1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SN Platform GRU Driver
4 *
5 *              KERNEL SERVICES THAT USE THE GRU
6 *
7 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
8 */
9
10#include <linux/kernel.h>
11#include <linux/errno.h>
12#include <linux/slab.h>
13#include <linux/mm.h>
14#include <linux/spinlock.h>
15#include <linux/device.h>
16#include <linux/miscdevice.h>
17#include <linux/proc_fs.h>
18#include <linux/interrupt.h>
19#include <linux/sync_core.h>
20#include <linux/uaccess.h>
21#include <linux/delay.h>
22#include <linux/export.h>
23#include <asm/io_apic.h>
24#include "gru.h"
25#include "grulib.h"
26#include "grutables.h"
27#include "grukservices.h"
28#include "gru_instructions.h"
29#include <asm/uv/uv_hub.h>
30
31/*
32 * Kernel GRU Usage
33 *
34 * The following is an interim algorithm for management of kernel GRU
35 * resources. This will likely be replaced when we better understand the
36 * kernel/user requirements.
37 *
38 * Blade percpu resources reserved for kernel use. These resources are
39 * reserved whenever the the kernel context for the blade is loaded. Note
40 * that the kernel context is not guaranteed to be always available. It is
41 * loaded on demand & can be stolen by a user if the user demand exceeds the
42 * kernel demand. The kernel can always reload the kernel context but
43 * a SLEEP may be required!!!.
44 *
45 * Async Overview:
46 *
47 * 	Each blade has one "kernel context" that owns GRU kernel resources
48 * 	located on the blade. Kernel drivers use GRU resources in this context
49 * 	for sending messages, zeroing memory, etc.
50 *
51 * 	The kernel context is dynamically loaded on demand. If it is not in
52 * 	use by the kernel, the kernel context can be unloaded & given to a user.
53 * 	The kernel context will be reloaded when needed. This may require that
54 * 	a context be stolen from a user.
55 * 		NOTE: frequent unloading/reloading of the kernel context is
56 * 		expensive. We are depending on batch schedulers, cpusets, sane
57 * 		drivers or some other mechanism to prevent the need for frequent
58 *	 	stealing/reloading.
59 *
60 * 	The kernel context consists of two parts:
61 * 		- 1 CB & a few DSRs that are reserved for each cpu on the blade.
62 * 		  Each cpu has it's own private resources & does not share them
63 * 		  with other cpus. These resources are used serially, ie,
64 * 		  locked, used & unlocked  on each call to a function in
65 * 		  grukservices.
66 * 		  	(Now that we have dynamic loading of kernel contexts, I
67 * 		  	 may rethink this & allow sharing between cpus....)
68 *
69 *		- Additional resources can be reserved long term & used directly
70 *		  by UV drivers located in the kernel. Drivers using these GRU
71 *		  resources can use asynchronous GRU instructions that send
72 *		  interrupts on completion.
73 *		  	- these resources must be explicitly locked/unlocked
74 *		  	- locked resources prevent (obviously) the kernel
75 *		  	  context from being unloaded.
76 *			- drivers using these resource directly issue their own
77 *			  GRU instruction and must wait/check completion.
78 *
79 * 		  When these resources are reserved, the caller can optionally
80 * 		  associate a wait_queue with the resources and use asynchronous
81 * 		  GRU instructions. When an async GRU instruction completes, the
82 * 		  driver will do a wakeup on the event.
83 *
84 */
85
86
87#define ASYNC_HAN_TO_BID(h)	((h) - 1)
88#define ASYNC_BID_TO_HAN(b)	((b) + 1)
89#define ASYNC_HAN_TO_BS(h)	gru_base[ASYNC_HAN_TO_BID(h)]
90
91#define GRU_NUM_KERNEL_CBR	1
92#define GRU_NUM_KERNEL_DSR_BYTES 256
93#define GRU_NUM_KERNEL_DSR_CL	(GRU_NUM_KERNEL_DSR_BYTES /		\
94					GRU_CACHE_LINE_BYTES)
95
96/* GRU instruction attributes for all instructions */
97#define IMA			IMA_CB_DELAY
98
99/* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
100#define __gru_cacheline_aligned__                               \
101	__attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
102
103#define MAGIC	0x1234567887654321UL
104
105/* Default retry count for GRU errors on kernel instructions */
106#define EXCEPTION_RETRY_LIMIT	3
107
108/* Status of message queue sections */
109#define MQS_EMPTY		0
110#define MQS_FULL		1
111#define MQS_NOOP		2
112
113/*----------------- RESOURCE MANAGEMENT -------------------------------------*/
114/* optimized for x86_64 */
115struct message_queue {
116	union gru_mesqhead	head __gru_cacheline_aligned__;	/* CL 0 */
117	int			qlines;				/* DW 1 */
118	long 			hstatus[2];
119	void 			*next __gru_cacheline_aligned__;/* CL 1 */
120	void 			*limit;
121	void 			*start;
122	void 			*start2;
123	char			data ____cacheline_aligned;	/* CL 2 */
124};
125
126/* First word in every message - used by mesq interface */
127struct message_header {
128	char	present;
129	char	present2;
130	char 	lines;
131	char	fill;
132};
133
134#define HSTATUS(mq, h)	((mq) + offsetof(struct message_queue, hstatus[h]))
135
136/*
137 * Reload the blade's kernel context into a GRU chiplet. Called holding
138 * the bs_kgts_sema for READ. Will steal user contexts if necessary.
