1/* SPDX-License-Identifier: GPL-2.0
2 *
3 * Copyright 2016-2019 HabanaLabs, Ltd.
4 * All Rights Reserved.
5 *
6 */
7
8#ifndef HABANALABSP_H_
9#define HABANALABSP_H_
10
11#include "../include/common/cpucp_if.h"
12#include "../include/common/qman_if.h"
13#include <uapi/misc/habanalabs.h>
14
15#include <linux/cdev.h>
16#include <linux/iopoll.h>
17#include <linux/irqreturn.h>
18#include <linux/dma-direction.h>
19#include <linux/scatterlist.h>
20#include <linux/hashtable.h>
21#include <linux/bitfield.h>
22
23#define HL_NAME				"habanalabs"
24
25/* Use upper bits of mmap offset to store habana driver specific information.
26 * bits[63:62] - Encode mmap type
27 * bits[45:0]  - mmap offset value
28 *
29 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
30 *  defines are w.r.t to PAGE_SIZE
31 */
32#define HL_MMAP_TYPE_SHIFT		(62 - PAGE_SHIFT)
33#define HL_MMAP_TYPE_MASK		(0x3ull << HL_MMAP_TYPE_SHIFT)
34#define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)
35
36#define HL_MMAP_OFFSET_VALUE_MASK	(0x3FFFFFFFFFFFull >> PAGE_SHIFT)
37#define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)
38
39#define HL_PENDING_RESET_PER_SEC	30
40
41#define HL_HARD_RESET_MAX_TIMEOUT	120
42
43#define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
44
45#define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
46
47#define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
48
49#define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
50#define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
51
52#define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
53
54#define HL_SIM_MAX_TIMEOUT_US		10000000 /* 10s */
55
56#define HL_IDLE_BUSY_TS_ARR_SIZE	4096
57
58/* Memory */
59#define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
60
61/* MMU */
62#define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
63
64/*
65 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
66 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
67 */
68#define HL_RSVD_SOBS			4
69#define HL_RSVD_MONS			2
70
71#define HL_RSVD_SOBS_IN_USE		2
72#define HL_RSVD_MONS_IN_USE		1
73
74#define HL_MAX_SOB_VAL			(1 << 15)
75
76#define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
77#define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))
78
79#define HL_PCI_NUM_BARS			6
80
81#define HL_MAX_DCORES			4
82
83/**
84 * struct pgt_info - MMU hop page info.
85 * @node: hash linked-list node for the pgts shadow hash of pgts.
86 * @phys_addr: physical address of the pgt.
87 * @shadow_addr: shadow hop in the host.
88 * @ctx: pointer to the owner ctx.
89 * @num_of_ptes: indicates how many ptes are used in the pgt.
90 *
91 * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
92 * is needed during mapping, a new page is allocated and this structure holds
93 * its essential information. During unmapping, if no valid PTEs remained in the
94 * page, it is freed with its pgt_info structure.
95 */
96struct pgt_info {
97	struct hlist_node	node;
98	u64			phys_addr;
99	u64			shadow_addr;
100	struct hl_ctx		*ctx;
101	int			num_of_ptes;
102};
103
104struct hl_device;
105struct hl_fpriv;
106
107/**
108 * enum hl_pci_match_mode - pci match mode per region
109 * @PCI_ADDRESS_MATCH_MODE: address match mode
110 * @PCI_BAR_MATCH_MODE: bar match mode
111 */
112enum hl_pci_match_mode {
113	PCI_ADDRESS_MATCH_MODE,
114	PCI_BAR_MATCH_MODE
115};
116
117/**
118 * enum hl_fw_component - F/W components to read version through registers.
119 * @FW_COMP_UBOOT: u-boot.
120 * @FW_COMP_PREBOOT: preboot.
121 */
122enum hl_fw_component {
123	FW_COMP_UBOOT,
124	FW_COMP_PREBOOT
125};
126
127/**
128 * enum hl_queue_type - Supported QUEUE types.
129 * @QUEUE_TYPE_NA: queue is not available.
130 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
131 *                  host.
132 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
133 *			memories and/or operates the compute engines.
134 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
135 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
136 *                 notifications are sent by H/W.
137 */
138enum hl_queue_type {
139	QUEUE_TYPE_NA,
140	QUEUE_TYPE_EXT,
141	QUEUE_TYPE_INT,
142	QUEUE_TYPE_CPU,
143	QUEUE_TYPE_HW
144};
145
146enum hl_cs_type {
147	CS_TYPE_DEFAULT,
148	CS_TYPE_SIGNAL,
149	CS_TYPE_WAIT
150};
151
152/*
153 * struct hl_inbound_pci_region - inbound region descriptor
154 * @mode: pci match mode for this region
155 * @addr: region target address
156 * @size: region size in bytes
157 * @offset_in_bar: offset within bar (address match mode)
158 * @bar: bar id
159 */
160struct hl_inbound_pci_region {
161	enum hl_pci_match_mode	mode;
162	u64			addr;
163	u64			size;
164	u64			offset_in_bar;
165	u8			bar;
166};
167
168/*
169 * struct hl_outbound_pci_region - outbound region descriptor
170 * @addr: region target address
171 * @size: region size in bytes
172 */
173struct hl_outbound_pci_region {
174	u64	addr;
175	u64	size;
176};
177
178/*
179 * struct hl_hw_sob - H/W SOB info.
180 * @hdev: habanalabs device structure.
181 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
182 * @sob_id: id of this SOB.
183 * @q_idx: the H/W queue that uses this SOB.
184 */
185struct hl_hw_sob {
186	struct hl_device	*hdev;
187	struct kref		kref;
188	u32			sob_id;
189	u32			q_idx;
190};
191
192/**
193 * struct hw_queue_properties - queue information.
194 * @type: queue type.
195 * @driver_only: true if only the driver is allowed to send a job to this queue,
196 *               false otherwise.
197 * @requires_kernel_cb: true if a CB handle must be provided for jobs on this
198 *                      queue, false otherwise (a CB address must be provided).
199 * @supports_sync_stream: True if queue supports sync stream
200 */
201struct hw_queue_properties {
202	enum hl_queue_type	type;
203	u8			driver_only;
204	u8			requires_kernel_cb;
205	u8			supports_sync_stream;
206};
207
208/**
209 * enum vm_type_t - virtual memory mapping request information.
210 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
211 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
212 */
213enum vm_type_t {
214	VM_TYPE_USERPTR = 0x1,
215	VM_TYPE_PHYS_PACK = 0x2
216};
217
218/**
219 * enum hl_device_hw_state - H/W device state. use this to understand whether
220 *                           to do reset before hw_init or not
221 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
222 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
223 *                            hw_init
224 */
225enum hl_device_hw_state {
226	HL_DEVICE_HW_STATE_CLEAN = 0,
227	HL_DEVICE_HW_STATE_DIRTY
228};
229
230/**
231 * struct hl_mmu_properties - ASIC specific MMU address translation properties.
232 * @start_addr: virtual start address of the memory region.
233 * @end_addr: virtual end address of the memory region.
234 * @hop0_shift: shift of hop 0 mask.
235 * @hop1_shift: shift of hop 1 mask.
236 * @hop2_shift: shift of hop 2 mask.
237 * @hop3_shift: shift of hop 3 mask.
238 * @hop4_shift: shift of hop 4 mask.
239 * @hop5_shift: shift of hop 5 mask.
240 * @hop0_mask: mask to get the PTE address in hop 0.
241 * @hop1_mask: mask to get the PTE address in hop 1.
242 * @hop2_mask: mask to get the PTE address in hop 2.
243 * @hop3_mask: mask to get the PTE address in hop 3.
244 * @hop4_mask: mask to get the PTE address in hop 4.
245 * @hop5_mask: mask to get the PTE address in hop 5.
246 * @page_size: default page size used to allocate memory.
247 * @num_hops: The amount of hops supported by the translation table.
248 */
249struct hl_mmu_properties {
250	u64	start_addr;
251	u64	end_addr;
252	u64	hop0_shift;
253	u64	hop1_shift;
254	u64	hop2_shift;
255	u64	hop3_shift;
256	u64	hop4_shift;
257	u64	hop5_shift;
258	u64	hop0_mask;
259	u64	hop1_mask;
260	u64	hop2_mask;
261	u64	hop3_mask;
262	u64	hop4_mask;
263	u64	hop5_mask;
264	u32	page_size;
265	u32	num_hops;
266};
267
268/**
269 * struct asic_fixed_properties - ASIC specific immutable properties.
270 * @hw_queues_props: H/W queues properties.
271 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
272 *		available sensors.
273 * @uboot_ver: F/W U-boot version.
274 * @preboot_ver: F/W Preboot version.
275 * @dmmu: DRAM MMU address translation properties.
276 * @pmmu: PCI (host) MMU address translation properties.
277 * @pmmu_huge: PCI (host) MMU address translation properties for memory
278 *              allocated with huge pages.
279 * @sram_base_address: SRAM physical start address.
280 * @sram_end_address: SRAM physical end address.
281 * @sram_user_base_address - SRAM physical start address for user access.
282 * @dram_base_address: DRAM physical start address.
283 * @dram_end_address: DRAM physical end address.
284 * @dram_user_base_address: DRAM physical start address for user access.
285 * @dram_size: DRAM total size.
286 * @dram_pci_bar_size: size of PCI bar towards DRAM.
287 * @max_power_default: max power of the device after reset
288 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
289 *                                      fault.
290 * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
291 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
292 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
293 * @mmu_dram_default_page_addr: DRAM default page physical address.
294 * @cb_va_start_addr: virtual start address of command buffers which are mapped
295 *                    to the device's MMU.
