1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
7 * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
8 */
9
10/*
11 * Cross Partition Communication (XPC) support - standard version.
12 *
13 *	XPC provides a message passing capability that crosses partition
14 *	boundaries. This module is made up of two parts:
15 *
16 *	    partition	This part detects the presence/absence of other
17 *			partitions. It provides a heartbeat and monitors
18 *			the heartbeats of other partitions.
19 *
20 *	    channel	This part manages the channels and sends/receives
21 *			messages across them to/from other partitions.
22 *
23 *	There are a couple of additional functions residing in XP, which
24 *	provide an interface to XPC for its users.
25 *
26 *
27 *	Caveats:
28 *
29 *	  . Currently on sn2, we have no way to determine which nasid an IRQ
30 *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
31 *	    followed by an IPI. The amo indicates where data is to be pulled
32 *	    from, so after the IPI arrives, the remote partition checks the amo
33 *	    word. The IPI can actually arrive before the amo however, so other
34 *	    code must periodically check for this case. Also, remote amo
35 *	    operations do not reliably time out. Thus we do a remote PIO read
36 *	    solely to know whether the remote partition is down and whether we
37 *	    should stop sending IPIs to it. This remote PIO read operation is
38 *	    set up in a special nofault region so SAL knows to ignore (and
39 *	    cleanup) any errors due to the remote amo write, PIO read, and/or
40 *	    PIO write operations.
41 *
42 *	    If/when new hardware solves this IPI problem, we should abandon
43 *	    the current approach.
44 *
45 */
46
47#include <linux/module.h>
48#include <linux/slab.h>
49#include <linux/sysctl.h>
50#include <linux/device.h>
51#include <linux/delay.h>
52#include <linux/reboot.h>
53#include <linux/kdebug.h>
54#include <linux/kthread.h>
55#include "xpc.h"
56
57#ifdef CONFIG_X86_64
58#include <asm/traps.h>
59#endif
60
61/* define two XPC debug device structures to be used with dev_dbg() et al */
62
63static struct device_driver xpc_dbg_name = {
64	.name = "xpc"
65};
66
67static struct device xpc_part_dbg_subname = {
68	.init_name = "",	/* set to "part" at xpc_init() time */
69	.driver = &xpc_dbg_name
70};
71
72static struct device xpc_chan_dbg_subname = {
73	.init_name = "",	/* set to "chan" at xpc_init() time */
74	.driver = &xpc_dbg_name
75};
76
77struct device *xpc_part = &xpc_part_dbg_subname;
78struct device *xpc_chan = &xpc_chan_dbg_subname;
79
80static int xpc_kdebug_ignore;
81
82/* systune related variables for /proc/sys directories */
83
84static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
85static int xpc_hb_min_interval = 1;
86static int xpc_hb_max_interval = 10;
87
88static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
89static int xpc_hb_check_min_interval = 10;
90static int xpc_hb_check_max_interval = 120;
91
92int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
93static int xpc_disengage_min_timelimit;	/* = 0 */
94static int xpc_disengage_max_timelimit = 120;
95
96static struct ctl_table xpc_sys_xpc_hb_dir[] = {
97	{
98	 .procname = "hb_interval",
99	 .data = &xpc_hb_interval,
100	 .maxlen = sizeof(int),
101	 .mode = 0644,
102	 .proc_handler = proc_dointvec_minmax,
103	 .extra1 = &xpc_hb_min_interval,
104	 .extra2 = &xpc_hb_max_interval},
105	{
106	 .procname = "hb_check_interval",
107	 .data = &xpc_hb_check_interval,
108	 .maxlen = sizeof(int),
109	 .mode = 0644,
110	 .proc_handler = proc_dointvec_minmax,
111	 .extra1 = &xpc_hb_check_min_interval,
112	 .extra2 = &xpc_hb_check_max_interval},
113	{}
114};
115static struct ctl_table xpc_sys_xpc_dir[] = {
116	{
117	 .procname = "hb",
118	 .mode = 0555,
119	 .child = xpc_sys_xpc_hb_dir},
120	{
121	 .procname = "disengage_timelimit",
122	 .data = &xpc_disengage_timelimit,
123	 .maxlen = sizeof(int),
124	 .mode = 0644,
125	 .proc_handler = proc_dointvec_minmax,
126	 .extra1 = &xpc_disengage_min_timelimit,
127	 .extra2 = &xpc_disengage_max_timelimit},
128	{}
129};
130static struct ctl_table xpc_sys_dir[] = {
131	{
132	 .procname = "xpc",
133	 .mode = 0555,
134	 .child = xpc_sys_xpc_dir},
135	{}
136};
137static struct ctl_table_header *xpc_sysctl;
138
139/* non-zero if any remote partition disengage was timed out */
140int xpc_disengage_timedout;
141
142/* #of activate IRQs received and not yet processed */
143int xpc_activate_IRQ_rcvd;
144DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
145
146/* IRQ handler notifies this wait queue on receipt of an IRQ */
147DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
148
149static unsigned long xpc_hb_check_timeout;
150static struct timer_list xpc_hb_timer;
151
152/* notification that the xpc_hb_checker thread has exited */
153static DECLARE_COMPLETION(xpc_hb_checker_exited);
154
155/* notification that the xpc_discovery thread has exited */
156static DECLARE_COMPLETION(xpc_discovery_exited);
157
158static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
159
160static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
161static struct notifier_block xpc_reboot_notifier = {
162	.notifier_call = xpc_system_reboot,
163};
164
165static int xpc_system_die(struct notifier_block *, unsigned long, void *);
166static struct notifier_block xpc_die_notifier = {
167	.notifier_call = xpc_system_die,
168};
169
170struct xpc_arch_operations xpc_arch_ops;
171
172/*
173 * Timer function to enforce the timelimit on the partition disengage.
