1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8#include "habanalabs.h"
9
10#include <linux/slab.h>
11
12/*
13 * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14 *
15 * @ptr: the current pi/ci value
16 * @val: the amount to add
17 *
18 * Add val to ptr. It can go until twice the queue length.
19 */
20inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21{
22	ptr += val;
23	ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24	return ptr;
25}
26static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27{
28	return atomic_read(ci) & ((queue_len << 1) - 1);
29}
30
31static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32{
33	int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34
35	if (delta >= 0)
36		return (queue_len - delta);
37	else
38		return (abs(delta) - queue_len);
39}
40
41void hl_int_hw_queue_update_ci(struct hl_cs *cs)
42{
43	struct hl_device *hdev = cs->ctx->hdev;
44	struct hl_hw_queue *q;
45	int i;
46
47	if (hdev->disabled)
48		return;
49
50	q = &hdev->kernel_queues[0];
51	for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
52		if (q->queue_type == QUEUE_TYPE_INT)
53			atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
54	}
55}
56
57/*
58 * ext_and_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
59 *                                H/W queue.
60 * @hdev: pointer to habanalabs device structure
61 * @q: pointer to habanalabs queue structure
62 * @ctl: BD's control word
63 * @len: BD's length
64 * @ptr: BD's pointer
65 *
66 * This function assumes there is enough space on the queue to submit a new
67 * BD to it. It initializes the next BD and calls the device specific
68 * function to set the pi (and doorbell)
69 *
70 * This function must be called when the scheduler mutex is taken
71 *
72 */
73static void ext_and_hw_queue_submit_bd(struct hl_device *hdev,
74			struct hl_hw_queue *q, u32 ctl, u32 len, u64 ptr)
75{
76	struct hl_bd *bd;
77
78	bd = q->kernel_address;
79	bd += hl_pi_2_offset(q->pi);
80	bd->ctl = cpu_to_le32(ctl);
81	bd->len = cpu_to_le32(len);
82	bd->ptr = cpu_to_le64(ptr);
83
84	q->pi = hl_queue_inc_ptr(q->pi);
85	hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
86}
87
88/*
89 * ext_queue_sanity_checks - perform some sanity checks on external queue
90 *
91 * @hdev              : pointer to hl_device structure
92 * @q                 :	pointer to hl_hw_queue structure
93 * @num_of_entries    : how many entries to check for space
94 * @reserve_cq_entry  :	whether to reserve an entry in the cq
95 *
96 * H/W queues spinlock should be taken before calling this function
97 *
98 * Perform the following:
99 * - Make sure we have enough space in the h/w queue
100 * - Make sure we have enough space in the completion queue
101 * - Reserve space in the completion queue (needs to be reversed if there
102 *   is a failure down the road before the actual submission of work). Only
103 *   do this action if reserve_cq_entry is true
104 *
105 */
106static int ext_queue_sanity_checks(struct hl_device *hdev,
107				struct hl_hw_queue *q, int num_of_entries,
108				bool reserve_cq_entry)
109{
110	atomic_t *free_slots =
111			&hdev->completion_queue[q->cq_id].free_slots_cnt;
112	int free_slots_cnt;
113
114	/* Check we have enough space in the queue */
115	free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
116
117	if (free_slots_cnt < num_of_entries) {
118		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
119			q->hw_queue_id, num_of_entries);
120		return -EAGAIN;
121	}
122
123	if (reserve_cq_entry) {
124		/*
125		 * Check we have enough space in the completion queue
126		 * Add -1 to counter (decrement) unless counter was already 0