296 * @cb_va_end_addr: virtual end address of command buffers which are mapped to
297 *                  the device's MMU.
298 * @mmu_pgt_size: MMU page tables total size.
299 * @mmu_pte_size: PTE size in MMU page tables.
300 * @mmu_hop_table_size: MMU hop table size.
301 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
302 * @dram_page_size: page size for MMU DRAM allocation.
303 * @cfg_size: configuration space size on SRAM.
304 * @sram_size: total size of SRAM.
305 * @max_asid: maximum number of open contexts (ASIDs).
306 * @num_of_events: number of possible internal H/W IRQs.
307 * @psoc_pci_pll_nr: PCI PLL NR value.
308 * @psoc_pci_pll_nf: PCI PLL NF value.
309 * @psoc_pci_pll_od: PCI PLL OD value.
310 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
311 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
312 * @high_pll: high PLL frequency used by the device.
313 * @cb_pool_cb_cnt: number of CBs in the CB pool.
314 * @cb_pool_cb_size: size of each CB in the CB pool.
315 * @max_pending_cs: maximum of concurrent pending command submissions
316 * @max_queues: maximum amount of queues in the system
317 * @sync_stream_first_sob: first sync object available for sync stream use
318 * @sync_stream_first_mon: first monitor available for sync stream use
319 * @first_available_user_sob: first sob available for the user
320 * @first_available_user_mon: first monitor available for the user
321 * @tpc_enabled_mask: which TPCs are enabled.
322 * @completion_queues_count: number of completion queues.
323 * @fw_security_disabled: true if security measures are disabled in firmware,
324 *                        false otherwise
325 */
326struct asic_fixed_properties {
327	struct hw_queue_properties	*hw_queues_props;
328	struct cpucp_info		cpucp_info;
329	char				uboot_ver[VERSION_MAX_LEN];
330	char				preboot_ver[VERSION_MAX_LEN];
331	struct hl_mmu_properties	dmmu;
332	struct hl_mmu_properties	pmmu;
333	struct hl_mmu_properties	pmmu_huge;
334	u64				sram_base_address;
335	u64				sram_end_address;
336	u64				sram_user_base_address;
337	u64				dram_base_address;
338	u64				dram_end_address;
339	u64				dram_user_base_address;
340	u64				dram_size;
341	u64				dram_pci_bar_size;
342	u64				max_power_default;
343	u64				dram_size_for_default_page_mapping;
344	u64				pcie_dbi_base_address;
345	u64				pcie_aux_dbi_reg_addr;
346	u64				mmu_pgt_addr;
347	u64				mmu_dram_default_page_addr;
348	u64				cb_va_start_addr;
349	u64				cb_va_end_addr;
350	u32				mmu_pgt_size;
351	u32				mmu_pte_size;
352	u32				mmu_hop_table_size;
353	u32				mmu_hop0_tables_total_size;
354	u32				dram_page_size;
355	u32				cfg_size;
356	u32				sram_size;
357	u32				max_asid;
358	u32				num_of_events;
359	u32				psoc_pci_pll_nr;
360	u32				psoc_pci_pll_nf;
361	u32				psoc_pci_pll_od;
362	u32				psoc_pci_pll_div_factor;
363	u32				psoc_timestamp_frequency;
364	u32				high_pll;
365	u32				cb_pool_cb_cnt;
366	u32				cb_pool_cb_size;
367	u32				max_pending_cs;
368	u32				max_queues;
369	u16				sync_stream_first_sob;
370	u16				sync_stream_first_mon;
371	u16				first_available_user_sob[HL_MAX_DCORES];
372	u16				first_available_user_mon[HL_MAX_DCORES];
373	u8				tpc_enabled_mask;
374	u8				completion_queues_count;
375	u8				fw_security_disabled;
376};
377
378/**
379 * struct hl_fence - software synchronization primitive
380 * @completion: fence is implemented using completion
381 * @refcount: refcount for this fence
382 * @error: mark this fence with error
383 *
384 */
385struct hl_fence {
386	struct completion	completion;
387	struct kref		refcount;
388	int			error;
389};
390
391/**
392 * struct hl_cs_compl - command submission completion object.
393 * @base_fence: hl fence object.
394 * @lock: spinlock to protect fence.
395 * @hdev: habanalabs device structure.
396 * @hw_sob: the H/W SOB used in this signal/wait CS.
397 * @cs_seq: command submission sequence number.
398 * @type: type of the CS - signal/wait.
399 * @sob_val: the SOB value that is used in this signal/wait CS.
400 */
401struct hl_cs_compl {
402	struct hl_fence		base_fence;
403	spinlock_t		lock;
404	struct hl_device	*hdev;
405	struct hl_hw_sob	*hw_sob;
406	u64			cs_seq;
407	enum hl_cs_type		type;
408	u16			sob_val;
409};
410
411/*
412 * Command Buffers
413 */
414
415/**
416 * struct hl_cb_mgr - describes a Command Buffer Manager.
417 * @cb_lock: protects cb_handles.
418 * @cb_handles: an idr to hold all command buffer handles.
419 */
420struct hl_cb_mgr {
421	spinlock_t		cb_lock;
422	struct idr		cb_handles; /* protected by cb_lock */
423};
424
425/**
426 * struct hl_cb - describes a Command Buffer.
427 * @refcount: reference counter for usage of the CB.
428 * @hdev: pointer to device this CB belongs to.
429 * @ctx: pointer to the CB owner's context.
430 * @lock: spinlock to protect mmap/cs flows.
431 * @debugfs_list: node in debugfs list of command buffers.
432 * @pool_list: node in pool list of command buffers.
433 * @va_block_list: list of virtual addresses blocks of the CB if it is mapped to
434 *                 the device's MMU.
435 * @id: the CB's ID.
436 * @kernel_address: Holds the CB's kernel virtual address.
437 * @bus_address: Holds the CB's DMA address.
438 * @mmap_size: Holds the CB's size that was mmaped.
439 * @size: holds the CB's size.
440 * @cs_cnt: holds number of CS that this CB participates in.
441 * @mmap: true if the CB is currently mmaped to user.
442 * @is_pool: true if CB was acquired from the pool, false otherwise.
443 * @is_internal: internaly allocated
444 * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
445 */
446struct hl_cb {
447	struct kref		refcount;
448	struct hl_device	*hdev;
449	struct hl_ctx		*ctx;
450	spinlock_t		lock;
451	struct list_head	debugfs_list;
452	struct list_head	pool_list;
453	struct list_head	va_block_list;
454	u64			id;
455	void			*kernel_address;
456	dma_addr_t		bus_address;
457	u32			mmap_size;
458	u32			size;
459	u32			cs_cnt;
460	u8			mmap;
461	u8			is_pool;
462	u8			is_internal;
463	u8			is_mmu_mapped;
464};
465
466
467/*
468 * QUEUES
469 */
470
471struct hl_cs_job;
472
473/* Queue length of external and HW queues */
474#define HL_QUEUE_LENGTH			4096
475#define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
476
477#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
478#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
479#endif
480
481/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
482#define HL_CQ_LENGTH			HL_QUEUE_LENGTH
483#define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
484
485/* Must be power of 2 */
486#define HL_EQ_LENGTH			64
487#define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
488
489/* Host <-> CPU-CP shared memory size */
490#define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
491
492/**
493 * struct hl_hw_queue - describes a H/W transport queue.
494 * @hw_sob: array of the used H/W SOBs by this H/W queue.
495 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
496 * @queue_type: type of queue.
497 * @kernel_address: holds the queue's kernel virtual address.
498 * @bus_address: holds the queue's DMA address.
499 * @pi: holds the queue's pi value.
500 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
501 * @hw_queue_id: the id of the H/W queue.
502 * @cq_id: the id for the corresponding CQ for this H/W queue.
503 * @msi_vec: the IRQ number of the H/W queue.
504 * @int_queue_len: length of internal queue (number of entries).
505 * @next_sob_val: the next value to use for the currently used SOB.
506 * @base_sob_id: the base SOB id of the SOBs used by this queue.
507 * @base_mon_id: the base MON id of the MONs used by this queue.
508 * @valid: is the queue valid (we have array of 32 queues, not all of them
509 *         exist).
510 * @curr_sob_offset: the id offset to the currently used SOB from the
511 *                   HL_RSVD_SOBS that are being used by this queue.
512 * @supports_sync_stream: True if queue supports sync stream
513 */
514struct hl_hw_queue {
515	struct hl_hw_sob	hw_sob[HL_RSVD_SOBS];
516	struct hl_cs_job	**shadow_queue;
517	enum hl_queue_type	queue_type;
518	void			*kernel_address;
519	dma_addr_t		bus_address;
520	u32			pi;
521	atomic_t		ci;
522	u32			hw_queue_id;
523	u32			cq_id;
524	u32			msi_vec;
525	u16			int_queue_len;
526	u16			next_sob_val;
527	u16			base_sob_id;
528	u16			base_mon_id;
529	u8			valid;
530	u8			curr_sob_offset;
531	u8			supports_sync_stream;
532};
533
534/**
535 * struct hl_cq - describes a completion queue
536 * @hdev: pointer to the device structure
537 * @kernel_address: holds the queue's kernel virtual address
538 * @bus_address: holds the queue's DMA address
539 * @cq_idx: completion queue index in array
540 * @hw_queue_id: the id of the matching H/W queue
541 * @ci: ci inside the queue
542 * @pi: pi inside the queue
543 * @free_slots_cnt: counter of free slots in queue
544 */
545struct hl_cq {
546	struct hl_device	*hdev;
547	void			*kernel_address;
548	dma_addr_t		bus_address;
549	u32			cq_idx;
550	u32			hw_queue_id;
551	u32			ci;
552	u32			pi;
553	atomic_t		free_slots_cnt;
554};
555
556/**
557 * struct hl_eq - describes the event queue (single one per device)
558 * @hdev: pointer to the device structure
559 * @kernel_address: holds the queue's kernel virtual address
560 * @bus_address: holds the queue's DMA address
561 * @ci: ci inside the queue
562 */
563struct hl_eq {
564	struct hl_device	*hdev;
565	void			*kernel_address;
566	dma_addr_t		bus_address;
567	u32			ci;
568};
569
570
571/*
572 * ASICs
573 */
574
575/**
576 * enum hl_asic_type - supported ASIC types.
