1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Driver for Intel MSIC 4 * 5 * Copyright (C) 2011, Intel Corporation 6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com> 7 */ 8 9#include <linux/err.h> 10#include <linux/gpio.h> 11#include <linux/io.h> 12#include <linux/init.h> 13#include <linux/mfd/core.h> 14#include <linux/mfd/intel_msic.h> 15#include <linux/platform_device.h> 16#include <linux/slab.h> 17 18#include <asm/intel_scu_ipc.h> 19 20#define MSIC_VENDOR(id) ((id >> 6) & 3) 21#define MSIC_VERSION(id) (id & 0x3f) 22#define MSIC_MAJOR(id) ('A' + ((id >> 3) & 7)) 23#define MSIC_MINOR(id) (id & 7) 24 25/* 26 * MSIC interrupt tree is readable from SRAM at INTEL_MSIC_IRQ_PHYS_BASE. 27 * Since IRQ block starts from address 0x002 we need to subtract that from 28 * the actual IRQ status register address. 29 */ 30#define MSIC_IRQ_STATUS(x) (INTEL_MSIC_IRQ_PHYS_BASE + ((x) - 2)) 31#define MSIC_IRQ_STATUS_ACCDET MSIC_IRQ_STATUS(INTEL_MSIC_ACCDET) 32 33/* 34 * The SCU hardware has limitation of 16 bytes per read/write buffer on 35 * Medfield. 36 */ 37#define SCU_IPC_RWBUF_LIMIT 16 38 39/** 40 * struct intel_msic - an MSIC MFD instance 41 * @pdev: pointer to the platform device 42 * @vendor: vendor ID 43 * @version: chip version 44 * @irq_base: base address of the mapped MSIC SRAM interrupt tree 45 */ 46struct intel_msic { 47 struct platform_device *pdev; 48 unsigned vendor; 49 unsigned version; 50 void __iomem *irq_base; 51}; 52 53static struct resource msic_touch_resources[] = { 54 DEFINE_RES_IRQ(0), 55}; 56 57static struct resource msic_adc_resources[] = { 58 DEFINE_RES_IRQ(0), 59}; 60 61static struct resource msic_battery_resources[] = { 62 DEFINE_RES_IRQ(0), 63}; 64 65static struct resource msic_gpio_resources[] = { 66 DEFINE_RES_IRQ(0), 67}; 68 69static struct resource msic_audio_resources[] = { 70 DEFINE_RES_IRQ_NAMED(0, "IRQ"), 71 /* 72 * We will pass IRQ_BASE to the driver now but this can be removed 73 * when/if the driver starts to use intel_msic_irq_read(). 74 */ 75 DEFINE_RES_MEM_NAMED(MSIC_IRQ_STATUS_ACCDET, 1, "IRQ_BASE"), 76}; 77 78static struct resource msic_hdmi_resources[] = { 79 DEFINE_RES_IRQ(0), 80}; 81 82static struct resource msic_thermal_resources[] = { 83 DEFINE_RES_IRQ(0), 84}; 85 86static struct resource msic_power_btn_resources[] = { 87 DEFINE_RES_IRQ(0), 88}; 89 90static struct resource msic_ocd_resources[] = { 91 DEFINE_RES_IRQ(0), 92}; 93 94/* 95 * Devices that are part of the MSIC and are available via firmware 96 * populated SFI DEVS table. 97 */ 98static struct mfd_cell msic_devs[] = { 99 [INTEL_MSIC_BLOCK_TOUCH] = { 100 .name = "msic_touch", 101 .num_resources = ARRAY_SIZE(msic_touch_resources), 102 .resources = msic_touch_resources, 103 }, 104 [INTEL_MSIC_BLOCK_ADC] = { 105 .name = "msic_adc", 106 .num_resources = ARRAY_SIZE(msic_adc_resources), 107 .resources = msic_adc_resources, 108 }, 109 [INTEL_MSIC_BLOCK_BATTERY] = { 110 .name = "msic_battery", 111 .num_resources = ARRAY_SIZE(msic_battery_resources), 112 .resources = msic_battery_resources, 