127		 * In that case, CQ is full so we can't submit a new CB because
128		 * we won't get ack on its completion
129		 * atomic_add_unless will return 0 if counter was already 0
130		 */
131		if (atomic_add_negative(num_of_entries * -1, free_slots)) {
132			dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
133				num_of_entries, q->hw_queue_id);
134			atomic_add(num_of_entries, free_slots);
135			return -EAGAIN;
136		}
137	}
138
139	return 0;
140}
141
142/*
143 * int_queue_sanity_checks - perform some sanity checks on internal queue
144 *
145 * @hdev              : pointer to hl_device structure
146 * @q                 :	pointer to hl_hw_queue structure
147 * @num_of_entries    : how many entries to check for space
148 *
149 * H/W queues spinlock should be taken before calling this function
150 *
151 * Perform the following:
152 * - Make sure we have enough space in the h/w queue
153 *
154 */
155static int int_queue_sanity_checks(struct hl_device *hdev,
156					struct hl_hw_queue *q,
157					int num_of_entries)
158{
159	int free_slots_cnt;
160
161	if (num_of_entries > q->int_queue_len) {
162		dev_err(hdev->dev,
163			"Cannot populate queue %u with %u jobs\n",
164			q->hw_queue_id, num_of_entries);
165		return -ENOMEM;
166	}
167
168	/* Check we have enough space in the queue */
169	free_slots_cnt = queue_free_slots(q, q->int_queue_len);
170
171	if (free_slots_cnt < num_of_entries) {
172		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
173			q->hw_queue_id, num_of_entries);
174		return -EAGAIN;
175	}
176
177	return 0;
178}
179
180/*
181 * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
182 * @hdev: Pointer to hl_device structure.
183 * @q: Pointer to hl_hw_queue structure.
184 * @num_of_entries: How many entries to check for space.
185 *
186 * Notice: We do not reserve queue entries so this function mustn't be called
187 *         more than once per CS for the same queue
188 *
189 */
190static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
191					int num_of_entries)
192{
193	int free_slots_cnt;
194
195	/* Check we have enough space in the queue */
196	free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
197
198	if (free_slots_cnt < num_of_entries) {
199		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
200			q->hw_queue_id, num_of_entries);
201		return -EAGAIN;
202	}
203
204	return 0;
205}
206
207/*
208 * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
209 *
210 * @hdev: pointer to hl_device structure
211 * @hw_queue_id: Queue's type
212 * @cb_size: size of CB
213 * @cb_ptr: pointer to CB location
214 *
215 * This function sends a single CB, that must NOT generate a completion entry
216 *
217 */
218int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
219				u32 cb_size, u64 cb_ptr)
220{
221	struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
222	int rc = 0;
223
224	/*
225	 * The CPU queue is a synchronous queue with an effective depth of
226	 * a single entry (although it is allocated with room for multiple
227	 * entries). Therefore, there is a different lock, called
228	 * send_cpu_message_lock, that serializes accesses to the CPU queue.
229	 * As a result, we don't need to lock the access to the entire H/W
230	 * queues module when submitting a JOB to the CPU queue
231	 */
232	if (q->queue_type != QUEUE_TYPE_CPU)
233		hdev->asic_funcs->hw_queues_lock(hdev);
234
235	if (hdev->disabled) {
236		rc = -EPERM;
237		goto out;
238	}
239
240	/*
241	 * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
242	 * type only on init phase, when the queues are empty and being tested,
243	 * so there is no need for sanity checks.
