to its peer. The last endpoint will clean up
2064 * the queue pair state registered with the broker.
2065 *
2066 * When a guest endpoint detaches, it will unmap and unregister the guest
2067 * memory backing the queue pair. If the host is still attached, it will
2068 * no longer be able to access the queue pair content.
2069 *
2070 * If the queue pair is already in a state where there is no memory
2071 * registered for the queue pair (any *_NO_MEM state), it will transition to
2072 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2073 * endpoint is the first of two endpoints to detach. If the host endpoint is
2074 * the first out of two to detach, the queue pair will move to the
2075 * VMCIQPB_SHUTDOWN_MEM state.
2076 */
2077int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2078{
2079	struct qp_broker_entry *entry;
2080	const u32 context_id = vmci_ctx_get_id(context);
2081	u32 peer_id;
2082	bool is_local = false;
2083	int result;
2084
2085	if (vmci_handle_is_invalid(handle) || !context ||
2086	    context_id == VMCI_INVALID_ID) {
2087		return VMCI_ERROR_INVALID_ARGS;
2088	}
2089
2090	mutex_lock(&qp_broker_list.mutex);
2091
2092	if (!vmci_ctx_qp_exists(context, handle)) {
2093		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2094			 context_id, handle.context, handle.resource);
2095		result = VMCI_ERROR_NOT_FOUND;
2096		goto out;
2097	}
2098
2099	entry = qp_broker_handle_to_entry(handle);
2100	if (!entry) {
2101		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2102			 context_id, handle.context, handle.resource);
2103		result = VMCI_ERROR_NOT_FOUND;
2104		goto out;
2105	}
2106
2107	if (context_id != entry->create_id && context_id != entry->attach_id) {
2108		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2109		goto out;
2110	}
2111
2112	if (context_id == entry->create_id) {
2113		peer_id = entry->attach_id;
2114		entry->create_id = VMCI_INVALID_ID;
2115	} else {
2116		peer_id = entry->create_id;
2117		entry->attach_id = VMCI_INVALID_ID;
2118	}
2119	entry->qp.ref_count--;
2120
2121	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2122
2123	if (context_id != VMCI_HOST_CONTEXT_ID) {
2124		bool headers_mapped;
2125
2126		/*
2127		 * Pre NOVMVM vmx'en may detach from a queue pair
2128		 * before setting the page store, and in that case
2129		 * there is no user memory to detach from. Also, more
2130		 * recent VMX'en may detach from a queue pair in the
2131		 * quiesced state.
2132		 */
2133
2134		qp_acquire_queue_mutex(entry->produce_q);
2135		headers_mapped = entry->produce_q->q_header ||
2136		    entry->consume_q->q_header;
2137		if (QPBROKERSTATE_HAS_MEM(entry)) {
2138			result =
2139			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2140						 entry->produce_q,
2141						 entry->consume_q);
2142			if (result < VMCI_SUCCESS)
2143				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2144					handle.context, handle.resource,
2145					result);
2146
2147			qp_host_unregister_user_memory(entry->produce_q,
2148						       entry->consume_q);
2149
2150		}
2151
2152		if (!headers_mapped)
2153			qp_reset_saved_headers(entry);
2154
2155		qp_release_queue_mutex(entry->produce_q);
2156
2157		if (!headers_mapped && entry->wakeup_cb)
2158			entry->wakeup_cb(entry->client_data);
2159
2160	} else {
2161		if (entry->wakeup_cb) {
2162			entry->wakeup_cb = NULL;
2163			entry->client_data = NULL;
2164		}
2165	}
2166
2167	if (entry->qp.ref_count == 0) {
2168		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2169
2170		if (is_local)
2171			kfree(entry->local_mem);
2172
2173		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2174		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2175		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2176		/* Unlink from resource hash table and free callback */
2177		vmci_resource_remove(&entry->resource);
2178
2179		kfree(entry);
2180
2181		vmci_ctx_qp_destroy(context, handle);
2182	} else {
2183		qp_notify_peer(false, handle, context_id, peer_id);
2184		if (context_id == VMCI_HOST_CONTEXT_ID &&
2185		    QPBROKERSTATE_HAS_MEM(entry)) {
2186			entry->state = VMCIQPB_SHUTDOWN_MEM;
2187		} else {
2188			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2189		}
2190
2191		if (!is_local)
2192			vmci_ctx_qp_destroy(context, handle);
2193
2194	}
2195	result = VMCI_SUCCESS;
2196 out:
2197	mutex_unlock(&qp_broker_list.mutex);
2198	return result;
2199}
2200
2201/*
2202 * Establishes the necessary mappings for a queue pair given a
2203 * reference to the queue pair guest memory. This is usually
2204 * called when a guest is unquiesced and the VMX is allowed to
2205 * map guest memory once again.
