1// SPDX-License-Identifier: GPL-2.0-only
2/**
3 * IBM Accelerator Family 'GenWQE'
4 *
5 * (C) Copyright IBM Corp. 2013
6 *
7 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
8 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
9 * Author: Michael Jung <mijung@gmx.net>
10 * Author: Michael Ruettger <michael@ibmra.de>
11 */
12
13/*
14 * Module initialization and PCIe setup. Card health monitoring and
15 * recovery functionality. Character device creation and deletion are
16 * controlled from here.
17 */
18
19#include <linux/types.h>
20#include <linux/pci.h>
21#include <linux/err.h>
22#include <linux/aer.h>
23#include <linux/string.h>
24#include <linux/sched.h>
25#include <linux/wait.h>
26#include <linux/delay.h>
27#include <linux/dma-mapping.h>
28#include <linux/module.h>
29#include <linux/notifier.h>
30#include <linux/device.h>
31#include <linux/log2.h>
32
33#include "card_base.h"
34#include "card_ddcb.h"
35
36MODULE_AUTHOR("Frank Haverkamp <haver@linux.vnet.ibm.com>");
37MODULE_AUTHOR("Michael Ruettger <michael@ibmra.de>");
38MODULE_AUTHOR("Joerg-Stephan Vogt <jsvogt@de.ibm.com>");
39MODULE_AUTHOR("Michael Jung <mijung@gmx.net>");
40
41MODULE_DESCRIPTION("GenWQE Card");
42MODULE_VERSION(DRV_VERSION);
43MODULE_LICENSE("GPL");
44
45static char genwqe_driver_name[] = GENWQE_DEVNAME;
46static struct class *class_genwqe;
47static struct dentry *debugfs_genwqe;
48static struct genwqe_dev *genwqe_devices[GENWQE_CARD_NO_MAX];
49
50/* PCI structure for identifying device by PCI vendor and device ID */
51static const struct pci_device_id genwqe_device_table[] = {
52	{ .vendor      = PCI_VENDOR_ID_IBM,
53	  .device      = PCI_DEVICE_GENWQE,
54	  .subvendor   = PCI_SUBVENDOR_ID_IBM,
55	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
56	  .class       = (PCI_CLASSCODE_GENWQE5 << 8),
57	  .class_mask  = ~0,
58	  .driver_data = 0 },
59
60	/* Initial SR-IOV bring-up image */
61	{ .vendor      = PCI_VENDOR_ID_IBM,
62	  .device      = PCI_DEVICE_GENWQE,
63	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
64	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
65	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
66	  .class_mask  = ~0,
67	  .driver_data = 0 },
68
69	{ .vendor      = PCI_VENDOR_ID_IBM,  /* VF Vendor ID */
70	  .device      = 0x0000,  /* VF Device ID */
71	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
72	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
73	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
74	  .class_mask  = ~0,
75	  .driver_data = 0 },
76
77	/* Fixed up image */
78	{ .vendor      = PCI_VENDOR_ID_IBM,
79	  .device      = PCI_DEVICE_GENWQE,
80	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
81	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
82	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
83	  .class_mask  = ~0,
84	  .driver_data = 0 },
85
86	{ .vendor      = PCI_VENDOR_ID_IBM,  /* VF Vendor ID */
87	  .device      = 0x0000,  /* VF Device ID */
88	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
89	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
90	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
91	  .class_mask  = ~0,
92	  .driver_data = 0 },
93
94	/* Even one more ... */
95	{ .vendor      = PCI_VENDOR_ID_IBM,
96	  .device      = PCI_DEVICE_GENWQE,
97	  .subvendor   = PCI_SUBVENDOR_ID_IBM,
98	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_NEW,
99	  .class       = (PCI_CLASSCODE_GENWQE5 << 8),
100	  .class_mask  = ~0,
101	  .driver_data = 0 },
102
103	{ 0, }			/* 0 terminated list. */
104};
105
106MODULE_DEVICE_TABLE(pci, genwqe_device_table);
107
108/**
109 * genwqe_dev_alloc() - Create and prepare a new card descriptor
110 *
111 * Return: Pointer to card descriptor, or ERR_PTR(err) on error
112 */
113static struct genwqe_dev *genwqe_dev_alloc(void)
114{
115	unsigned int i = 0, j;
116	struct genwqe_dev *cd;
117
118	for (i = 0; i < GENWQE_CARD_NO_MAX; i++) {
119		if (genwqe_devices[i] == NULL)
120			break;
121	}
122	if (i >= GENWQE_CARD_NO_MAX)
123		return ERR_PTR(-ENODEV);
124
125	cd = kzalloc(sizeof(struct genwqe_dev), GFP_KERNEL);
126	if (!cd)
127		return ERR_PTR(-ENOMEM);
128
129	cd->card_idx = i;
130	cd->class_genwqe = class_genwqe;
131	cd->debugfs_genwqe = debugfs_genwqe;
132
133	/*
134	 * This comes from kernel config option and can be overritten via
135	 * debugfs.
136	 */
137	cd->use_platform_recovery = CONFIG_GENWQE_PLATFORM_ERROR_RECOVERY;
138
139	init_waitqueue_head(&cd->queue_waitq);
140
141	spin_lock_init(&cd->file_lock);
142	INIT_LIST_HEAD(&cd->file_list);
143
144	cd->card_state = GENWQE_CARD_UNUSED;
145	spin_lock_init(&cd->print_lock);
146
147	cd->ddcb_software_timeout = GENWQE_DDCB_SOFTWARE_TIMEOUT;
148	cd->kill_timeout = GENWQE_KILL_TIMEOUT;
149
150	for (j = 0; j < GENWQE_MAX_VFS; j++)
151		cd->vf_jobtimeout_msec[j] = GENWQE_VF_JOBTIMEOUT_MSEC;
152
153	genwqe_devices[i] = cd;
154	return cd;
155}
156
157static void genwqe_dev_free(struct genwqe_dev *cd)
158{
159	if (!cd)
160		return;
161
162	genwqe_devices[cd->card_idx] = NULL;
163	kfree(cd);
164}
165
166/**
167 * genwqe_bus_reset() - Card recovery
168 * @cd: GenWQE device information
169 *
170 * pci_reset_function() will recover the device and ensure that the
171 * registers are accessible again when it completes with success. If
172 * not, the card will stay dead and registers will be unaccessible
173 * still.