244	 */
245	if (q->queue_type != QUEUE_TYPE_HW) {
246		rc = ext_queue_sanity_checks(hdev, q, 1, false);
247		if (rc)
248			goto out;
249	}
250
251	ext_and_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
252
253out:
254	if (q->queue_type != QUEUE_TYPE_CPU)
255		hdev->asic_funcs->hw_queues_unlock(hdev);
256
257	return rc;
258}
259
260/*
261 * ext_queue_schedule_job - submit a JOB to an external queue
262 *
263 * @job: pointer to the job that needs to be submitted to the queue
264 *
265 * This function must be called when the scheduler mutex is taken
266 *
267 */
268static void ext_queue_schedule_job(struct hl_cs_job *job)
269{
270	struct hl_device *hdev = job->cs->ctx->hdev;
271	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
272	struct hl_cq_entry cq_pkt;
273	struct hl_cq *cq;
274	u64 cq_addr;
275	struct hl_cb *cb;
276	u32 ctl;
277	u32 len;
278	u64 ptr;
279
280	/*
281	 * Update the JOB ID inside the BD CTL so the device would know what
282	 * to write in the completion queue
283	 */
284	ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
285
286	cb = job->patched_cb;
287	len = job->job_cb_size;
288	ptr = cb->bus_address;
289
290	cq_pkt.data = cpu_to_le32(
291			((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
292				& CQ_ENTRY_SHADOW_INDEX_MASK) |
293			FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
294			FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
295
296	/*
297	 * No need to protect pi_offset because scheduling to the
298	 * H/W queues is done under the scheduler mutex
299	 *
300	 * No need to check if CQ is full because it was already
301	 * checked in ext_queue_sanity_checks
302	 */
303	cq = &hdev->completion_queue[q->cq_id];
304	cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
305
306	hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
307						cq_addr,
308						le32_to_cpu(cq_pkt.data),
309						q->msi_vec,
310						job->contains_dma_pkt);
311
312	q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
313
314	cq->pi = hl_cq_inc_ptr(cq->pi);
315
316	ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
317}
318
319/*
320 * int_queue_schedule_job - submit a JOB to an internal queue
321 *
322 * @job: pointer to the job that needs to be submitted to the queue
323 *
324 * This function must be called when the scheduler mutex is taken
325 *
326 */
327static void int_queue_schedule_job(struct hl_cs_job *job)
328{
329	struct hl_device *hdev = job->cs->ctx->hdev;
330	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
331	struct hl_bd bd;
332	__le64 *pi;
333
334	bd.ctl = 0;
335	bd.len = cpu_to_le32(job->job_cb_size);
336	bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
337
338	pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
339
340	q->pi++;
341	q->pi &= ((q->int_queue_len << 1) - 1);
342
343	hdev->asic_funcs->pqe_write(hdev, pi, &bd);
344
345	hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
346}
347
348/*
349 * hw_queue_schedule_job - submit a JOB to a H/W queue
350 *
351 * @job: pointer to the job that needs to be submitted to the queue
352 *
353 * This function must be called when the scheduler mutex is taken
354 *
355 */
356static void hw_queue_schedule_job(struct hl_cs_job *job)
357{
358	struct hl_device *hdev = job->cs->ctx->hdev;
359	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
360	u64 ptr;
361	u32 offset, ctl, len;
362
363	/*
364	 * Upon PQE completion, COMP_DATA is used as the write data to the
365	 * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
366	 * write address offset in the SM block (QMAN LBW message).
367	 * The write address offset is calculated as "COMP_OFFSET << 2".
368	 */
369	offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
370	ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
371		((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
372
373	len = job->job_cb_size;
374
375	/*
376	 * A patched CB is created only if a user CB was allocated by driver and
377	 * MMU is disabled. If MMU is enabled, the user CB should be used
378	 * instead. If the user CB wasn't allocated by driver, assume that it
379	 * holds an address.
380	 */
381	if (job->patched_cb)
382		ptr = job->patched_cb->bus_address;
383	else if (job->is_kernel_allocated_cb)
384		ptr = job->user_cb->bus_address;
385	else
386		ptr = (u64) (uintptr_t) job->user_cb;
387
388	ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
389}
390
391/*
392 * init_signal_wait_cs - initialize a signal/wait CS
393 * @cs: pointer to the signal/wait CS
394 *
395 * H/W queues spinlock should be taken before calling this function
396 */
397static void init_signal_wait_cs(struct hl_cs *cs)
398{
399	struct hl_ctx *ctx = cs->ctx;
400	struct hl_device *hdev = ctx->hdev;
401	struct hl_hw_queue *hw_queue;
402	struct hl_cs_compl *cs_cmpl =
403			container_of(cs->fence, struct hl_cs_compl, base_fence);
404
405	struct hl_hw_sob *hw_sob;
406	struct hl_cs_job *job;
407	u32 q_idx;
408
409	/* There is only one job in a signal/wait CS */
410	job = list_first_entry(&cs->job_list, struct hl_cs_job,
411				cs_node);
412	q_idx = job->hw_queue_id;
413	hw_queue = &hdev->kernel_queues[q_idx];
414
415	if (cs->type & CS_TYPE_SIGNAL) {
416		hw_sob = &hw_queue->hw_sob[hw_queue->curr_sob_offset];
417
418		cs_cmpl->hw_sob = hw_sob;
419		cs_cmpl->sob_val = hw_queue->next_sob_val++;
420
421		dev_dbg(hdev->dev,
422			"generate signal CB, sob_id: %d, sob val: 0x%x, q_idx: %d\n",
423			cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx);
424
425		hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
426					cs_cmpl->hw_sob->sob_id);
427
428		kref_get(&hw_sob->kref);
429
430		/* check for wraparound */
431		if (hw_queue->next_sob_val == HL_MAX_SOB_VAL) {
432			/*
433			 * Decrement as we reached the max value.