2206 */
2207int vmci_qp_broker_map(struct vmci_handle handle,
2208		       struct vmci_ctx *context,
2209		       u64 guest_mem)
2210{
2211	struct qp_broker_entry *entry;
2212	const u32 context_id = vmci_ctx_get_id(context);
2213	int result;
2214
2215	if (vmci_handle_is_invalid(handle) || !context ||
2216	    context_id == VMCI_INVALID_ID)
2217		return VMCI_ERROR_INVALID_ARGS;
2218
2219	mutex_lock(&qp_broker_list.mutex);
2220
2221	if (!vmci_ctx_qp_exists(context, handle)) {
2222		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2223			 context_id, handle.context, handle.resource);
2224		result = VMCI_ERROR_NOT_FOUND;
2225		goto out;
2226	}
2227
2228	entry = qp_broker_handle_to_entry(handle);
2229	if (!entry) {
2230		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2231			 context_id, handle.context, handle.resource);
2232		result = VMCI_ERROR_NOT_FOUND;
2233		goto out;
2234	}
2235
2236	if (context_id != entry->create_id && context_id != entry->attach_id) {
2237		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2238		goto out;
2239	}
2240
2241	result = VMCI_SUCCESS;
2242
2243	if (context_id != VMCI_HOST_CONTEXT_ID &&
2244	    !QPBROKERSTATE_HAS_MEM(entry)) {
2245		struct vmci_qp_page_store page_store;
2246
2247		page_store.pages = guest_mem;
2248		page_store.len = QPE_NUM_PAGES(entry->qp);
2249
2250		qp_acquire_queue_mutex(entry->produce_q);
2251		qp_reset_saved_headers(entry);
2252		result =
2253		    qp_host_register_user_memory(&page_store,
2254						 entry->produce_q,
2255						 entry->consume_q);
2256		qp_release_queue_mutex(entry->produce_q);
2257		if (result == VMCI_SUCCESS) {
2258			/* Move state from *_NO_MEM to *_MEM */
2259
2260			entry->state++;
2261
2262			if (entry->wakeup_cb)
2263				entry->wakeup_cb(entry->client_data);
2264		}
2265	}
2266
2267 out:
2268	mutex_unlock(&qp_broker_list.mutex);
2269	return result;
2270}
2271
2272/*
2273 * Saves a snapshot of the queue headers for the given QP broker
2274 * entry. Should be used when guest memory is unmapped.
2275 * Results:
2276 * VMCI_SUCCESS on success, appropriate error code if guest memory
2277 * can't be accessed..
2278 */
2279static int qp_save_headers(struct qp_broker_entry *entry)
2280{
2281	int result;
2282
2283	if (entry->produce_q->saved_header != NULL &&
2284	    entry->consume_q->saved_header != NULL) {
2285		/*
2286		 *  If the headers have already been saved, we don't need to do
2287		 *  it again, and we don't want to map in the headers
2288		 *  unnecessarily.
2289		 */
2290
2291		return VMCI_SUCCESS;
2292	}
2293
2294	if (NULL == entry->produce_q->q_header ||
2295	    NULL == entry->consume_q->q_header) {
2296		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2297		if (result < VMCI_SUCCESS)
2298			return result;
2299	}
2300
2301	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2302	       sizeof(entry->saved_produce_q));
2303	entry->produce_q->saved_header = &entry->saved_produce_q;
2304	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2305	       sizeof(entry->saved_consume_q));
2306	entry->consume_q->saved_header = &entry->saved_consume_q;
2307
2308	return VMCI_SUCCESS;
2309}
2310
2311/*
2312 * Removes all references to the guest memory of a given queue pair, and
2313 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2314 * called when a VM is being quiesced where access to guest memory should
2315 * avoided.
2316 */
2317int vmci_qp_broker_unmap(struct vmci_handle handle,
2318			 struct vmci_ctx *context,
2319			 u32 gid)
2320{
2321	struct qp_broker_entry *entry;
2322	const u32 context_id = vmci_ctx_get_id(context);
2323	int result;
2324
2325	if (vmci_handle_is_invalid(handle) || !context ||
2326	    context_id == VMCI_INVALID_ID)
2327		return VMCI_ERROR_INVALID_ARGS;
2328
2329	mutex_lock(&qp_broker_list.mutex);
2330
2331	if (!vmci_ctx_qp_exists(context, handle)) {
2332		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2333			 context_id, handle.context, handle.resource);
2334		result = VMCI_ERROR_NOT_FOUND;
2335		goto out;
2336	}
2337
2338	entry = qp_broker_handle_to_entry(handle);
2339	if (!entry) {
2340		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2341			 context_id, handle.context, handle.resource);
2342		result = VMCI_ERROR_NOT_FOUND;
2343		goto out;
2344	}
2345
2346	if (context_id != entry->create_id && context_id != entry->attach_id) {
2347		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2348		goto out;
2349	}
2350
2351	if (context_id != VMCI_HOST_CONTEXT_ID &&
2352	    QPBROKERSTATE_HAS_MEM(entry)) {
2353		qp_acquire_queue_mutex(entry->produce_q);
2354		result = qp_save_headers(entry);
2355		if (result < VMCI_SUCCESS)
2356			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2357				handle.context, handle.resource, result);
2358
2359		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2360
2361		/*
2362		 * On hosted, when we unmap queue pairs, the VMX will also
2363		 * unmap the guest memory, so we invalidate the previously
2364		 * registered memory. If the queue pair is mapped again at a
2365		 * later point in time, we will need to reregister the user
2366		 * memory with a possibly new user VA.