139 */
140static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
141{
142	struct gru_state *gru;
143	struct gru_thread_state *kgts;
144	void *vaddr;
145	int ctxnum, ncpus;
146
147	up_read(&bs->bs_kgts_sema);
148	down_write(&bs->bs_kgts_sema);
149
150	if (!bs->bs_kgts) {
151		do {
152			bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0);
153			if (!IS_ERR(bs->bs_kgts))
154				break;
155			msleep(1);
156		} while (true);
157		bs->bs_kgts->ts_user_blade_id = blade_id;
158	}
159	kgts = bs->bs_kgts;
160
161	if (!kgts->ts_gru) {
162		STAT(load_kernel_context);
163		ncpus = uv_blade_nr_possible_cpus(blade_id);
164		kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
165			GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
166		kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
167			GRU_NUM_KERNEL_DSR_BYTES * ncpus +
168				bs->bs_async_dsr_bytes);
169		while (!gru_assign_gru_context(kgts)) {
170			msleep(1);
171			gru_steal_context(kgts);
172		}
173		gru_load_context(kgts);
174		gru = bs->bs_kgts->ts_gru;
175		vaddr = gru->gs_gru_base_vaddr;
176		ctxnum = kgts->ts_ctxnum;
177		bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
178		bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
179	}
180	downgrade_write(&bs->bs_kgts_sema);
181}
182
183/*
184 * Free all kernel contexts that are not currently in use.
185 *   Returns 0 if all freed, else number of inuse context.
186 */
187static int gru_free_kernel_contexts(void)
188{
189	struct gru_blade_state *bs;
190	struct gru_thread_state *kgts;
191	int bid, ret = 0;
192
193	for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
194		bs = gru_base[bid];
195		if (!bs)
196			continue;
197
198		/* Ignore busy contexts. Don't want to block here.  */
199		if (down_write_trylock(&bs->bs_kgts_sema)) {
200			kgts = bs->bs_kgts;
201			if (kgts && kgts->ts_gru)
202				gru_unload_context(kgts, 0);
203			bs->bs_kgts = NULL;
204			up_write(&bs->bs_kgts_sema);
205			kfree(kgts);
206		} else {
207			ret++;
208		}
209	}
210	return ret;
211}
212
213/*
214 * Lock & load the kernel context for the specified blade.
215 */
216static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
217{
218	struct gru_blade_state *bs;
219	int bid;
220
221	STAT(lock_kernel_context);
222again:
223	bid = blade_id < 0 ? uv_numa_blade_id() : blade_id;
224	bs = gru_base[bid];
225
226	/* Handle the case where migration occurred while waiting for the sema */
227	down_read(&bs->bs_kgts_sema);
228	if (blade_id < 0 && bid != uv_numa_blade_id()) {
229		up_read(&bs->bs_kgts_sema);
230		goto again;
231	}
232	if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
233		gru_load_kernel_context(bs, bid);
234	return bs;
235
236}
237
238/*
239 * Unlock the kernel context for the specified blade. Context is not
240 * unloaded but may be stolen before next use.
241 */
242static void gru_unlock_kernel_context(int blade_id)
243{
244	struct gru_blade_state *bs;
245
246	bs = gru_base[blade_id];
247	up_read(&bs->bs_kgts_sema);
248	STAT(unlock_kernel_context);
249}
250
251/*
252 * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
253 * 	- returns with preemption disabled
254 */
255static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
256{
257	struct gru_blade_state *bs;
258	int lcpu;
259
260	BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
261	preempt_disable();
262	bs = gru_lock_kernel_context(-1);
263	lcpu = uv_blade_processor_id();
264	*cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
265	*dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
266	return 0;
267}
268
269/*
270 * Free the current cpus reserved DSR/CBR resources.
