1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8#include <uapi/misc/habanalabs.h>
9#include "habanalabs.h"
10#include "../include/hw_ip/mmu/mmu_general.h"
11
12#include <linux/uaccess.h>
13#include <linux/slab.h>
14#include <linux/genalloc.h>
15
16#define HL_MMU_DEBUG	0
17
18/*
19 * The va ranges in context object contain a list with the available chunks of
20 * device virtual memory.
21 * There is one range for host allocations and one for DRAM allocations.
22 *
23 * On initialization each range contains one chunk of all of its available
24 * virtual range which is a half of the total device virtual range.
25 *
26 * On each mapping of physical pages, a suitable virtual range chunk (with a
27 * minimum size) is selected from the list. If the chunk size equals the
28 * requested size, the chunk is returned. Otherwise, the chunk is split into
29 * two chunks - one to return as result and a remainder to stay in the list.
30 *
31 * On each Unmapping of a virtual address, the relevant virtual chunk is
32 * returned to the list. The chunk is added to the list and if its edges match
33 * the edges of the adjacent chunks (means a contiguous chunk can be created),
34 * the chunks are merged.
35 *
36 * On finish, the list is checked to have only one chunk of all the relevant
37 * virtual range (which is a half of the device total virtual range).
38 * If not (means not all mappings were unmapped), a warning is printed.
39 */
40
41/*
42 * alloc_device_memory - allocate device memory
43 *
44 * @ctx                 : current context
45 * @args                : host parameters containing the requested size
46 * @ret_handle          : result handle
47 *
48 * This function does the following:
49 * - Allocate the requested size rounded up to 2MB pages
50 * - Return unique handle
51 */
52static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
53				u32 *ret_handle)
54{
55	struct hl_device *hdev = ctx->hdev;
56	struct hl_vm *vm = &hdev->vm;
57	struct hl_vm_phys_pg_pack *phys_pg_pack;
58	u64 paddr = 0, total_size, num_pgs, i;
59	u32 num_curr_pgs, page_size, page_shift;
60	int handle, rc;
61	bool contiguous;
62
63	num_curr_pgs = 0;
64	page_size = hdev->asic_prop.dram_page_size;
65	page_shift = __ffs(page_size);
66	num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
67	total_size = num_pgs << page_shift;
68
69	if (!total_size) {
70		dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
71		return -EINVAL;
72	}
73
74	contiguous = args->flags & HL_MEM_CONTIGUOUS;
75
76	if (contiguous) {
77		paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
78		if (!paddr) {
79			dev_err(hdev->dev,
80				"failed to allocate %llu contiguous pages with total size of %llu\n",
81				num_pgs, total_size);
82			return -ENOMEM;
83		}
84	}
85
86	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
87	if (!phys_pg_pack) {
88		rc = -ENOMEM;
89		goto pages_pack_err;
90	}
91
92	phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
93	phys_pg_pack->asid = ctx->asid;
94	phys_pg_pack->npages = num_pgs;
95	phys_pg_pack->page_size = page_size;
96	phys_pg_pack->total_size = total_size;
97	phys_pg_pack->flags = args->flags;
98	phys_pg_pack->contiguous = contiguous;
99
100	phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
101	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
102		rc = -ENOMEM;
103		goto pages_arr_err;
104	}
105
106	if (phys_pg_pack->contiguous) {
107		for (i = 0 ; i < num_pgs ; i++)
108			phys_pg_pack->pages[i] = paddr + i * page_size;
109	} else {
110		for (i = 0 ; i < num_pgs ; i++) {
111			phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
112							vm->dram_pg_pool,
113							page_size);
114			if (!phys_pg_pack->pages[i]) {
115				dev_err(hdev->dev,
116					"Failed to allocate device memory (out of memory)\n");
117				rc = -ENOMEM;
118				goto page_err;
119			}
120
121			num_curr_pgs++;
122		}
123	}
124
125	spin_lock(&vm->idr_lock);
126	handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
127				GFP_ATOMIC);
128	spin_unlock(&vm->idr_lock);
129
130	if (handle < 0) {
131		dev_err(hdev->dev, "Failed to get handle for page\n");
132		rc = -EFAULT;
133		goto idr_err;
134	}
135
136	for (i = 0 ; i < num_pgs ; i++)
137		kref_get(&vm->dram_pg_pool_refcount);
138
139	phys_pg_pack->handle = handle;
140
141	atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
142	atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
143
144	*ret_handle = handle;
145
146	return 0;
147
148idr_err:
149page_err:
150	if (!phys_pg_pack->contiguous)
151		for (i = 0 ; i < num_curr_pgs ; i++)
152			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
153					page_size);
154
155	kvfree(phys_pg_pack->pages);
156pages_arr_err:
157	kfree(phys_pg_pack);
158pages_pack_err:
159	if (contiguous)
160		gen_pool_free(vm->dram_pg_pool, paddr, total_size);
161
162	return rc;
163}
164
165/*
166 * dma_map_host_va - DMA mapping of the given host virtual address.
167 * @hdev: habanalabs device structure
168 * @addr: the host virtual address of the memory area
169 * @size: the size of the memory area
170 * @p_userptr: pointer to result userptr structure
171 *
172 * This function does the following:
173 * - Allocate userptr structure
174 * - Pin the given host memory using the userptr structure
175 * - Perform DMA mapping to have the DMA addresses of the pages
176 */
177static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
178				struct hl_userptr **p_userptr)
179{
180	struct hl_userptr *userptr;
181	int rc;
182
183	userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
184	if (!userptr) {
185		rc = -ENOMEM;
186		goto userptr_err;
187	}
188
189	rc = hl_pin_host_memory(hdev, addr, size, userptr);
190	if (rc) {
191		dev_err(hdev->dev, "Failed to pin host memory\n");
192		goto pin_err;
193	}
194
195	rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
196					userptr->sgt->nents, DMA_BIDIRECTIONAL);
197	if (rc) {
198		dev_err(hdev->dev, "failed to map sgt with DMA region\n");
199		goto dma_map_err;
200	}
201
202	userptr->dma_mapped = true;
203	userptr->dir = DMA_BIDIRECTIONAL;
204	userptr->vm_type = VM_TYPE_USERPTR;
205
206	*p_userptr = userptr;
207
208	return 0;
209
210dma_map_err:
211	hl_unpin_host_memory(hdev, userptr);
212pin_err:
213	kfree(userptr);
214userptr_err:
215
216	return rc;
217}
218
219/*
220 * dma_unmap_host_va - DMA unmapping of the given host virtual address.