2367		 */
2368		qp_host_unregister_user_memory(entry->produce_q,
2369					       entry->consume_q);
2370
2371		/*
2372		 * Move state from *_MEM to *_NO_MEM.
2373		 */
2374		entry->state--;
2375
2376		qp_release_queue_mutex(entry->produce_q);
2377	}
2378
2379	result = VMCI_SUCCESS;
2380
2381 out:
2382	mutex_unlock(&qp_broker_list.mutex);
2383	return result;
2384}
2385
2386/*
2387 * Destroys all guest queue pair endpoints. If active guest queue
2388 * pairs still exist, hypercalls to attempt detach from these
2389 * queue pairs will be made. Any failure to detach is silently
2390 * ignored.
2391 */
2392void vmci_qp_guest_endpoints_exit(void)
2393{
2394	struct qp_entry *entry;
2395	struct qp_guest_endpoint *ep;
2396
2397	mutex_lock(&qp_guest_endpoints.mutex);
2398
2399	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2400		ep = (struct qp_guest_endpoint *)entry;
2401
2402		/* Don't make a hypercall for local queue_pairs. */
2403		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2404			qp_detatch_hypercall(entry->handle);
2405
2406		/* We cannot fail the exit, so let's reset ref_count. */
2407		entry->ref_count = 0;
2408		qp_list_remove_entry(&qp_guest_endpoints, entry);
2409
2410		qp_guest_endpoint_destroy(ep);
2411	}
2412
2413	mutex_unlock(&qp_guest_endpoints.mutex);
2414}
2415
2416/*
2417 * Helper routine that will lock the queue pair before subsequent
2418 * operations.
2419 * Note: Non-blocking on the host side is currently only implemented in ESX.
2420 * Since non-blocking isn't yet implemented on the host personality we
2421 * have no reason to acquire a spin lock.  So to avoid the use of an
2422 * unnecessary lock only acquire the mutex if we can block.
2423 */
2424static void qp_lock(const struct vmci_qp *qpair)
2425{
2426	qp_acquire_queue_mutex(qpair->produce_q);
2427}
2428
2429/*
2430 * Helper routine that unlocks the queue pair after calling
2431 * qp_lock.
2432 */
2433static void qp_unlock(const struct vmci_qp *qpair)
2434{
2435	qp_release_queue_mutex(qpair->produce_q);
2436}
2437
2438/*
2439 * The queue headers may not be mapped at all times. If a queue is
2440 * currently not mapped, it will be attempted to do so.
2441 */
2442static int qp_map_queue_headers(struct vmci_queue *produce_q,
2443				struct vmci_queue *consume_q)
2444{
2445	int result;
2446
2447	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2448		result = qp_host_map_queues(produce_q, consume_q);
2449		if (result < VMCI_SUCCESS)
2450			return (produce_q->saved_header &&
2451				consume_q->saved_header) ?
2452			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2453			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2454	}
2455
2456	return VMCI_SUCCESS;
2457}
2458
2459/*
2460 * Helper routine that will retrieve the produce and consume
2461 * headers of a given queue pair. If the guest memory of the
2462 * queue pair is currently not available, the saved queue headers
2463 * will be returned, if these are available.
2464 */
2465static int qp_get_queue_headers(const struct vmci_qp *qpair,
2466				struct vmci_queue_header **produce_q_header,
2467				struct vmci_queue_header **consume_q_header)
2468{
2469	int result;
2470
2471	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2472	if (result == VMCI_SUCCESS) {
2473		*produce_q_header = qpair->produce_q->q_header;
2474		*consume_q_header = qpair->consume_q->q_header;
2475	} else if (qpair->produce_q->saved_header &&
2476		   qpair->consume_q->saved_header) {
2477		*produce_q_header = qpair->produce_q->saved_header;
2478		*consume_q_header = qpair->consume_q->saved_header;
2479		result = VMCI_SUCCESS;
2480	}
2481
2482	return result;
2483}
2484
2485/*
2486 * Callback from VMCI queue pair broker indicating that a queue
2487 * pair that was previously not ready, now either is ready or
2488 * gone forever.