434			 * The release function won't be called here as we've
435			 * just incremented the refcount.
436			 */
437			kref_put(&hw_sob->kref, hl_sob_reset_error);
438			hw_queue->next_sob_val = 1;
439			/* only two SOBs are currently in use */
440			hw_queue->curr_sob_offset =
441					(hw_queue->curr_sob_offset + 1) %
442						HL_RSVD_SOBS_IN_USE;
443
444			dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
445					hw_queue->curr_sob_offset, q_idx);
446		}
447	} else if (cs->type & CS_TYPE_WAIT) {
448		struct hl_cs_compl *signal_cs_cmpl;
449
450		signal_cs_cmpl = container_of(cs->signal_fence,
451						struct hl_cs_compl,
452						base_fence);
453
454		/* copy the the SOB id and value of the signal CS */
455		cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
456		cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
457
458		dev_dbg(hdev->dev,
459			"generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d\n",
460			cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
461			hw_queue->base_mon_id, q_idx);
462
463		hdev->asic_funcs->gen_wait_cb(hdev, job->patched_cb,
464						cs_cmpl->hw_sob->sob_id,
465						cs_cmpl->sob_val,
466						hw_queue->base_mon_id,
467						q_idx);
468
469		kref_get(&cs_cmpl->hw_sob->kref);
470		/*
471		 * Must put the signal fence after the SOB refcnt increment so
472		 * the SOB refcnt won't turn 0 and reset the SOB before the
473		 * wait CS was submitted.
474		 */
475		mb();
476		hl_fence_put(cs->signal_fence);
477		cs->signal_fence = NULL;
478	}
479}
480
481/*
482 * hl_hw_queue_schedule_cs - schedule a command submission
483 * @cs: pointer to the CS
484 */
485int hl_hw_queue_schedule_cs(struct hl_cs *cs)
486{
487	struct hl_ctx *ctx = cs->ctx;
488	struct hl_device *hdev = ctx->hdev;
489	struct hl_cs_job *job, *tmp;
490	struct hl_hw_queue *q;
491	u32 max_queues;
492	int rc = 0, i, cq_cnt;
493
494	hdev->asic_funcs->hw_queues_lock(hdev);
495
496	if (hl_device_disabled_or_in_reset(hdev)) {
497		ctx->cs_counters.device_in_reset_drop_cnt++;
498		dev_err(hdev->dev,
499			"device is disabled or in reset, CS rejected!\n");
500		rc = -EPERM;
501		goto out;
502	}
503
504	max_queues = hdev->asic_prop.max_queues;
505
506	q = &hdev->kernel_queues[0];
507	for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
508		if (cs->jobs_in_queue_cnt[i]) {
509			switch (q->queue_type) {
510			case QUEUE_TYPE_EXT:
511				rc = ext_queue_sanity_checks(hdev, q,
512						cs->jobs_in_queue_cnt[i], true);
513				break;
514			case QUEUE_TYPE_INT:
515				rc = int_queue_sanity_checks(hdev, q,
516						cs->jobs_in_queue_cnt[i]);
517				break;
518			case QUEUE_TYPE_HW:
519				rc = hw_queue_sanity_checks(hdev, q,
520						cs->jobs_in_queue_cnt[i]);
521				break;
522			default:
523				dev_err(hdev->dev, "Queue type %d is invalid\n",
524					q->queue_type);
525				rc = -EINVAL;
526				break;
527			}
528
529			if (rc) {
530				ctx->cs_counters.queue_full_drop_cnt++;
531				goto unroll_cq_resv;
532			}
533
534			if (q->queue_type == QUEUE_TYPE_EXT)
535				cq_cnt++;
536		}
537	}
538
539	if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT))
540		init_signal_wait_cs(cs);
541
542	spin_lock(&hdev->hw_queues_mirror_lock);
543	list_add_tail(&cs->mirror_node, &hdev->hw_queues_mirror_list);
544
545	/* Queue TDR if the CS is the first entry and if timeout is wanted */
546	if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
547			(list_first_entry(&hdev->hw_queues_mirror_list,