271 */
272static void gru_free_cpu_resources(void *cb, void *dsr)
273{
274	gru_unlock_kernel_context(uv_numa_blade_id());
275	preempt_enable();
276}
277
278/*
279 * Reserve GRU resources to be used asynchronously.
280 *   Note: currently supports only 1 reservation per blade.
281 *
282 * 	input:
283 * 		blade_id  - blade on which resources should be reserved
284 * 		cbrs	  - number of CBRs
285 * 		dsr_bytes - number of DSR bytes needed
286 *	output:
287 *		handle to identify resource
288 *		(0 = async resources already reserved)
289 */
290unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
291			struct completion *cmp)
292{
293	struct gru_blade_state *bs;
294	struct gru_thread_state *kgts;
295	int ret = 0;
296
297	bs = gru_base[blade_id];
298
299	down_write(&bs->bs_kgts_sema);
300
301	/* Verify no resources already reserved */
302	if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
303		goto done;
304	bs->bs_async_dsr_bytes = dsr_bytes;
305	bs->bs_async_cbrs = cbrs;
306	bs->bs_async_wq = cmp;
307	kgts = bs->bs_kgts;
308
309	/* Resources changed. Unload context if already loaded */
310	if (kgts && kgts->ts_gru)
311		gru_unload_context(kgts, 0);
312	ret = ASYNC_BID_TO_HAN(blade_id);
313
314done:
315	up_write(&bs->bs_kgts_sema);
316	return ret;
317}
318
319/*
320 * Release async resources previously reserved.
321 *
322 *	input:
323 *		han - handle to identify resources
324 */
325void gru_release_async_resources(unsigned long han)
326{
327	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
328
329	down_write(&bs->bs_kgts_sema);
330	bs->bs_async_dsr_bytes = 0;
331	bs->bs_async_cbrs = 0;
332	bs->bs_async_wq = NULL;
333	up_write(&bs->bs_kgts_sema);
334}
335
336/*
337 * Wait for async GRU instructions to complete.
338 *
339 *	input:
340 *		han - handle to identify resources
341 */
342void gru_wait_async_cbr(unsigned long han)
343{
344	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
345
346	wait_for_completion(bs->bs_async_wq);
347	mb();
348}
349
350/*
351 * Lock previous reserved async GRU resources
352 *
353 *	input:
354 *		han - handle to identify resources
355 *	output:
356 *		cb  - pointer to first CBR
357 *		dsr - pointer to first DSR
358 */
359void gru_lock_async_resource(unsigned long han,  void **cb, void **dsr)
360{
361	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
362	int blade_id = ASYNC_HAN_TO_BID(han);
363	int ncpus;
364
365	gru_lock_kernel_context(blade_id);
366	ncpus = uv_blade_nr_possible_cpus(blade_id);
367	if (cb)
368		*cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
369	if (dsr)
370		*dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
371}
372
373/*
374 * Unlock previous reserved async GRU resources
375 *
376 *	input:
377 *		han - handle to identify resources
378 */
379void gru_unlock_async_resource(unsigned long han)
380{
381	int blade_id = ASYNC_HAN_TO_BID(han);
382
383	gru_unlock_kernel_context(blade_id);
384}
385
386/*----------------------------------------------------------------------*/
387int gru_get_cb_exception_detail(void *cb,
388		struct control_block_extended_exc_detail *excdet)
389{
390	struct gru_control_block_extended *cbe;
391	struct gru_thread_state *kgts = NULL;
392	unsigned long off;
393	int cbrnum, bid;
394
395	/*
396	 * Locate kgts for cb. This algorithm is SLOW but
397	 * this function is rarely called (ie., almost never).
398	 * Performance does not matter.