2489 */
2490static int qp_wakeup_cb(void *client_data)
2491{
2492	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2493
2494	qp_lock(qpair);
2495	while (qpair->blocked > 0) {
2496		qpair->blocked--;
2497		qpair->generation++;
2498		wake_up(&qpair->event);
2499	}
2500	qp_unlock(qpair);
2501
2502	return VMCI_SUCCESS;
2503}
2504
2505/*
2506 * Makes the calling thread wait for the queue pair to become
2507 * ready for host side access.  Returns true when thread is
2508 * woken up after queue pair state change, false otherwise.
2509 */
2510static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2511{
2512	unsigned int generation;
2513
2514	qpair->blocked++;
2515	generation = qpair->generation;
2516	qp_unlock(qpair);
2517	wait_event(qpair->event, generation != qpair->generation);
2518	qp_lock(qpair);
2519
2520	return true;
2521}
2522
2523/*
2524 * Enqueues a given buffer to the produce queue using the provided
2525 * function. As many bytes as possible (space available in the queue)
2526 * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2527 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2528 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2529 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2530 * an error occured when accessing the buffer,
2531 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2532 * available.  Otherwise, the number of bytes written to the queue is
2533 * returned.  Updates the tail pointer of the produce queue.
2534 */
2535static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2536				 struct vmci_queue *consume_q,
2537				 const u64 produce_q_size,
2538				 struct iov_iter *from)
2539{
2540	s64 free_space;
2541	u64 tail;
2542	size_t buf_size = iov_iter_count(from);
2543	size_t written;
2544	ssize_t result;
2545
2546	result = qp_map_queue_headers(produce_q, consume_q);
2547	if (unlikely(result != VMCI_SUCCESS))
2548		return result;
2549
2550	free_space = vmci_q_header_free_space(produce_q->q_header,
2551					      consume_q->q_header,
2552					      produce_q_size);
2553	if (free_space == 0)
2554		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2555
2556	if (free_space < VMCI_SUCCESS)
2557		return (ssize_t) free_space;
2558
2559	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2560	tail = vmci_q_header_producer_tail(produce_q->q_header);
2561	if (likely(tail + written < produce_q_size)) {
2562		result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2563	} else {
2564		/* Tail pointer wraps around. */
2565
2566		const size_t tmp = (size_t) (produce_q_size - tail);
2567
2568		result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2569		if (result >= VMCI_SUCCESS)
2570			result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2571						 written - tmp);
2572	}
2573
2574	if (result < VMCI_SUCCESS)
2575		return result;
2576
2577	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2578					produce_q_size);
2579	return written;
2580}
2581
2582/*
2583 * Dequeues data (if available) from the given consume queue. Writes data
2584 * to the user provided buffer using the provided function.
2585 * Assumes the queue->mutex has been acquired.
2586 * Results:
2587 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2588 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2589 * (as defined by the queue size).
2590 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2591 * Otherwise the number of bytes dequeued is returned.
2592 * Side effects:
2593 * Updates the head pointer of the consume queue.
2594 */
2595static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2596				 struct vmci_queue *consume_q,
2597				 const u64 consume_q_size,
2598				 struct iov_iter *to,
2599				 bool update_consumer)
2600{
2601	size_t buf_size = iov_iter_count(to);
2602	s64 buf_ready;
2603	u64 head;
2604	size_t read;
2605	ssize_t result;
2606
2607	result = qp_map_queue_headers(produce_q, consume_q);
2608	if (unlikely(result != VMCI_SUCCESS))
2609		return result;
2610
2611	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2612					    produce_q->q_header,
2613					    consume_q_size);
2614	if (buf_ready == 0)
2615		return VMCI_ERROR_QUEUEPAIR_NODATA;
2616
2617	if (buf_ready < VMCI_SUCCESS)
2618		return (ssize_t) buf_ready;
2619
2620	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2621	head = vmci_q_header_consumer_head(produce_q->q_header);
2622	if (likely(head + read < consume_q_size)) {
2623		result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2624	} else {
2625		/* Head pointer wraps around. */
2626
2627		const size_t tmp = (size_t) (consume_q_size - head);
2628
2629		result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2630		if (result >= VMCI_SUCCESS)
2631			result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2632						   read - tmp);
2633
2634	}
2635
2636	if (result < VMCI_SUCCESS)
2637		return result;
2638
2639	if (update_consumer)
2640		vmci_q_header_add_consumer_head(produce_q->q_header,
2641						read, consume_q_size);
2642
2643	return read;
2644}
2645
2646/*
2647 * vmci_qpair_alloc() - Allocates a queue pair.
2648 * @qpair:      Pointer for the new vmci_qp struct.
2649 * @handle:     Handle to track the resource.
2650 * @produce_qsize:      Desired size of the producer queue.