113 }, 114 [INTEL_MSIC_BLOCK_GPIO] = { 115 .name = "msic_gpio", 116 .num_resources = ARRAY_SIZE(msic_gpio_resources), 117 .resources = msic_gpio_resources, 118 }, 119 [INTEL_MSIC_BLOCK_AUDIO] = { 120 .name = "msic_audio", 121 .num_resources = ARRAY_SIZE(msic_audio_resources), 122 .resources = msic_audio_resources, 123 }, 124 [INTEL_MSIC_BLOCK_HDMI] = { 125 .name = "msic_hdmi", 126 .num_resources = ARRAY_SIZE(msic_hdmi_resources), 127 .resources = msic_hdmi_resources, 128 }, 129 [INTEL_MSIC_BLOCK_THERMAL] = { 130 .name = "msic_thermal", 131 .num_resources = ARRAY_SIZE(msic_thermal_resources), 132 .resources = msic_thermal_resources, 133 }, 134 [INTEL_MSIC_BLOCK_POWER_BTN] = { 135 .name = "msic_power_btn", 136 .num_resources = ARRAY_SIZE(msic_power_btn_resources), 137 .resources = msic_power_btn_resources, 138 }, 139 [INTEL_MSIC_BLOCK_OCD] = { 140 .name = "msic_ocd", 141 .num_resources = ARRAY_SIZE(msic_ocd_resources), 142 .resources = msic_ocd_resources, 143 }, 144}; 145 146/* 147 * Other MSIC related devices which are not directly available via SFI DEVS 148 * table. These can be pseudo devices, regulators etc. which are needed for 149 * different purposes. 150 * 151 * These devices appear only after the MSIC driver itself is initialized so 152 * we can guarantee that the SCU IPC interface is ready. 153 */ 154static const struct mfd_cell msic_other_devs[] = { 155 /* Audio codec in the MSIC */ 156 { 157 .id = -1, 158 .name = "sn95031", 159 }, 160}; 161 162/** 163 * intel_msic_reg_read - read a single MSIC register 164 * @reg: register to read 165 * @val: register value is placed here 166 * 167 * Read a single register from MSIC. Returns %0 on success and negative 168 * errno in case of failure. 169 * 170 * Function may sleep. 171 */ 172int intel_msic_reg_read(unsigned short reg, u8 *val) 173{ 174 return intel_scu_ipc_ioread8(reg, val); 175} 176EXPORT_SYMBOL_GPL(intel_msic_reg_read); 177 178/** 179 * intel_msic_reg_write - write a single MSIC register 180 * @reg: register to write 181 * @val: value to write to that register 182 * 183 * Write a single MSIC register. Returns 0 on success and negative 184 * errno in case of failure. 185 * 186 * Function may sleep. 187 */ 188int intel_msic_reg_write(unsigned short reg, u8 val) 189{ 190 return intel_scu_ipc_iowrite8(reg, val); 191} 192EXPORT_SYMBOL_GPL(intel_msic_reg_write); 193 194/** 195 * intel_msic_reg_update - update a single MSIC register 196 * @reg: register to update 197 * @val: value to write to the register 198 * @mask: specifies which of the bits are updated (%0 = don't update, 199 * %1 = update) 200 * 201 * Perform an update to a register @reg. @mask is used to specify which 202 * bits are updated. Returns %0 in case of success and negative errno in 203 * case of failure. 204 * 205 * Function may sleep. 