174 */
175static int genwqe_bus_reset(struct genwqe_dev *cd)
176{
177	int rc = 0;
178	struct pci_dev *pci_dev = cd->pci_dev;
179	void __iomem *mmio;
180
181	if (cd->err_inject & GENWQE_INJECT_BUS_RESET_FAILURE)
182		return -EIO;
183
184	mmio = cd->mmio;
185	cd->mmio = NULL;
186	pci_iounmap(pci_dev, mmio);
187
188	pci_release_mem_regions(pci_dev);
189
190	/*
191	 * Firmware/BIOS might change memory mapping during bus reset.
192	 * Settings like enable bus-mastering, ... are backuped and
193	 * restored by the pci_reset_function().
194	 */
195	dev_dbg(&pci_dev->dev, "[%s] pci_reset function ...\n", __func__);
196	rc = pci_reset_function(pci_dev);
197	if (rc) {
198		dev_err(&pci_dev->dev,
199			"[%s] err: failed reset func (rc %d)\n", __func__, rc);
200		return rc;
201	}
202	dev_dbg(&pci_dev->dev, "[%s] done with rc=%d\n", __func__, rc);
203
204	/*
205	 * Here is the right spot to clear the register read
206	 * failure. pci_bus_reset() does this job in real systems.
207	 */
208	cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
209			    GENWQE_INJECT_GFIR_FATAL |
210			    GENWQE_INJECT_GFIR_INFO);
211
212	rc = pci_request_mem_regions(pci_dev, genwqe_driver_name);
213	if (rc) {
214		dev_err(&pci_dev->dev,
215			"[%s] err: request bars failed (%d)\n", __func__, rc);
216		return -EIO;
217	}
218
219	cd->mmio = pci_iomap(pci_dev, 0, 0);
220	if (cd->mmio == NULL) {
221		dev_err(&pci_dev->dev,
222			"[%s] err: mapping BAR0 failed\n", __func__);
223		return -ENOMEM;
224	}
225	return 0;
226}
227
228/*
229 * Hardware circumvention section. Certain bitstreams in our test-lab
230 * had different kinds of problems. Here is where we adjust those
231 * bitstreams to function will with this version of our device driver.
232 *
233 * Thise circumventions are applied to the physical function only.
234 * The magical numbers below are identifying development/manufacturing
235 * versions of the bitstream used on the card.
236 *
237 * Turn off error reporting for old/manufacturing images.
238 */
239
240bool genwqe_need_err_masking(struct genwqe_dev *cd)
241{
242	return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
243}
244
245static void genwqe_tweak_hardware(struct genwqe_dev *cd)
246{
247	struct pci_dev *pci_dev = cd->pci_dev;
248
249	/* Mask FIRs for development images */
250	if (((cd->slu_unitcfg & 0xFFFF0ull) >= 0x32000ull) &&
251	    ((cd->slu_unitcfg & 0xFFFF0ull) <= 0x33250ull)) {
252		dev_warn(&pci_dev->dev,
253			 "FIRs masked due to bitstream %016llx.%016llx\n",
254			 cd->slu_unitcfg, cd->app_unitcfg);
255
256		__genwqe_writeq(cd, IO_APP_SEC_LEM_DEBUG_OVR,
257				0xFFFFFFFFFFFFFFFFull);
258
259		__genwqe_writeq(cd, IO_APP_ERR_ACT_MASK,
260				0x0000000000000000ull);
261	}
262}
263
264/**
265 * genwqe_recovery_on_fatal_gfir_required() - Version depended actions
266 * @cd: GenWQE device information
267 *
268 * Bitstreams older than 2013-02-17 have a bug where fatal GFIRs must
269 * be ignored. This is e.g. true for the bitstream we gave to the card
270 * manufacturer, but also for some old bitstreams we released to our
271 * test-lab.
272 */
273int genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd)
274{
275	return (cd->slu_unitcfg & 0xFFFF0ull) >= 0x32170ull;
276}
277
278int genwqe_flash_readback_fails(struct genwqe_dev *cd)
279{
280	return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
281}
282
283/**
284 * genwqe_T_psec() - Calculate PF/VF timeout register content
285 * @cd: GenWQE device information
286 *
287 * Note: From a design perspective it turned out to be a bad idea to
288 * use codes here to specifiy the frequency/speed values. An old
289 * driver cannot understand new codes and is therefore always a
290 * problem. Better is to measure out the value or put the
291 * speed/frequency directly into a register which is always a valid
292 * value for old as well as for new software.
293 */
294/* T = 1/f */
295static int genwqe_T_psec(struct genwqe_dev *cd)
296{
297	u16 speed;	/* 1/f -> 250,  200,  166,  175 */
298	static const int T[] = { 4000, 5000, 6000, 5714 };
299
300	speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
301	if (speed >= ARRAY_SIZE(T))
302		return -1;	/* illegal value */
303
304	return T[speed];
305}
306
307/**
308 * genwqe_setup_pf_jtimer() - Setup PF hardware timeouts for DDCB execution
309 * @cd: GenWQE device information
310 *
311 * Do this _after_ card_reset() is called. Otherwise the values will
312 * vanish. The settings need to be done when the queues are inactive.
313 *
314 * The max. timeout value is 2^(10+x) * T (6ns for 166MHz) * 15/16.
315 * The min. timeout value is 2^(10+x) * T (6ns for 166MHz) * 14/16.