2651 * @consume_qsize:      Desired size of the consumer queue.
2652 * @peer:       ContextID of the peer.
2653 * @flags:      VMCI flags.
2654 * @priv_flags: VMCI priviledge flags.
2655 *
2656 * This is the client interface for allocating the memory for a
2657 * vmci_qp structure and then attaching to the underlying
2658 * queue.  If an error occurs allocating the memory for the
2659 * vmci_qp structure no attempt is made to attach.  If an
2660 * error occurs attaching, then the structure is freed.
2661 */
2662int vmci_qpair_alloc(struct vmci_qp **qpair,
2663		     struct vmci_handle *handle,
2664		     u64 produce_qsize,
2665		     u64 consume_qsize,
2666		     u32 peer,
2667		     u32 flags,
2668		     u32 priv_flags)
2669{
2670	struct vmci_qp *my_qpair;
2671	int retval;
2672	struct vmci_handle src = VMCI_INVALID_HANDLE;
2673	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2674	enum vmci_route route;
2675	vmci_event_release_cb wakeup_cb;
2676	void *client_data;
2677
2678	/*
2679	 * Restrict the size of a queuepair.  The device already
2680	 * enforces a limit on the total amount of memory that can be
2681	 * allocated to queuepairs for a guest.  However, we try to
2682	 * allocate this memory before we make the queuepair
2683	 * allocation hypercall.  On Linux, we allocate each page
2684	 * separately, which means rather than fail, the guest will
2685	 * thrash while it tries to allocate, and will become
2686	 * increasingly unresponsive to the point where it appears to
2687	 * be hung.  So we place a limit on the size of an individual
2688	 * queuepair here, and leave the device to enforce the
2689	 * restriction on total queuepair memory.  (Note that this
2690	 * doesn't prevent all cases; a user with only this much
2691	 * physical memory could still get into trouble.)  The error
2692	 * used by the device is NO_RESOURCES, so use that here too.
2693	 */
2694
2695	if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2696	    produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2697		return VMCI_ERROR_NO_RESOURCES;
2698
2699	retval = vmci_route(&src, &dst, false, &route);
2700	if (retval < VMCI_SUCCESS)
2701		route = vmci_guest_code_active() ?
2702		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2703
2704	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2705		pr_devel("NONBLOCK OR PINNED set");
2706		return VMCI_ERROR_INVALID_ARGS;
2707	}
2708
2709	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2710	if (!my_qpair)
2711		return VMCI_ERROR_NO_MEM;
2712
2713	my_qpair->produce_q_size = produce_qsize;
2714	my_qpair->consume_q_size = consume_qsize;
2715	my_qpair->peer = peer;
2716	my_qpair->flags = flags;
2717	my_qpair->priv_flags = priv_flags;
2718
2719	wakeup_cb = NULL;
2720	client_data = NULL;
2721
2722	if (VMCI_ROUTE_AS_HOST == route) {
2723		my_qpair->guest_endpoint = false;
2724		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2725			my_qpair->blocked = 0;
2726			my_qpair->generation = 0;
2727			init_waitqueue_head(&my_qpair->event);
2728			wakeup_cb = qp_wakeup_cb;
2729			client_data = (void *)my_qpair;
2730		}
2731	} else {
2732		my_qpair->guest_endpoint = true;
2733	}
2734
2735	retval = vmci_qp_alloc(handle,
2736			       &my_qpair->produce_q,
2737			       my_qpair->produce_q_size,
2738			       &my_qpair->consume_q,
2739			       my_qpair->consume_q_size,
2740			       my_qpair->peer,
2741			       my_qpair->flags,
2742			       my_qpair->priv_flags,
2743			       my_qpair->guest_endpoint,
2744			       wakeup_cb, client_data);
2745
2746	if (retval < VMCI_SUCCESS) {
2747		kfree(my_qpair);
2748		return retval;
2749	}
2750
2751	*qpair = my_qpair;
2752	my_qpair->handle = *handle;
2753
2754	return retval;
2755}
2756EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2757
2758/*
2759 * vmci_qpair_detach() - Detatches the client from a queue pair.
2760 * @qpair:      Reference of a pointer to the qpair struct.
2761 *
2762 * This is the client interface for detaching from a VMCIQPair.
2763 * Note that this routine will free the memory allocated for the
2764 * vmci_qp structure too.
2765 */
2766int vmci_qpair_detach(struct vmci_qp **qpair)
2767{
2768	int result;
2769	struct vmci_qp *old_qpair;
2770
2771	if (!qpair || !(*qpair))
2772		return VMCI_ERROR_INVALID_ARGS;
2773
2774	old_qpair = *qpair;
2775	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2776
2777	/*
2778	 * The guest can fail to detach for a number of reasons, and
2779	 * if it does so, it will cleanup the entry (if there is one).