174 */
175static void
176xpc_timeout_partition_disengage(struct timer_list *t)
177{
178	struct xpc_partition *part = from_timer(part, t, disengage_timer);
179
180	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
181
182	(void)xpc_partition_disengaged(part);
183
184	DBUG_ON(part->disengage_timeout != 0);
185	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
186}
187
188/*
189 * Timer to produce the heartbeat.  The timer structures function is
190 * already set when this is initially called.  A tunable is used to
191 * specify when the next timeout should occur.
192 */
193static void
194xpc_hb_beater(struct timer_list *unused)
195{
196	xpc_arch_ops.increment_heartbeat();
197
198	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
199		wake_up_interruptible(&xpc_activate_IRQ_wq);
200
201	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
202	add_timer(&xpc_hb_timer);
203}
204
205static void
206xpc_start_hb_beater(void)
207{
208	xpc_arch_ops.heartbeat_init();
209	timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
210	xpc_hb_beater(0);
211}
212
213static void
214xpc_stop_hb_beater(void)
215{
216	del_timer_sync(&xpc_hb_timer);
217	xpc_arch_ops.heartbeat_exit();
218}
219
220/*
221 * At periodic intervals, scan through all active partitions and ensure
222 * their heartbeat is still active.  If not, the partition is deactivated.
223 */
224static void
225xpc_check_remote_hb(void)
226{
227	struct xpc_partition *part;
228	short partid;
229	enum xp_retval ret;
230
231	for (partid = 0; partid < xp_max_npartitions; partid++) {
232
233		if (xpc_exiting)
234			break;
235
236		if (partid == xp_partition_id)
237			continue;
238
239		part = &xpc_partitions[partid];
240
241		if (part->act_state == XPC_P_AS_INACTIVE ||
242		    part->act_state == XPC_P_AS_DEACTIVATING) {
243			continue;
244		}
245
246		ret = xpc_arch_ops.get_remote_heartbeat(part);
247		if (ret != xpSuccess)
248			XPC_DEACTIVATE_PARTITION(part, ret);
249	}
250}
251
252/*
253 * This thread is responsible for nearly all of the partition
254 * activation/deactivation.
255 */
256static int
257xpc_hb_checker(void *ignore)
258{
259	int force_IRQ = 0;
260
261	/* this thread was marked active by xpc_hb_init() */
262
263	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
264
265	/* set our heartbeating to other partitions into motion */
266	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
267	xpc_start_hb_beater();
268
269	while (!xpc_exiting) {
270
271		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
272			"been received\n",
273			(int)(xpc_hb_check_timeout - jiffies),
274			xpc_activate_IRQ_rcvd);
275
276		/* checking of remote heartbeats is skewed by IRQ handling */
277		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
278			xpc_hb_check_timeout = jiffies +
279			    (xpc_hb_check_interval * HZ);
280
281			dev_dbg(xpc_part, "checking remote heartbeats\n");
282			xpc_check_remote_hb();
283		}
284
285		/* check for outstanding IRQs */
286		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
287			force_IRQ = 0;
288			dev_dbg(xpc_part, "processing activate IRQs "
289				"received\n");
290			xpc_arch_ops.process_activate_IRQ_rcvd();
291		}
292
293		/* wait for IRQ or timeout */
294		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
295					       (time_is_before_eq_jiffies(
296						xpc_hb_check_timeout) ||
297						xpc_activate_IRQ_rcvd > 0 ||
298						xpc_exiting));
299	}
300
301	xpc_stop_hb_beater();
302
303	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
304
305	/* mark this thread as having exited */
306	complete(&xpc_hb_checker_exited);
307	return 0;
308}
309
310/*
311 * This thread will attempt to discover other partitions to activate
312 * based on info provided by SAL. This new thread is short lived and
313 * will exit once discovery is complete.
314 */
315static int
316xpc_initiate_discovery(void *ignore)
317{
318	xpc_discovery();
319
320	dev_dbg(xpc_part, "discovery thread is exiting\n");
321
322	/* mark this thread as having exited */
323	complete(&xpc_discovery_exited);
324	return 0;
325}
326
327/*
328 * The first kthread assigned to a newly activated partition is the one
329 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
330 * that kthread until the partition is brought down, at which time that kthread
331 * returns back to XPC HB. (The return of that kthread will signify to XPC HB
332 * that XPC has dismantled all communication infrastructure for the associated
333 * partition.) This kthread becomes the channel manager for that partition.
334 *
335 * Each active partition has a channel manager, who, besides connecting and
336 * disconnecting channels, will ensure that each of the partition's connected
337 * channels has the required number of assigned kthreads to get the work done.