316 */
317static bool genwqe_setup_pf_jtimer(struct genwqe_dev *cd)
318{
319	u32 T = genwqe_T_psec(cd);
320	u64 x;
321
322	if (GENWQE_PF_JOBTIMEOUT_MSEC == 0)
323		return false;
324
325	/* PF: large value needed, flash update 2sec per block */
326	x = ilog2(GENWQE_PF_JOBTIMEOUT_MSEC *
327		  16000000000uL/(T * 15)) - 10;
328
329	genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
330			  0xff00 | (x & 0xff), 0);
331	return true;
332}
333
334/**
335 * genwqe_setup_vf_jtimer() - Setup VF hardware timeouts for DDCB execution
336 * @cd: GenWQE device information
337 */
338static bool genwqe_setup_vf_jtimer(struct genwqe_dev *cd)
339{
340	struct pci_dev *pci_dev = cd->pci_dev;
341	unsigned int vf;
342	u32 T = genwqe_T_psec(cd);
343	u64 x;
344	int totalvfs;
345
346	totalvfs = pci_sriov_get_totalvfs(pci_dev);
347	if (totalvfs <= 0)
348		return false;
349
350	for (vf = 0; vf < totalvfs; vf++) {
351
352		if (cd->vf_jobtimeout_msec[vf] == 0)
353			continue;
354
355		x = ilog2(cd->vf_jobtimeout_msec[vf] *
356			  16000000000uL/(T * 15)) - 10;
357
358		genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
359				  0xff00 | (x & 0xff), vf + 1);
360	}
361	return true;
362}
363
364static int genwqe_ffdc_buffs_alloc(struct genwqe_dev *cd)
365{
366	unsigned int type, e = 0;
367
368	for (type = 0; type < GENWQE_DBG_UNITS; type++) {
369		switch (type) {
370		case GENWQE_DBG_UNIT0:
371			e = genwqe_ffdc_buff_size(cd, 0);
372			break;
373		case GENWQE_DBG_UNIT1:
374			e = genwqe_ffdc_buff_size(cd, 1);
375			break;
376		case GENWQE_DBG_UNIT2:
377			e = genwqe_ffdc_buff_size(cd, 2);
378			break;
379		case GENWQE_DBG_REGS:
380			e = GENWQE_FFDC_REGS;
381			break;
382		}
383
384		/* currently support only the debug units mentioned here */
385		cd->ffdc[type].entries = e;
386		cd->ffdc[type].regs =
387			kmalloc_array(e, sizeof(struct genwqe_reg),
388				      GFP_KERNEL);
389		/*
390		 * regs == NULL is ok, the using code treats this as no regs,
391		 * Printing warning is ok in this case.
392		 */
393	}
394	return 0;
395}
396
397static void genwqe_ffdc_buffs_free(struct genwqe_dev *cd)
398{
399	unsigned int type;
400
401	for (type = 0; type < GENWQE_DBG_UNITS; type++) {
402		kfree(cd->ffdc[type].regs);
403		cd->ffdc[type].regs = NULL;
404	}
405}
406
407static int genwqe_read_ids(struct genwqe_dev *cd)
408{
409	int err = 0;
410	int slu_id;
411	struct pci_dev *pci_dev = cd->pci_dev;
412
413	cd->slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
414	if (cd->slu_unitcfg == IO_ILLEGAL_VALUE) {
415		dev_err(&pci_dev->dev,
416			"err: SLUID=%016llx\n", cd->slu_unitcfg);
417		err = -EIO;
418		goto out_err;
419	}
420
421	slu_id = genwqe_get_slu_id(cd);
422	if (slu_id < GENWQE_SLU_ARCH_REQ || slu_id == 0xff) {
423		dev_err(&pci_dev->dev,
424			"err: incompatible SLU Architecture %u\n", slu_id);
425		err = -ENOENT;
426		goto out_err;
427	}
428
429	cd->app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
430	if (cd->app_unitcfg == IO_ILLEGAL_VALUE) {
431		dev_err(&pci_dev->dev,
432			"err: APPID=%016llx\n", cd->app_unitcfg);
433		err = -EIO;
434		goto out_err;
435	}
436	genwqe_read_app_id(cd, cd->app_name, sizeof(cd->app_name));
437
438	/*
439	 * Is access to all registers possible? If we are a VF the
440	 * answer is obvious. If we run fully virtualized, we need to
441	 * check if we can access all registers. If we do not have
442	 * full access we will cause an UR and some informational FIRs
443	 * in the PF, but that should not harm.
444	 */
445	if (pci_dev->is_virtfn)
446		cd->is_privileged = 0;
447	else
448		cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM)
449				     != IO_ILLEGAL_VALUE);
450
451 out_err:
452	return err;
453}
454
455static int genwqe_start(struct genwqe_dev *cd)
456{
457	int err;
458	struct pci_dev *pci_dev = cd->pci_dev;
459
460	err = genwqe_read_ids(cd);
461	if (err)
462		return err;
463
464	if (genwqe_is_privileged(cd)) {
465		/* do this after the tweaks. alloc fail is acceptable */
466		genwqe_ffdc_buffs_alloc(cd);
467		genwqe_stop_traps(cd);
468
469		/* Collect registers e.g. FIRs, UNITIDs, traces ... */
470		genwqe_read_ffdc_regs(cd, cd->ffdc[GENWQE_DBG_REGS].regs,
471				      cd->ffdc[GENWQE_DBG_REGS].entries, 0);
472
473		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT0,
474				      cd->ffdc[GENWQE_DBG_UNIT0].regs,
475				      cd->ffdc[GENWQE_DBG_UNIT0].entries);
476
477		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT1,
478				      cd->ffdc[GENWQE_DBG_UNIT1].regs,
479				      cd->ffdc[GENWQE_DBG_UNIT1].entries);
480
481		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT2,
482				      cd->ffdc[GENWQE_DBG_UNIT2].regs,
483				      cd->ffdc[GENWQE_DBG_UNIT2].entries);
484
485		genwqe_start_traps(cd);
486
487		if (cd->card_state == GENWQE_CARD_FATAL_ERROR) {
488			dev_warn(&pci_dev->dev,
489				 "[%s] chip reload/recovery!\n", __func__);
490
491			/*
492			 * Stealth Mode: Reload chip on either hot
493			 * reset or PERST.
494			 */
495			cd->softreset = 0x7Cull;
496			__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
497				       cd->softreset);
498
499			err = genwqe_bus_reset(cd);
500			if (err != 0) {
501				dev_err(&pci_dev->dev,
502					"[%s] err: bus reset failed!\n",
503					__func__);
504				goto out;
505			}
506
507			/*
508			 * Re-read the IDs because
509			 * it could happen that the bitstream load
510			 * failed!