577 * @ASIC_INVALID: Invalid ASIC type.
578 * @ASIC_GOYA: Goya device.
579 * @ASIC_GAUDI: Gaudi device.
580 */
581enum hl_asic_type {
582	ASIC_INVALID,
583	ASIC_GOYA,
584	ASIC_GAUDI
585};
586
587struct hl_cs_parser;
588
589/**
590 * enum hl_pm_mng_profile - power management profile.
591 * @PM_AUTO: internal clock is set by the Linux driver.
592 * @PM_MANUAL: internal clock is set by the user.
593 * @PM_LAST: last power management type.
594 */
595enum hl_pm_mng_profile {
596	PM_AUTO = 1,
597	PM_MANUAL,
598	PM_LAST
599};
600
601/**
602 * enum hl_pll_frequency - PLL frequency.
603 * @PLL_HIGH: high frequency.
604 * @PLL_LOW: low frequency.
605 * @PLL_LAST: last frequency values that were configured by the user.
606 */
607enum hl_pll_frequency {
608	PLL_HIGH = 1,
609	PLL_LOW,
610	PLL_LAST
611};
612
613#define PLL_REF_CLK 50
614
615enum div_select_defs {
616	DIV_SEL_REF_CLK = 0,
617	DIV_SEL_PLL_CLK = 1,
618	DIV_SEL_DIVIDED_REF = 2,
619	DIV_SEL_DIVIDED_PLL = 3,
620};
621
622/**
623 * struct hl_asic_funcs - ASIC specific functions that are can be called from
624 *                        common code.
625 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
626 * @early_fini: tears down what was done in early_init.
627 * @late_init: sets up late driver/hw state (post hw_init) - Optional.
628 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
629 * @sw_init: sets up driver state, does not configure H/W.
630 * @sw_fini: tears down driver state, does not configure H/W.
631 * @hw_init: sets up the H/W state.
632 * @hw_fini: tears down the H/W state.
633 * @halt_engines: halt engines, needed for reset sequence. This also disables
634 *                interrupts from the device. Should be called before
635 *                hw_fini and before CS rollback.
636 * @suspend: handles IP specific H/W or SW changes for suspend.
637 * @resume: handles IP specific H/W or SW changes for resume.
638 * @cb_mmap: maps a CB.
639 * @ring_doorbell: increment PI on a given QMAN.
640 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
641 *             function because the PQs are located in different memory areas
642 *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
643 *             writing the PQE must match the destination memory area
644 *             properties.
645 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
646 *                           dma_alloc_coherent(). This is ASIC function because
647 *                           its implementation is not trivial when the driver
648 *                           is loaded in simulation mode (not upstreamed).
649 * @asic_dma_free_coherent:  Free coherent DMA memory by calling
650 *                           dma_free_coherent(). This is ASIC function because
651 *                           its implementation is not trivial when the driver
652 *                           is loaded in simulation mode (not upstreamed).
653 * @get_int_queue_base: get the internal queue base address.
654 * @test_queues: run simple test on all queues for sanity check.
655 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
656 *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
657 * @asic_dma_pool_free: free small DMA allocation from pool.
658 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
659 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
660 * @hl_dma_unmap_sg: DMA unmap scatter-gather list.
661 * @cs_parser: parse Command Submission.
662 * @asic_dma_map_sg: DMA map scatter-gather list.
663 * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
664 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
665 * @update_eq_ci: update event queue CI.
666 * @context_switch: called upon ASID context switch.
667 * @restore_phase_topology: clear all SOBs amd MONs.
668 * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM.
669 * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM.
670 * @add_device_attr: add ASIC specific device attributes.
671 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
672 * @set_pll_profile: change PLL profile (manual/automatic).
673 * @get_events_stat: retrieve event queue entries histogram.
674 * @read_pte: read MMU page table entry from DRAM.
675 * @write_pte: write MMU page table entry to DRAM.
676 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
677 *                        (L1 only) or hard (L0 & L1) flush.
678 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
679 *                              ASID-VA-size mask.
680 * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
681 * @set_clock_gating: enable/disable clock gating per engine according to
682 *                    clock gating mask in hdev
683 * @disable_clock_gating: disable clock gating completely
684 * @debug_coresight: perform certain actions on Coresight for debugging.
685 * @is_device_idle: return true if device is idle, false otherwise.
686 * @soft_reset_late_init: perform certain actions needed after soft reset.
687 * @hw_queues_lock: acquire H/W queues lock.
688 * @hw_queues_unlock: release H/W queues lock.
689 * @get_pci_id: retrieve PCI ID.
690 * @get_eeprom_data: retrieve EEPROM data from F/W.
691 * @send_cpu_message: send message to F/W. If the message is timedout, the
692 *                    driver will eventually reset the device. The timeout can
693 *                    be determined by the calling function or it can be 0 and
694 *                    then the timeout is the default timeout for the specific
695 *                    ASIC
696 * @get_hw_state: retrieve the H/W state
697 * @pci_bars_map: Map PCI BARs.
698 * @init_iatu: Initialize the iATU unit inside the PCI controller.
699 * @rreg: Read a register. Needed for simulator support.
700 * @wreg: Write a register. Needed for simulator support.
701 * @halt_coresight: stop the ETF and ETR traces.
702 * @ctx_init: context dependent initialization.
703 * @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz
704 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
705 * @read_device_fw_version: read the device's firmware versions that are
706 *                          contained in registers
707 * @load_firmware_to_device: load the firmware to the device's memory
708 * @load_boot_fit_to_device: load boot fit to device's memory
709 * @get_signal_cb_size: Get signal CB size.
710 * @get_wait_cb_size: Get wait CB size.
711 * @gen_signal_cb: Generate a signal CB.
712 * @gen_wait_cb: Generate a wait CB.
713 * @reset_sob: Reset a SOB.
714 * @set_dma_mask_from_fw: set the DMA mask in the driver according to the
715 *                        firmware configuration
716 * @get_device_time: Get the device time.
717 */
718struct hl_asic_funcs {
719	int (*early_init)(struct hl_device *hdev);
720	int (*early_fini)(struct hl_device *hdev);
721	int (*late_init)(struct hl_device *hdev);
722	void (*late_fini)(struct hl_device *hdev);
723	int (*sw_init)(struct hl_device *hdev);
724	int (*sw_fini)(struct hl_device *hdev);
725	int (*hw_init)(struct hl_device *hdev);
726	void (*hw_fini)(struct hl_device *hdev, bool hard_reset);
727	void (*halt_engines)(struct hl_device *hdev, bool hard_reset);
728	int (*suspend)(struct hl_device *hdev);
729	int (*resume)(struct hl_device *hdev);
730	int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
731			void *cpu_addr, dma_addr_t dma_addr, size_t size);
732	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
733	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
734			struct hl_bd *bd);
735	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
736					dma_addr_t *dma_handle, gfp_t flag);
737	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
738					void *cpu_addr, dma_addr_t dma_handle);
739	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
740				dma_addr_t *dma_handle, u16 *queue_len);
741	int (*test_queues)(struct hl_device *hdev);
742	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
743				gfp_t mem_flags, dma_addr_t *dma_handle);
744	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
745				dma_addr_t dma_addr);
746	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
747				size_t size, dma_addr_t *dma_handle);
748	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
749				size_t size, void *vaddr);
750	void (*hl_dma_unmap_sg)(struct hl_device *hdev,
751				struct scatterlist *sgl, int nents,
752				enum dma_data_direction dir);
753	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
754	int (*asic_dma_map_sg)(struct hl_device *hdev,
755				struct scatterlist *sgl, int nents,
756				enum dma_data_direction dir);
757	u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
758					struct sg_table *sgt);
759	void (*add_end_of_cb_packets)(struct hl_device *hdev,
760					void *kernel_address, u32 len,
761					u64 cq_addr, u32 cq_val, u32 msix_num,
762					bool eb);
763	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
764	int (*context_switch)(struct hl_device *hdev, u32 asid);
765	void (*restore_phase_topology)(struct hl_device *hdev);
766	int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val);
767	int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val);
768	int (*debugfs_read64)(struct hl_device *hdev, u64 addr, u64 *val);
769	int (*debugfs_write64)(struct hl_device *hdev, u64 addr, u64 val);
770	void (*add_device_attr)(struct hl_device *hdev,
771				struct attribute_group *dev_attr_grp);
772	void (*handle_eqe)(struct hl_device *hdev,
773				struct hl_eq_entry *eq_entry);
774	void (*set_pll_profile)(struct hl_device *hdev,
775			enum hl_pll_frequency freq);
776	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
777				u32 *size);
778	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
779	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
780	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
781					u32 flags);
782	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
783			u32 asid, u64 va, u64 size);
784	int (*send_heartbeat)(struct hl_device *hdev);
785	void (*set_clock_gating)(struct hl_device *hdev);
786	void (*disable_clock_gating)(struct hl_device *hdev);
787	int (*debug_coresight)(struct hl_device *hdev, void *data);
788	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask,
789				struct seq_file *s);
790	int (*soft_reset_late_init)(struct hl_device *hdev);
791	void (*hw_queues_lock)(struct hl_device *hdev);
792	void (*hw_queues_unlock)(struct hl_device *hdev);
793	u32 (*get_pci_id)(struct hl_device *hdev);
794	int (*get_eeprom_data)(struct hl_device *hdev, void *data,
795				size_t max_size);
796	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
797				u16 len, u32 timeout, long *result);
798	enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev);
799	int (*pci_bars_map)(struct hl_device *hdev);
800	int (*init_iatu)(struct hl_device *hdev);
801	u32 (*rreg)(struct hl_device *hdev, u32 reg);
802	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
803	void (*halt_coresight)(struct hl_device *hdev);
804	int (*ctx_init)(struct hl_ctx *ctx);
805	int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
806	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
807	void (*read_device_fw_version)(struct hl_device *hdev,
808					enum hl_fw_component fwc);
809	int (*load_firmware_to_device)(struct hl_device *hdev);
810	int (*load_boot_fit_to_device)(struct hl_device *hdev);
811	u32 (*get_signal_cb_size)(struct hl_device *hdev);
812	u32 (*get_wait_cb_size)(struct hl_device *hdev);
813	void (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id);
814	void (*gen_wait_cb)(struct hl_device *hdev, void *data, u16 sob_id,
815				u16 sob_val, u16 mon_id, u32 q_idx);
816	void (*reset_sob)(struct hl_device *hdev, void *data);
817	void (*set_dma_mask_from_fw)(struct hl_device *hdev);
818	u64 (*get_device_time)(struct hl_device *hdev);
819};
820
821
822/*
823 * CONTEXTS
824 */
825
826#define HL_KERNEL_ASID_ID	0
827
828/**
829 * struct hl_va_range - virtual addresses range.