221 * @hdev: habanalabs device structure
222 * @userptr: userptr to free
223 *
224 * This function does the following:
225 * - Unpins the physical pages
226 * - Frees the userptr structure
227 */
228static void dma_unmap_host_va(struct hl_device *hdev,
229				struct hl_userptr *userptr)
230{
231	hl_unpin_host_memory(hdev, userptr);
232	kfree(userptr);
233}
234
235/*
236 * dram_pg_pool_do_release - free DRAM pages pool
237 *
238 * @ref                 : pointer to reference object
239 *
240 * This function does the following:
241 * - Frees the idr structure of physical pages handles
242 * - Frees the generic pool of DRAM physical pages
243 */
244static void dram_pg_pool_do_release(struct kref *ref)
245{
246	struct hl_vm *vm = container_of(ref, struct hl_vm,
247			dram_pg_pool_refcount);
248
249	/*
250	 * free the idr here as only here we know for sure that there are no
251	 * allocated physical pages and hence there are no handles in use
252	 */
253	idr_destroy(&vm->phys_pg_pack_handles);
254	gen_pool_destroy(vm->dram_pg_pool);
255}
256
257/*
258 * free_phys_pg_pack - free physical page pack
259 * @hdev: habanalabs device structure
260 * @phys_pg_pack: physical page pack to free
261 *
262 * This function does the following:
263 * - For DRAM memory only, iterate over the pack and free each physical block
264 *   structure by returning it to the general pool
265 * - Free the hl_vm_phys_pg_pack structure
266 */
267static void free_phys_pg_pack(struct hl_device *hdev,
268				struct hl_vm_phys_pg_pack *phys_pg_pack)
269{
270	struct hl_vm *vm = &hdev->vm;
271	u64 i;
272
273	if (!phys_pg_pack->created_from_userptr) {
274		if (phys_pg_pack->contiguous) {
275			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
276					phys_pg_pack->total_size);
277
278			for (i = 0; i < phys_pg_pack->npages ; i++)
279				kref_put(&vm->dram_pg_pool_refcount,
280					dram_pg_pool_do_release);
281		} else {
282			for (i = 0 ; i < phys_pg_pack->npages ; i++) {
283				gen_pool_free(vm->dram_pg_pool,
284						phys_pg_pack->pages[i],
285						phys_pg_pack->page_size);
286				kref_put(&vm->dram_pg_pool_refcount,
287					dram_pg_pool_do_release);
288			}
289		}
290	}
291
292	kvfree(phys_pg_pack->pages);
293	kfree(phys_pg_pack);
294}
295
296/*
297 * free_device_memory - free device memory
298 *
299 * @ctx                  : current context
300 * @handle              : handle of the memory chunk to free
301 *
302 * This function does the following:
303 * - Free the device memory related to the given handle
304 */
305static int free_device_memory(struct hl_ctx *ctx, u32 handle)
306{
307	struct hl_device *hdev = ctx->hdev;
308	struct hl_vm *vm = &hdev->vm;
309	struct hl_vm_phys_pg_pack *phys_pg_pack;
310
311	spin_lock(&vm->idr_lock);
312	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
313	if (phys_pg_pack) {
314		if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
315			dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
316				handle);
317			spin_unlock(&vm->idr_lock);
318			return -EINVAL;
319		}
320
321		/*
322		 * must remove from idr before the freeing of the physical
323		 * pages as the refcount of the pool is also the trigger of the
324		 * idr destroy
325		 */
326		idr_remove(&vm->phys_pg_pack_handles, handle);
327		spin_unlock(&vm->idr_lock);
328
329		atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
330		atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
331
332		free_phys_pg_pack(hdev, phys_pg_pack);
333	} else {
334		spin_unlock(&vm->idr_lock);
335		dev_err(hdev->dev,
336			"free device memory failed, no match for handle %u\n",
337			handle);
338		return -EINVAL;
339	}
340
341	return 0;
342}
343
344/*
345 * clear_va_list_locked - free virtual addresses list
346 *
347 * @hdev                : habanalabs device structure
348 * @va_list             : list of virtual addresses to free
349 *
350 * This function does the following:
351 * - Iterate over the list and free each virtual addresses block
352 *
353 * This function should be called only when va_list lock is taken
354 */
355static void clear_va_list_locked(struct hl_device *hdev,
356		struct list_head *va_list)
357{
358	struct hl_vm_va_block *va_block, *tmp;
359
360	list_for_each_entry_safe(va_block, tmp, va_list, node) {
361		list_del(&va_block->node);
362		kfree(va_block);
363	}
364}
365
366/*
367 * print_va_list_locked    - print virtual addresses list
368 *
369 * @hdev                : habanalabs device structure
370 * @va_list             : list of virtual addresses to print
371 *
372 * This function does the following:
373 * - Iterate over the list and print each virtual addresses block
374 *
375 * This function should be called only when va_list lock is taken
376 */
377static void print_va_list_locked(struct hl_device *hdev,
378		struct list_head *va_list)
379{
380#if HL_MMU_DEBUG
381	struct hl_vm_va_block *va_block;
382
383	dev_dbg(hdev->dev, "print va list:\n");
384
385	list_for_each_entry(va_block, va_list, node)
386		dev_dbg(hdev->dev,
387			"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
388			va_block->start, va_block->end, va_block->size);
389#endif
390}
391
392/*
393 * merge_va_blocks_locked - merge a virtual block if possible
394 *
395 * @hdev                : pointer to the habanalabs device structure
396 * @va_list             : pointer to the virtual addresses block list
397 * @va_block            : virtual block to merge with adjacent blocks
398 *
399 * This function does the following:
400 * - Merge the given blocks with the adjacent blocks if their virtual ranges
401 *   create a contiguous virtual range
402 *
403 * This Function should be called only when va_list lock is taken
404 */
405static void merge_va_blocks_locked(struct hl_device *hdev,
406		struct list_head *va_list, struct hl_vm_va_block *va_block)
407{
408	struct hl_vm_va_block *prev, *next;
409
410	prev = list_prev_entry(va_block, node);
411	if (&prev->node != va_list && prev->end + 1 == va_block->start) {
412		prev->end = va_block->end;
413		prev->size = prev->end - prev->start;
414		list_del(&va_block->node);
415		kfree(va_block);
416		va_block = prev;
417	}
418
419	next = list_next_entry(va_block, node);
420	if (&next->node != va_list && va_block->end + 1 == next->start) {
421		next->start = va_block->start;
422		next->size = next->end - next->start;
423		list_del(&va_block->node);
424		kfree(va_block);
425	}
426}
427
428/*
429 * add_va_block_locked - add a virtual block to the virtual addresses list
430 *
431 * @hdev                : pointer to the habanalabs device structure
432 * @va_list             : pointer to the virtual addresses block list
433 * @start               : start virtual address
434 * @end                 : end virtual address
435 *
436 * This function does the following:
437 * - Add the given block to the virtual blocks list and merge with other
438 * blocks if a contiguous virtual block can be created
439 *
440 * This Function should be called only when va_list lock is taken
441 */
442static int add_va_block_locked(struct hl_device *hdev,
443		struct list_head *va_list, u64 start, u64 end)
444{
445	struct hl_vm_va_block *va_block, *res = NULL;
446	u64 size = end - start;
447
448	print_va_list_locked(hdev, va_list);
449
450	list_for_each_entry(va_block, va_list, node) {
451		/* TODO: remove upon matureness */
452		if (hl_mem_area_crosses_range(start, size, va_block->start,
453				va_block->end)) {
454			dev_err(hdev->dev,
455				"block crossing ranges at start 0x%llx, end 0x%llx\n",
456				va_block->start, va_block->end);
457			return -EINVAL;
458		}
459
460		if (va_block->end < start)
461			res = va_block;
462	}
463
464	va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
465	if (!va_block)
466		return -ENOMEM;
467
468	va_block->start = start;
469	va_block->end = end;
470	va_block->size = size;
471
472	if (!res)
473		list_add(&va_block->node, va_list);
474	else
475		list_add(&va_block->node, &res->node);
476
477	merge_va_blocks_locked(hdev, va_list, va_block);
478
479	print_va_list_locked(hdev, va_list);
480
481	return 0;
482}
483
484/*
485 * add_va_block - wrapper for add_va_block_locked
486 *
487 * @hdev                : pointer to the habanalabs device structure
488 * @va_list             : pointer to the virtual addresses block list
489 * @start               : start virtual address
490 * @end                 : end virtual address
491 *
492 * This function does the following:
493 * - Takes the list lock and calls add_va_block_locked
494 */
495static inline int add_va_block(struct hl_device *hdev,
496		struct hl_va_range *va_range, u64 start, u64 end)
497{
498	int rc;
499
500	mutex_lock(&va_range->lock);
501	rc = add_va_block_locked(hdev, &va_range->list, start, end);
502	mutex_unlock(&va_range->lock);
503
504	return rc;
505}
506
507/*
508 * get_va_block() - get a virtual block for the given size and alignment.