338 */
339static void
340xpc_channel_mgr(struct xpc_partition *part)
341{
342	while (part->act_state != XPC_P_AS_DEACTIVATING ||
343	       atomic_read(&part->nchannels_active) > 0 ||
344	       !xpc_partition_disengaged(part)) {
345
346		xpc_process_sent_chctl_flags(part);
347
348		/*
349		 * Wait until we've been requested to activate kthreads or
350		 * all of the channel's message queues have been torn down or
351		 * a signal is pending.
352		 *
353		 * The channel_mgr_requests is set to 1 after being awakened,
354		 * This is done to prevent the channel mgr from making one pass
355		 * through the loop for each request, since he will
356		 * be servicing all the requests in one pass. The reason it's
357		 * set to 1 instead of 0 is so that other kthreads will know
358		 * that the channel mgr is running and won't bother trying to
359		 * wake him up.
360		 */
361		atomic_dec(&part->channel_mgr_requests);
362		(void)wait_event_interruptible(part->channel_mgr_wq,
363				(atomic_read(&part->channel_mgr_requests) > 0 ||
364				 part->chctl.all_flags != 0 ||
365				 (part->act_state == XPC_P_AS_DEACTIVATING &&
366				 atomic_read(&part->nchannels_active) == 0 &&
367				 xpc_partition_disengaged(part))));
368		atomic_set(&part->channel_mgr_requests, 1);
369	}
370}
371
372/*
373 * Guarantee that the kzalloc'd memory is cacheline aligned.
374 */
375void *
376xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
377{
378	/* see if kzalloc will give us cachline aligned memory by default */
379	*base = kzalloc(size, flags);
380	if (*base == NULL)
381		return NULL;
382
383	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
384		return *base;
385
386	kfree(*base);
387
388	/* nope, we'll have to do it ourselves */
389	*base = kzalloc(size + L1_CACHE_BYTES, flags);
390	if (*base == NULL)
391		return NULL;
392
393	return (void *)L1_CACHE_ALIGN((u64)*base);
394}
395
396/*
397 * Setup the channel structures necessary to support XPartition Communication
398 * between the specified remote partition and the local one.
399 */
400static enum xp_retval
401xpc_setup_ch_structures(struct xpc_partition *part)
402{
403	enum xp_retval ret;
404	int ch_number;
405	struct xpc_channel *ch;
406	short partid = XPC_PARTID(part);
407
408	/*
409	 * Allocate all of the channel structures as a contiguous chunk of
410	 * memory.
411	 */
412	DBUG_ON(part->channels != NULL);
413	part->channels = kcalloc(XPC_MAX_NCHANNELS,
414				 sizeof(struct xpc_channel),
415				 GFP_KERNEL);
416	if (part->channels == NULL) {
417		dev_err(xpc_chan, "can't get memory for channels\n");
418		return xpNoMemory;
419	}
420
421	/* allocate the remote open and close args */
422
423	part->remote_openclose_args =
424	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
425					  GFP_KERNEL, &part->
426					  remote_openclose_args_base);
427	if (part->remote_openclose_args == NULL) {
428		dev_err(xpc_chan, "can't get memory for remote connect args\n");
429		ret = xpNoMemory;
430		goto out_1;
431	}
432
433	part->chctl.all_flags = 0;
434	spin_lock_init(&part->chctl_lock);
435
436	atomic_set(&part->channel_mgr_requests, 1);
437	init_waitqueue_head(&part->channel_mgr_wq);
438
439	part->nchannels = XPC_MAX_NCHANNELS;
440
441	atomic_set(&part->nchannels_active, 0);
442	atomic_set(&part->nchannels_engaged, 0);
443
444	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
445		ch = &part->channels[ch_number];
446
447		ch->partid = partid;
448		ch->number = ch_number;
449		ch->flags = XPC_C_DISCONNECTED;
450
451		atomic_set(&ch->kthreads_assigned, 0);
452		atomic_set(&ch->kthreads_idle, 0);
453		atomic_set(&ch->kthreads_active, 0);
454
455		atomic_set(&ch->references, 0);
456		atomic_set(&ch->n_to_notify, 0);
457
458		spin_lock_init(&ch->lock);
459		init_completion(&ch->wdisconnect_wait);
460
461		atomic_set(&ch->n_on_msg_allocate_wq, 0);
462		init_waitqueue_head(&ch->msg_allocate_wq);
463		init_waitqueue_head(&ch->idle_wq);
464	}
465
466	ret = xpc_arch_ops.setup_ch_structures(part);
467	if (ret != xpSuccess)
468		goto out_2;
469
470	/*
471	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
472	 * we're declaring that this partition is ready to go.
473	 */
474	part->setup_state = XPC_P_SS_SETUP;
475
476	return xpSuccess;
477
478	/* setup of ch structures failed */
479out_2:
480	kfree(part->remote_openclose_args_base);
481	part->remote_openclose_args = NULL;
482out_1:
483	kfree(part->channels);
484	part->channels = NULL;
485	return ret;
486}
487
488/*
489 * Teardown the channel structures necessary to support XPartition Communication
490 * between the specified remote partition and the local one.
491 */
492static void
493xpc_teardown_ch_structures(struct xpc_partition *part)
494{
495	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
496	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
497
498	/*
499	 * Make this partition inaccessible to local processes by marking it
500	 * as no longer setup. Then wait before proceeding with the teardown
501	 * until all existing references cease.