548					struct hl_cs, mirror_node) == cs)) {
549		cs->tdr_active = true;
550		schedule_delayed_work(&cs->work_tdr, hdev->timeout_jiffies);
551		spin_unlock(&hdev->hw_queues_mirror_lock);
552	} else {
553		spin_unlock(&hdev->hw_queues_mirror_lock);
554	}
555
556	if (!hdev->cs_active_cnt++) {
557		struct hl_device_idle_busy_ts *ts;
558
559		ts = &hdev->idle_busy_ts_arr[hdev->idle_busy_ts_idx];
560		ts->busy_to_idle_ts = ktime_set(0, 0);
561		ts->idle_to_busy_ts = ktime_get();
562	}
563
564	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
565		switch (job->queue_type) {
566		case QUEUE_TYPE_EXT:
567			ext_queue_schedule_job(job);
568			break;
569		case QUEUE_TYPE_INT:
570			int_queue_schedule_job(job);
571			break;
572		case QUEUE_TYPE_HW:
573			hw_queue_schedule_job(job);
574			break;
575		default:
576			break;
577		}
578
579	cs->submitted = true;
580
581	goto out;
582
583unroll_cq_resv:
584	q = &hdev->kernel_queues[0];
585	for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
586		if ((q->queue_type == QUEUE_TYPE_EXT) &&
587						(cs->jobs_in_queue_cnt[i])) {
588			atomic_t *free_slots =
589				&hdev->completion_queue[i].free_slots_cnt;
590			atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
591			cq_cnt--;
592		}
593	}
594
595out:
596	hdev->asic_funcs->hw_queues_unlock(hdev);
597
598	return rc;
599}
600
601/*
602 * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
603 *
604 * @hdev: pointer to hl_device structure
605 * @hw_queue_id: which queue to increment its ci
606 */
607void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
608{
609	struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
610
611	atomic_inc(&q->ci);
612}
613
614static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
615					bool is_cpu_queue)
616{
617	void *p;
618	int rc;
619
620	if (is_cpu_queue)
621		p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
622							HL_QUEUE_SIZE_IN_BYTES,
623							&q->bus_address);
624	else
625		p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
626						HL_QUEUE_SIZE_IN_BYTES,
627						&q->bus_address,
628						GFP_KERNEL | __GFP_ZERO);
629	if (!p)
630		return -ENOMEM;
631
632	q->kernel_address = p;
633
634	q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
635					sizeof(*q->shadow_queue),
636					GFP_KERNEL);
637	if (!q->shadow_queue) {
638		dev_err(hdev->dev,
639			"Failed to allocate shadow queue for H/W queue %d\n",
640			q->hw_queue_id);
641		rc = -ENOMEM;
642		goto free_queue;
643	}
644
645	/* Make sure read/write pointers are initialized to start of queue */
646	atomic_set(&q->ci, 0);
647	q->pi = 0;
648
649	return 0;
650
651free_queue:
652	if (is_cpu_queue)
653		hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
654					HL_QUEUE_SIZE_IN_BYTES,
655					q->kernel_address);
656	else
657		hdev->asic_funcs->asic_dma_free_coherent(hdev,
658					HL_QUEUE_SIZE_IN_BYTES,
659					q->kernel_address,
660					q->bus_address);
661
662	return rc;
663}
664
665static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
666{
667	void *p;
668
669	p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
670					&q->bus_address, &q->int_queue_len);
671	if (!p) {
672		dev_err(hdev->dev,
673			"Failed to get base address for internal queue %d\n",
674			q->hw_queue_id);
675		return -EFAULT;
676	}
677
678	q->kernel_address = p;
679	q->pi = 0;
680	atomic_set(&q->ci, 0);
681
682	return 0;
683}
684