830 * @lock: protects the virtual addresses list.
831 * @list: list of virtual addresses blocks available for mappings.
832 * @start_addr: range start address.
833 * @end_addr: range end address.
834 */
835struct hl_va_range {
836	struct mutex		lock;
837	struct list_head	list;
838	u64			start_addr;
839	u64			end_addr;
840};
841
842/**
843 * struct hl_ctx - user/kernel context.
844 * @mem_hash: holds mapping from virtual address to virtual memory area
845 *		descriptor (hl_vm_phys_pg_list or hl_userptr).
846 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
847 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
848 * @hdev: pointer to the device structure.
849 * @refcount: reference counter for the context. Context is released only when
850 *		this hits 0l. It is incremented on CS and CS_WAIT.
851 * @cs_pending: array of hl fence objects representing pending CS.
852 * @host_va_range: holds available virtual addresses for host mappings.
853 * @host_huge_va_range: holds available virtual addresses for host mappings
854 *                      with huge pages.
855 * @dram_va_range: holds available virtual addresses for DRAM mappings.
856 * @mem_hash_lock: protects the mem_hash.
857 * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the
858 *            MMU hash or walking the PGT requires talking this lock.
859 * @debugfs_list: node in debugfs list of contexts.
860 * @cb_va_pool: device VA pool for command buffers which are mapped to the
861 *              device's MMU.
862 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
863 *			to user so user could inquire about CS. It is used as
864 *			index to cs_pending array.
865 * @dram_default_hops: array that holds all hops addresses needed for default
866 *                     DRAM mapping.
867 * @cs_lock: spinlock to protect cs_sequence.
868 * @dram_phys_mem: amount of used physical DRAM memory by this context.
869 * @thread_ctx_switch_token: token to prevent multiple threads of the same
870 *				context	from running the context switch phase.
871 *				Only a single thread should run it.
872 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
873 *				the context switch phase from moving to their
874 *				execution phase before the context switch phase
875 *				has finished.
876 * @asid: context's unique address space ID in the device's MMU.
877 * @handle: context's opaque handle for user
878 */
879struct hl_ctx {
880	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
881	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
882	struct hl_fpriv		*hpriv;
883	struct hl_device	*hdev;
884	struct kref		refcount;
885	struct hl_fence		**cs_pending;
886	struct hl_va_range	*host_va_range;
887	struct hl_va_range	*host_huge_va_range;
888	struct hl_va_range	*dram_va_range;
889	struct mutex		mem_hash_lock;
890	struct mutex		mmu_lock;
891	struct list_head	debugfs_list;
892	struct hl_cs_counters	cs_counters;
893	struct gen_pool		*cb_va_pool;
894	u64			cs_sequence;
895	u64			*dram_default_hops;
896	spinlock_t		cs_lock;
897	atomic64_t		dram_phys_mem;
898	atomic_t		thread_ctx_switch_token;
899	u32			thread_ctx_switch_wait_token;
900	u32			asid;
901	u32			handle;
902};
903
904/**
905 * struct hl_ctx_mgr - for handling multiple contexts.
906 * @ctx_lock: protects ctx_handles.
907 * @ctx_handles: idr to hold all ctx handles.
908 */
909struct hl_ctx_mgr {
910	struct mutex		ctx_lock;
911	struct idr		ctx_handles;
912};
913
914
915
916/*
917 * COMMAND SUBMISSIONS
918 */
919
920/**
921 * struct hl_userptr - memory mapping chunk information
922 * @vm_type: type of the VM.
923 * @job_node: linked-list node for hanging the object on the Job's list.
924 * @vec: pointer to the frame vector.
925 * @sgt: pointer to the scatter-gather table that holds the pages.
926 * @dir: for DMA unmapping, the direction must be supplied, so save it.
927 * @debugfs_list: node in debugfs list of command submissions.
928 * @addr: user-space virtual address of the start of the memory area.
929 * @size: size of the memory area to pin & map.
930 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
931 */
932struct hl_userptr {
933	enum vm_type_t		vm_type; /* must be first */
934	struct list_head	job_node;
935	struct frame_vector	*vec;
936	struct sg_table		*sgt;
937	enum dma_data_direction dir;
938	struct list_head	debugfs_list;
939	u64			addr;
940	u32			size;
941	u8			dma_mapped;
942};
943
944/**
945 * struct hl_cs - command submission.
946 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
947 * @ctx: the context this CS belongs to.
948 * @job_list: list of the CS's jobs in the various queues.
949 * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
950 * @refcount: reference counter for usage of the CS.
951 * @fence: pointer to the fence object of this CS.
952 * @signal_fence: pointer to the fence object of the signal CS (used by wait
953 *                CS only).
954 * @finish_work: workqueue object to run when CS is completed by H/W.
955 * @work_tdr: delayed work node for TDR.
956 * @mirror_node : node in device mirror list of command submissions.
957 * @debugfs_list: node in debugfs list of command submissions.
958 * @sequence: the sequence number of this CS.
959 * @type: CS_TYPE_*.
960 * @submitted: true if CS was submitted to H/W.
961 * @completed: true if CS was completed by device.
962 * @timedout : true if CS was timedout.
963 * @tdr_active: true if TDR was activated for this CS (to prevent
964 *		double TDR activation).
965 * @aborted: true if CS was aborted due to some device error.
966 */
967struct hl_cs {
968	u16			*jobs_in_queue_cnt;
969	struct hl_ctx		*ctx;
970	struct list_head	job_list;
971	spinlock_t		job_lock;
972	struct kref		refcount;
973	struct hl_fence		*fence;
974	struct hl_fence		*signal_fence;
975	struct work_struct	finish_work;
976	struct delayed_work	work_tdr;
977	struct list_head	mirror_node;
978	struct list_head	debugfs_list;
979	u64			sequence;
980	enum hl_cs_type		type;
981	u8			submitted;
982	u8			completed;
983	u8			timedout;
984	u8			tdr_active;
985	u8			aborted;
986};
987
988/**
989 * struct hl_cs_job - command submission job.
990 * @cs_node: the node to hang on the CS jobs list.
991 * @cs: the CS this job belongs to.
992 * @user_cb: the CB we got from the user.
993 * @patched_cb: in case of patching, this is internal CB which is submitted on
994 *		the queue instead of the CB we got from the IOCTL.
995 * @finish_work: workqueue object to run when job is completed.
996 * @userptr_list: linked-list of userptr mappings that belong to this job and
997 *			wait for completion.
998 * @debugfs_list: node in debugfs list of command submission jobs.
999 * @queue_type: the type of the H/W queue this job is submitted to.
1000 * @id: the id of this job inside a CS.
1001 * @hw_queue_id: the id of the H/W queue this job is submitted to.
1002 * @user_cb_size: the actual size of the CB we got from the user.
1003 * @job_cb_size: the actual size of the CB that we put on the queue.
1004 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1005 *                          handle to a kernel-allocated CB object, false
1006 *                          otherwise (SRAM/DRAM/host address).
1007 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1008 *                    info is needed later, when adding the 2xMSG_PROT at the
1009 *                    end of the JOB, to know which barriers to put in the
1010 *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1011 *                    have streams so the engine can't be busy by another
1012 *                    stream.
1013 */
1014struct hl_cs_job {
1015	struct list_head	cs_node;
1016	struct hl_cs		*cs;
1017	struct hl_cb		*user_cb;
1018	struct hl_cb		*patched_cb;
1019	struct work_struct	finish_work;
1020	struct list_head	userptr_list;
1021	struct list_head	debugfs_list;
1022	enum hl_queue_type	queue_type;
1023	u32			id;
1024	u32			hw_queue_id;
1025	u32			user_cb_size;
1026	u32			job_cb_size;
1027	u8			is_kernel_allocated_cb;
1028	u8			contains_dma_pkt;
1029};
1030
1031/**
1032 * struct hl_cs_parser - command submission parser properties.
1033 * @user_cb: the CB we got from the user.
1034 * @patched_cb: in case of patching, this is internal CB which is submitted on
1035 *		the queue instead of the CB we got from the IOCTL.