399	 */
400	for_each_possible_blade(bid) {
401		if (!gru_base[bid])
402			break;
403		kgts = gru_base[bid]->bs_kgts;
404		if (!kgts || !kgts->ts_gru)
405			continue;
406		off = cb - kgts->ts_gru->gs_gru_base_vaddr;
407		if (off < GRU_SIZE)
408			break;
409		kgts = NULL;
410	}
411	BUG_ON(!kgts);
412	cbrnum = thread_cbr_number(kgts, get_cb_number(cb));
413	cbe = get_cbe(GRUBASE(cb), cbrnum);
414	gru_flush_cache(cbe);	/* CBE not coherent */
415	sync_core();
416	excdet->opc = cbe->opccpy;
417	excdet->exopc = cbe->exopccpy;
418	excdet->ecause = cbe->ecause;
419	excdet->exceptdet0 = cbe->idef1upd;
420	excdet->exceptdet1 = cbe->idef3upd;
421	gru_flush_cache(cbe);
422	return 0;
423}
424
425static char *gru_get_cb_exception_detail_str(int ret, void *cb,
426					     char *buf, int size)
427{
428	struct gru_control_block_status *gen = (void *)cb;
429	struct control_block_extended_exc_detail excdet;
430
431	if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
432		gru_get_cb_exception_detail(cb, &excdet);
433		snprintf(buf, size,
434			"GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
435			"excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
436			gen, excdet.opc, excdet.exopc, excdet.ecause,
437			excdet.exceptdet0, excdet.exceptdet1);
438	} else {
439		snprintf(buf, size, "No exception");
440	}
441	return buf;
442}
443
444static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
445{
446	while (gen->istatus >= CBS_ACTIVE) {
447		cpu_relax();
448		barrier();
449	}
450	return gen->istatus;
451}
452
453static int gru_retry_exception(void *cb)
454{
455	struct gru_control_block_status *gen = (void *)cb;
456	struct control_block_extended_exc_detail excdet;
457	int retry = EXCEPTION_RETRY_LIMIT;
458
459	while (1)  {
460		if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
461			return CBS_IDLE;
462		if (gru_get_cb_message_queue_substatus(cb))
463			return CBS_EXCEPTION;
464		gru_get_cb_exception_detail(cb, &excdet);
465		if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
466				(excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
467			break;
468		if (retry-- == 0)
469			break;
470		gen->icmd = 1;
471		gru_flush_cache(gen);
472	}
473	return CBS_EXCEPTION;
474}
475
476int gru_check_status_proc(void *cb)
477{
478	struct gru_control_block_status *gen = (void *)cb;
479	int ret;
480
481	ret = gen->istatus;
482	if (ret == CBS_EXCEPTION)
483		ret = gru_retry_exception(cb);
484	rmb();
485	return ret;
486
487}
488
489int gru_wait_proc(void *cb)
490{
491	struct gru_control_block_status *gen = (void *)cb;
492	int ret;
493
494	ret = gru_wait_idle_or_exception(gen);
495	if (ret == CBS_EXCEPTION)
496		ret = gru_retry_exception(cb);
497	rmb();
498	return ret;
499}
500
501static void gru_abort(int ret, void *cb, char *str)
502{
503	char buf[GRU_EXC_STR_SIZE];
504
505	panic("GRU FATAL ERROR: %s - %s\n", str,
506	      gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
507}
508
509void gru_wait_abort_proc(void *cb)
510{
511	int ret;
512
513	ret = gru_wait_proc(cb);
514	if (ret)
515		gru_abort(ret, cb, "gru_wait_abort");
516}
517
518
519/*------------------------------ MESSAGE QUEUES -----------------------------*/
520
521/* Internal status . These are NOT returned to the user. */
522#define MQIE_AGAIN		-1	/* try again */
523
524
525/*
526 * Save/restore the "present" flag that is in the second line of 2-line
527 * messages
528 */
529static inline int get_present2(void *p)
530{
531	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
532	return mhdr->present;
533}
534
535static inline void restore_present2(void *p, int val)
536{
537	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
538	mhdr->present = val;
539}
540
541/*
542 * Create a message queue.
543 * 	qlines - message queue size in cache lines. Includes 2-line header.
544 */
545int gru_create_message_queue(struct gru_message_queue_desc *mqd,
546		void *p, unsigned int bytes, int nasid, int vector, int apicid)
547{
548	struct message_queue *mq = p;
549	unsigned int qlines;
550
551	qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
552	memset(mq, 0, bytes);
553	mq->start = &mq->data;
554	mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
555	mq->next = &mq->data;
556	mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
557	mq->qlines = qlines;
558	mq->hstatus[0] = 0;
559	mq->hstatus[1] = 1;
560	mq->head = gru_mesq_head(2, qlines / 2 + 1);
561	mqd->mq = mq;
562	mqd->mq_gpa = uv_gpa(mq);
563	mqd->qlines = qlines;
564	mqd->interrupt_pnode = nasid >> 1;
565	mqd->interrupt_vector = vector;
566	mqd->interrupt_apicid = apicid;
567	return 0;
568}
569EXPORT_SYMBOL_GPL(gru_create_message_queue);
570
571/*
572 * Send a NOOP message to a message queue
573 * 	Returns:
574 * 		 0 - if queue is full after the send. This is the normal case
575 * 		     but various races can change this.