685static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
686{
687	return ext_and_cpu_queue_init(hdev, q, true);
688}
689
690static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
691{
692	return ext_and_cpu_queue_init(hdev, q, false);
693}
694
695static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
696{
697	void *p;
698
699	p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
700						HL_QUEUE_SIZE_IN_BYTES,
701						&q->bus_address,
702						GFP_KERNEL | __GFP_ZERO);
703	if (!p)
704		return -ENOMEM;
705
706	q->kernel_address = p;
707
708	/* Make sure read/write pointers are initialized to start of queue */
709	atomic_set(&q->ci, 0);
710	q->pi = 0;
711
712	return 0;
713}
714
715static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
716{
717	struct hl_hw_queue *hw_queue = &hdev->kernel_queues[q_idx];
718	struct asic_fixed_properties *prop = &hdev->asic_prop;
719	struct hl_hw_sob *hw_sob;
720	int sob, queue_idx = hdev->sync_stream_queue_idx++;
721
722	hw_queue->base_sob_id =
723		prop->sync_stream_first_sob + queue_idx * HL_RSVD_SOBS;
724	hw_queue->base_mon_id =
725		prop->sync_stream_first_mon + queue_idx * HL_RSVD_MONS;
726	hw_queue->next_sob_val = 1;
727	hw_queue->curr_sob_offset = 0;
728
729	for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
730		hw_sob = &hw_queue->hw_sob[sob];
731		hw_sob->hdev = hdev;
732		hw_sob->sob_id = hw_queue->base_sob_id + sob;
733		hw_sob->q_idx = q_idx;
734		kref_init(&hw_sob->kref);
735	}
736}
737
738static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
739{
740	struct hl_hw_queue *hw_queue = &hdev->kernel_queues[q_idx];
741
742	/*
743	 * In case we got here due to a stuck CS, the refcnt might be bigger
744	 * than 1 and therefore we reset it.
745	 */
746	kref_init(&hw_queue->hw_sob[hw_queue->curr_sob_offset].kref);
747	hw_queue->curr_sob_offset = 0;
748	hw_queue->next_sob_val = 1;
749}
750
751/*
752 * queue_init - main initialization function for H/W queue object
753 *
754 * @hdev: pointer to hl_device device structure
755 * @q: pointer to hl_hw_queue queue structure
756 * @hw_queue_id: The id of the H/W queue
757 *
758 * Allocate dma-able memory for the queue and initialize fields
759 * Returns 0 on success
760 */
761static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
762			u32 hw_queue_id)
763{
764	int rc;
765
766	q->hw_queue_id = hw_queue_id;
767
768	switch (q->queue_type) {
769	case QUEUE_TYPE_EXT:
770		rc = ext_queue_init(hdev, q);
771		break;
772	case QUEUE_TYPE_INT:
773		rc = int_queue_init(hdev, q);
774		break;
775	case QUEUE_TYPE_CPU:
776		rc = cpu_queue_init(hdev, q);
777		break;
778	case QUEUE_TYPE_HW:
779		rc = hw_queue_init(hdev, q);
780		break;
781	case QUEUE_TYPE_NA:
782		q->valid = 0;
783		return 0;
784	default:
785		dev_crit(hdev->dev, "wrong queue type %d during init\n",
786			q->queue_type);
787		rc = -EINVAL;
788		break;
789	}
790
791	if (q->supports_sync_stream)
792		sync_stream_queue_init(hdev, q->hw_queue_id);
793
794	if (rc)
795		return rc;
796
797	q->valid = 1;
798
799	return 0;
800}
801
802/*
803 * hw_queue_fini - destroy queue
804 *
805 * @hdev: pointer to hl_device device structure
806 * @q: pointer to hl_hw_queue queue structure
807 *
808 * Free the queue memory
809 */
810static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
811{
812	if (!q->valid)
813		return;
814
815	/*
816	 * If we arrived here, there are no jobs waiting on this queue
817	 * so we can safely remove it.