206 */ 207int intel_msic_reg_update(unsigned short reg, u8 val, u8 mask) 208{ 209 return intel_scu_ipc_update_register(reg, val, mask); 210} 211EXPORT_SYMBOL_GPL(intel_msic_reg_update); 212 213/** 214 * intel_msic_bulk_read - read an array of registers 215 * @reg: array of register addresses to read 216 * @buf: array where the read values are placed 217 * @count: number of registers to read 218 * 219 * Function reads @count registers from the MSIC using addresses passed in 220 * @reg. Read values are placed in @buf. Reads are performed atomically 221 * wrt. MSIC. 222 * 223 * Returns %0 in case of success and negative errno in case of failure. 224 * 225 * Function may sleep. 226 */ 227int intel_msic_bulk_read(unsigned short *reg, u8 *buf, size_t count) 228{ 229 if (WARN_ON(count > SCU_IPC_RWBUF_LIMIT)) 230 return -EINVAL; 231 232 return intel_scu_ipc_readv(reg, buf, count); 233} 234EXPORT_SYMBOL_GPL(intel_msic_bulk_read); 235 236/** 237 * intel_msic_bulk_write - write an array of values to the MSIC registers 238 * @reg: array of registers to write 239 * @buf: values to write to each register 240 * @count: number of registers to write 241 * 242 * Function writes @count registers in @buf to MSIC. Writes are performed 243 * atomically wrt MSIC. Returns %0 in case of success and negative errno in 244 * case of failure. 245 * 246 * Function may sleep. 247 */ 248int intel_msic_bulk_write(unsigned short *reg, u8 *buf, size_t count) 249{ 250 if (WARN_ON(count > SCU_IPC_RWBUF_LIMIT)) 251 return -EINVAL; 252 253 return intel_scu_ipc_writev(reg, buf, count); 254} 255EXPORT_SYMBOL_GPL(intel_msic_bulk_write); 256 257/** 258 * intel_msic_irq_read - read a register from an MSIC interrupt tree 259 * @msic: MSIC instance 260 * @reg: interrupt register (between %INTEL_MSIC_IRQLVL1 and 261 * %INTEL_MSIC_RESETIRQ2) 262 * @val: value of the register is placed here 263 * 264 * This function can be used by an MSIC subdevice interrupt handler to read 265 * a register value from the MSIC interrupt tree. In this way subdevice 266 * drivers don't have to map in the interrupt tree themselves but can just 267 * call this function instead. 268 * 269 * Function doesn't sleep and is callable from interrupt context. 270 * 271 * Returns %-EINVAL if @reg is outside of the allowed register region. 272 */ 273int intel_msic_irq_read(struct intel_msic *msic, unsigned short reg, u8 *val) 274{ 275 if (WARN_ON(reg < INTEL_MSIC_IRQLVL1 || reg > INTEL_MSIC_RESETIRQ2)) 276 return -EINVAL; 277 278 *val = readb(msic->irq_base + (reg - INTEL_MSIC_IRQLVL1)); 279 return 0; 280} 281EXPORT_SYMBOL_GPL(intel_msic_irq_read); 282 283static int intel_msic_init_devices(struct intel_msic *msic) 284{ 285 struct platform_device *pdev = msic->pdev; 286 struct intel_msic_platform_data *pdata = dev_get_platdata(&pdev->dev); 287 int ret, i; 288 289 if (pdata->gpio) { 290 struct mfd_cell *cell = &msic_devs[INTEL_MSIC_BLOCK_GPIO]; 291 292 cell->platform_data = pdata->gpio; 293 cell->pdata_size = sizeof(*pdata->gpio); 294 } 295 296 if (pdata->ocd) { 297 unsigned gpio = pdata->ocd->gpio; 298 299 ret = devm_gpio_request_one(&pdev->dev, gpio, 300 GPIOF_IN, "ocd_gpio"); 301 if (ret) { 302 dev_err(&pdev->dev, "failed to register OCD GPIO\n"); 303 return