576 *		-1 - if mesq sent successfully but queue not full
577 *		>0 - unexpected error. MQE_xxx returned
578 */
579static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
580				void *mesg)
581{
582	const struct message_header noop_header = {
583					.present = MQS_NOOP, .lines = 1};
584	unsigned long m;
585	int substatus, ret;
586	struct message_header save_mhdr, *mhdr = mesg;
587
588	STAT(mesq_noop);
589	save_mhdr = *mhdr;
590	*mhdr = noop_header;
591	gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
592	ret = gru_wait(cb);
593
594	if (ret) {
595		substatus = gru_get_cb_message_queue_substatus(cb);
596		switch (substatus) {
597		case CBSS_NO_ERROR:
598			STAT(mesq_noop_unexpected_error);
599			ret = MQE_UNEXPECTED_CB_ERR;
600			break;
601		case CBSS_LB_OVERFLOWED:
602			STAT(mesq_noop_lb_overflow);
603			ret = MQE_CONGESTION;
604			break;
605		case CBSS_QLIMIT_REACHED:
606			STAT(mesq_noop_qlimit_reached);
607			ret = 0;
608			break;
609		case CBSS_AMO_NACKED:
610			STAT(mesq_noop_amo_nacked);
611			ret = MQE_CONGESTION;
612			break;
613		case CBSS_PUT_NACKED:
614			STAT(mesq_noop_put_nacked);
615			m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
616			gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
617						IMA);
618			if (gru_wait(cb) == CBS_IDLE)
619				ret = MQIE_AGAIN;
620			else
621				ret = MQE_UNEXPECTED_CB_ERR;
622			break;
623		case CBSS_PAGE_OVERFLOW:
624			STAT(mesq_noop_page_overflow);
625			fallthrough;
626		default:
627			BUG();
628		}
629	}
630	*mhdr = save_mhdr;
631	return ret;
632}
633
634/*
635 * Handle a gru_mesq full.
636 */
637static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
638				void *mesg, int lines)
639{
640	union gru_mesqhead mqh;
641	unsigned int limit, head;
642	unsigned long avalue;
643	int half, qlines;
644
645	/* Determine if switching to first/second half of q */
646	avalue = gru_get_amo_value(cb);
647	head = gru_get_amo_value_head(cb);
648	limit = gru_get_amo_value_limit(cb);
649
650	qlines = mqd->qlines;
651	half = (limit != qlines);
652
653	if (half)
654		mqh = gru_mesq_head(qlines / 2 + 1, qlines);
655	else
656		mqh = gru_mesq_head(2, qlines / 2 + 1);
657
658	/* Try to get lock for switching head pointer */
659	gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
660	if (gru_wait(cb) != CBS_IDLE)
661		goto cberr;
662	if (!gru_get_amo_value(cb)) {
663		STAT(mesq_qf_locked);
664		return MQE_QUEUE_FULL;
665	}
666
667	/* Got the lock. Send optional NOP if queue not full, */
668	if (head != limit) {
669		if (send_noop_message(cb, mqd, mesg)) {
670			gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
671					XTYPE_DW, IMA);
672			if (gru_wait(cb) != CBS_IDLE)
673				goto cberr;
674			STAT(mesq_qf_noop_not_full);
675			return MQIE_AGAIN;
676		}
677		avalue++;
678	}
679
680	/* Then flip queuehead to other half of queue. */
681	gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
682							IMA);
683	if (gru_wait(cb) != CBS_IDLE)
684		goto cberr;
685
686	/* If not successfully in swapping queue head, clear the hstatus lock */
687	if (gru_get_amo_value(cb) != avalue) {
688		STAT(mesq_qf_switch_head_failed);
689		gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
690							IMA);
691		if (gru_wait(cb) != CBS_IDLE)
692			goto cberr;
693	}
694	return MQIE_AGAIN;
695cberr:
696	STAT(mesq_qf_unexpected_error);
697	return MQE_UNEXPECTED_CB_ERR;
698}
699
700/*
701 * Handle a PUT failure. Note: if message was a 2-line message, one of the
702 * lines might have successfully have been written. Before sending the
703 * message, "present" must be cleared in BOTH lines to prevent the receiver
704 * from prematurely seeing the full message.