2780	 * The host can fail too, but it won't cleanup the entry
2781	 * immediately, it will do that later when the context is
2782	 * freed.  Either way, we need to release the qpair struct
2783	 * here; there isn't much the caller can do, and we don't want
2784	 * to leak.
2785	 */
2786
2787	memset(old_qpair, 0, sizeof(*old_qpair));
2788	old_qpair->handle = VMCI_INVALID_HANDLE;
2789	old_qpair->peer = VMCI_INVALID_ID;
2790	kfree(old_qpair);
2791	*qpair = NULL;
2792
2793	return result;
2794}
2795EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2796
2797/*
2798 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2799 * @qpair:      Pointer to the queue pair struct.
2800 * @producer_tail:      Reference used for storing producer tail index.
2801 * @consumer_head:      Reference used for storing the consumer head index.
2802 *
2803 * This is the client interface for getting the current indexes of the
2804 * QPair from the point of the view of the caller as the producer.
2805 */
2806int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2807				   u64 *producer_tail,
2808				   u64 *consumer_head)
2809{
2810	struct vmci_queue_header *produce_q_header;
2811	struct vmci_queue_header *consume_q_header;
2812	int result;
2813
2814	if (!qpair)
2815		return VMCI_ERROR_INVALID_ARGS;
2816
2817	qp_lock(qpair);
2818	result =
2819	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2820	if (result == VMCI_SUCCESS)
2821		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2822					   producer_tail, consumer_head);
2823	qp_unlock(qpair);
2824
2825	if (result == VMCI_SUCCESS &&
2826	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2827	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2828		return VMCI_ERROR_INVALID_SIZE;
2829
2830	return result;
2831}
2832EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2833
2834/*
2835 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2836 * @qpair:      Pointer to the queue pair struct.
2837 * @consumer_tail:      Reference used for storing consumer tail index.
2838 * @producer_head:      Reference used for storing the producer head index.
2839 *
2840 * This is the client interface for getting the current indexes of the
2841 * QPair from the point of the view of the caller as the consumer.
2842 */
2843int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2844				   u64 *consumer_tail,
2845				   u64 *producer_head)
2846{
2847	struct vmci_queue_header *produce_q_header;
2848	struct vmci_queue_header *consume_q_header;
2849	int result;
2850
2851	if (!qpair)
2852		return VMCI_ERROR_INVALID_ARGS;
2853
2854	qp_lock(qpair);
2855	result =
2856	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2857	if (result == VMCI_SUCCESS)
2858		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2859					   consumer_tail, producer_head);
2860	qp_unlock(qpair);
2861
2862	if (result == VMCI_SUCCESS &&
2863	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2864	     (producer_head && *producer_head >= qpair->consume_q_size)))
2865		return VMCI_ERROR_INVALID_SIZE;
2866
2867	return result;
2868}
2869EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2870
2871/*
2872 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2873 * @qpair:      Pointer to the queue pair struct.
2874 *
2875 * This is the client interface for getting the amount of free
2876 * space in the QPair from the point of the view of the caller as
2877 * the producer which is the common case.  Returns < 0 if err, else
2878 * available bytes into which data can be enqueued if > 0.
2879 */
2880s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2881{
2882	struct vmci_queue_header *produce_q_header;
2883	struct vmci_queue_header *consume_q_header;
2884	s64 result;
2885
2886	if (!qpair)
2887		return VMCI_ERROR_INVALID_ARGS;
2888
2889	qp_lock(qpair);
2890	result =
2891	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2892	if (result == VMCI_SUCCESS)
2893		result = vmci_q_header_free_space(produce_q_header,
2894						  consume_q_header,
2895						  qpair->produce_q_size);
2896	else
2897		result = 0;
2898
2899	qp_unlock(qpair);
2900
2901	return result;
2902}
2903EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2904
2905/*
2906 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2907 * @qpair:      Pointer to the queue pair struct.
2908 *
2909 * This is the client interface for getting the amount of free
2910 * space in the QPair from the point of the view of the caller as
2911 * the consumer which is not the common case.  Returns < 0 if err, else
2912 * available bytes into which data can be enqueued if > 0.
2913 */
2914s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2915{
2916	struct vmci_queue_header *produce_q_header;
2917	struct vmci_queue_header *consume_q_header;
2918	s64 result;
2919
2920	if (!qpair)
2921		return VMCI_ERROR_INVALID_ARGS;
2922
2923	qp_lock(qpair);
2924	result =
2925	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2926	if (result == VMCI_SUCCESS)
2927		result = vmci_q_header_free_space(consume_q_header,
2928						  produce_q_header,
2929						  qpair->consume_q_size);
2930	else
2931		result = 0;
2932
2933	qp_unlock(qpair);
2934
2935	return result;
2936}
2937EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2938
2939/*
2940 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2941 * producer queue.