1036 * @job_userptr_list: linked-list of userptr mappings that belong to the related
1037 *			job and wait for completion.
1038 * @cs_sequence: the sequence number of the related CS.
1039 * @queue_type: the type of the H/W queue this job is submitted to.
1040 * @ctx_id: the ID of the context the related CS belongs to.
1041 * @hw_queue_id: the id of the H/W queue this job is submitted to.
1042 * @user_cb_size: the actual size of the CB we got from the user.
1043 * @patched_cb_size: the size of the CB after parsing.
1044 * @job_id: the id of the related job inside the related CS.
1045 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1046 *                          handle to a kernel-allocated CB object, false
1047 *                          otherwise (SRAM/DRAM/host address).
1048 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1049 *                    info is needed later, when adding the 2xMSG_PROT at the
1050 *                    end of the JOB, to know which barriers to put in the
1051 *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1052 *                    have streams so the engine can't be busy by another
1053 *                    stream.
1054 */
1055struct hl_cs_parser {
1056	struct hl_cb		*user_cb;
1057	struct hl_cb		*patched_cb;
1058	struct list_head	*job_userptr_list;
1059	u64			cs_sequence;
1060	enum hl_queue_type	queue_type;
1061	u32			ctx_id;
1062	u32			hw_queue_id;
1063	u32			user_cb_size;
1064	u32			patched_cb_size;
1065	u8			job_id;
1066	u8			is_kernel_allocated_cb;
1067	u8			contains_dma_pkt;
1068};
1069
1070
1071/*
1072 * MEMORY STRUCTURE
1073 */
1074
1075/**
1076 * struct hl_vm_hash_node - hash element from virtual address to virtual
1077 *				memory area descriptor (hl_vm_phys_pg_list or
1078 *				hl_userptr).
1079 * @node: node to hang on the hash table in context object.
1080 * @vaddr: key virtual address.
1081 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
1082 */
1083struct hl_vm_hash_node {
1084	struct hlist_node	node;
1085	u64			vaddr;
1086	void			*ptr;
1087};
1088
1089/**
1090 * struct hl_vm_phys_pg_pack - physical page pack.
1091 * @vm_type: describes the type of the virtual area descriptor.
1092 * @pages: the physical page array.
1093 * @npages: num physical pages in the pack.
1094 * @total_size: total size of all the pages in this list.
1095 * @mapping_cnt: number of shared mappings.
1096 * @asid: the context related to this list.
1097 * @page_size: size of each page in the pack.
1098 * @flags: HL_MEM_* flags related to this list.
1099 * @handle: the provided handle related to this list.
1100 * @offset: offset from the first page.
1101 * @contiguous: is contiguous physical memory.
1102 * @created_from_userptr: is product of host virtual address.
1103 */
1104struct hl_vm_phys_pg_pack {
1105	enum vm_type_t		vm_type; /* must be first */
1106	u64			*pages;
1107	u64			npages;
1108	u64			total_size;
1109	atomic_t		mapping_cnt;
1110	u32			asid;
1111	u32			page_size;
1112	u32			flags;
1113	u32			handle;
1114	u32			offset;
1115	u8			contiguous;
1116	u8			created_from_userptr;
1117};
1118
1119/**
1120 * struct hl_vm_va_block - virtual range block information.
1121 * @node: node to hang on the virtual range list in context object.
1122 * @start: virtual range start address.
1123 * @end: virtual range end address.
1124 * @size: virtual range size.
1125 */
1126struct hl_vm_va_block {
1127	struct list_head	node;
1128	u64			start;
1129	u64			end;
1130	u64			size;
1131};
1132
1133/**
1134 * struct hl_vm - virtual memory manager for MMU.
1135 * @dram_pg_pool: pool for DRAM physical pages of 2MB.
1136 * @dram_pg_pool_refcount: reference counter for the pool usage.
1137 * @idr_lock: protects the phys_pg_list_handles.
1138 * @phys_pg_pack_handles: idr to hold all device allocations handles.
1139 * @init_done: whether initialization was done. We need this because VM
1140 *		initialization might be skipped during device initialization.
1141 */
1142struct hl_vm {
1143	struct gen_pool		*dram_pg_pool;
1144	struct kref		dram_pg_pool_refcount;
1145	spinlock_t		idr_lock;
1146	struct idr		phys_pg_pack_handles;
1147	u8			init_done;
1148};
1149
1150
1151/*
1152 * DEBUG, PROFILING STRUCTURE
1153 */
1154
1155/**
1156 * struct hl_debug_params - Coresight debug parameters.
1157 * @input: pointer to component specific input parameters.
1158 * @output: pointer to component specific output parameters.
1159 * @output_size: size of output buffer.
1160 * @reg_idx: relevant register ID.
1161 * @op: component operation to execute.
1162 * @enable: true if to enable component debugging, false otherwise.
1163 */
1164struct hl_debug_params {
1165	void *input;
1166	void *output;
1167	u32 output_size;
1168	u32 reg_idx;
1169	u32 op;
1170	bool enable;
1171};
1172
1173/*
1174 * FILE PRIVATE STRUCTURE
1175 */
1176
1177/**
1178 * struct hl_fpriv - process information stored in FD private data.
1179 * @hdev: habanalabs device structure.
1180 * @filp: pointer to the given file structure.
1181 * @taskpid: current process ID.
1182 * @ctx: current executing context. TODO: remove for multiple ctx per process
1183 * @ctx_mgr: context manager to handle multiple context for this FD.
1184 * @cb_mgr: command buffer manager to handle multiple buffers for this FD.
1185 * @debugfs_list: list of relevant ASIC debugfs.
1186 * @dev_node: node in the device list of file private data
1187 * @refcount: number of related contexts.
1188 * @restore_phase_mutex: lock for context switch and restore phase.
1189 * @is_control: true for control device, false otherwise
1190 */
1191struct hl_fpriv {
1192	struct hl_device	*hdev;
1193	struct file		*filp;
1194	struct pid		*taskpid;
1195	struct hl_ctx		*ctx;
1196	struct hl_ctx_mgr	ctx_mgr;
1197	struct hl_cb_mgr	cb_mgr;
1198	struct list_head	debugfs_list;
1199	struct list_head	dev_node;
1200	struct kref		refcount;
1201	struct mutex		restore_phase_mutex;
1202	u8			is_control;
1203};
1204
1205
1206/*
1207 * DebugFS
1208 */
1209
1210/**
1211 * struct hl_info_list - debugfs file ops.
1212 * @name: file name.
1213 * @show: function to output information.
1214 * @write: function to write to the file.
1215 */
1216struct hl_info_list {
1217	const char	*name;
1218	int		(*show)(struct seq_file *s, void *data);
1219	ssize_t		(*write)(struct file *file, const char __user *buf,
1220				size_t count, loff_t *f_pos);
1221};
1222
1223/**
1224 * struct hl_debugfs_entry - debugfs dentry wrapper.
1225 * @dent: base debugfs entry structure.
1226 * @info_ent: dentry realted ops.
1227 * @dev_entry: ASIC specific debugfs manager.
1228 */
1229struct hl_debugfs_entry {
1230	struct dentry			*dent;
1231	const struct hl_info_list	*info_ent;
1232	struct hl_dbg_device_entry	*dev_entry;
1233};
1234
1235/**
1236 * struct hl_dbg_device_entry - ASIC specific debugfs manager.
1237 * @root: root dentry.
1238 * @hdev: habanalabs device structure.
1239 * @entry_arr: array of available hl_debugfs_entry.
1240 * @file_list: list of available debugfs files.
1241 * @file_mutex: protects file_list.
1242 * @cb_list: list of available CBs.
1243 * @cb_spinlock: protects cb_list.
1244 * @cs_list: list of available CSs.
1245 * @cs_spinlock: protects cs_list.
1246 * @cs_job_list: list of available CB jobs.
1247 * @cs_job_spinlock: protects cs_job_list.
1248 * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
1249 * @userptr_spinlock: protects userptr_list.
1250 * @ctx_mem_hash_list: list of available contexts with MMU mappings.
1251 * @ctx_mem_hash_spinlock: protects cb_list.
1252 * @addr: next address to read/write from/to in read/write32.
1253 * @mmu_addr: next virtual address to translate to physical address in mmu_show.
1254 * @mmu_asid: ASID to use while translating in mmu_show.
1255 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
1256 * @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read.
1257 * @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read.
1258 */
1259struct hl_dbg_device_entry {
1260	struct dentry			*root;
1261	struct hl_device		*hdev;
1262	struct hl_debugfs_entry		*entry_arr;
1263	struct list_head		file_list;
1264	struct mutex			file_mutex;
1265	struct list_head		cb_list;
1266	spinlock_t			cb_spinlock;
1267	struct list_head		cs_list;
1268	spinlock_t			cs_spinlock;
1269	struct list_head		cs_job_list;
1270	spinlock_t			cs_job_spinlock;
1271	struct list_head		userptr_list;
1272	spinlock_t			userptr_spinlock;
1273	struct list_head		ctx_mem_hash_list;
1274	spinlock_t			ctx_mem_hash_spinlock;
1275	u64				addr;
1276	u64				mmu_addr;
1277	u32				mmu_asid;
1278	u8				i2c_bus;
1279	u8				i2c_addr;
1280	u8				i2c_reg;
1281};
1282
1283
1284/*
1285 * DEVICES
1286 */
1287
1288/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
1289 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
1290 */
1291#define HL_MAX_MINORS	256
1292
1293/*
1294 * Registers read & write functions.