705 */
706static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
707			void *mesg, int lines)
708{
709	unsigned long m;
710	int ret, loops = 200;	/* experimentally determined */
711
712	m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
713	if (lines == 2) {
714		gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
715		if (gru_wait(cb) != CBS_IDLE)
716			return MQE_UNEXPECTED_CB_ERR;
717	}
718	gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
719	if (gru_wait(cb) != CBS_IDLE)
720		return MQE_UNEXPECTED_CB_ERR;
721
722	if (!mqd->interrupt_vector)
723		return MQE_OK;
724
725	/*
726	 * Send a noop message in order to deliver a cross-partition interrupt
727	 * to the SSI that contains the target message queue. Normally, the
728	 * interrupt is automatically delivered by hardware following mesq
729	 * operations, but some error conditions require explicit delivery.
730	 * The noop message will trigger delivery. Otherwise partition failures
731	 * could cause unrecovered errors.
732	 */
733	do {
734		ret = send_noop_message(cb, mqd, mesg);
735	} while ((ret == MQIE_AGAIN || ret == MQE_CONGESTION) && (loops-- > 0));
736
737	if (ret == MQIE_AGAIN || ret == MQE_CONGESTION) {
738		/*
739		 * Don't indicate to the app to resend the message, as it's
740		 * already been successfully sent.  We simply send an OK
741		 * (rather than fail the send with MQE_UNEXPECTED_CB_ERR),
742		 * assuming that the other side is receiving enough
743		 * interrupts to get this message processed anyway.
744		 */
745		ret = MQE_OK;
746	}
747	return ret;
748}
749
750/*
751 * Handle a gru_mesq failure. Some of these failures are software recoverable
752 * or retryable.
753 */
754static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
755				void *mesg, int lines)
756{
757	int substatus, ret = 0;
758
759	substatus = gru_get_cb_message_queue_substatus(cb);
760	switch (substatus) {
761	case CBSS_NO_ERROR:
762		STAT(mesq_send_unexpected_error);
763		ret = MQE_UNEXPECTED_CB_ERR;
764		break;
765	case CBSS_LB_OVERFLOWED:
766		STAT(mesq_send_lb_overflow);
767		ret = MQE_CONGESTION;
768		break;
769	case CBSS_QLIMIT_REACHED:
770		STAT(mesq_send_qlimit_reached);
771		ret = send_message_queue_full(cb, mqd, mesg, lines);
772		break;
773	case CBSS_AMO_NACKED:
774		STAT(mesq_send_amo_nacked);
775		ret = MQE_CONGESTION;
776		break;
777	case CBSS_PUT_NACKED:
778		STAT(mesq_send_put_nacked);
779		ret = send_message_put_nacked(cb, mqd, mesg, lines);
780		break;
781	case CBSS_PAGE_OVERFLOW:
782		STAT(mesq_page_overflow);
783		fallthrough;
784	default:
785		BUG();
786	}
787	return ret;
788}
789
790/*
791 * Send a message to a message queue
792 * 	mqd	message queue descriptor
793 * 	mesg	message. ust be vaddr within a GSEG
794 * 	bytes	message size (<= 2 CL)
795 */
796int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
797				unsigned int bytes)
798{
799	struct message_header *mhdr;
800	void *cb;
801	void *dsr;
802	int istatus, clines, ret;
803
804	STAT(mesq_send);
805	BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
806
807	clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
808	if (gru_get_cpu_resources(bytes, &cb, &dsr))
809		return MQE_BUG_NO_RESOURCES;
810	memcpy(dsr, mesg, bytes);
811	mhdr = dsr;
812	mhdr->present = MQS_FULL;
813	mhdr->lines = clines;
814	if (clines == 2) {
815		mhdr->present2 = get_present2(mhdr);
816		restore_present2(mhdr, MQS_FULL);
817	}
818
819	do {
820		ret = MQE_OK;
821		gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
822		istatus = gru_wait(cb);
823		if (istatus != CBS_IDLE)
824			ret = send_message_failure(cb, mqd, dsr, clines);
825	} while (ret == MQIE_AGAIN);
826	gru_free_cpu_resources(cb, dsr);
827
828	if (ret)
829		STAT(mesq_send_failed);
830	return ret;
831}
832EXPORT_SYMBOL_GPL(gru_send_message_gpa);
833
834/*
835 * Advance the receive pointer for the queue to the next message.