509 * @hdev: pointer to the habanalabs device structure.
510 * @va_range: pointer to the virtual addresses range.
511 * @size: requested block size.
512 * @hint_addr: hint for requested address by the user.
513 * @va_block_align: required alignment of the virtual block start address.
514 *
515 * This function does the following:
516 * - Iterate on the virtual block list to find a suitable virtual block for the
517 *   given size and alignment.
518 * - Reserve the requested block and update the list.
519 * - Return the start address of the virtual block.
520 */
521static u64 get_va_block(struct hl_device *hdev, struct hl_va_range *va_range,
522			u64 size, u64 hint_addr, u32 va_block_align)
523{
524	struct hl_vm_va_block *va_block, *new_va_block = NULL;
525	u64 valid_start, valid_size, prev_start, prev_end, align_mask,
526		res_valid_start = 0, res_valid_size = 0;
527	bool add_prev = false;
528
529	align_mask = ~((u64)va_block_align - 1);
530
531	/* check if hint_addr is aligned */
532	if (hint_addr & (va_block_align - 1))
533		hint_addr = 0;
534
535	mutex_lock(&va_range->lock);
536
537	print_va_list_locked(hdev, &va_range->list);
538
539	list_for_each_entry(va_block, &va_range->list, node) {
540		/* calc the first possible aligned addr */
541		valid_start = va_block->start;
542
543		if (valid_start & (va_block_align - 1)) {
544			valid_start &= align_mask;
545			valid_start += va_block_align;
546			if (valid_start > va_block->end)
547				continue;
548		}
549
550		valid_size = va_block->end - valid_start;
551
552		if (valid_size >= size &&
553			(!new_va_block || valid_size < res_valid_size)) {
554			new_va_block = va_block;
555			res_valid_start = valid_start;
556			res_valid_size = valid_size;
557		}
558
559		if (hint_addr && hint_addr >= valid_start &&
560				((hint_addr + size) <= va_block->end)) {
561			new_va_block = va_block;
562			res_valid_start = hint_addr;
563			res_valid_size = valid_size;
564			break;
565		}
566	}
567
568	if (!new_va_block) {
569		dev_err(hdev->dev, "no available va block for size %llu\n",
570				size);
571		goto out;
572	}
573
574	if (res_valid_start > new_va_block->start) {
575		prev_start = new_va_block->start;
576		prev_end = res_valid_start - 1;
577
578		new_va_block->start = res_valid_start;
579		new_va_block->size = res_valid_size;
580
581		add_prev = true;
582	}
583
584	if (new_va_block->size > size) {
585		new_va_block->start += size;
586		new_va_block->size = new_va_block->end - new_va_block->start;
587	} else {
588		list_del(&new_va_block->node);
589		kfree(new_va_block);
590	}
591
592	if (add_prev)
593		add_va_block_locked(hdev, &va_range->list, prev_start,
594				prev_end);
595
596	print_va_list_locked(hdev, &va_range->list);
597out:
598	mutex_unlock(&va_range->lock);
599
600	return res_valid_start;
601}
602
603/*
604 * get_sg_info - get number of pages and the DMA address from SG list
605 *
606 * @sg                 : the SG list
607 * @dma_addr           : pointer to DMA address to return
608 *
609 * Calculate the number of consecutive pages described by the SG list. Take the
610 * offset of the address in the first page, add to it the length and round it up
611 * to the number of needed pages.
612 */
613static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
614{
615	*dma_addr = sg_dma_address(sg);
616
617	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
618			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
619}
620
621/*
622 * init_phys_pg_pack_from_userptr - initialize physical page pack from host
623 *                                  memory
624 * @ctx: current context
625 * @userptr: userptr to initialize from
626 * @pphys_pg_pack: result pointer
627 *
628 * This function does the following:
629 * - Pin the physical pages related to the given virtual block
630 * - Create a physical page pack from the physical pages related to the given
631 *   virtual block
632 */
633static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
634				struct hl_userptr *userptr,
635				struct hl_vm_phys_pg_pack **pphys_pg_pack)
636{
637	struct hl_vm_phys_pg_pack *phys_pg_pack;
638	struct scatterlist *sg;
639	dma_addr_t dma_addr;
640	u64 page_mask, total_npages;
641	u32 npages, page_size = PAGE_SIZE,
642		huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
643	bool first = true, is_huge_page_opt = true;
644	int rc, i, j;
645	u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
646
647	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
648	if (!phys_pg_pack)
649		return -ENOMEM;
650
651	phys_pg_pack->vm_type = userptr->vm_type;
652	phys_pg_pack->created_from_userptr = true;
653	phys_pg_pack->asid = ctx->asid;
654	atomic_set(&phys_pg_pack->mapping_cnt, 1);
655
656	/* Only if all dma_addrs are aligned to 2MB and their
657	 * sizes is at least 2MB, we can use huge page mapping.
658	 * We limit the 2MB optimization to this condition,
659	 * since later on we acquire the related VA range as one
660	 * consecutive block.
661	 */
662	total_npages = 0;
663	for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
664		npages = get_sg_info(sg, &dma_addr);
665
666		total_npages += npages;
667
668		if ((npages % pgs_in_huge_page) ||
669					(dma_addr & (huge_page_size - 1)))
670			is_huge_page_opt = false;
671	}
672
673	if (is_huge_page_opt) {
674		page_size = huge_page_size;
675		do_div(total_npages, pgs_in_huge_page);
676	}
677
678	page_mask = ~(((u64) page_size) - 1);
679
680	phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
681						GFP_KERNEL);
682	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
683		rc = -ENOMEM;
684		goto page_pack_arr_mem_err;
685	}
686
687	phys_pg_pack->npages = total_npages;
688	phys_pg_pack->page_size = page_size;
689	phys_pg_pack->total_size = total_npages * page_size;
690
691	j = 0;
692	for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
693		npages = get_sg_info(sg, &dma_addr);
694
695		/* align down to physical page size and save the offset */
696		if (first) {
697			first = false;
698			phys_pg_pack->offset = dma_addr & (page_size - 1);
699			dma_addr &= page_mask;
700		}
701
702		while (npages) {
703			phys_pg_pack->pages[j++] = dma_addr;
704			dma_addr += page_size;
705
706			if (is_huge_page_opt)
707				npages -= pgs_in_huge_page;
708			else
709				npages--;
710		}
711	}
712
713	*pphys_pg_pack = phys_pg_pack;
714
715	return 0;
716
717page_pack_arr_mem_err:
718	kfree(phys_pg_pack);
719
720	return rc;
721}
722
723/*
724 * map_phys_pg_pack - maps the physical page pack.