1295 */
1296
1297u32 hl_rreg(struct hl_device *hdev, u32 reg);
1298void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
1299
1300#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
1301#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
1302#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
1303			hdev->asic_funcs->rreg(hdev, (reg)))
1304
1305#define WREG32_P(reg, val, mask)				\
1306	do {							\
1307		u32 tmp_ = RREG32(reg);				\
1308		tmp_ &= (mask);					\
1309		tmp_ |= ((val) & ~(mask));			\
1310		WREG32(reg, tmp_);				\
1311	} while (0)
1312#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
1313#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
1314
1315#define RMWREG32(reg, val, mask)				\
1316	do {							\
1317		u32 tmp_ = RREG32(reg);				\
1318		tmp_ &= ~(mask);				\
1319		tmp_ |= ((val) << __ffs(mask));			\
1320		WREG32(reg, tmp_);				\
1321	} while (0)
1322
1323#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
1324
1325#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
1326#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
1327#define WREG32_FIELD(reg, offset, field, val)	\
1328	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
1329				~REG_FIELD_MASK(reg, field)) | \
1330				(val) << REG_FIELD_SHIFT(reg, field))
1331
1332/* Timeout should be longer when working with simulator but cap the
1333 * increased timeout to some maximum
1334 */
1335#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
1336({ \
1337	ktime_t __timeout; \
1338	if (hdev->pdev) \
1339		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1340	else \
1341		__timeout = ktime_add_us(ktime_get(),\
1342				min((u64)(timeout_us * 10), \
1343					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1344	might_sleep_if(sleep_us); \
1345	for (;;) { \
1346		(val) = RREG32(addr); \
1347		if (cond) \
1348			break; \
1349		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1350			(val) = RREG32(addr); \
1351			break; \
1352		} \
1353		if (sleep_us) \
1354			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1355	} \
1356	(cond) ? 0 : -ETIMEDOUT; \
1357})
1358
1359/*
1360 * address in this macro points always to a memory location in the
1361 * host's (server's) memory. That location is updated asynchronously
1362 * either by the direct access of the device or by another core.
1363 *
1364 * To work both in LE and BE architectures, we need to distinguish between the
1365 * two states (device or another core updates the memory location). Therefore,
1366 * if mem_written_by_device is true, the host memory being polled will be
1367 * updated directly by the device. If false, the host memory being polled will
1368 * be updated by host CPU. Required so host knows whether or not the memory
1369 * might need to be byte-swapped before returning value to caller.
1370 */
1371#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
1372				mem_written_by_device) \
1373({ \
1374	ktime_t __timeout; \
1375	if (hdev->pdev) \
1376		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1377	else \
1378		__timeout = ktime_add_us(ktime_get(),\
1379				min((u64)(timeout_us * 10), \
1380					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1381	might_sleep_if(sleep_us); \
1382	for (;;) { \
1383		/* Verify we read updates done by other cores or by device */ \
1384		mb(); \
1385		(val) = *((u32 *)(addr)); \
1386		if (mem_written_by_device) \
1387			(val) = le32_to_cpu(*(__le32 *) &(val)); \
1388		if (cond) \
1389			break; \
1390		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1391			(val) = *((u32 *)(addr)); \
1392			if (mem_written_by_device) \
1393				(val) = le32_to_cpu(*(__le32 *) &(val)); \
1394			break; \
1395		} \
1396		if (sleep_us) \
1397			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1398	} \
1399	(cond) ? 0 : -ETIMEDOUT; \
1400})
1401
1402#define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
1403					timeout_us) \
1404({ \
1405	ktime_t __timeout; \
1406	if (hdev->pdev) \
1407		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1408	else \
1409		__timeout = ktime_add_us(ktime_get(),\
1410				min((u64)(timeout_us * 10), \
1411					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1412	might_sleep_if(sleep_us); \
1413	for (;;) { \
1414		(val) = readl(addr); \
1415		if (cond) \
1416			break; \
1417		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1418			(val) = readl(addr); \
1419			break; \
1420		} \
1421		if (sleep_us) \
1422			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1423	} \
1424	(cond) ? 0 : -ETIMEDOUT; \
1425})
1426
1427struct hwmon_chip_info;
1428
1429/**
1430 * struct hl_device_reset_work - reset workqueue task wrapper.
1431 * @reset_work: reset work to be done.
1432 * @hdev: habanalabs device structure.
1433 */
1434struct hl_device_reset_work {
1435	struct work_struct		reset_work;
1436	struct hl_device		*hdev;
1437};
1438
1439/**
1440 * struct hl_device_idle_busy_ts - used for calculating device utilization rate.
1441 * @idle_to_busy_ts: timestamp where device changed from idle to busy.
1442 * @busy_to_idle_ts: timestamp where device changed from busy to idle.
1443 */
1444struct hl_device_idle_busy_ts {
1445	ktime_t				idle_to_busy_ts;
1446	ktime_t				busy_to_idle_ts;
1447};
1448
1449
1450/**
1451 * struct hl_mmu_priv - used for holding per-device mmu internal information.
1452 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
1453 * @mmu_shadow_hop0: shadow array of hop0 tables.
1454 */
1455struct hl_mmu_priv {
1456	struct gen_pool *mmu_pgt_pool;
1457	void *mmu_shadow_hop0;
1458};
1459
1460/**
1461 * struct hl_mmu_funcs - Device related MMU functions.
1462 * @init: initialize the MMU module.
1463 * @fini: release the MMU module.
1464 * @ctx_init: Initialize a context for using the MMU module.
1465 * @ctx_fini: disable a ctx from using the mmu module.
1466 * @map: maps a virtual address to physical address for a context.
1467 * @unmap: unmap a virtual address of a context.
1468 * @flush: flush all writes from all cores to reach device MMU.
1469 * @swap_out: marks all mapping of the given context as swapped out.
1470 * @swap_in: marks all mapping of the given context as swapped in.
1471 */
1472struct hl_mmu_funcs {
1473	int (*init)(struct hl_device *hdev);
1474	void (*fini)(struct hl_device *hdev);
1475	int (*ctx_init)(struct hl_ctx *ctx);
1476	void (*ctx_fini)(struct hl_ctx *ctx);
1477	int (*map)(struct hl_ctx *ctx,
1478			u64 virt_addr, u64 phys_addr, u32 page_size,
1479			bool is_dram_addr);
1480	int (*unmap)(struct hl_ctx *ctx,
1481			u64 virt_addr, bool is_dram_addr);
1482	void (*flush)(struct hl_ctx *ctx);
1483	void (*swap_out)(struct hl_ctx *ctx);
1484	void (*swap_in)(struct hl_ctx *ctx);
1485};
1486
1487/**
1488 * struct hl_device - habanalabs device structure.
1489 * @pdev: pointer to PCI device, can be NULL in case of simulator device.
1490 * @pcie_bar_phys: array of available PCIe bars physical addresses.
1491 *		   (required only for PCI address match mode)
1492 * @pcie_bar: array of available PCIe bars virtual addresses.
1493 * @rmmio: configuration area address on SRAM.
1494 * @cdev: related char device.
1495 * @cdev_ctrl: char device for control operations only (INFO IOCTL)
1496 * @dev: related kernel basic device structure.
1497 * @dev_ctrl: related kernel device structure for the control device
1498 * @work_freq: delayed work to lower device frequency if possible.
1499 * @work_heartbeat: delayed work for CPU-CP is-alive check.
1500 * @asic_name: ASIC specific name.
1501 * @asic_type: ASIC specific type.
1502 * @completion_queue: array of hl_cq.
1503 * @cq_wq: work queues of completion queues for executing work in process
1504 *         context.
1505 * @eq_wq: work queue of event queue for executing work in process context.
1506 * @kernel_ctx: Kernel driver context structure.
1507 * @kernel_queues: array of hl_hw_queue.
1508 * @hw_queues_mirror_list: CS mirror list for TDR.
1509 * @hw_queues_mirror_lock: protects hw_queues_mirror_list.
1510 * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
1511 * @event_queue: event queue for IRQ from CPU-CP.
1512 * @dma_pool: DMA pool for small allocations.
1513 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
1514 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
1515 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
1516 * @asid_bitmap: holds used/available ASIDs.
1517 * @asid_mutex: protects asid_bitmap.
1518 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
1519 * @debug_lock: protects critical section of setting debug mode for device
1520 * @asic_prop: ASIC specific immutable properties.
1521 * @asic_funcs: ASIC specific functions.
1522 * @asic_specific: ASIC specific information to use only from ASIC files.
1523 * @vm: virtual memory manager for MMU.
1524 * @mmu_cache_lock: protects MMU cache invalidation as it can serve one context.
1525 * @hwmon_dev: H/W monitor device.
1526 * @pm_mng_profile: current power management profile.
1527 * @hl_chip_info: ASIC's sensors information.
1528 * @hl_debugfs: device's debugfs manager.
1529 * @cb_pool: list of preallocated CBs.
1530 * @cb_pool_lock: protects the CB pool.
1531 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
1532 * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
1533 * @internal_cb_pool: internal command buffer memory pool.
1534 * @internal_cb_va_base: internal cb pool mmu virtual address base
1535 * @fpriv_list: list of file private data structures. Each structure is created
1536 *              when a user opens the device
1537 * @fpriv_list_lock: protects the fpriv_list
1538 * @compute_ctx: current compute context executing.
1539 * @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy
1540 *                    and vice-versa
1541 * @aggregated_cs_counters: aggregated cs counters among all contexts
1542 * @mmu_priv: device-specific MMU data.
1543 * @mmu_func: device-related MMU functions.
1544 * @dram_used_mem: current DRAM memory consumption.
1545 * @timeout_jiffies: device CS timeout value.