502	 */
503	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
504	part->setup_state = XPC_P_SS_WTEARDOWN;
505
506	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
507
508	/* now we can begin tearing down the infrastructure */
509
510	xpc_arch_ops.teardown_ch_structures(part);
511
512	kfree(part->remote_openclose_args_base);
513	part->remote_openclose_args = NULL;
514	kfree(part->channels);
515	part->channels = NULL;
516
517	part->setup_state = XPC_P_SS_TORNDOWN;
518}
519
520/*
521 * When XPC HB determines that a partition has come up, it will create a new
522 * kthread and that kthread will call this function to attempt to set up the
523 * basic infrastructure used for Cross Partition Communication with the newly
524 * upped partition.
525 *
526 * The kthread that was created by XPC HB and which setup the XPC
527 * infrastructure will remain assigned to the partition becoming the channel
528 * manager for that partition until the partition is deactivating, at which
529 * time the kthread will teardown the XPC infrastructure and then exit.
530 */
531static int
532xpc_activating(void *__partid)
533{
534	short partid = (u64)__partid;
535	struct xpc_partition *part = &xpc_partitions[partid];
536	unsigned long irq_flags;
537
538	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
539
540	spin_lock_irqsave(&part->act_lock, irq_flags);
541
542	if (part->act_state == XPC_P_AS_DEACTIVATING) {
543		part->act_state = XPC_P_AS_INACTIVE;
544		spin_unlock_irqrestore(&part->act_lock, irq_flags);
545		part->remote_rp_pa = 0;
546		return 0;
547	}
548
549	/* indicate the thread is activating */
550	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
551	part->act_state = XPC_P_AS_ACTIVATING;
552
553	XPC_SET_REASON(part, 0, 0);
554	spin_unlock_irqrestore(&part->act_lock, irq_flags);
555
556	dev_dbg(xpc_part, "activating partition %d\n", partid);
557
558	xpc_arch_ops.allow_hb(partid);
559
560	if (xpc_setup_ch_structures(part) == xpSuccess) {
561		(void)xpc_part_ref(part);	/* this will always succeed */
562
563		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
564			xpc_mark_partition_active(part);
565			xpc_channel_mgr(part);
566			/* won't return until partition is deactivating */
567		}
568
569		xpc_part_deref(part);
570		xpc_teardown_ch_structures(part);
571	}
572
573	xpc_arch_ops.disallow_hb(partid);
574	xpc_mark_partition_inactive(part);
575
576	if (part->reason == xpReactivating) {
577		/* interrupting ourselves results in activating partition */
578		xpc_arch_ops.request_partition_reactivation(part);
579	}
580
581	return 0;
582}
583
584void
585xpc_activate_partition(struct xpc_partition *part)
586{
587	short partid = XPC_PARTID(part);
588	unsigned long irq_flags;
589	struct task_struct *kthread;
590
591	spin_lock_irqsave(&part->act_lock, irq_flags);
592
593	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
594
595	part->act_state = XPC_P_AS_ACTIVATION_REQ;
596	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
597
598	spin_unlock_irqrestore(&part->act_lock, irq_flags);
599
600	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
601			      partid);
602	if (IS_ERR(kthread)) {
603		spin_lock_irqsave(&part->act_lock, irq_flags);
604		part->act_state = XPC_P_AS_INACTIVE;
605		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
606		spin_unlock_irqrestore(&part->act_lock, irq_flags);
607	}
608}
609
610void
611xpc_activate_kthreads(struct xpc_channel *ch, int needed)
612{
613	int idle = atomic_read(&ch->kthreads_idle);
614	int assigned = atomic_read(&ch->kthreads_assigned);
615	int wakeup;
616
617	DBUG_ON(needed <= 0);
618
619	if (idle > 0) {
620		wakeup = (needed > idle) ? idle : needed;
621		needed -= wakeup;
622
623		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
624			"channel=%d\n", wakeup, ch->partid, ch->number);
625
626		/* only wakeup the requested number of kthreads */
627		wake_up_nr(&ch->idle_wq, wakeup);
628	}
629
630	if (needed <= 0)
631		return;
632
633	if (needed + assigned > ch->kthreads_assigned_limit) {
634		needed = ch->kthreads_assigned_limit - assigned;
635		if (needed <= 0)
636			return;
637	}
638
639	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
640		needed, ch->partid, ch->number);
641
642	xpc_create_kthreads(ch, needed, 0);
643}
644
645/*
646 * This function is where XPC's kthreads wait for messages to deliver.