725 * @ctx: current context
726 * @vaddr: start address of the virtual area to map from
727 * @phys_pg_pack: the pack of physical pages to map to
728 *
729 * This function does the following:
730 * - Maps each chunk of virtual memory to matching physical chunk
731 * - Stores number of successful mappings in the given argument
732 * - Returns 0 on success, error code otherwise
733 */
734static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
735				struct hl_vm_phys_pg_pack *phys_pg_pack)
736{
737	struct hl_device *hdev = ctx->hdev;
738	u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
739	u32 page_size = phys_pg_pack->page_size;
740	int rc = 0;
741
742	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
743		paddr = phys_pg_pack->pages[i];
744
745		rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size,
746				(i + 1) == phys_pg_pack->npages);
747		if (rc) {
748			dev_err(hdev->dev,
749				"map failed for handle %u, npages: %llu, mapped: %llu",
750				phys_pg_pack->handle, phys_pg_pack->npages,
751				mapped_pg_cnt);
752			goto err;
753		}
754
755		mapped_pg_cnt++;
756		next_vaddr += page_size;
757	}
758
759	return 0;
760
761err:
762	next_vaddr = vaddr;
763	for (i = 0 ; i < mapped_pg_cnt ; i++) {
764		if (hl_mmu_unmap(ctx, next_vaddr, page_size,
765					(i + 1) == mapped_pg_cnt))
766			dev_warn_ratelimited(hdev->dev,
767				"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
768					phys_pg_pack->handle, next_vaddr,
769					phys_pg_pack->pages[i], page_size);
770
771		next_vaddr += page_size;
772	}
773
774	return rc;
775}
776
777/*
778 * unmap_phys_pg_pack - unmaps the physical page pack
779 * @ctx: current context
780 * @vaddr: start address of the virtual area to unmap
781 * @phys_pg_pack: the pack of physical pages to unmap
782 */
783static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
784				struct hl_vm_phys_pg_pack *phys_pg_pack)
785{
786	struct hl_device *hdev = ctx->hdev;
787	u64 next_vaddr, i;
788	u32 page_size;
789
790	page_size = phys_pg_pack->page_size;
791	next_vaddr = vaddr;
792
793	for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
794		if (hl_mmu_unmap(ctx, next_vaddr, page_size,
795				       (i + 1) == phys_pg_pack->npages))
796			dev_warn_ratelimited(hdev->dev,
797			"unmap failed for vaddr: 0x%llx\n", next_vaddr);
798
799		/*
800		 * unmapping on Palladium can be really long, so avoid a CPU
801		 * soft lockup bug by sleeping a little between unmapping pages
802		 */
803		if (hdev->pldm)
804			usleep_range(500, 1000);
805	}
806}
807
808static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
809				u64 *paddr)
810{
811	struct hl_device *hdev = ctx->hdev;
812	struct hl_vm *vm = &hdev->vm;
813	struct hl_vm_phys_pg_pack *phys_pg_pack;
814	u32 handle;
815
816	handle = lower_32_bits(args->map_device.handle);
817	spin_lock(&vm->idr_lock);
818	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
819	if (!phys_pg_pack) {
820		spin_unlock(&vm->idr_lock);
821		dev_err(hdev->dev, "no match for handle %u\n", handle);
822		return -EINVAL;
823	}
824
825	*paddr = phys_pg_pack->pages[0];
826
827	spin_unlock(&vm->idr_lock);
828
829	return 0;
830}
831
832/*
833 * map_device_va - map the given memory
834 *
835 * @ctx	         : current context
836 * @args         : host parameters with handle/host virtual address
837 * @device_addr	 : pointer to result device virtual address
838 *
839 * This function does the following:
840 * - If given a physical device memory handle, map to a device virtual block
841 *   and return the start address of this block
842 * - If given a host virtual address and size, find the related physical pages,
843 *   map a device virtual block to this pages and return the start address of
844 *   this block
845 */
846static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
847		u64 *device_addr)
848{
849	struct hl_device *hdev = ctx->hdev;
850	struct hl_vm *vm = &hdev->vm;
851	struct hl_vm_phys_pg_pack *phys_pg_pack;
852	struct hl_userptr *userptr = NULL;
853	struct hl_vm_hash_node *hnode;
854	struct hl_va_range *va_range;
855	enum vm_type_t *vm_type;
856	u64 ret_vaddr, hint_addr;
857	u32 handle = 0, va_block_align;
858	int rc;
859	bool is_userptr = args->flags & HL_MEM_USERPTR;
860
861	/* Assume failure */
862	*device_addr = 0;
863
864	if (is_userptr) {
865		u64 addr = args->map_host.host_virt_addr,
866			size = args->map_host.mem_size;
867		u32 page_size = hdev->asic_prop.pmmu.page_size,
868			huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
869
870		rc = dma_map_host_va(hdev, addr, size, &userptr);
871		if (rc) {
872			dev_err(hdev->dev, "failed to get userptr from va\n");
873			return rc;
874		}
875
876		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
877				&phys_pg_pack);
878		if (rc) {
879			dev_err(hdev->dev,
880				"unable to init page pack for vaddr 0x%llx\n",
881				addr);
882			goto init_page_pack_err;
883		}
884
885		vm_type = (enum vm_type_t *) userptr;
886		hint_addr = args->map_host.hint_addr;
887		handle = phys_pg_pack->handle;
888
889		/* get required alignment */
890		if (phys_pg_pack->page_size == page_size) {
891			va_range = ctx->host_va_range;
892
893			/*
894			 * huge page alignment may be needed in case of regular
895			 * page mapping, depending on the host VA alignment
896			 */
897			if (addr & (huge_page_size - 1))
898				va_block_align = page_size;
899			else
900				va_block_align = huge_page_size;
901		} else {
902			/*
903			 * huge page alignment is needed in case of huge page
904			 * mapping
905			 */
906			va_range = ctx->host_huge_va_range;
907			va_block_align = huge_page_size;
908		}
909	} else {
910		handle = lower_32_bits(args->map_device.handle);
911
912		spin_lock(&vm->idr_lock);
913		phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
914		if (!phys_pg_pack) {
915			spin_unlock(&vm->idr_lock);
916			dev_err(hdev->dev,
917				"no match for handle %u\n", handle);
918			return -EINVAL;
919		}
920
921		/* increment now to avoid freeing device memory while mapping */
922		atomic_inc(&phys_pg_pack->mapping_cnt);
923
924		spin_unlock(&vm->idr_lock);
925
926		vm_type = (enum vm_type_t *) phys_pg_pack;
927
928		hint_addr = args->map_device.hint_addr;
929
930		/* DRAM VA alignment is the same as the DRAM page size */
931		va_range = ctx->dram_va_range;
932		va_block_align = hdev->asic_prop.dmmu.page_size;
933	}
934
935	/*
936	 * relevant for mapping device physical memory only, as host memory is
937	 * implicitly shared
938	 */
939	if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
940			phys_pg_pack->asid != ctx->asid) {
941		dev_err(hdev->dev,
942			"Failed to map memory, handle %u is not shared\n",
943			handle);
944		rc = -EPERM;
945		goto shared_err;
946	}
947
948	hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
949	if (!hnode) {
950		rc = -ENOMEM;
951		goto hnode_err;
952	}
953
954	ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
955					hint_addr, va_block_align);
956	if (!ret_vaddr) {
957		dev_err(hdev->dev, "no available va block for handle %u\n",
958				handle);
959		rc = -ENOMEM;
960		goto va_block_err;
961	}
962
963	mutex_lock(&ctx->mmu_lock);
964
965	rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
966	if (rc) {
967		mutex_unlock(&ctx->mmu_lock);
968		dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
969				handle);
970		goto map_err;
971	}
972
973	rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, false, *vm_type);
974
975	mutex_unlock(&ctx->mmu_lock);
976
977	if (rc) {
978		dev_err(hdev->dev,
979			"mapping handle %u failed due to MMU cache invalidation\n",
980			handle);
981		goto map_err;
982	}
983
984	ret_vaddr += phys_pg_pack->offset;
985
986	hnode->ptr = vm_type;
987	hnode->vaddr = ret_vaddr;
988
989	mutex_lock(&ctx->mem_hash_lock);
990	hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
991	mutex_unlock(&ctx->mem_hash_lock);
992
993	*device_addr = ret_vaddr;
994
995	if (is_userptr)
996		free_phys_pg_pack(hdev, phys_pg_pack);
997
998	return 0;
999
1000map_err:
1001	if (add_va_block(hdev, va_range, ret_vaddr,
1002				ret_vaddr + phys_pg_pack->total_size - 1))
1003		dev_warn(hdev->dev,
1004			"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1005				handle, ret_vaddr);
1006
1007va_block_err:
1008	kfree(hnode);
1009hnode_err:
1010shared_err:
1011	atomic_dec(&phys_pg_pack->mapping_cnt);
1012	if (is_userptr)
1013		free_phys_pg_pack(hdev, phys_pg_pack);
1014init_page_pack_err:
1015	if (is_userptr)
1016		dma_unmap_host_va(hdev, userptr);
1017
1018	return rc;
1019}
1020
1021/*
1022 * unmap_device_va      - unmap the given device virtual address
1023 *
1024 * @ctx                 : current context
1025 * @vaddr               : device virtual address to unmap
1026 * @ctx_free            : true if in context free flow, false otherwise.