1546 * @max_power: the max power of the device, as configured by the sysadmin. This
1547 *             value is saved so in case of hard-reset, the driver will restore
1548 *             this value and update the F/W after the re-initialization
1549 * @clock_gating_mask: is clock gating enabled. bitmask that represents the
1550 *                     different engines. See debugfs-driver-habanalabs for
1551 *                     details.
1552 * @in_reset: is device in reset flow.
1553 * @curr_pll_profile: current PLL profile.
1554 * @card_type: Various ASICs have several card types. This indicates the card
1555 *             type of the current device.
1556 * @cs_active_cnt: number of active command submissions on this device (active
1557 *                 means already in H/W queues)
1558 * @major: habanalabs kernel driver major.
1559 * @high_pll: high PLL profile frequency.
1560 * @soft_reset_cnt: number of soft reset since the driver was loaded.
1561 * @hard_reset_cnt: number of hard reset since the driver was loaded.
1562 * @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr
1563 * @clk_throttling_reason: bitmask represents the current clk throttling reasons
1564 * @id: device minor.
1565 * @id_control: minor of the control device
1566 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
1567 *                    addresses.
1568 * @disabled: is device disabled.
1569 * @late_init_done: is late init stage was done during initialization.
1570 * @hwmon_initialized: is H/W monitor sensors was initialized.
1571 * @hard_reset_pending: is there a hard reset work pending.
1572 * @heartbeat: is heartbeat sanity check towards CPU-CP enabled.
1573 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
1574 *                   otherwise.
1575 * @dram_supports_virtual_memory: is MMU enabled towards DRAM.
1576 * @dram_default_page_mapping: is DRAM default page mapping enabled.
1577 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
1578 *                   huge pages.
1579 * @init_done: is the initialization of the device done.
1580 * @mmu_enable: is MMU enabled.
1581 * @mmu_huge_page_opt: is MMU huge pages optimization enabled.
1582 * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
1583 * @dma_mask: the dma mask that was set for this device
1584 * @in_debug: is device under debug. This, together with fpriv_list, enforces
1585 *            that only a single user is configuring the debug infrastructure.
1586 * @power9_64bit_dma_enable: true to enable 64-bit DMA mask support. Relevant
1587 *                           only to POWER9 machines.
1588 * @cdev_sysfs_created: were char devices and sysfs nodes created.
1589 * @stop_on_err: true if engines should stop on error.
1590 * @supports_sync_stream: is sync stream supported.
1591 * @sync_stream_queue_idx: helper index for sync stream queues initialization.
1592 * @supports_coresight: is CoreSight supported.
1593 * @supports_soft_reset: is soft reset supported.
1594 * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
1595 */
1596struct hl_device {
1597	struct pci_dev			*pdev;
1598	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
1599	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
1600	void __iomem			*rmmio;
1601	struct cdev			cdev;
1602	struct cdev			cdev_ctrl;
1603	struct device			*dev;
1604	struct device			*dev_ctrl;
1605	struct delayed_work		work_freq;
1606	struct delayed_work		work_heartbeat;
1607	char				asic_name[32];
1608	enum hl_asic_type		asic_type;
1609	struct hl_cq			*completion_queue;
1610	struct workqueue_struct		**cq_wq;
1611	struct workqueue_struct		*eq_wq;
1612	struct hl_ctx			*kernel_ctx;
1613	struct hl_hw_queue		*kernel_queues;
1614	struct list_head		hw_queues_mirror_list;
1615	spinlock_t			hw_queues_mirror_lock;
1616	struct hl_cb_mgr		kernel_cb_mgr;
1617	struct hl_eq			event_queue;
1618	struct dma_pool			*dma_pool;
1619	void				*cpu_accessible_dma_mem;
1620	dma_addr_t			cpu_accessible_dma_address;
1621	struct gen_pool			*cpu_accessible_dma_pool;
1622	unsigned long			*asid_bitmap;
1623	struct mutex			asid_mutex;
1624	struct mutex			send_cpu_message_lock;
1625	struct mutex			debug_lock;
1626	struct asic_fixed_properties	asic_prop;
1627	const struct hl_asic_funcs	*asic_funcs;
1628	void				*asic_specific;
1629	struct hl_vm			vm;
1630	struct mutex			mmu_cache_lock;
1631	struct device			*hwmon_dev;
1632	enum hl_pm_mng_profile		pm_mng_profile;
1633	struct hwmon_chip_info		*hl_chip_info;
1634
1635	struct hl_dbg_device_entry	hl_debugfs;
1636
1637	struct list_head		cb_pool;
1638	spinlock_t			cb_pool_lock;
1639
1640	void				*internal_cb_pool_virt_addr;
1641	dma_addr_t			internal_cb_pool_dma_addr;
1642	struct gen_pool			*internal_cb_pool;
1643	u64				internal_cb_va_base;
1644
1645	struct list_head		fpriv_list;
1646	struct mutex			fpriv_list_lock;
1647
1648	struct hl_ctx			*compute_ctx;
1649
1650	struct hl_device_idle_busy_ts	*idle_busy_ts_arr;
1651
1652	struct hl_cs_counters		aggregated_cs_counters;
1653
1654	struct hl_mmu_priv		mmu_priv;
1655	struct hl_mmu_funcs		mmu_func;
1656
1657	atomic64_t			dram_used_mem;
1658	u64				timeout_jiffies;
1659	u64				max_power;
1660	u64				clock_gating_mask;
1661	atomic_t			in_reset;
1662	enum hl_pll_frequency		curr_pll_profile;
1663	enum cpucp_card_types		card_type;
1664	int				cs_active_cnt;
1665	u32				major;
1666	u32				high_pll;
1667	u32				soft_reset_cnt;
1668	u32				hard_reset_cnt;
1669	u32				idle_busy_ts_idx;
1670	u32				clk_throttling_reason;
1671	u16				id;
1672	u16				id_control;
1673	u16				cpu_pci_msb_addr;
1674	u8				disabled;
1675	u8				late_init_done;
1676	u8				hwmon_initialized;
1677	u8				hard_reset_pending;
1678	u8				heartbeat;
1679	u8				reset_on_lockup;
1680	u8				dram_supports_virtual_memory;
1681	u8				dram_default_page_mapping;
1682	u8				pmmu_huge_range;
1683	u8				init_done;
1684	u8				device_cpu_disabled;
1685	u8				dma_mask;
1686	u8				in_debug;
1687	u8				power9_64bit_dma_enable;
1688	u8				cdev_sysfs_created;
1689	u8				stop_on_err;
1690	u8				supports_sync_stream;
1691	u8				sync_stream_queue_idx;
1692	u8				supports_coresight;
1693	u8				supports_soft_reset;
1694	u8				supports_cb_mapping;
1695
1696	/* Parameters for bring-up */
1697	u8				mmu_enable;
1698	u8				mmu_huge_page_opt;
1699	u8				cpu_enable;
1700	u8				reset_pcilink;
1701	u8				cpu_queues_enable;
1702	u8				fw_loading;
1703	u8				pldm;
1704	u8				axi_drain;
1705	u8				sram_scrambler_enable;
1706	u8				dram_scrambler_enable;
1707	u8				hard_reset_on_fw_events;
1708	u8				bmc_enable;
1709	u8				rl_enable;
1710};
1711
1712
1713/*
1714 * IOCTLs
1715 */
1716
1717/**
1718 * typedef hl_ioctl_t - typedef for ioctl function in the driver
1719 * @hpriv: pointer to the FD's private data, which contains state of
1720 *		user process
1721 * @data: pointer to the input/output arguments structure of the IOCTL
1722 *
1723 * Return: 0 for success, negative value for error
1724 */
1725typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
1726
1727/**
1728 * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
1729 * @cmd: the IOCTL code as created by the kernel macros.
1730 * @func: pointer to the driver's function that should be called for this IOCTL.
1731 */
1732struct hl_ioctl_desc {
1733	unsigned int cmd;
1734	hl_ioctl_t *func;
1735};
1736
1737
1738/*
1739 * Kernel module functions that can be accessed by entire module
1740 */
1741
1742/**
1743 * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
1744 * @address: The start address of the area we want to validate.
1745 * @size: The size in bytes of the area we want to validate.
1746 * @range_start_address: The start address of the valid range.
1747 * @range_end_address: The end address of the valid range.
1748 *
1749 * Return: true if the area is inside the valid range, false otherwise.
1750 */
1751static inline bool hl_mem_area_inside_range(u64 address, u64 size,
1752				u64 range_start_address, u64 range_end_address)
1753{
1754	u64 end_address = address + size;
1755
1756	if ((address >= range_start_address) &&
1757			(end_address <= range_end_address) &&
1758			(end_address > address))
1759		return true;
1760
1761	return false;
1762}
1763
1764/**
1765 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
1766 * @address: The start address of the area we want to validate.
1767 * @size: The size in bytes of the area we want to validate.
1768 * @range_start_address: The start address of the valid range.
1769 * @range_end_address: The end address of the valid range.
1770 *
1771 * Return: true if the area overlaps part or all of the valid range,
1772 *		false otherwise.