647 */
648static void
649xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
650{
651	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
652		xpc_arch_ops.n_of_deliverable_payloads;
653
654	do {
655		/* deliver messages to their intended recipients */
656
657		while (n_of_deliverable_payloads(ch) > 0 &&
658		       !(ch->flags & XPC_C_DISCONNECTING)) {
659			xpc_deliver_payload(ch);
660		}
661
662		if (atomic_inc_return(&ch->kthreads_idle) >
663		    ch->kthreads_idle_limit) {
664			/* too many idle kthreads on this channel */
665			atomic_dec(&ch->kthreads_idle);
666			break;
667		}
668
669		dev_dbg(xpc_chan, "idle kthread calling "
670			"wait_event_interruptible_exclusive()\n");
671
672		(void)wait_event_interruptible_exclusive(ch->idle_wq,
673				(n_of_deliverable_payloads(ch) > 0 ||
674				 (ch->flags & XPC_C_DISCONNECTING)));
675
676		atomic_dec(&ch->kthreads_idle);
677
678	} while (!(ch->flags & XPC_C_DISCONNECTING));
679}
680
681static int
682xpc_kthread_start(void *args)
683{
684	short partid = XPC_UNPACK_ARG1(args);
685	u16 ch_number = XPC_UNPACK_ARG2(args);
686	struct xpc_partition *part = &xpc_partitions[partid];
687	struct xpc_channel *ch;
688	int n_needed;
689	unsigned long irq_flags;
690	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
691		xpc_arch_ops.n_of_deliverable_payloads;
692
693	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
694		partid, ch_number);
695
696	ch = &part->channels[ch_number];
697
698	if (!(ch->flags & XPC_C_DISCONNECTING)) {
699
700		/* let registerer know that connection has been established */
701
702		spin_lock_irqsave(&ch->lock, irq_flags);
703		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
704			ch->flags |= XPC_C_CONNECTEDCALLOUT;
705			spin_unlock_irqrestore(&ch->lock, irq_flags);
706
707			xpc_connected_callout(ch);
708
709			spin_lock_irqsave(&ch->lock, irq_flags);
710			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
711			spin_unlock_irqrestore(&ch->lock, irq_flags);
712
713			/*
714			 * It is possible that while the callout was being
715			 * made that the remote partition sent some messages.
716			 * If that is the case, we may need to activate
717			 * additional kthreads to help deliver them. We only
718			 * need one less than total #of messages to deliver.
719			 */
720			n_needed = n_of_deliverable_payloads(ch) - 1;
721			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
722				xpc_activate_kthreads(ch, n_needed);
723
724		} else {
725			spin_unlock_irqrestore(&ch->lock, irq_flags);
726		}
727
728		xpc_kthread_waitmsgs(part, ch);
729	}
730
731	/* let registerer know that connection is disconnecting */
732
733	spin_lock_irqsave(&ch->lock, irq_flags);
734	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
735	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
736		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
737		spin_unlock_irqrestore(&ch->lock, irq_flags);
738
739		xpc_disconnect_callout(ch, xpDisconnecting);
740
741		spin_lock_irqsave(&ch->lock, irq_flags);
742		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
743	}
744	spin_unlock_irqrestore(&ch->lock, irq_flags);
745
746	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
747	    atomic_dec_return(&part->nchannels_engaged) == 0) {
748		xpc_arch_ops.indicate_partition_disengaged(part);
749	}
750
751	xpc_msgqueue_deref(ch);
752
753	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
754		partid, ch_number);
755
756	xpc_part_deref(part);
757	return 0;
758}
759
760/*
761 * For each partition that XPC has established communications with, there is
762 * a minimum of one kernel thread assigned to perform any operation that
763 * may potentially sleep or block (basically the callouts to the asynchronous
764 * functions registered via xpc_connect()).
765 *
766 * Additional kthreads are created and destroyed by XPC as the workload
767 * demands.
768 *
769 * A kthread is assigned to one of the active channels that exists for a given
770 * partition.
771 */
772void
773xpc_create_kthreads(struct xpc_channel *ch, int needed,
774		    int ignore_disconnecting)
775{
776	unsigned long irq_flags;
777	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
778	struct xpc_partition *part = &xpc_partitions[ch->partid];
779	struct task_struct *kthread;
780	void (*indicate_partition_disengaged) (struct xpc_partition *) =
781		xpc_arch_ops.indicate_partition_disengaged;
782
783	while (needed-- > 0) {
784
785		/*
786		 * The following is done on behalf of the newly created
787		 * kthread. That kthread is responsible for doing the
788		 * counterpart to the following before it exits.
789		 */
790		if (ignore_disconnecting) {
791			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
792				/* kthreads assigned had gone to zero */
793				BUG_ON(!(ch->flags &
794					 XPC_C_DISCONNECTINGCALLOUT_MADE));
795				break;
796			}
797
798		} else if (ch->flags & XPC_C_DISCONNECTING) {
799			break;
800
801		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
802			   atomic_inc_return(&part->nchannels_engaged) == 1) {
803			xpc_arch_ops.indicate_partition_engaged(part);
804		}
805		(void)xpc_part_ref(part);
806		xpc_msgqueue_ref(ch);
807
808		kthread = kthread_run(xpc_kthread_start, (void *)args,
809				      "xpc%02dc%d", ch->partid, ch->number);
810		if (IS_ERR(kthread)) {
811			/* the fork failed */
812
813			/*
814			 * NOTE: if (ignore_disconnecting &&
815			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
816			 * then we'll deadlock if all other kthreads assigned
817			 * to this channel are blocked in the channel's
818			 * registerer, because the only thing that will unblock
819			 * them is the xpDisconnecting callout that this
820			 * failed kthread_run() would have made.
821			 */
822
823			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
824			    atomic_dec_return(&part->nchannels_engaged) == 0) {
825				indicate_partition_disengaged(part);
826			}
827			xpc_msgqueue_deref(ch);
828			xpc_part_deref(part);
829
830			if (atomic_read(&ch->kthreads_assigned) <
831			    ch->kthreads_idle_limit) {
832				/*
833				 * Flag this as an error only if we have an
834				 * insufficient #of kthreads for the channel
835				 * to function.