1027 *
1028 * This function does the following:
1029 * - Unmap the physical pages related to the given virtual address
1030 * - return the device virtual block to the virtual block list
1031 */
1032static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr, bool ctx_free)
1033{
1034	struct hl_device *hdev = ctx->hdev;
1035	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1036	struct hl_vm_hash_node *hnode = NULL;
1037	struct hl_userptr *userptr = NULL;
1038	struct hl_va_range *va_range;
1039	enum vm_type_t *vm_type;
1040	bool is_userptr;
1041	int rc = 0;
1042
1043	/* protect from double entrance */
1044	mutex_lock(&ctx->mem_hash_lock);
1045	hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
1046		if (vaddr == hnode->vaddr)
1047			break;
1048
1049	if (!hnode) {
1050		mutex_unlock(&ctx->mem_hash_lock);
1051		dev_err(hdev->dev,
1052			"unmap failed, no mem hnode for vaddr 0x%llx\n",
1053			vaddr);
1054		return -EINVAL;
1055	}
1056
1057	hash_del(&hnode->node);
1058	mutex_unlock(&ctx->mem_hash_lock);
1059
1060	vm_type = hnode->ptr;
1061
1062	if (*vm_type == VM_TYPE_USERPTR) {
1063		is_userptr = true;
1064		userptr = hnode->ptr;
1065		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1066							&phys_pg_pack);
1067		if (rc) {
1068			dev_err(hdev->dev,
1069				"unable to init page pack for vaddr 0x%llx\n",
1070				vaddr);
1071			goto vm_type_err;
1072		}
1073
1074		if (phys_pg_pack->page_size ==
1075					hdev->asic_prop.pmmu.page_size)
1076			va_range = ctx->host_va_range;
1077		else
1078			va_range = ctx->host_huge_va_range;
1079	} else if (*vm_type == VM_TYPE_PHYS_PACK) {
1080		is_userptr = false;
1081		va_range = ctx->dram_va_range;
1082		phys_pg_pack = hnode->ptr;
1083	} else {
1084		dev_warn(hdev->dev,
1085			"unmap failed, unknown vm desc for vaddr 0x%llx\n",
1086				vaddr);
1087		rc = -EFAULT;
1088		goto vm_type_err;
1089	}
1090
1091	if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1092		dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1093		rc = -EINVAL;
1094		goto mapping_cnt_err;
1095	}
1096
1097	vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1098
1099	mutex_lock(&ctx->mmu_lock);
1100
1101	unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1102
1103	/*
1104	 * During context free this function is called in a loop to clean all
1105	 * the context mappings. Hence the cache invalidation can be called once
1106	 * at the loop end rather than for each iteration
1107	 */
1108	if (!ctx_free)
1109		rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, true,
1110								*vm_type);
1111
1112	mutex_unlock(&ctx->mmu_lock);
1113
1114	/*
1115	 * If the context is closing we don't need to check for the MMU cache
1116	 * invalidation return code and update the VA free list as in this flow
1117	 * we invalidate the MMU cache outside of this unmap function and the VA
1118	 * free list will be freed anyway.
1119	 */
1120	if (!ctx_free) {
1121		int tmp_rc;
1122
1123		if (rc)
1124			dev_err(hdev->dev,
1125				"unmapping vaddr 0x%llx failed due to MMU cache invalidation\n",
1126				vaddr);
1127
1128		tmp_rc = add_va_block(hdev, va_range, vaddr,
1129					vaddr + phys_pg_pack->total_size - 1);
1130		if (tmp_rc) {
1131			dev_warn(hdev->dev,
1132					"add va block failed for vaddr: 0x%llx\n",
1133					vaddr);
1134			if (!rc)
1135				rc = tmp_rc;
1136		}
1137	}
1138
1139	atomic_dec(&phys_pg_pack->mapping_cnt);
1140	kfree(hnode);
1141
1142	if (is_userptr) {
1143		free_phys_pg_pack(hdev, phys_pg_pack);
1144		dma_unmap_host_va(hdev, userptr);
1145	}
1146
1147	return rc;
1148
1149mapping_cnt_err:
1150	if (is_userptr)
1151		free_phys_pg_pack(hdev, phys_pg_pack);
1152vm_type_err:
1153	mutex_lock(&ctx->mem_hash_lock);
1154	hash_add(ctx->mem_hash, &hnode->node, vaddr);
1155	mutex_unlock(&ctx->mem_hash_lock);
1156
1157	return rc;
1158}
1159
1160static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
1161{
1162	struct hl_device *hdev = hpriv->hdev;
1163	struct hl_ctx *ctx = hpriv->ctx;
1164	u64 device_addr = 0;
1165	u32 handle = 0;
1166	int rc;
1167
1168	switch (args->in.op) {
1169	case HL_MEM_OP_ALLOC:
1170		if (args->in.alloc.mem_size == 0) {
1171			dev_err(hdev->dev,
1172				"alloc size must be larger than 0\n");
1173			rc = -EINVAL;
1174			goto out;
1175		}
1176
1177		/* Force contiguous as there are no real MMU
1178		 * translations to overcome physical memory gaps
1179		 */
1180		args->in.flags |= HL_MEM_CONTIGUOUS;
1181		rc = alloc_device_memory(ctx, &args->in, &handle);
1182
1183		memset(args, 0, sizeof(*args));
1184		args->out.handle = (__u64) handle;
1185		break;
1186
1187	case HL_MEM_OP_FREE:
1188		rc = free_device_memory(ctx, args->in.free.handle);
1189		break;
1190
1191	case HL_MEM_OP_MAP:
1192		if (args->in.flags & HL_MEM_USERPTR) {
1193			device_addr = args->in.map_host.host_virt_addr;
1194			rc = 0;
1195		} else {
1196			rc = get_paddr_from_handle(ctx, &args->in,
1197					&device_addr);
1198		}
1199
1200		memset(args, 0, sizeof(*args));
1201		args->out.device_virt_addr = device_addr;
1202		break;
1203
1204	case HL_MEM_OP_UNMAP:
1205		rc = 0;
1206		break;
1207
1208	default:
1209		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1210		rc = -ENOTTY;
1211		break;
1212	}
1213
1214out:
1215	return rc;
1216}
1217
1218int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
1219{
1220	union hl_mem_args *args = data;
1221	struct hl_device *hdev = hpriv->hdev;
1222	struct hl_ctx *ctx = hpriv->ctx;
1223	u64 device_addr = 0;
1224	u32 handle = 0;
1225	int rc;
1226
1227	if (hl_device_disabled_or_in_reset(hdev)) {
1228		dev_warn_ratelimited(hdev->dev,
1229			"Device is %s. Can't execute MEMORY IOCTL\n",
1230			atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
1231		return -EBUSY;
1232	}
1233
1234	if (!hdev->mmu_enable)
1235		return mem_ioctl_no_mmu(hpriv, args);
1236
1237	switch (args->in.op) {