2942 * @qpair:      Pointer to the queue pair struct.
2943 *
2944 * This is the client interface for getting the amount of
2945 * enqueued data in the QPair from the point of the view of the
2946 * caller as the producer which is not the common case.  Returns < 0 if err,
2947 * else available bytes that may be read.
2948 */
2949s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2950{
2951	struct vmci_queue_header *produce_q_header;
2952	struct vmci_queue_header *consume_q_header;
2953	s64 result;
2954
2955	if (!qpair)
2956		return VMCI_ERROR_INVALID_ARGS;
2957
2958	qp_lock(qpair);
2959	result =
2960	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2961	if (result == VMCI_SUCCESS)
2962		result = vmci_q_header_buf_ready(produce_q_header,
2963						 consume_q_header,
2964						 qpair->produce_q_size);
2965	else
2966		result = 0;
2967
2968	qp_unlock(qpair);
2969
2970	return result;
2971}
2972EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2973
2974/*
2975 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2976 * consumer queue.
2977 * @qpair:      Pointer to the queue pair struct.
2978 *
2979 * This is the client interface for getting the amount of
2980 * enqueued data in the QPair from the point of the view of the
2981 * caller as the consumer which is the normal case.  Returns < 0 if err,
2982 * else available bytes that may be read.
2983 */
2984s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2985{
2986	struct vmci_queue_header *produce_q_header;
2987	struct vmci_queue_header *consume_q_header;
2988	s64 result;
2989
2990	if (!qpair)
2991		return VMCI_ERROR_INVALID_ARGS;
2992
2993	qp_lock(qpair);
2994	result =
2995	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2996	if (result == VMCI_SUCCESS)
2997		result = vmci_q_header_buf_ready(consume_q_header,
2998						 produce_q_header,
2999						 qpair->consume_q_size);
3000	else
3001		result = 0;
3002
3003	qp_unlock(qpair);
3004
3005	return result;
3006}
3007EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3008
3009/*
3010 * vmci_qpair_enqueue() - Throw data on the queue.
3011 * @qpair:      Pointer to the queue pair struct.
3012 * @buf:        Pointer to buffer containing data
3013 * @buf_size:   Length of buffer.
3014 * @buf_type:   Buffer type (Unused).
3015 *
3016 * This is the client interface for enqueueing data into the queue.
3017 * Returns number of bytes enqueued or < 0 on error.
3018 */
3019ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3020			   const void *buf,
3021			   size_t buf_size,
3022			   int buf_type)
3023{
3024	ssize_t result;
3025	struct iov_iter from;
3026	struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3027
3028	if (!qpair || !buf)
3029		return VMCI_ERROR_INVALID_ARGS;
3030
3031	iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3032
3033	qp_lock(qpair);
3034
3035	do {
3036		result = qp_enqueue_locked(qpair->produce_q,
3037					   qpair->consume_q,
3038					   qpair->produce_q_size,
3039					   &from);
3040
3041		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3042		    !qp_wait_for_ready_queue(qpair))
3043			result = VMCI_ERROR_WOULD_BLOCK;
3044
3045	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3046
3047	qp_unlock(qpair);
3048
3049	return result;
3050}
3051EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3052
3053/*
3054 * vmci_qpair_dequeue() - Get data from the queue.
3055 * @qpair:      Pointer to the queue pair struct.
3056 * @buf:        Pointer to buffer for the data
3057 * @buf_size:   Length of buffer.
3058 * @buf_type:   Buffer type (Unused).
3059 *
3060 * This is the client interface for dequeueing data from the queue.
3061 * Returns number of bytes dequeued or < 0 on error.
3062 */
3063ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3064			   void *buf,
3065			   size_t buf_size,
3066			   int buf_type)
3067{
3068	ssize_t result;
3069	struct iov_iter to;
3070	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3071
3072	if (!qpair || !buf)
3073		return VMCI_ERROR_INVALID_ARGS;
3074
3075	iov_iter_kvec(&to, READ, &v, 1, buf_size);
3076
3077	qp_lock(qpair);
3078
3079	do {
3080		result = qp_dequeue_locked(qpair->produce_q,
3081					   qpair->consume_q,
3082					   qpair->consume_q_size,
3083					   &to, true);
3084
3085		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3086		    !qp_wait_for_ready_queue(qpair))
3087			result = VMCI_ERROR_WOULD_BLOCK;
3088
3089	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3090
3091	qp_unlock(qpair);
3092
3093	return result;
3094}
3095EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3096
3097/*
3098 * vmci_qpair_peek() - Peek at the data in the queue.
3099 * @qpair:      Pointer to the queue pair struct.
3100 * @buf:        Pointer to buffer for the data
3101 * @buf_size:   Length of buffer.
3102 * @buf_type:   Buffer type (Unused on Linux).