836				 */
837				spin_lock_irqsave(&ch->lock, irq_flags);
838				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
839						       &irq_flags);
840				spin_unlock_irqrestore(&ch->lock, irq_flags);
841			}
842			break;
843		}
844	}
845}
846
847void
848xpc_disconnect_wait(int ch_number)
849{
850	unsigned long irq_flags;
851	short partid;
852	struct xpc_partition *part;
853	struct xpc_channel *ch;
854	int wakeup_channel_mgr;
855
856	/* now wait for all callouts to the caller's function to cease */
857	for (partid = 0; partid < xp_max_npartitions; partid++) {
858		part = &xpc_partitions[partid];
859
860		if (!xpc_part_ref(part))
861			continue;
862
863		ch = &part->channels[ch_number];
864
865		if (!(ch->flags & XPC_C_WDISCONNECT)) {
866			xpc_part_deref(part);
867			continue;
868		}
869
870		wait_for_completion(&ch->wdisconnect_wait);
871
872		spin_lock_irqsave(&ch->lock, irq_flags);
873		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
874		wakeup_channel_mgr = 0;
875
876		if (ch->delayed_chctl_flags) {
877			if (part->act_state != XPC_P_AS_DEACTIVATING) {
878				spin_lock(&part->chctl_lock);
879				part->chctl.flags[ch->number] |=
880				    ch->delayed_chctl_flags;
881				spin_unlock(&part->chctl_lock);
882				wakeup_channel_mgr = 1;
883			}
884			ch->delayed_chctl_flags = 0;
885		}
886
887		ch->flags &= ~XPC_C_WDISCONNECT;
888		spin_unlock_irqrestore(&ch->lock, irq_flags);
889
890		if (wakeup_channel_mgr)
891			xpc_wakeup_channel_mgr(part);
892
893		xpc_part_deref(part);
894	}
895}
896
897static int
898xpc_setup_partitions(void)
899{
900	short partid;
901	struct xpc_partition *part;
902
903	xpc_partitions = kcalloc(xp_max_npartitions,
904				 sizeof(struct xpc_partition),
905				 GFP_KERNEL);
906	if (xpc_partitions == NULL) {
907		dev_err(xpc_part, "can't get memory for partition structure\n");
908		return -ENOMEM;
909	}
910
911	/*
912	 * The first few fields of each entry of xpc_partitions[] need to
913	 * be initialized now so that calls to xpc_connect() and
914	 * xpc_disconnect() can be made prior to the activation of any remote
915	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
916	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
917	 * PARTITION HAS BEEN ACTIVATED.
918	 */
919	for (partid = 0; partid < xp_max_npartitions; partid++) {
920		part = &xpc_partitions[partid];
921
922		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
923
924		part->activate_IRQ_rcvd = 0;
925		spin_lock_init(&part->act_lock);
926		part->act_state = XPC_P_AS_INACTIVE;
927		XPC_SET_REASON(part, 0, 0);
928
929		timer_setup(&part->disengage_timer,
930			    xpc_timeout_partition_disengage, 0);
931
932		part->setup_state = XPC_P_SS_UNSET;
933		init_waitqueue_head(&part->teardown_wq);
934		atomic_set(&part->references, 0);
935	}
936
937	return xpc_arch_ops.setup_partitions();
938}
939
940static void
941xpc_teardown_partitions(void)
942{
943	xpc_arch_ops.teardown_partitions();
944	kfree(xpc_partitions);
945}
946
947static void
948xpc_do_exit(enum xp_retval reason)
949{
950	short partid;
951	int active_part_count, printed_waiting_msg = 0;
952	struct xpc_partition *part;
953	unsigned long printmsg_time, disengage_timeout = 0;
954
955	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
956	DBUG_ON(xpc_exiting == 1);
957
958	/*
959	 * Let the heartbeat checker thread and the discovery thread
960	 * (if one is running) know that they should exit. Also wake up
961	 * the heartbeat checker thread in case it's sleeping.
962	 */
963	xpc_exiting = 1;
964	wake_up_interruptible(&xpc_activate_IRQ_wq);
965
966	/* wait for the discovery thread to exit */
967	wait_for_completion(&xpc_discovery_exited);
968
969	/* wait for the heartbeat checker thread to exit */
970	wait_for_completion(&xpc_hb_checker_exited);
971
972	/* sleep for a 1/3 of a second or so */
973	(void)msleep_interruptible(300);
974
975	/* wait for all partitions to become inactive */
976
977	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
978	xpc_disengage_timedout = 0;
979
980	do {
981		active_part_count = 0;
982
983		for (partid = 0; partid < xp_max_npartitions; partid++) {
984			part = &xpc_partitions[partid];
985
986			if (xpc_partition_disengaged(part) &&
987			    part->act_state == XPC_P_AS_INACTIVE) {
988				continue;
989			}
990
991			active_part_count++;
992
993			XPC_DEACTIVATE_PARTITION(part, reason);
994
995			if (part->disengage_timeout > disengage_timeout)
996				disengage_timeout = part->disengage_timeout;
997		}
998
999		if (xpc_arch_ops.any_partition_engaged()) {
1000			if (time_is_before_jiffies(printmsg_time)) {
1001				dev_info(xpc_part, "waiting for remote "
1002					 "partitions to deactivate, timeout in "
1003					 "%ld seconds\n", (disengage_timeout -
1004					 jiffies) / HZ);
1005				printmsg_time = jiffies +
1006				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1007				printed_waiting_msg = 1;
1008			}
1009
1010		} else if (active_part_count > 0) {
1011			if (printed_waiting_msg) {
1012				dev_info(xpc_part, "waiting for local partition"
1013					 " to deactivate\n");
1014				printed_waiting_msg = 0;
1015			}
1016
1017		} else {
1018			if (!xpc_disengage_timedout) {
1019				dev_info(xpc_part, "all partitions have "
1020					 "deactivated\n");
1021			}
1022			break;
1023		}
1024
1025		/* sleep for a 1/3 of a second or so */
1026		(void)msleep_interruptible(300);
1027
1028	} while (1);
1029
1030	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1031
1032	xpc_teardown_rsvd_page();
1033
1034	if (reason == xpUnloading) {
1035		(void)unregister_die_notifier(&xpc_die_notifier);
1036		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1037	}
1038
1039	/* clear the interface to XPC's functions */
1040	xpc_clear_interface();
1041
1042	if (xpc_sysctl)
1043		unregister_sysctl_table(xpc_sysctl);
1044
1045	xpc_teardown_partitions();
1046
1047	if (is_uv_system())
1048		xpc_exit_uv();
1049}
1050
1051/*
1052 * This function is called when the system is being rebooted.