1238	case HL_MEM_OP_ALLOC:
1239		if (!hdev->dram_supports_virtual_memory) {
1240			dev_err(hdev->dev, "DRAM alloc is not supported\n");
1241			rc = -EINVAL;
1242			goto out;
1243		}
1244
1245		if (args->in.alloc.mem_size == 0) {
1246			dev_err(hdev->dev,
1247				"alloc size must be larger than 0\n");
1248			rc = -EINVAL;
1249			goto out;
1250		}
1251		rc = alloc_device_memory(ctx, &args->in, &handle);
1252
1253		memset(args, 0, sizeof(*args));
1254		args->out.handle = (__u64) handle;
1255		break;
1256
1257	case HL_MEM_OP_FREE:
1258		rc = free_device_memory(ctx, args->in.free.handle);
1259		break;
1260
1261	case HL_MEM_OP_MAP:
1262		rc = map_device_va(ctx, &args->in, &device_addr);
1263
1264		memset(args, 0, sizeof(*args));
1265		args->out.device_virt_addr = device_addr;
1266		break;
1267
1268	case HL_MEM_OP_UNMAP:
1269		rc = unmap_device_va(ctx, args->in.unmap.device_virt_addr,
1270					false);
1271		break;
1272
1273	default:
1274		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1275		rc = -ENOTTY;
1276		break;
1277	}
1278
1279out:
1280	return rc;
1281}
1282
1283static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
1284				u32 npages, u64 start, u32 offset,
1285				struct hl_userptr *userptr)
1286{
1287	int rc;
1288
1289	if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1290		dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
1291		return -EFAULT;
1292	}
1293
1294	userptr->vec = frame_vector_create(npages);
1295	if (!userptr->vec) {
1296		dev_err(hdev->dev, "Failed to create frame vector\n");
1297		return -ENOMEM;
1298	}
1299
1300	rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
1301				userptr->vec);
1302
1303	if (rc != npages) {
1304		dev_err(hdev->dev,
1305			"Failed to map host memory, user ptr probably wrong\n");
1306		if (rc < 0)
1307			goto destroy_framevec;
1308		rc = -EFAULT;
1309		goto put_framevec;
1310	}
1311
1312	if (frame_vector_to_pages(userptr->vec) < 0) {
1313		dev_err(hdev->dev,
1314			"Failed to translate frame vector to pages\n");
1315		rc = -EFAULT;
1316		goto put_framevec;
1317	}
1318
1319	rc = sg_alloc_table_from_pages(userptr->sgt,
1320					frame_vector_pages(userptr->vec),
1321					npages, offset, size, GFP_ATOMIC);
1322	if (rc < 0) {
1323		dev_err(hdev->dev, "failed to create SG table from pages\n");
1324		goto put_framevec;
1325	}
1326
1327	return 0;
1328
1329put_framevec:
1330	put_vaddr_frames(userptr->vec);
1331destroy_framevec:
1332	frame_vector_destroy(userptr->vec);
1333	return rc;
1334}
1335
1336/*
1337 * hl_pin_host_memory - pins a chunk of host memory.
1338 * @hdev: pointer to the habanalabs device structure
1339 * @addr: the host virtual address of the memory area
1340 * @size: the size of the memory area
1341 * @userptr: pointer to hl_userptr structure
1342 *
1343 * This function does the following:
1344 * - Pins the physical pages
1345 * - Create an SG list from those pages
1346 */
1347int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1348					struct hl_userptr *userptr)
1349{
1350	u64 start, end;
1351	u32 npages, offset;
1352	int rc;
1353
1354	if (!size) {
1355		dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
1356		return -EINVAL;
1357	}
1358
1359	/*
1360	 * If the combination of the address and size requested for this memory
1361	 * region causes an integer overflow, return error.
1362	 */
1363	if (((addr + size) < addr) ||
1364			PAGE_ALIGN(addr + size) < (addr + size)) {
1365		dev_err(hdev->dev,
1366			"user pointer 0x%llx + %llu causes integer overflow\n",
1367			addr, size);
1368		return -EINVAL;
1369	}
1370
1371	/*
1372	 * This function can be called also from data path, hence use atomic
1373	 * always as it is not a big allocation.
1374	 */
1375	userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
1376	if (!userptr->sgt)
1377		return -ENOMEM;
1378
1379	start = addr & PAGE_MASK;
1380	offset = addr & ~PAGE_MASK;
1381	end = PAGE_ALIGN(addr + size);
1382	npages = (end - start) >> PAGE_SHIFT;
1383
1384	userptr->size = size;
1385	userptr->addr = addr;
1386	userptr->dma_mapped = false;
1387	INIT_LIST_HEAD(&userptr->job_node);
1388
1389	rc = get_user_memory(hdev, addr, size, npages, start, offset,
1390				userptr);
1391	if (rc) {
1392		dev_err(hdev->dev,
1393			"failed to get user memory for address 0x%llx\n",
1394			addr);
1395		goto free_sgt;
1396	}
1397
1398	hl_debugfs_add_userptr(hdev, userptr);
1399
1400	return 0;
1401
1402free_sgt:
1403	kfree(userptr->sgt);
1404	return rc;
1405}
1406
1407/*
1408 * hl_unpin_host_memory - unpins a chunk of host memory.
1409 * @hdev: pointer to the habanalabs device structure
1410 * @userptr: pointer to hl_userptr structure
1411 *
1412 * This function does the following:
1413 * - Unpins the physical pages related to the host memory
1414 * - Free the SG list
1415 */
1416void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
1417{
1418	struct page **pages;
1419
1420	hl_debugfs_remove_userptr(hdev, userptr);
1421
1422	if (userptr->dma_mapped)
1423		hdev->asic_funcs->hl_dma_unmap_sg(hdev, userptr->sgt->sgl,
1424							userptr->sgt->nents,
1425							userptr->dir);
1426
1427	pages = frame_vector_pages(userptr->vec);
1428	if (!IS_ERR(pages)) {
1429		int i;
1430
1431		for (i = 0; i < frame_vector_count(userptr->vec); i++)
1432			set_page_dirty_lock(pages[i]);
1433	}
1434	put_vaddr_frames(userptr->vec);
1435	frame_vector_destroy(userptr->vec);
1436
1437	list_del(&userptr->job_node);
1438
1439	sg_free_table(userptr->sgt);
1440	kfree(userptr->sgt);
1441}
1442
1443/*
1444 * hl_userptr_delete_list - clear userptr list
1445 *
1446 * @hdev                : pointer to the habanalabs device structure
1447 * @userptr_list        : pointer to the list to clear
1448 *
1449 * This function does the following:
1450 * - Iterates over the list and unpins the host memory and frees the userptr
1451 *   structure.