1773 */
1774static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
1775				u64 range_start_address, u64 range_end_address)
1776{
1777	u64 end_address = address + size;
1778
1779	if ((address >= range_start_address) &&
1780			(address < range_end_address))
1781		return true;
1782
1783	if ((end_address >= range_start_address) &&
1784			(end_address < range_end_address))
1785		return true;
1786
1787	if ((address < range_start_address) &&
1788			(end_address >= range_end_address))
1789		return true;
1790
1791	return false;
1792}
1793
1794int hl_device_open(struct inode *inode, struct file *filp);
1795int hl_device_open_ctrl(struct inode *inode, struct file *filp);
1796bool hl_device_disabled_or_in_reset(struct hl_device *hdev);
1797enum hl_device_status hl_device_status(struct hl_device *hdev);
1798int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
1799int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
1800		enum hl_asic_type asic_type, int minor);
1801void destroy_hdev(struct hl_device *hdev);
1802int hl_hw_queues_create(struct hl_device *hdev);
1803void hl_hw_queues_destroy(struct hl_device *hdev);
1804int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
1805				u32 cb_size, u64 cb_ptr);
1806int hl_hw_queue_schedule_cs(struct hl_cs *cs);
1807u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
1808void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
1809void hl_int_hw_queue_update_ci(struct hl_cs *cs);
1810void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
1811
1812#define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
1813#define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
1814
1815int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
1816void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
1817int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
1818void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
1819void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
1820void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
1821irqreturn_t hl_irq_handler_cq(int irq, void *arg);
1822irqreturn_t hl_irq_handler_eq(int irq, void *arg);
1823u32 hl_cq_inc_ptr(u32 ptr);
1824
1825int hl_asid_init(struct hl_device *hdev);
1826void hl_asid_fini(struct hl_device *hdev);
1827unsigned long hl_asid_alloc(struct hl_device *hdev);
1828void hl_asid_free(struct hl_device *hdev, unsigned long asid);
1829
1830int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
1831void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
1832int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
1833void hl_ctx_do_release(struct kref *ref);
1834void hl_ctx_get(struct hl_device *hdev,	struct hl_ctx *ctx);
1835int hl_ctx_put(struct hl_ctx *ctx);
1836struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
1837void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
1838void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
1839
1840int hl_device_init(struct hl_device *hdev, struct class *hclass);
1841void hl_device_fini(struct hl_device *hdev);
1842int hl_device_suspend(struct hl_device *hdev);
1843int hl_device_resume(struct hl_device *hdev);
1844int hl_device_reset(struct hl_device *hdev, bool hard_reset,
1845			bool from_hard_reset_thread);
1846void hl_hpriv_get(struct hl_fpriv *hpriv);
1847void hl_hpriv_put(struct hl_fpriv *hpriv);
1848int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
1849uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms);
1850
1851int hl_build_hwmon_channel_info(struct hl_device *hdev,
1852		struct cpucp_sensor *sensors_arr);
1853
1854int hl_sysfs_init(struct hl_device *hdev);
1855void hl_sysfs_fini(struct hl_device *hdev);
1856
1857int hl_hwmon_init(struct hl_device *hdev);
1858void hl_hwmon_fini(struct hl_device *hdev);
1859
1860int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
1861			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
1862			bool map_cb, u64 *handle);
1863int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
1864int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
1865struct hl_cb *hl_cb_get(struct hl_device *hdev,	struct hl_cb_mgr *mgr,
1866			u32 handle);
1867void hl_cb_put(struct hl_cb *cb);
1868void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
1869void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
1870struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
1871					bool internal_cb);
1872int hl_cb_pool_init(struct hl_device *hdev);
1873int hl_cb_pool_fini(struct hl_device *hdev);
1874int hl_cb_va_pool_init(struct hl_ctx *ctx);
1875void hl_cb_va_pool_fini(struct hl_ctx *ctx);
1876
1877void hl_cs_rollback_all(struct hl_device *hdev);
1878struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1879		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
1880void hl_sob_reset_error(struct kref *ref);
1881void hl_fence_put(struct hl_fence *fence);
1882void hl_fence_get(struct hl_fence *fence);
1883
1884void goya_set_asic_funcs(struct hl_device *hdev);
1885void gaudi_set_asic_funcs(struct hl_device *hdev);
1886
1887int hl_vm_ctx_init(struct hl_ctx *ctx);
1888void hl_vm_ctx_fini(struct hl_ctx *ctx);
1889
1890int hl_vm_init(struct hl_device *hdev);
1891void hl_vm_fini(struct hl_device *hdev);
1892
1893int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1894			struct hl_userptr *userptr);
1895void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
1896void hl_userptr_delete_list(struct hl_device *hdev,
1897				struct list_head *userptr_list);
1898bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
1899				struct list_head *userptr_list,
1900				struct hl_userptr **userptr);
1901
1902int hl_mmu_init(struct hl_device *hdev);
1903void hl_mmu_fini(struct hl_device *hdev);
1904int hl_mmu_ctx_init(struct hl_ctx *ctx);
1905void hl_mmu_ctx_fini(struct hl_ctx *ctx);
1906int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
1907		u32 page_size, bool flush_pte);
1908int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
1909		bool flush_pte);
1910void hl_mmu_swap_out(struct hl_ctx *ctx);
1911void hl_mmu_swap_in(struct hl_ctx *ctx);
1912int hl_mmu_if_set_funcs(struct hl_device *hdev);
1913void hl_mmu_v1_set_funcs(struct hl_device *hdev);
1914
1915int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
1916				void __iomem *dst);
1917int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
1918int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
1919				u16 len, u32 timeout, long *result);
1920int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
1921int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
1922		size_t irq_arr_size);
1923int hl_fw_test_cpu_queue(struct hl_device *hdev);
1924void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
1925						dma_addr_t *dma_handle);
1926void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
1927					void *vaddr);
1928int hl_fw_send_heartbeat(struct hl_device *hdev);
1929int hl_fw_cpucp_info_get(struct hl_device *hdev);
1930int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
1931int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
1932		struct hl_info_pci_counters *counters);
1933int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
1934			u64 *total_energy);
1935int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg,
1936			u32 msg_to_cpu_reg, u32 cpu_msg_status_reg,
1937			u32 boot_err0_reg, bool skip_bmc,
1938			u32 cpu_timeout, u32 boot_fit_timeout);
1939int hl_fw_read_preboot_ver(struct hl_device *hdev, u32 cpu_boot_status_reg,
1940				u32 boot_err0_reg, u32 timeout);
1941
1942int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
1943			bool is_wc[3]);
1944int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
1945int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
1946		struct hl_inbound_pci_region *pci_region);
1947int hl_pci_set_outbound_region(struct hl_device *hdev,
1948		struct hl_outbound_pci_region *pci_region);
1949int hl_pci_init(struct hl_device *hdev, u32 cpu_boot_status_reg,
1950		u32 boot_err0_reg, u32 preboot_ver_timeout);
1951void hl_pci_fini(struct hl_device *hdev);
1952
1953long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
1954void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
1955int hl_get_temperature(struct hl_device *hdev,
1956		       int sensor_index, u32 attr, long *value);
1957int hl_set_temperature(struct hl_device *hdev,
1958		       int sensor_index, u32 attr, long value);
1959int hl_get_voltage(struct hl_device *hdev,
1960		   int sensor_index, u32 attr, long *value);
1961int hl_get_current(struct hl_device *hdev,
1962		   int sensor_index, u32 attr, long *value);
1963int hl_get_fan_speed(struct hl_device *hdev,
1964		     int sensor_index, u32 attr, long *value);
1965int hl_get_pwm_info(struct hl_device *hdev,
1966		    int sensor_index, u32 attr, long *value);
1967void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
1968			long value);
1969u64 hl_get_max_power(struct hl_device *hdev);
1970void hl_set_max_power(struct hl_device *hdev);
1971int hl_set_voltage(struct hl_device *hdev,
1972			int sensor_index, u32 attr, long value);
1973int hl_set_current(struct hl_device *hdev,
1974			int sensor_index, u32 attr, long value);
1975
1976#ifdef CONFIG_DEBUG_FS
1977
1978void hl_debugfs_init(void);
1979void hl_debugfs_fini(void);
1980void hl_debugfs_add_device(struct hl_device *hdev);
1981void hl_debugfs_remove_device(struct hl_device *hdev);
1982void hl_debugfs_add_file(struct hl_fpriv *hpriv);
1983void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
1984void hl_debugfs_add_cb(struct hl_cb *cb);
1985void hl_debugfs_remove_cb(struct hl_cb *cb);
1986void hl_debugfs_add_cs(struct hl_cs *cs);
1987void hl_debugfs_remove_cs(struct hl_cs *cs);
1988void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
1989void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
1990void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
1991void hl_debugfs_remove_userptr(struct hl_device *hdev,
1992				struct hl_userptr *userptr);
1993void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
1994void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
1995
1996#else
1997
1998static inline void __init hl_debugfs_init(void)
1999{
2000}
2001
2002static inline void hl_debugfs_fini(void)
2003{
2004}
2005
2006static inline void hl_debugfs_add_device(struct hl_device *hdev)
2007{
2008}
2009
2010static inline void hl_debugfs_remove_device(struct hl_device *hdev)
2011{
2012}
2013
2014static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
2015{
2016}
2017
2018static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
2019{
2020}
2021
2022static inline void hl_debugfs_add_cb(struct hl_cb *cb)
2023{
2024}
2025
2026static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
2027{
2028}
2029
2030static inline void hl_debugfs_add_cs(struct hl_cs *cs)
2031{
2032}
2033
2034static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
2035{
2036}
2037
2038static inline void hl_debugfs_add_job(struct hl_device *hdev,
2039					struct hl_cs_job *job)
2040{
2041}
2042
2043static inline void hl_debugfs_remove_job(struct hl_device *hdev,
2044					struct hl_cs_job *job)
2045{
2046}
2047
2048static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
2049					struct hl_userptr *userptr)
2050{
2051}
2052
2053static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
2054					struct hl_userptr *userptr)
2055{
2056}
2057
2058static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
2059					struct hl_ctx *ctx)
2060{
2061}
2062
2063static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
2064					struct hl_ctx *ctx)
2065{
2066}
2067
2068#endif
2069
2070/* IOCTLs */
2071long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
2072long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
2073int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
2074int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
2075int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data);
2076int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
2077
2078#endif /* HABANALABSP_H_ */
2079