511			 */
512			err = genwqe_read_ids(cd);
513			if (err)
514				goto out;
515		}
516	}
517
518	err = genwqe_setup_service_layer(cd);  /* does a reset to the card */
519	if (err != 0) {
520		dev_err(&pci_dev->dev,
521			"[%s] err: could not setup servicelayer!\n", __func__);
522		err = -ENODEV;
523		goto out;
524	}
525
526	if (genwqe_is_privileged(cd)) {	 /* code is running _after_ reset */
527		genwqe_tweak_hardware(cd);
528
529		genwqe_setup_pf_jtimer(cd);
530		genwqe_setup_vf_jtimer(cd);
531	}
532
533	err = genwqe_device_create(cd);
534	if (err < 0) {
535		dev_err(&pci_dev->dev,
536			"err: chdev init failed! (err=%d)\n", err);
537		goto out_release_service_layer;
538	}
539	return 0;
540
541 out_release_service_layer:
542	genwqe_release_service_layer(cd);
543 out:
544	if (genwqe_is_privileged(cd))
545		genwqe_ffdc_buffs_free(cd);
546	return -EIO;
547}
548
549/**
550 * genwqe_stop() - Stop card operation
551 * @cd: GenWQE device information
552 *
553 * Recovery notes:
554 *   As long as genwqe_thread runs we might access registers during
555 *   error data capture. Same is with the genwqe_health_thread.
556 *   When genwqe_bus_reset() fails this function might called two times:
557 *   first by the genwqe_health_thread() and later by genwqe_remove() to
558 *   unbind the device. We must be able to survive that.
559 *
560 * This function must be robust enough to be called twice.
561 */
562static int genwqe_stop(struct genwqe_dev *cd)
563{
564	genwqe_finish_queue(cd);	    /* no register access */
565	genwqe_device_remove(cd);	    /* device removed, procs killed */
566	genwqe_release_service_layer(cd);   /* here genwqe_thread is stopped */
567
568	if (genwqe_is_privileged(cd)) {
569		pci_disable_sriov(cd->pci_dev);	/* access pci config space */
570		genwqe_ffdc_buffs_free(cd);
571	}
572
573	return 0;
574}
575
576/**
577 * genwqe_recover_card() - Try to recover the card if it is possible
578 * @cd: GenWQE device information
579 * @fatal_err: Indicate whether to attempt soft reset
580 *
581 * If fatal_err is set no register access is possible anymore. It is
582 * likely that genwqe_start fails in that situation. Proper error
583 * handling is required in this case.
584 *
585 * genwqe_bus_reset() will cause the pci code to call genwqe_remove()
586 * and later genwqe_probe() for all virtual functions.
587 */
588static int genwqe_recover_card(struct genwqe_dev *cd, int fatal_err)
589{
590	int rc;
591	struct pci_dev *pci_dev = cd->pci_dev;
592
593	genwqe_stop(cd);
594
595	/*
596	 * Make sure chip is not reloaded to maintain FFDC. Write SLU
597	 * Reset Register, CPLDReset field to 0.
598	 */
599	if (!fatal_err) {
600		cd->softreset = 0x70ull;
601		__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, cd->softreset);
602	}
603
604	rc = genwqe_bus_reset(cd);
605	if (rc != 0) {
606		dev_err(&pci_dev->dev,
607			"[%s] err: card recovery impossible!\n", __func__);
608		return rc;
609	}
610
611	rc = genwqe_start(cd);
612	if (rc < 0) {
613		dev_err(&pci_dev->dev,
614			"[%s] err: failed to launch device!\n", __func__);
615		return rc;
616	}
617	return 0;
618}
619
620static int genwqe_health_check_cond(struct genwqe_dev *cd, u64 *gfir)
621{
622	*gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
623	return (*gfir & GFIR_ERR_TRIGGER) &&
624		genwqe_recovery_on_fatal_gfir_required(cd);
625}
626
627/**
628 * genwqe_fir_checking() - Check the fault isolation registers of the card
629 * @cd: GenWQE device information
630 *
631 * If this code works ok, can be tried out with help of the genwqe_poke tool:
632 *   sudo ./tools/genwqe_poke 0x8 0xfefefefefef
633 *
634 * Now the relevant FIRs/sFIRs should be printed out and the driver should
635 * invoke recovery (devices are removed and readded).
636 */
637static u64 genwqe_fir_checking(struct genwqe_dev *cd)
638{
639	int j, iterations = 0;
640	u64 mask, fir, fec, uid, gfir, gfir_masked, sfir, sfec;
641	u32 fir_addr, fir_clr_addr, fec_addr, sfir_addr, sfec_addr;
642	struct pci_dev *pci_dev = cd->pci_dev;
643
644 healthMonitor:
645	iterations++;
646	if (iterations > 16) {
647		dev_err(&pci_dev->dev, "* exit looping after %d times\n",
648			iterations);
649		goto fatal_error;
650	}
651
652	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
653	if (gfir != 0x0)
654		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n",
655				    IO_SLC_CFGREG_GFIR, gfir);
656	if (gfir == IO_ILLEGAL_VALUE)
657		goto fatal_error;
658
659	/*
660	 * Avoid printing when to GFIR bit is on prevents contignous
661	 * printout e.g. for the following bug:
662	 *   FIR set without a 2ndary FIR/FIR cannot be cleared
663	 * Comment out the following if to get the prints:
664	 */
665	if (gfir == 0)
666		return 0;
667
668	gfir_masked = gfir & GFIR_ERR_TRIGGER;  /* fatal errors */
669
670	for (uid = 0; uid < GENWQE_MAX_UNITS; uid++) { /* 0..2 in zEDC */
671
672		/* read the primary FIR (pfir) */
673		fir_addr = (uid << 24) + 0x08;
674		fir = __genwqe_readq(cd, fir_addr);
675		if (fir == 0x0)
676			continue;  /* no error in this unit */
677
678		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fir_addr, fir);
679		if (fir == IO_ILLEGAL_VALUE)
680			goto fatal_error;
681
682		/* read primary FEC */
683		fec_addr = (uid << 24) + 0x18;
684		fec = __genwqe_readq(cd, fec_addr);
685
686		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fec_addr, fec);
687		if (fec == IO_ILLEGAL_VALUE)
688			goto fatal_error;
689
690		for (j = 0, mask = 1ULL; j < 64; j++, mask <<= 1) {
691
692			/* secondary fir empty, skip it */
693			if ((fir & mask) == 0x0)
694				continue;
695
696			sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
697			sfir = __genwqe_readq(cd, sfir_addr);
698
699			if (sfir == IO_ILLEGAL_VALUE)
700				goto fatal_error;
701			dev_err(&pci_dev->dev,
702				"* 0x%08x 0x%016llx\n", sfir_addr, sfir);
703
704			sfec_addr = (uid << 24) + 0x300 + 0x08 * j;
705			sfec = __genwqe_readq(cd, sfec_addr);
706
707			if (sfec == IO_ILLEGAL_VALUE)
708				goto fatal_error;
709			dev_err(&pci_dev->dev,
710				"* 0x%08x 0x%016llx\n", sfec_addr, sfec);
711
712			gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
713			if (gfir == IO_ILLEGAL_VALUE)
714				goto fatal_error;
715
716			/* gfir turned on during routine! get out and
717			   start over. */
718			if ((gfir_masked == 0x0) &&
719			    (gfir & GFIR_ERR_TRIGGER)) {
720				goto healthMonitor;
721			}
722
723			/* do not clear if we entered with a fatal gfir */
724			if (gfir_masked == 0x0) {
725
726				/* NEW clear by mask the logged bits */
727				sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
728				__genwqe_writeq(cd, sfir_addr, sfir);
729
730				dev_dbg(&pci_dev->dev,
731					"[HM] Clearing  2ndary FIR 0x%08x with 0x%016llx\n",
732					sfir_addr, sfir);
733
734				/*
735				 * note, these cannot be error-Firs
736				 * since gfir_masked is 0 after sfir
737				 * was read. Also, it is safe to do
738				 * this write if sfir=0. Still need to
739				 * clear the primary. This just means
740				 * there is no secondary FIR.