1452 */
1453void hl_userptr_delete_list(struct hl_device *hdev,
1454				struct list_head *userptr_list)
1455{
1456	struct hl_userptr *userptr, *tmp;
1457
1458	list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
1459		hl_unpin_host_memory(hdev, userptr);
1460		kfree(userptr);
1461	}
1462
1463	INIT_LIST_HEAD(userptr_list);
1464}
1465
1466/*
1467 * hl_userptr_is_pinned - returns whether the given userptr is pinned
1468 *
1469 * @hdev                : pointer to the habanalabs device structure
1470 * @userptr_list        : pointer to the list to clear
1471 * @userptr             : pointer to userptr to check
1472 *
1473 * This function does the following:
1474 * - Iterates over the list and checks if the given userptr is in it, means is
1475 *   pinned. If so, returns true, otherwise returns false.
1476 */
1477bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
1478				u32 size, struct list_head *userptr_list,
1479				struct hl_userptr **userptr)
1480{
1481	list_for_each_entry((*userptr), userptr_list, job_node) {
1482		if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
1483			return true;
1484	}
1485
1486	return false;
1487}
1488
1489/*
1490 * va_range_init - initialize virtual addresses range
1491 * @hdev: pointer to the habanalabs device structure
1492 * @va_range: pointer to the range to initialize
1493 * @start: range start address
1494 * @end: range end address
1495 *
1496 * This function does the following:
1497 * - Initializes the virtual addresses list of the given range with the given
1498 *   addresses.
1499 */
1500static int va_range_init(struct hl_device *hdev, struct hl_va_range *va_range,
1501				u64 start, u64 end)
1502{
1503	int rc;
1504
1505	INIT_LIST_HEAD(&va_range->list);
1506
1507	/* PAGE_SIZE alignment */
1508
1509	if (start & (PAGE_SIZE - 1)) {
1510		start &= PAGE_MASK;
1511		start += PAGE_SIZE;
1512	}
1513
1514	if (end & (PAGE_SIZE - 1))
1515		end &= PAGE_MASK;
1516
1517	if (start >= end) {
1518		dev_err(hdev->dev, "too small vm range for va list\n");
1519		return -EFAULT;
1520	}
1521
1522	rc = add_va_block(hdev, va_range, start, end);
1523
1524	if (rc) {
1525		dev_err(hdev->dev, "Failed to init host va list\n");
1526		return rc;
1527	}
1528
1529	va_range->start_addr = start;
1530	va_range->end_addr = end;
1531
1532	return 0;
1533}
1534
1535/*
1536 * va_range_fini() - clear a virtual addresses range
1537 * @hdev: pointer to the habanalabs structure
1538 * va_range: pointer to virtual addresses range
1539 *
1540 * This function does the following:
1541 * - Frees the virtual addresses block list and its lock
1542 */
1543static void va_range_fini(struct hl_device *hdev,
1544		struct hl_va_range *va_range)
1545{
1546	mutex_lock(&va_range->lock);
1547	clear_va_list_locked(hdev, &va_range->list);
1548	mutex_unlock(&va_range->lock);
1549
1550	mutex_destroy(&va_range->lock);
1551	kfree(va_range);
1552}
1553
1554/*
1555 * vm_ctx_init_with_ranges() - initialize virtual memory for context
1556 * @ctx: pointer to the habanalabs context structure
1557 * @host_range_start: host virtual addresses range start.
1558 * @host_range_end: host virtual addresses range end.
1559 * @host_huge_range_start: host virtual addresses range start for memory
1560 *                          allocated with huge pages.
1561 * @host_huge_range_end: host virtual addresses range end for memory allocated
1562 *                        with huge pages.
1563 * @dram_range_start: dram virtual addresses range start.
1564 * @dram_range_end: dram virtual addresses range end.
1565 *
1566 * This function initializes the following:
1567 * - MMU for context
1568 * - Virtual address to area descriptor hashtable
1569 * - Virtual block list of available virtual memory
1570 */
1571static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
1572					u64 host_range_start,
1573					u64 host_range_end,
1574					u64 host_huge_range_start,
1575					u64 host_huge_range_end,
1576					u64 dram_range_start,
1577					u64 dram_range_end)
1578{
1579	struct hl_device *hdev = ctx->hdev;
1580	int rc;
1581
1582	ctx->host_va_range = kzalloc(sizeof(*ctx->host_va_range), GFP_KERNEL);
1583	if (!ctx->host_va_range)
1584		return -ENOMEM;
1585
1586	ctx->host_huge_va_range = kzalloc(sizeof(*ctx->host_huge_va_range),
1587						GFP_KERNEL);
1588	if (!ctx->host_huge_va_range) {
1589		rc =  -ENOMEM;
1590		goto host_huge_va_range_err;
1591	}
1592
1593	ctx->dram_va_range = kzalloc(sizeof(*ctx->dram_va_range), GFP_KERNEL);
1594	if (!ctx->dram_va_range) {
1595		rc = -ENOMEM;
1596		goto dram_va_range_err;
1597	}
1598
1599	rc = hl_mmu_ctx_init(ctx);
1600	if (rc) {
1601		dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
1602		goto mmu_ctx_err;
1603	}
1604
1605	mutex_init(&ctx->mem_hash_lock);
1606	hash_init(ctx->mem_hash);
1607
1608	mutex_init(&ctx->host_va_range->lock);
1609
1610	rc = va_range_init(hdev, ctx->host_va_range, host_range_start,
1611				host_range_end);
1612	if (rc) {
1613		dev_err(hdev->dev, "failed to init host vm range\n");
1614		goto host_page_range_err;
1615	}
1616
1617	if (hdev->pmmu_huge_range) {
1618		mutex_init(&ctx->host_huge_va_range->lock);
1619
1620		rc = va_range_init(hdev, ctx->host_huge_va_range,
1621					host_huge_range_start,
1622					host_huge_range_end);
1623		if (rc) {
1624			dev_err(hdev->dev,
1625				"failed to init host huge vm range\n");
1626			goto host_hpage_range_err;
1627		}
1628	} else {
1629		kfree(ctx->host_huge_va_range);
1630		ctx->host_huge_va_range = ctx->host_va_range;
1631	}
1632
1633	mutex_init(&ctx->dram_va_range->lock);
1634
1635	rc = va_range_init(hdev, ctx->dram_va_range, dram_range_start,
1636			dram_range_end);
1637	if (rc) {
1638		dev_err(hdev->dev, "failed to init dram vm range\n");
1639		goto dram_vm_err;
1640	}
1641
1642	hl_debugfs_add_ctx_mem_hash(hdev, ctx);
1643
1644	return 0;
1645
1646dram_vm_err:
1647	mutex_destroy(&ctx->dram_va_range->lock);
1648
1649	if (hdev->pmmu_huge_range) {
1650		mutex_lock(&ctx->host_huge_va_range->lock);
1651		clear_va_list_locked(hdev, &ctx->host_huge_va_range->list);
1652		mutex_unlock(&ctx->host_huge_va_range->lock);
1653	}
1654host_hpage_range_err:
1655	if (hdev->pmmu_huge_range)
1656		mutex_destroy(&ctx->host_huge_va_range->lock);
1657	mutex_lock(&ctx->host_va_range->lock);
1658	clear_va_list_locked(hdev, &ctx->host_va_range->list);
1659	mutex_unlock(&ctx->host_va_range->lock);
1660host_page_range_err:
1661	mutex_destroy(&ctx->host_va_range->lock);
1662	mutex_destroy(&ctx->mem_hash_lock);
1663	hl_mmu_ctx_fini(ctx);
1664mmu_ctx_err:
1665	kfree(ctx->dram_va_range);
1666dram_va_range_err:
1667	kfree(ctx->host_huge_va_range);
1668host_huge_va_range_err:
1669	kfree(ctx->host_va_range);
1670
1671	return rc;
1672}
1673
1674int hl_vm_ctx_init(struct hl_ctx *ctx)
1675{
1676	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
1677	u64 host_range_start, host_range_end, host_huge_range_start,
1678		host_huge_range_end, dram_range_start, dram_range_end;
1679
1680	atomic64_set(&ctx->dram_phys_mem, 0);
1681
1682	/*
1683	 * - If MMU is enabled, init the ranges as usual.