818	 * This is because this function can only called when:
819	 * 1. Either a context is deleted, which only can occur if all its
820	 *    jobs were finished
821	 * 2. A context wasn't able to be created due to failure or timeout,
822	 *    which means there are no jobs on the queue yet
823	 *
824	 * The only exception are the queues of the kernel context, but
825	 * if they are being destroyed, it means that the entire module is
826	 * being removed. If the module is removed, it means there is no open
827	 * user context. It also means that if a job was submitted by
828	 * the kernel driver (e.g. context creation), the job itself was
829	 * released by the kernel driver when a timeout occurred on its
830	 * Completion. Thus, we don't need to release it again.
831	 */
832
833	if (q->queue_type == QUEUE_TYPE_INT)
834		return;
835
836	kfree(q->shadow_queue);
837
838	if (q->queue_type == QUEUE_TYPE_CPU)
839		hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
840					HL_QUEUE_SIZE_IN_BYTES,
841					q->kernel_address);
842	else
843		hdev->asic_funcs->asic_dma_free_coherent(hdev,
844					HL_QUEUE_SIZE_IN_BYTES,
845					q->kernel_address,
846					q->bus_address);
847}
848
849int hl_hw_queues_create(struct hl_device *hdev)
850{
851	struct asic_fixed_properties *asic = &hdev->asic_prop;
852	struct hl_hw_queue *q;
853	int i, rc, q_ready_cnt;
854
855	hdev->kernel_queues = kcalloc(asic->max_queues,
856				sizeof(*hdev->kernel_queues), GFP_KERNEL);
857
858	if (!hdev->kernel_queues) {
859		dev_err(hdev->dev, "Not enough memory for H/W queues\n");
860		return -ENOMEM;
861	}
862
863	/* Initialize the H/W queues */
864	for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
865			i < asic->max_queues ; i++, q_ready_cnt++, q++) {
866
867		q->queue_type = asic->hw_queues_props[i].type;
868		q->supports_sync_stream =
869				asic->hw_queues_props[i].supports_sync_stream;
870		rc = queue_init(hdev, q, i);
871		if (rc) {
872			dev_err(hdev->dev,
873				"failed to initialize queue %d\n", i);
874			goto release_queues;
875		}
876	}
877
878	return 0;
879
880release_queues:
881	for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
882		queue_fini(hdev, q);
883
884	kfree(hdev->kernel_queues);
885
886	return rc;
887}
888
889void hl_hw_queues_destroy(struct hl_device *hdev)
890{
891	struct hl_hw_queue *q;
892	u32 max_queues = hdev->asic_prop.max_queues;
893	int i;
894
895	for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
896		queue_fini(hdev, q);
897
898	kfree(hdev->kernel_queues);
899}
900
901void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
902{
903	struct hl_hw_queue *q;
904	u32 max_queues = hdev->asic_prop.max_queues;
905	int i;
906
907	for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
908		if ((!q->valid) ||
909			((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
910			continue;
911		q->pi = 0;
912		atomic_set(&q->ci, 0);
913
914		if (q->supports_sync_stream)
915			sync_stream_queue_reset(hdev, q->hw_queue_id);
916	}
917}
918