1053 */
1054static int
1055xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1056{
1057	enum xp_retval reason;
1058
1059	switch (event) {
1060	case SYS_RESTART:
1061		reason = xpSystemReboot;
1062		break;
1063	case SYS_HALT:
1064		reason = xpSystemHalt;
1065		break;
1066	case SYS_POWER_OFF:
1067		reason = xpSystemPoweroff;
1068		break;
1069	default:
1070		reason = xpSystemGoingDown;
1071	}
1072
1073	xpc_do_exit(reason);
1074	return NOTIFY_DONE;
1075}
1076
1077/* Used to only allow one cpu to complete disconnect */
1078static unsigned int xpc_die_disconnecting;
1079
1080/*
1081 * Notify other partitions to deactivate from us by first disengaging from all
1082 * references to our memory.
1083 */
1084static void
1085xpc_die_deactivate(void)
1086{
1087	struct xpc_partition *part;
1088	short partid;
1089	int any_engaged;
1090	long keep_waiting;
1091	long wait_to_print;
1092
1093	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1094		return;
1095
1096	/* keep xpc_hb_checker thread from doing anything (just in case) */
1097	xpc_exiting = 1;
1098
1099	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1100
1101	for (partid = 0; partid < xp_max_npartitions; partid++) {
1102		part = &xpc_partitions[partid];
1103
1104		if (xpc_arch_ops.partition_engaged(partid) ||
1105		    part->act_state != XPC_P_AS_INACTIVE) {
1106			xpc_arch_ops.request_partition_deactivation(part);
1107			xpc_arch_ops.indicate_partition_disengaged(part);
1108		}
1109	}
1110
1111	/*
1112	 * Though we requested that all other partitions deactivate from us,
1113	 * we only wait until they've all disengaged or we've reached the
1114	 * defined timelimit.
1115	 *
1116	 * Given that one iteration through the following while-loop takes
1117	 * approximately 200 microseconds, calculate the #of loops to take
1118	 * before bailing and the #of loops before printing a waiting message.
1119	 */
1120	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1121	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1122
1123	while (1) {
1124		any_engaged = xpc_arch_ops.any_partition_engaged();
1125		if (!any_engaged) {
1126			dev_info(xpc_part, "all partitions have deactivated\n");
1127			break;
1128		}
1129
1130		if (!keep_waiting--) {
1131			for (partid = 0; partid < xp_max_npartitions;
1132			     partid++) {
1133				if (xpc_arch_ops.partition_engaged(partid)) {
1134					dev_info(xpc_part, "deactivate from "
1135						 "remote partition %d timed "
1136						 "out\n", partid);
1137				}
1138			}
1139			break;
1140		}
1141
1142		if (!wait_to_print--) {
1143			dev_info(xpc_part, "waiting for remote partitions to "
1144				 "deactivate, timeout in %ld seconds\n",
1145				 keep_waiting / (1000 * 5));
1146			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1147			    1000 * 5;
1148		}
1149
1150		udelay(200);
1151	}
1152}
1153
1154/*
1155 * This function is called when the system is being restarted or halted due
1156 * to some sort of system failure. If this is the case we need to notify the
1157 * other partitions to disengage from all references to our memory.
1158 * This function can also be called when our heartbeater could be offlined
1159 * for a time. In this case we need to notify other partitions to not worry
1160 * about the lack of a heartbeat.