1684	 * - If MMU is disabled, in case of host mapping, the returned address
1685	 *   is the given one.
1686	 *   In case of DRAM mapping, the returned address is the physical
1687	 *   address of the memory related to the given handle.
1688	 */
1689	if (ctx->hdev->mmu_enable) {
1690		dram_range_start = prop->dmmu.start_addr;
1691		dram_range_end = prop->dmmu.end_addr;
1692		host_range_start = prop->pmmu.start_addr;
1693		host_range_end = prop->pmmu.end_addr;
1694		host_huge_range_start = prop->pmmu_huge.start_addr;
1695		host_huge_range_end = prop->pmmu_huge.end_addr;
1696	} else {
1697		dram_range_start = prop->dram_user_base_address;
1698		dram_range_end = prop->dram_end_address;
1699		host_range_start = prop->dram_user_base_address;
1700		host_range_end = prop->dram_end_address;
1701		host_huge_range_start = prop->dram_user_base_address;
1702		host_huge_range_end = prop->dram_end_address;
1703	}
1704
1705	return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
1706					host_huge_range_start,
1707					host_huge_range_end,
1708					dram_range_start,
1709					dram_range_end);
1710}
1711
1712/*
1713 * hl_vm_ctx_fini       - virtual memory teardown of context
1714 *
1715 * @ctx                 : pointer to the habanalabs context structure
1716 *
1717 * This function perform teardown the following:
1718 * - Virtual block list of available virtual memory
1719 * - Virtual address to area descriptor hashtable
1720 * - MMU for context
1721 *
1722 * In addition this function does the following:
1723 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
1724 *   hashtable should be empty as no valid mappings should exist at this
1725 *   point.
1726 * - Frees any existing physical page list from the idr which relates to the
1727 *   current context asid.
1728 * - This function checks the virtual block list for correctness. At this point
1729 *   the list should contain one element which describes the whole virtual
1730 *   memory range of the context. Otherwise, a warning is printed.
1731 */
1732void hl_vm_ctx_fini(struct hl_ctx *ctx)
1733{
1734	struct hl_device *hdev = ctx->hdev;
1735	struct hl_vm *vm = &hdev->vm;
1736	struct hl_vm_phys_pg_pack *phys_pg_list;
1737	struct hl_vm_hash_node *hnode;
1738	struct hlist_node *tmp_node;
1739	int i;
1740
1741	hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
1742
1743	/*
1744	 * Clearly something went wrong on hard reset so no point in printing
1745	 * another side effect error
1746	 */
1747	if (!hdev->hard_reset_pending && !hash_empty(ctx->mem_hash))
1748		dev_notice(hdev->dev,
1749			"user released device without removing its memory mappings\n");
1750
1751	hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
1752		dev_dbg(hdev->dev,
1753			"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
1754			hnode->vaddr, ctx->asid);
1755		unmap_device_va(ctx, hnode->vaddr, true);
1756	}
1757
1758	/* invalidate the cache once after the unmapping loop */
1759	hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
1760	hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_PHYS_PACK);
1761
1762	spin_lock(&vm->idr_lock);
1763	idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
1764		if (phys_pg_list->asid == ctx->asid) {
1765			dev_dbg(hdev->dev,
1766				"page list 0x%px of asid %d is still alive\n",
1767				phys_pg_list, ctx->asid);
1768			atomic64_sub(phys_pg_list->total_size,
1769					&hdev->dram_used_mem);
1770			free_phys_pg_pack(hdev, phys_pg_list);
1771			idr_remove(&vm->phys_pg_pack_handles, i);
1772		}
1773	spin_unlock(&vm->idr_lock);
1774
1775	va_range_fini(hdev, ctx->dram_va_range);
1776	if (hdev->pmmu_huge_range)
1777		va_range_fini(hdev, ctx->host_huge_va_range);
1778	va_range_fini(hdev, ctx->host_va_range);
1779
1780	mutex_destroy(&ctx->mem_hash_lock);
1781	hl_mmu_ctx_fini(ctx);
1782}
1783
1784/*
1785 * hl_vm_init           - initialize virtual memory module
1786 *
1787 * @hdev                : pointer to the habanalabs device structure
1788 *
1789 * This function initializes the following:
1790 * - MMU module
1791 * - DRAM physical pages pool of 2MB
1792 * - Idr for device memory allocation handles
1793 */
1794int hl_vm_init(struct hl_device *hdev)
1795{
1796	struct asic_fixed_properties *prop = &hdev->asic_prop;
1797	struct hl_vm *vm = &hdev->vm;
1798	int rc;
1799
1800	vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
1801	if (!vm->dram_pg_pool) {
1802		dev_err(hdev->dev, "Failed to create dram page pool\n");
1803		return -ENOMEM;
1804	}
1805
1806	kref_init(&vm->dram_pg_pool_refcount);
1807
1808	rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
1809			prop->dram_end_address - prop->dram_user_base_address,
1810			-1);
1811
1812	if (rc) {
1813		dev_err(hdev->dev,
1814			"Failed to add memory to dram page pool %d\n", rc);
1815		goto pool_add_err;
1816	}
1817
1818	spin_lock_init(&vm->idr_lock);
1819	idr_init(&vm->phys_pg_pack_handles);
1820
1821	atomic64_set(&hdev->dram_used_mem, 0);
1822
1823	vm->init_done = true;
1824
1825	return 0;
1826
1827pool_add_err:
1828	gen_pool_destroy(vm->dram_pg_pool);
1829
1830	return rc;
1831}
1832
1833/*
1834 * hl_vm_fini           - virtual memory module teardown
1835 *
1836 * @hdev                : pointer to the habanalabs device structure
1837 *
1838 * This function perform teardown to the following:
1839 * - Idr for device memory allocation handles
1840 * - DRAM physical pages pool of 2MB
1841 * - MMU module
1842 */
1843void hl_vm_fini(struct hl_device *hdev)
1844{
1845	struct hl_vm *vm = &hdev->vm;
1846
1847	if (!vm->init_done)
1848		return;
1849
1850	/*
1851	 * At this point all the contexts should be freed and hence no DRAM
1852	 * memory should be in use. Hence the DRAM pool should be freed here.
1853	 */
1854	if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
1855		dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
1856				__func__);
1857
1858	vm->init_done = false;
1859}
1860