741				 */
742
743				/* clear by mask the logged bit. */
744				fir_clr_addr = (uid << 24) + 0x10;
745				__genwqe_writeq(cd, fir_clr_addr, mask);
746
747				dev_dbg(&pci_dev->dev,
748					"[HM] Clearing primary FIR 0x%08x with 0x%016llx\n",
749					fir_clr_addr, mask);
750			}
751		}
752	}
753	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
754	if (gfir == IO_ILLEGAL_VALUE)
755		goto fatal_error;
756
757	if ((gfir_masked == 0x0) && (gfir & GFIR_ERR_TRIGGER)) {
758		/*
759		 * Check once more that it didn't go on after all the
760		 * FIRS were cleared.
761		 */
762		dev_dbg(&pci_dev->dev, "ACK! Another FIR! Recursing %d!\n",
763			iterations);
764		goto healthMonitor;
765	}
766	return gfir_masked;
767
768 fatal_error:
769	return IO_ILLEGAL_VALUE;
770}
771
772/**
773 * genwqe_pci_fundamental_reset() - trigger a PCIe fundamental reset on the slot
774 * @pci_dev:	PCI device information struct
775 *
776 * Note: pci_set_pcie_reset_state() is not implemented on all archs, so this
777 * reset method will not work in all cases.
778 *
779 * Return: 0 on success or error code from pci_set_pcie_reset_state()
780 */
781static int genwqe_pci_fundamental_reset(struct pci_dev *pci_dev)
782{
783	int rc;
784
785	/*
786	 * lock pci config space access from userspace,
787	 * save state and issue PCIe fundamental reset
788	 */
789	pci_cfg_access_lock(pci_dev);
790	pci_save_state(pci_dev);
791	rc = pci_set_pcie_reset_state(pci_dev, pcie_warm_reset);
792	if (!rc) {
793		/* keep PCIe reset asserted for 250ms */
794		msleep(250);
795		pci_set_pcie_reset_state(pci_dev, pcie_deassert_reset);
796		/* Wait for 2s to reload flash and train the link */
797		msleep(2000);
798	}
799	pci_restore_state(pci_dev);
800	pci_cfg_access_unlock(pci_dev);
801	return rc;
802}
803
804
805static int genwqe_platform_recovery(struct genwqe_dev *cd)
806{
807	struct pci_dev *pci_dev = cd->pci_dev;
808	int rc;
809
810	dev_info(&pci_dev->dev,
811		 "[%s] resetting card for error recovery\n", __func__);
812
813	/* Clear out error injection flags */
814	cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
815			    GENWQE_INJECT_GFIR_FATAL |
816			    GENWQE_INJECT_GFIR_INFO);
817
818	genwqe_stop(cd);
819
820	/* Try recoverying the card with fundamental reset */
821	rc = genwqe_pci_fundamental_reset(pci_dev);
822	if (!rc) {
823		rc = genwqe_start(cd);
824		if (!rc)
825			dev_info(&pci_dev->dev,
826				 "[%s] card recovered\n", __func__);
827		else
828			dev_err(&pci_dev->dev,
829				"[%s] err: cannot start card services! (err=%d)\n",
830				__func__, rc);
831	} else {
832		dev_err(&pci_dev->dev,
833			"[%s] card reset failed\n", __func__);
834	}
835
836	return rc;
837}
838
839/**
840 * genwqe_reload_bistream() - reload card bitstream
841 * @cd: GenWQE device information
842 *
843 * Set the appropriate register and call fundamental reset to reaload the card
844 * bitstream.
845 *
846 * Return: 0 on success, error code otherwise
847 */
848static int genwqe_reload_bistream(struct genwqe_dev *cd)
849{
850	struct pci_dev *pci_dev = cd->pci_dev;
851	int rc;
852
853	dev_info(&pci_dev->dev,
854		 "[%s] resetting card for bitstream reload\n",
855		 __func__);
856
857	genwqe_stop(cd);
858
859	/*
860	 * Cause a CPLD reprogram with the 'next_bitstream'
861	 * partition on PCIe hot or fundamental reset
862	 */
863	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
864			(cd->softreset & 0xcull) | 0x70ull);
865
866	rc = genwqe_pci_fundamental_reset(pci_dev);
867	if (rc) {
868		/*
869		 * A fundamental reset failure can be caused
870		 * by lack of support on the arch, so we just
871		 * log the error and try to start the card
872		 * again.