1161 */
1162static int
1163xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1164{
1165#ifdef CONFIG_IA64		/* !!! temporary kludge */
1166	switch (event) {
1167	case DIE_MACHINE_RESTART:
1168	case DIE_MACHINE_HALT:
1169		xpc_die_deactivate();
1170		break;
1171
1172	case DIE_KDEBUG_ENTER:
1173		/* Should lack of heartbeat be ignored by other partitions? */
1174		if (!xpc_kdebug_ignore)
1175			break;
1176
1177		fallthrough;
1178	case DIE_MCA_MONARCH_ENTER:
1179	case DIE_INIT_MONARCH_ENTER:
1180		xpc_arch_ops.offline_heartbeat();
1181		break;
1182
1183	case DIE_KDEBUG_LEAVE:
1184		/* Is lack of heartbeat being ignored by other partitions? */
1185		if (!xpc_kdebug_ignore)
1186			break;
1187
1188		fallthrough;
1189	case DIE_MCA_MONARCH_LEAVE:
1190	case DIE_INIT_MONARCH_LEAVE:
1191		xpc_arch_ops.online_heartbeat();
1192		break;
1193	}
1194#else
1195	struct die_args *die_args = _die_args;
1196
1197	switch (event) {
1198	case DIE_TRAP:
1199		if (die_args->trapnr == X86_TRAP_DF)
1200			xpc_die_deactivate();
1201
1202		if (((die_args->trapnr == X86_TRAP_MF) ||
1203		     (die_args->trapnr == X86_TRAP_XF)) &&
1204		    !user_mode(die_args->regs))
1205			xpc_die_deactivate();
1206
1207		break;
1208	case DIE_INT3:
1209	case DIE_DEBUG:
1210		break;
1211	case DIE_OOPS:
1212	case DIE_GPF:
1213	default:
1214		xpc_die_deactivate();
1215	}
1216#endif
1217
1218	return NOTIFY_DONE;
1219}
1220
1221static int __init
1222xpc_init(void)
1223{
1224	int ret;
1225	struct task_struct *kthread;
1226
1227	dev_set_name(xpc_part, "part");
1228	dev_set_name(xpc_chan, "chan");
1229
1230	if (is_uv_system()) {
1231		ret = xpc_init_uv();
1232
1233	} else {
1234		ret = -ENODEV;
1235	}
1236
1237	if (ret != 0)
1238		return ret;
1239
1240	ret = xpc_setup_partitions();
1241	if (ret != 0) {
1242		dev_err(xpc_part, "can't get memory for partition structure\n");
1243		goto out_1;
1244	}
1245
1246	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1247
1248	/*
1249	 * Fill the partition reserved page with the information needed by
1250	 * other partitions to discover we are alive and establish initial
1251	 * communications.
1252	 */
1253	ret = xpc_setup_rsvd_page();
1254	if (ret != 0) {
1255		dev_err(xpc_part, "can't setup our reserved page\n");
1256		goto out_2;
1257	}
1258
1259	/* add ourselves to the reboot_notifier_list */
1260	ret = register_reboot_notifier(&xpc_reboot_notifier);
1261	if (ret != 0)
1262		dev_warn(xpc_part, "can't register reboot notifier\n");
1263
1264	/* add ourselves to the die_notifier list */
1265	ret = register_die_notifier(&xpc_die_notifier);
1266	if (ret != 0)
1267		dev_warn(xpc_part, "can't register die notifier\n");
1268
1269	/*
1270	 * The real work-horse behind xpc.  This processes incoming
1271	 * interrupts and monitors remote heartbeats.
1272	 */
1273	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1274	if (IS_ERR(kthread)) {
1275		dev_err(xpc_part, "failed while forking hb check thread\n");
1276		ret = -EBUSY;
1277		goto out_3;
1278	}
1279
1280	/*
1281	 * Startup a thread that will attempt to discover other partitions to
1282	 * activate based on info provided by SAL. This new thread is short
1283	 * lived and will exit once discovery is complete.
1284	 */
1285	kthread = kthread_run(xpc_initiate_discovery, NULL,
1286			      XPC_DISCOVERY_THREAD_NAME);
1287	if (IS_ERR(kthread)) {
1288		dev_err(xpc_part, "failed while forking discovery thread\n");
1289
1290		/* mark this new thread as a non-starter */
1291		complete(&xpc_discovery_exited);
1292
1293		xpc_do_exit(xpUnloading);
1294		return -EBUSY;
1295	}
1296
1297	/* set the interface to point at XPC's functions */
1298	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1299			  xpc_initiate_send, xpc_initiate_send_notify,
1300			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1301
1302	return 0;
1303
1304	/* initialization was not successful */
1305out_3:
1306	xpc_teardown_rsvd_page();
1307
1308	(void)unregister_die_notifier(&xpc_die_notifier);
1309	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1310out_2:
1311	if (xpc_sysctl)
1312		unregister_sysctl_table(xpc_sysctl);
1313
1314	xpc_teardown_partitions();
1315out_1:
1316	if (is_uv_system())
1317		xpc_exit_uv();
1318	return ret;
1319}
1320
1321module_init(xpc_init);
1322
1323static void __exit
1324xpc_exit(void)
1325{
1326	xpc_do_exit(xpUnloading);
1327}
1328
1329module_exit(xpc_exit);
1330
1331MODULE_AUTHOR("Silicon Graphics, Inc.");
1332MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1333MODULE_LICENSE("GPL");
1334
1335module_param(xpc_hb_interval, int, 0);
1336MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1337		 "heartbeat increments.");
1338
1339module_param(xpc_hb_check_interval, int, 0);
1340MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1341		 "heartbeat checks.");
1342
1343module_param(xpc_disengage_timelimit, int, 0);
1344MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1345		 "for disengage to complete.");
1346
1347module_param(xpc_kdebug_ignore, int, 0);
1348MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1349		 "other partitions when dropping into kdebug.");
1350