ret; 304 } 305 306 ret = gpio_to_irq(gpio); 307 if (ret < 0) { 308 dev_err(&pdev->dev, "no IRQ number for OCD GPIO\n"); 309 return ret; 310 } 311 312 /* Update the IRQ number for the OCD */ 313 pdata->irq[INTEL_MSIC_BLOCK_OCD] = ret; 314 } 315 316 for (i = 0; i < ARRAY_SIZE(msic_devs); i++) { 317 if (!pdata->irq[i]) 318 continue; 319 320 ret = mfd_add_devices(&pdev->dev, -1, &msic_devs[i], 1, NULL, 321 pdata->irq[i], NULL); 322 if (ret) 323 goto fail; 324 } 325 326 ret = mfd_add_devices(&pdev->dev, 0, msic_other_devs, 327 ARRAY_SIZE(msic_other_devs), NULL, 0, NULL); 328 if (ret) 329 goto fail; 330 331 return 0; 332 333fail: 334 mfd_remove_devices(&pdev->dev); 335 336 return ret; 337} 338 339static void intel_msic_remove_devices(struct intel_msic *msic) 340{ 341 struct platform_device *pdev = msic->pdev; 342 343 mfd_remove_devices(&pdev->dev); 344} 345 346static int intel_msic_probe(struct platform_device *pdev) 347{ 348 struct intel_msic_platform_data *pdata = dev_get_platdata(&pdev->dev); 349 struct intel_msic *msic; 350 struct resource *res; 351 u8 id0, id1; 352 int ret; 353 354 if (!pdata) { 355 dev_err(&pdev->dev, "no platform data passed\n"); 356 return -EINVAL; 357 } 358 359 /* First validate that we have an MSIC in place */ 360 ret = intel_scu_ipc_ioread8(INTEL_MSIC_ID0, &id0); 361 if (ret) { 362 dev_err(&pdev->dev, "failed to identify the MSIC chip (ID0)\n"); 363 return -ENXIO; 364 } 365 366 ret = intel_scu_ipc_ioread8(INTEL_MSIC_ID1, &id1); 367 if (ret) { 368 dev_err(&pdev->dev, "failed to identify the MSIC chip (ID1)\n"); 369 return -ENXIO; 370 } 371 372 if (MSIC_VENDOR(id0) != MSIC_VENDOR(id1)) { 373 dev_err(&pdev->dev, "invalid vendor ID: %x, %x\n", id0, id1); 374 return -ENXIO; 375 } 376 377 msic = devm_kzalloc(&pdev->dev, sizeof(*msic), GFP_KERNEL); 378 if (!msic) 379 return -ENOMEM; 380 381 msic->vendor = MSIC_VENDOR(id0); 382 msic->version = MSIC_VERSION(id0); 383 msic->pdev = pdev; 384 385 /* 386 * Map in the MSIC interrupt tree area in SRAM. This is exposed to 387 * the clients via intel_msic_irq_read(). 388 */ 389 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 390 msic->irq_base = devm_ioremap_resource(&pdev->dev, res); 391 if (IS_ERR(msic->irq_base)) 392 return PTR_ERR(msic->irq_base); 393 394 platform_set_drvdata(pdev, msic); 395 396 ret = intel_msic_init_devices(msic); 397 if (ret) { 398 dev_err(&pdev->dev, "failed to initialize MSIC devices\n"); 399 return ret; 400 } 401 402 dev_info(&pdev->dev, "Intel MSIC version %c%d (vendor %#x)\n", 403 MSIC_MAJOR(msic->version), MSIC_MINOR(msic->version), 404 msic->vendor); 405 406 return 0; 407} 408 409static int intel_msic_remove(struct platform_device *pdev) 410{ 411 struct intel_msic *msic = platform_get_drvdata(pdev); 412 413 intel_msic_remove_devices(msic); 414 415 return 0; 416} 417 418static struct platform_driver intel_msic_driver = { 419 .probe = intel_msic_probe, 420 .remove = intel_msic_remove, 421 .driver = { 422 .name = "intel_msic", 423 }, 424}; 425builtin_platform_driver(intel_msic_driver); 426