873		 */
874		dev_err(&pci_dev->dev,
875			"[%s] err: failed to reset card for bitstream reload\n",
876			__func__);
877	}
878
879	rc = genwqe_start(cd);
880	if (rc) {
881		dev_err(&pci_dev->dev,
882			"[%s] err: cannot start card services! (err=%d)\n",
883			__func__, rc);
884		return rc;
885	}
886	dev_info(&pci_dev->dev,
887		 "[%s] card reloaded\n", __func__);
888	return 0;
889}
890
891
892/**
893 * genwqe_health_thread() - Health checking thread
894 * @data: GenWQE device information
895 *
896 * This thread is only started for the PF of the card.
897 *
898 * This thread monitors the health of the card. A critical situation
899 * is when we read registers which contain -1 (IO_ILLEGAL_VALUE). In
900 * this case we need to be recovered from outside. Writing to
901 * registers will very likely not work either.
902 *
903 * This thread must only exit if kthread_should_stop() becomes true.
904 *
905 * Condition for the health-thread to trigger:
906 *   a) when a kthread_stop() request comes in or
907 *   b) a critical GFIR occured
908 *
909 * Informational GFIRs are checked and potentially printed in
910 * GENWQE_HEALTH_CHECK_INTERVAL seconds.
911 */
912static int genwqe_health_thread(void *data)
913{
914	int rc, should_stop = 0;
915	struct genwqe_dev *cd = data;
916	struct pci_dev *pci_dev = cd->pci_dev;
917	u64 gfir, gfir_masked, slu_unitcfg, app_unitcfg;
918
919 health_thread_begin:
920	while (!kthread_should_stop()) {
921		rc = wait_event_interruptible_timeout(cd->health_waitq,
922			 (genwqe_health_check_cond(cd, &gfir) ||
923			  (should_stop = kthread_should_stop())),
924				GENWQE_HEALTH_CHECK_INTERVAL * HZ);
925
926		if (should_stop)
927			break;
928
929		if (gfir == IO_ILLEGAL_VALUE) {
930			dev_err(&pci_dev->dev,
931				"[%s] GFIR=%016llx\n", __func__, gfir);
932			goto fatal_error;
933		}
934
935		slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
936		if (slu_unitcfg == IO_ILLEGAL_VALUE) {
937			dev_err(&pci_dev->dev,
938				"[%s] SLU_UNITCFG=%016llx\n",
939				__func__, slu_unitcfg);
940			goto fatal_error;
941		}
942
943		app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
944		if (app_unitcfg == IO_ILLEGAL_VALUE) {
945			dev_err(&pci_dev->dev,
946				"[%s] APP_UNITCFG=%016llx\n",
947				__func__, app_unitcfg);
948			goto fatal_error;
949		}
950
951		gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
952		if (gfir == IO_ILLEGAL_VALUE) {
953			dev_err(&pci_dev->dev,
954				"[%s] %s: GFIR=%016llx\n", __func__,
955				(gfir & GFIR_ERR_TRIGGER) ? "err" : "info",
956				gfir);
957			goto fatal_error;
958		}
959
960		gfir_masked = genwqe_fir_checking(cd);
961		if (gfir_masked == IO_ILLEGAL_VALUE)
962			goto fatal_error;
963
964		/*
965		 * GFIR ErrorTrigger bits set => reset the card!
966		 * Never do this for old/manufacturing images!
967		 */
968		if ((gfir_masked) && !cd->skip_recovery &&
969		    genwqe_recovery_on_fatal_gfir_required(cd)) {
970
971			cd->card_state = GENWQE_CARD_FATAL_ERROR;
972
973			rc = genwqe_recover_card(cd, 0);
974			if (rc < 0) {
975				/* FIXME Card is unusable and needs unbind! */
976				goto fatal_error;
977			}
978		}
979
980		if (cd->card_state == GENWQE_CARD_RELOAD_BITSTREAM) {
981			/* Userspace requested card bitstream reload */
982			rc = genwqe_reload_bistream(cd);
983			if (rc)
984				goto fatal_error;
985		}
986
987		cd->last_gfir = gfir;
988		cond_resched();
989	}
990
991	return 0;
992
993 fatal_error:
994	if (cd->use_platform_recovery) {
995		/*
996		 * Since we use raw accessors, EEH errors won't be detected
997		 * by the platform until we do a non-raw MMIO or config space
998		 * read
999		 */
1000		readq(cd->mmio + IO_SLC_CFGREG_GFIR);
1001
1002		/* We do nothing if the card is going over PCI recovery */
1003		if (pci_channel_offline(pci_dev))
1004			return -EIO;
1005
1006		/*
1007		 * If it's supported by the platform, we try a fundamental reset
1008		 * to recover from a fatal error. Otherwise, we continue to wait
1009		 * for an external recovery procedure to take care of it.