836 */
837void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
838{
839	struct message_queue *mq = mqd->mq;
840	struct message_header *mhdr = mq->next;
841	void *next, *pnext;
842	int half = -1;
843	int lines = mhdr->lines;
844
845	if (lines == 2)
846		restore_present2(mhdr, MQS_EMPTY);
847	mhdr->present = MQS_EMPTY;
848
849	pnext = mq->next;
850	next = pnext + GRU_CACHE_LINE_BYTES * lines;
851	if (next == mq->limit) {
852		next = mq->start;
853		half = 1;
854	} else if (pnext < mq->start2 && next >= mq->start2) {
855		half = 0;
856	}
857
858	if (half >= 0)
859		mq->hstatus[half] = 1;
860	mq->next = next;
861}
862EXPORT_SYMBOL_GPL(gru_free_message);
863
864/*
865 * Get next message from message queue. Return NULL if no message
866 * present. User must call next_message() to move to next message.
867 * 	rmq	message queue
868 */
869void *gru_get_next_message(struct gru_message_queue_desc *mqd)
870{
871	struct message_queue *mq = mqd->mq;
872	struct message_header *mhdr = mq->next;
873	int present = mhdr->present;
874
875	/* skip NOOP messages */
876	while (present == MQS_NOOP) {
877		gru_free_message(mqd, mhdr);
878		mhdr = mq->next;
879		present = mhdr->present;
880	}
881
882	/* Wait for both halves of 2 line messages */
883	if (present == MQS_FULL && mhdr->lines == 2 &&
884				get_present2(mhdr) == MQS_EMPTY)
885		present = MQS_EMPTY;
886
887	if (!present) {
888		STAT(mesq_receive_none);
889		return NULL;
890	}
891
892	if (mhdr->lines == 2)
893		restore_present2(mhdr, mhdr->present2);
894
895	STAT(mesq_receive);
896	return mhdr;
897}
898EXPORT_SYMBOL_GPL(gru_get_next_message);
899
900/* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
901
902/*
903 * Load a DW from a global GPA. The GPA can be a memory or MMR address.
904 */
905int gru_read_gpa(unsigned long *value, unsigned long gpa)
906{
907	void *cb;
908	void *dsr;
909	int ret, iaa;
910
911	STAT(read_gpa);
912	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
913		return MQE_BUG_NO_RESOURCES;
914	iaa = gpa >> 62;
915	gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
916	ret = gru_wait(cb);
917	if (ret == CBS_IDLE)
918		*value = *(unsigned long *)dsr;
919	gru_free_cpu_resources(cb, dsr);
920	return ret;
921}
922EXPORT_SYMBOL_GPL(gru_read_gpa);
923
924
925/*
926 * Copy a block of data using the GRU resources
927 */
928int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
929				unsigned int bytes)
930{
931	void *cb;
932	void *dsr;
933	int ret;
934
935	STAT(copy_gpa);
936	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
937		return MQE_BUG_NO_RESOURCES;
938	gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
939		  XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
940	ret = gru_wait(cb);
941	gru_free_cpu_resources(cb, dsr);
942	return ret;
943}
944EXPORT_SYMBOL_GPL(gru_copy_gpa);
945
946/* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
947/* 	Temp - will delete after we gain confidence in the GRU		*/
948
949static int quicktest0(unsigned long arg)
950{
951	unsigned long word0;
952	unsigned long word1;
953	void *cb;
954	void *dsr;
955	unsigned long *p;
956	int ret = -EIO;
957
958	if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
959		return MQE_BUG_NO_RESOURCES;
960	p = dsr;
961	word0 = MAGIC;
962	word1 = 0;
963
964	gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
965	if (gru_wait(cb) != CBS_IDLE) {
966		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
967		goto done;
968	}
969
970	if (*p != MAGIC) {
971		printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
972		goto done;
973	}
974	gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
975	if (gru_wait(cb) != CBS_IDLE) {
976		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
977		goto done;
978	}
979
980	if (word0 != word1 || word1 != MAGIC) {
981		printk(KERN_DEBUG
982		       "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
983		     smp_processor_id(), word1, MAGIC);
984		goto done;
985	}
986	ret = 0;
987
988done:
989	gru_free_cpu_resources(cb, dsr);
990	return ret;
991}
992
993#define ALIGNUP(p, q)	((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