3103 *
3104 * This is the client interface for peeking into a queue.  (I.e.,
3105 * copy data from the queue without updating the head pointer.)
3106 * Returns number of bytes dequeued or < 0 on error.
3107 */
3108ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3109			void *buf,
3110			size_t buf_size,
3111			int buf_type)
3112{
3113	struct iov_iter to;
3114	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3115	ssize_t result;
3116
3117	if (!qpair || !buf)
3118		return VMCI_ERROR_INVALID_ARGS;
3119
3120	iov_iter_kvec(&to, READ, &v, 1, buf_size);
3121
3122	qp_lock(qpair);
3123
3124	do {
3125		result = qp_dequeue_locked(qpair->produce_q,
3126					   qpair->consume_q,
3127					   qpair->consume_q_size,
3128					   &to, false);
3129
3130		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3131		    !qp_wait_for_ready_queue(qpair))
3132			result = VMCI_ERROR_WOULD_BLOCK;
3133
3134	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3135
3136	qp_unlock(qpair);
3137
3138	return result;
3139}
3140EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3141
3142/*
3143 * vmci_qpair_enquev() - Throw data on the queue using iov.
3144 * @qpair:      Pointer to the queue pair struct.
3145 * @iov:        Pointer to buffer containing data
3146 * @iov_size:   Length of buffer.
3147 * @buf_type:   Buffer type (Unused).
3148 *
3149 * This is the client interface for enqueueing data into the queue.
3150 * This function uses IO vectors to handle the work. Returns number
3151 * of bytes enqueued or < 0 on error.
3152 */
3153ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3154			  struct msghdr *msg,
3155			  size_t iov_size,
3156			  int buf_type)
3157{
3158	ssize_t result;
3159
3160	if (!qpair)
3161		return VMCI_ERROR_INVALID_ARGS;
3162
3163	qp_lock(qpair);
3164
3165	do {
3166		result = qp_enqueue_locked(qpair->produce_q,
3167					   qpair->consume_q,
3168					   qpair->produce_q_size,
3169					   &msg->msg_iter);
3170
3171		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3172		    !qp_wait_for_ready_queue(qpair))
3173			result = VMCI_ERROR_WOULD_BLOCK;
3174
3175	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3176
3177	qp_unlock(qpair);
3178
3179	return result;
3180}
3181EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3182
3183/*
3184 * vmci_qpair_dequev() - Get data from the queue using iov.
3185 * @qpair:      Pointer to the queue pair struct.
3186 * @iov:        Pointer to buffer for the data
3187 * @iov_size:   Length of buffer.
3188 * @buf_type:   Buffer type (Unused).
3189 *
3190 * This is the client interface for dequeueing data from the queue.
3191 * This function uses IO vectors to handle the work. Returns number
3192 * of bytes dequeued or < 0 on error.
3193 */
3194ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3195			  struct msghdr *msg,
3196			  size_t iov_size,
3197			  int buf_type)
3198{
3199	ssize_t result;
3200
3201	if (!qpair)
3202		return VMCI_ERROR_INVALID_ARGS;
3203
3204	qp_lock(qpair);
3205
3206	do {
3207		result = qp_dequeue_locked(qpair->produce_q,
3208					   qpair->consume_q,
3209					   qpair->consume_q_size,
3210					   &msg->msg_iter, true);
3211
3212		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3213		    !qp_wait_for_ready_queue(qpair))
3214			result = VMCI_ERROR_WOULD_BLOCK;
3215
3216	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3217
3218	qp_unlock(qpair);
3219
3220	return result;
3221}
3222EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3223
3224/*
3225 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3226 * @qpair:      Pointer to the queue pair struct.
3227 * @iov:        Pointer to buffer for the data
3228 * @iov_size:   Length of buffer.
3229 * @buf_type:   Buffer type (Unused on Linux).
3230 *
3231 * This is the client interface for peeking into a queue.  (I.e.,
3232 * copy data from the queue without updating the head pointer.)
3233 * This function uses IO vectors to handle the work. Returns number
3234 * of bytes peeked or < 0 on error.
3235 */
3236ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3237			 struct msghdr *msg,
3238			 size_t iov_size,
3239			 int buf_type)
3240{
3241	ssize_t result;
3242
3243	if (!qpair)
3244		return VMCI_ERROR_INVALID_ARGS;
3245
3246	qp_lock(qpair);
3247
3248	do {
3249		result = qp_dequeue_locked(qpair->produce_q,
3250					   qpair->consume_q,
3251					   qpair->consume_q_size,
3252					   &msg->msg_iter, false);
3253
3254		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3255		    !qp_wait_for_ready_queue(qpair))
3256			result = VMCI_ERROR_WOULD_BLOCK;
3257
3258	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3259
3260	qp_unlock(qpair);
3261	return result;
3262}
3263EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3264