1010		 */
1011		rc = genwqe_platform_recovery(cd);
1012		if (!rc)
1013			goto health_thread_begin;
1014	}
1015
1016	dev_err(&pci_dev->dev,
1017		"[%s] card unusable. Please trigger unbind!\n", __func__);
1018
1019	/* Bring down logical devices to inform user space via udev remove. */
1020	cd->card_state = GENWQE_CARD_FATAL_ERROR;
1021	genwqe_stop(cd);
1022
1023	/* genwqe_bus_reset failed(). Now wait for genwqe_remove(). */
1024	while (!kthread_should_stop())
1025		cond_resched();
1026
1027	return -EIO;
1028}
1029
1030static int genwqe_health_check_start(struct genwqe_dev *cd)
1031{
1032	int rc;
1033
1034	if (GENWQE_HEALTH_CHECK_INTERVAL <= 0)
1035		return 0;	/* valid for disabling the service */
1036
1037	/* moved before request_irq() */
1038	/* init_waitqueue_head(&cd->health_waitq); */
1039
1040	cd->health_thread = kthread_run(genwqe_health_thread, cd,
1041					GENWQE_DEVNAME "%d_health",
1042					cd->card_idx);
1043	if (IS_ERR(cd->health_thread)) {
1044		rc = PTR_ERR(cd->health_thread);
1045		cd->health_thread = NULL;
1046		return rc;
1047	}
1048	return 0;
1049}
1050
1051static int genwqe_health_thread_running(struct genwqe_dev *cd)
1052{
1053	return cd->health_thread != NULL;
1054}
1055
1056static int genwqe_health_check_stop(struct genwqe_dev *cd)
1057{
1058	if (!genwqe_health_thread_running(cd))
1059		return -EIO;
1060
1061	kthread_stop(cd->health_thread);
1062	cd->health_thread = NULL;
1063	return 0;
1064}
1065
1066/**
1067 * genwqe_pci_setup() - Allocate PCIe related resources for our card
1068 * @cd: GenWQE device information
1069 */
1070static int genwqe_pci_setup(struct genwqe_dev *cd)
1071{
1072	int err;
1073	struct pci_dev *pci_dev = cd->pci_dev;
1074
1075	err = pci_enable_device_mem(pci_dev);
1076	if (err) {
1077		dev_err(&pci_dev->dev,
1078			"err: failed to enable pci memory (err=%d)\n", err);
1079		goto err_out;
1080	}
1081
1082	/* Reserve PCI I/O and memory resources */
1083	err = pci_request_mem_regions(pci_dev, genwqe_driver_name);
1084	if (err) {
1085		dev_err(&pci_dev->dev,
1086			"[%s] err: request bars failed (%d)\n", __func__, err);
1087		err = -EIO;
1088		goto err_disable_device;
1089	}
1090
1091	/* check for 64-bit DMA address supported (DAC) */
1092	if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1093		err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(64));
1094		if (err) {
1095			dev_err(&pci_dev->dev,
1096				"err: DMA64 consistent mask error\n");
1097			err = -EIO;
1098			goto out_release_resources;
1099		}
1100	/* check for 32-bit DMA address supported (SAC) */
1101	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1102		err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(32));
1103		if (err) {
1104			dev_err(&pci_dev->dev,
1105				"err: DMA32 consistent mask error\n");
1106			err = -EIO;
1107			goto out_release_resources;
1108		}
1109	} else {
1110		dev_err(&pci_dev->dev,
1111			"err: neither DMA32 nor DMA64 supported\n");
1112		err = -EIO;
1113		goto out_release_resources;
1114	}
1115
1116	pci_set_master(pci_dev);
1117	pci_enable_pcie_error_reporting(pci_dev);
1118
1119	/* EEH recovery requires PCIe fundamental reset */
1120	pci_dev->needs_freset = 1;
1121
1122	/* request complete BAR-0 space (length = 0) */
1123	cd->mmio_len = pci_resource_len(pci_dev, 0);
1124	cd->mmio = pci_iomap(pci_dev, 0, 0);
1125	if (cd->mmio == NULL) {
1126		dev_err(&pci_dev->dev,
1127			"[%s] err: mapping BAR0 failed\n", __func__);
1128		err = -ENOMEM;
1129		goto out_release_resources;
1130	}
1131
1132	cd->num_vfs = pci_sriov_get_totalvfs(pci_dev);
1133	if (cd->num_vfs < 0)
1134		cd->num_vfs = 0;
1135
1136	err = genwqe_read_ids(cd);
1137	if (err)
1138		goto out_iounmap;
1139
1140	return 0;
1141
1142 out_iounmap:
1143	pci_iounmap(pci_dev, cd->mmio);
1144 out_release_resources:
1145	pci_release_mem_regions(pci_dev);
1146 err_disable_device:
1147	pci_disable_device(pci_dev);
1148 err_out:
1149	return err;
1150}
1151
1152/**
1153 * genwqe_pci_remove() - Free PCIe related resources for our card
1154 * @cd: GenWQE device information
1155 */
1156static void genwqe_pci_remove(struct genwqe_dev *cd)
1157{
1158	struct pci_dev *pci_dev = cd->pci_dev;
1159
1160	if (cd->mmio)
1161		pci_iounmap(pci_dev, cd->mmio);
1162
1163	pci_release_mem_regions(pci_dev);
1164	pci_disable_device(pci_dev);
1165}
1166
1167/**
1168 * genwqe_probe() - Device initialization
1169 * @pci_dev:	PCI device information struct
1170 * @id:		PCI device ID
1171 *
1172 * Callable for multiple cards. This function is called on bind.
1173 *
1174 * Return: 0 if succeeded, < 0 when failed
1175 */
1176static int genwqe_probe(struct pci_dev *pci_dev,
1177			const struct pci_device_id *id)
1178{
1179	int err;
1180	struct genwqe_dev *cd;
1181
1182	genwqe_init_crc32();
1183
1184	cd = genwqe_dev_alloc();
1185	if (IS_ERR(cd)) {
1186		dev_err(&pci_dev->dev, "err: could not alloc mem (err=%d)!\n",
1187			(int)PTR_ERR(cd));
1188		return PTR_ERR(cd);
1189	}
1190
1191	dev_set_drvdata(&pci_dev->dev, cd);
1192	cd->pci_dev = pci_dev;
1193
1194	err = genwqe_pci_setup(cd);
1195	if (err < 0) {
1196		dev_err(&pci_dev->dev,
1197			"err: problems with PCI setup (err=%d)\n", err);
1198		goto out_free_dev;
1199	}
1200
1201	err = genwqe_start(cd);
1202	if (err < 0) {
1203		dev_err(&pci_dev->dev,
1204			"err: cannot start card services! (err=%d)\n", err);
1205		goto out_pci_remove;
1206	}
1207
1208	if (genwqe_is_privileged(cd)) {
1209		err = genwqe_health_check_start(cd);
1210		if (err < 0) {
1211			dev_err(&pci_dev->dev,
1212				"err: cannot start health checking! (err=%d)\n",
1213				err);
1214			goto out_stop_services;
1215		}
1216	}
1217	return 0;
1218
1219 out_stop_services:
1220	genwqe_stop(cd);
1221 out_pci_remove:
1222	genwqe_pci_remove(cd);
1223 out_free_dev:
1224	genwqe_dev_free(cd);
1225	return err;
1226}
1227
1228/**
1229 * genwqe_remove() - Called when device is removed (hot-plugable)
1230 * @pci_dev:	PCI device information struct
1231 *
1232 * Or when driver is unloaded respecitively when unbind is done.