994
995static int quicktest1(unsigned long arg)
996{
997	struct gru_message_queue_desc mqd;
998	void *p, *mq;
999	int i, ret = -EIO;
1000	char mes[GRU_CACHE_LINE_BYTES], *m;
1001
1002	/* Need  1K cacheline aligned that does not cross page boundary */
1003	p = kmalloc(4096, 0);
1004	if (p == NULL)
1005		return -ENOMEM;
1006	mq = ALIGNUP(p, 1024);
1007	memset(mes, 0xee, sizeof(mes));
1008
1009	gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
1010	for (i = 0; i < 6; i++) {
1011		mes[8] = i;
1012		do {
1013			ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
1014		} while (ret == MQE_CONGESTION);
1015		if (ret)
1016			break;
1017	}
1018	if (ret != MQE_QUEUE_FULL || i != 4) {
1019		printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
1020		       smp_processor_id(), ret, i);
1021		goto done;
1022	}
1023
1024	for (i = 0; i < 6; i++) {
1025		m = gru_get_next_message(&mqd);
1026		if (!m || m[8] != i)
1027			break;
1028		gru_free_message(&mqd, m);
1029	}
1030	if (i != 4) {
1031		printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1032			smp_processor_id(), i, m, m ? m[8] : -1);
1033		goto done;
1034	}
1035	ret = 0;
1036
1037done:
1038	kfree(p);
1039	return ret;
1040}
1041
1042static int quicktest2(unsigned long arg)
1043{
1044	static DECLARE_COMPLETION(cmp);
1045	unsigned long han;
1046	int blade_id = 0;
1047	int numcb = 4;
1048	int ret = 0;
1049	unsigned long *buf;
1050	void *cb0, *cb;
1051	struct gru_control_block_status *gen;
1052	int i, k, istatus, bytes;
1053
1054	bytes = numcb * 4 * 8;
1055	buf = kmalloc(bytes, GFP_KERNEL);
1056	if (!buf)
1057		return -ENOMEM;
1058
1059	ret = -EBUSY;
1060	han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1061	if (!han)
1062		goto done;
1063
1064	gru_lock_async_resource(han, &cb0, NULL);
1065	memset(buf, 0xee, bytes);
1066	for (i = 0; i < numcb; i++)
1067		gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1068				XTYPE_DW, 4, 1, IMA_INTERRUPT);
1069
1070	ret = 0;
1071	k = numcb;
1072	do {
1073		gru_wait_async_cbr(han);
1074		for (i = 0; i < numcb; i++) {
1075			cb = cb0 + i * GRU_HANDLE_STRIDE;
1076			istatus = gru_check_status(cb);
1077			if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
1078				break;
1079		}
1080		if (i == numcb)
1081			continue;
1082		if (istatus != CBS_IDLE) {
1083			printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
1084			ret = -EFAULT;
1085		} else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
1086				buf[4 * i + 3]) {
1087			printk(KERN_DEBUG "GRU:%d quicktest2:cb %d,  buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1088			       smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
1089			ret = -EIO;
1090		}
1091		k--;
1092		gen = cb;
1093		gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
1094	} while (k);
1095	BUG_ON(cmp.done);
1096
1097	gru_unlock_async_resource(han);
1098	gru_release_async_resources(han);
1099done:
1100	kfree(buf);
1101	return ret;
1102}
1103
1104#define BUFSIZE 200
1105static int quicktest3(unsigned long arg)
1106{
1107	char buf1[BUFSIZE], buf2[BUFSIZE];
1108	int ret = 0;
1109
1110	memset(buf2, 0, sizeof(buf2));
1111	memset(buf1, get_cycles() & 255, sizeof(buf1));
1112	gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
1113	if (memcmp(buf1, buf2, BUFSIZE)) {
1114		printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
1115		ret = -EIO;
1116	}
1117	return ret;
1118}
1119
1120/*
1121 * Debugging only. User hook for various kernel tests
1122 * of driver & gru.
1123 */
1124int gru_ktest(unsigned long arg)
1125{
1126	int ret = -EINVAL;
1127
1128	switch (arg & 0xff) {
1129	case 0:
1130		ret = quicktest0(arg);
1131		break;
1132	case 1:
1133		ret = quicktest1(arg);
1134		break;
1135	case 2:
1136		ret = quicktest2(arg);
1137		break;
1138	case 3:
1139		ret = quicktest3(arg);
1140		break;
1141	case 99:
1142		ret = gru_free_kernel_contexts();
1143		break;
1144	}
1145	return ret;
1146
1147}
1148
1149int gru_kservices_init(void)
1150{
1151	return 0;
1152}
1153
1154void gru_kservices_exit(void)
1155{
1156	if (gru_free_kernel_contexts())
1157		BUG();
1158}
1159
1160