1233 */
1234static void genwqe_remove(struct pci_dev *pci_dev)
1235{
1236	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1237
1238	genwqe_health_check_stop(cd);
1239
1240	/*
1241	 * genwqe_stop() must survive if it is called twice
1242	 * sequentially. This happens when the health thread calls it
1243	 * and fails on genwqe_bus_reset().
1244	 */
1245	genwqe_stop(cd);
1246	genwqe_pci_remove(cd);
1247	genwqe_dev_free(cd);
1248}
1249
1250/**
1251 * genwqe_err_error_detected() - Error detection callback
1252 * @pci_dev:	PCI device information struct
1253 * @state:	PCI channel state
1254 *
1255 * This callback is called by the PCI subsystem whenever a PCI bus
1256 * error is detected.
1257 */
1258static pci_ers_result_t genwqe_err_error_detected(struct pci_dev *pci_dev,
1259						 pci_channel_state_t state)
1260{
1261	struct genwqe_dev *cd;
1262
1263	dev_err(&pci_dev->dev, "[%s] state=%d\n", __func__, state);
1264
1265	cd = dev_get_drvdata(&pci_dev->dev);
1266	if (cd == NULL)
1267		return PCI_ERS_RESULT_DISCONNECT;
1268
1269	/* Stop the card */
1270	genwqe_health_check_stop(cd);
1271	genwqe_stop(cd);
1272
1273	/*
1274	 * On permanent failure, the PCI code will call device remove
1275	 * after the return of this function.
1276	 * genwqe_stop() can be called twice.
1277	 */
1278	if (state == pci_channel_io_perm_failure) {
1279		return PCI_ERS_RESULT_DISCONNECT;
1280	} else {
1281		genwqe_pci_remove(cd);
1282		return PCI_ERS_RESULT_NEED_RESET;
1283	}
1284}
1285
1286static pci_ers_result_t genwqe_err_slot_reset(struct pci_dev *pci_dev)
1287{
1288	int rc;
1289	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1290
1291	rc = genwqe_pci_setup(cd);
1292	if (!rc) {
1293		return PCI_ERS_RESULT_RECOVERED;
1294	} else {
1295		dev_err(&pci_dev->dev,
1296			"err: problems with PCI setup (err=%d)\n", rc);
1297		return PCI_ERS_RESULT_DISCONNECT;
1298	}
1299}
1300
1301static pci_ers_result_t genwqe_err_result_none(struct pci_dev *dev)
1302{
1303	return PCI_ERS_RESULT_NONE;
1304}
1305
1306static void genwqe_err_resume(struct pci_dev *pci_dev)
1307{
1308	int rc;
1309	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1310
1311	rc = genwqe_start(cd);
1312	if (!rc) {
1313		rc = genwqe_health_check_start(cd);
1314		if (rc)
1315			dev_err(&pci_dev->dev,
1316				"err: cannot start health checking! (err=%d)\n",
1317				rc);
1318	} else {
1319		dev_err(&pci_dev->dev,
1320			"err: cannot start card services! (err=%d)\n", rc);
1321	}
1322}
1323
1324static int genwqe_sriov_configure(struct pci_dev *dev, int numvfs)
1325{
1326	int rc;
1327	struct genwqe_dev *cd = dev_get_drvdata(&dev->dev);
1328
1329	if (numvfs > 0) {
1330		genwqe_setup_vf_jtimer(cd);
1331		rc = pci_enable_sriov(dev, numvfs);
1332		if (rc < 0)
1333			return rc;
1334		return numvfs;
1335	}
1336	if (numvfs == 0) {
1337		pci_disable_sriov(dev);
1338		return 0;
1339	}
1340	return 0;
1341}
1342
1343static const struct pci_error_handlers genwqe_err_handler = {
1344	.error_detected = genwqe_err_error_detected,
1345	.mmio_enabled	= genwqe_err_result_none,
1346	.slot_reset	= genwqe_err_slot_reset,
1347	.resume		= genwqe_err_resume,
1348};
1349
1350static struct pci_driver genwqe_driver = {
1351	.name	  = genwqe_driver_name,
1352	.id_table = genwqe_device_table,
1353	.probe	  = genwqe_probe,
1354	.remove	  = genwqe_remove,
1355	.sriov_configure = genwqe_sriov_configure,
1356	.err_handler = &genwqe_err_handler,
1357};
1358
1359/**
1360 * genwqe_devnode() - Set default access mode for genwqe devices.
1361 * @dev:	Pointer to device (unused)
1362 * @mode:	Carrier to pass-back given mode (permissions)
1363 *
1364 * Default mode should be rw for everybody. Do not change default
1365 * device name.
1366 */
1367static char *genwqe_devnode(struct device *dev, umode_t *mode)
1368{
1369	if (mode)
1370		*mode = 0666;
1371	return NULL;
1372}
1373
1374/**
1375 * genwqe_init_module() - Driver registration and initialization
1376 */
1377static int __init genwqe_init_module(void)
1378{
1379	int rc;
1380
1381	class_genwqe = class_create(THIS_MODULE, GENWQE_DEVNAME);
1382	if (IS_ERR(class_genwqe)) {
1383		pr_err("[%s] create class failed\n", __func__);
1384		return -ENOMEM;
1385	}
1386
1387	class_genwqe->devnode = genwqe_devnode;
1388
1389	debugfs_genwqe = debugfs_create_dir(GENWQE_DEVNAME, NULL);
1390
1391	rc = pci_register_driver(&genwqe_driver);
1392	if (rc != 0) {
1393		pr_err("[%s] pci_reg_driver (rc=%d)\n", __func__, rc);
1394		goto err_out0;
1395	}
1396
1397	return rc;
1398
1399 err_out0:
1400	debugfs_remove(debugfs_genwqe);
1401	class_destroy(class_genwqe);
1402	return rc;
1403}
1404
1405/**
1406 * genwqe_exit_module() - Driver exit
1407 */
1408static void __exit genwqe_exit_module(void)
1409{
1410	pci_unregister_driver(&genwqe_driver);
1411	debugfs_remove(debugfs_genwqe);
1412	class_destroy(class_genwqe);
1413}
1414
1415module_init(genwqe_init_module);
1416module_exit(genwqe_exit_module);
1417