1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *      uvc_video.c  --  USB Video Class driver - Video handling
4 *
5 *      Copyright (C) 2005-2010
6 *          Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/list.h>
11#include <linux/module.h>
12#include <linux/slab.h>
13#include <linux/usb.h>
14#include <linux/videodev2.h>
15#include <linux/vmalloc.h>
16#include <linux/wait.h>
17#include <linux/atomic.h>
18#include <asm/unaligned.h>
19
20#include <media/v4l2-common.h>
21
22#include "uvcvideo.h"
23
24/* ------------------------------------------------------------------------
25 * UVC Controls
26 */
27
28static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
29			u8 intfnum, u8 cs, void *data, u16 size,
30			int timeout)
31{
32	u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
33	unsigned int pipe;
34
35	pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
36			      : usb_sndctrlpipe(dev->udev, 0);
37	type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
38
39	return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
40			unit << 8 | intfnum, data, size, timeout);
41}
42
43static const char *uvc_query_name(u8 query)
44{
45	switch (query) {
46	case UVC_SET_CUR:
47		return "SET_CUR";
48	case UVC_GET_CUR:
49		return "GET_CUR";
50	case UVC_GET_MIN:
51		return "GET_MIN";
52	case UVC_GET_MAX:
53		return "GET_MAX";
54	case UVC_GET_RES:
55		return "GET_RES";
56	case UVC_GET_LEN:
57		return "GET_LEN";
58	case UVC_GET_INFO:
59		return "GET_INFO";
60	case UVC_GET_DEF:
61		return "GET_DEF";
62	default:
63		return "<invalid>";
64	}
65}
66
67int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
68			u8 intfnum, u8 cs, void *data, u16 size)
69{
70	int ret;
71	u8 error;
72	u8 tmp;
73
74	ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
75				UVC_CTRL_CONTROL_TIMEOUT);
76	if (likely(ret == size))
77		return 0;
78
79	uvc_printk(KERN_ERR,
80		   "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n",
81		   uvc_query_name(query), cs, unit, ret, size);
82
83	if (ret != -EPIPE)
84		return ret;
85
86	tmp = *(u8 *)data;
87
88	ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum,
89			       UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1,
90			       UVC_CTRL_CONTROL_TIMEOUT);
91
92	error = *(u8 *)data;
93	*(u8 *)data = tmp;
94
95	if (ret != 1)
96		return ret < 0 ? ret : -EPIPE;
97
98	uvc_trace(UVC_TRACE_CONTROL, "Control error %u\n", error);
99
100	switch (error) {
101	case 0:
102		/* Cannot happen - we received a STALL */
103		return -EPIPE;
104	case 1: /* Not ready */
105		return -EBUSY;
106	case 2: /* Wrong state */
107		return -EILSEQ;
108	case 3: /* Power */
109		return -EREMOTE;
110	case 4: /* Out of range */
111		return -ERANGE;
112	case 5: /* Invalid unit */
113	case 6: /* Invalid control */
114	case 7: /* Invalid Request */
115		/*
116		 * The firmware has not properly implemented
117		 * the control or there has been a HW error.
118		 */
119		return -EIO;
120	case 8: /* Invalid value within range */
121		return -EINVAL;
122	default: /* reserved or unknown */
123		break;
124	}
125
126	return -EPIPE;
127}
128
129static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
130	struct uvc_streaming_control *ctrl)
131{
132	static const struct usb_device_id elgato_cam_link_4k = {
133		USB_DEVICE(0x0fd9, 0x0066)
134	};
135	struct uvc_format *format = NULL;
136	struct uvc_frame *frame = NULL;
137	unsigned int i;
138
139	/*
140	 * The response of the Elgato Cam Link 4K is incorrect: The second byte
141	 * contains bFormatIndex (instead of being the second byte of bmHint).
142	 * The first byte is always zero. The third byte is always 1.
143	 *
144	 * The UVC 1.5 class specification defines the first five bits in the
145	 * bmHint bitfield. The remaining bits are reserved and should be zero.
146	 * Therefore a valid bmHint will be less than 32.
147	 *
148	 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix.
149	 * MCU: 20.02.19, FPGA: 67
150	 */
151	if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) &&
152	    ctrl->bmHint > 255) {
153		u8 corrected_format_index = ctrl->bmHint >> 8;
154
155		/* uvc_dbg(stream->dev, VIDEO,
156			"Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n",
157			ctrl->bmHint, ctrl->bFormatIndex,
158			1, corrected_format_index); */
159		ctrl->bmHint = 1;
160		ctrl->bFormatIndex = corrected_format_index;
161	}
162
163	for (i = 0; i < stream->nformats; ++i) {
164		if (stream->format[i].index == ctrl->bFormatIndex) {
165			format = &stream->format[i];
166			break;
167		}
168	}
169
170	if (format == NULL)
171		return;
172
173	for (i = 0; i < format->nframes; ++i) {
174		if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
175			frame = &format->frame[i];
176			break;
177		}
178	}
179
180	if (frame == NULL)
181		return;
182
183	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
184	     (ctrl->dwMaxVideoFrameSize == 0 &&
185	      stream->dev->uvc_version < 0x0110))
186		ctrl->dwMaxVideoFrameSize =
187			frame->dwMaxVideoFrameBufferSize;
188
189	/* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
190	 * compute the bandwidth on 16 bits and erroneously sign-extend it to
191	 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
192	 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
193	 */
194	if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
195		ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
196
197	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
198	    stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
199	    stream->intf->num_altsetting > 1) {
200		u32 interval;
201		u32 bandwidth;
202
203		interval = (ctrl->dwFrameInterval > 100000)
204			 ? ctrl->dwFrameInterval
205			 : frame->dwFrameInterval[0];
206
207		/* Compute a bandwidth estimation by multiplying the frame
208		 * size by the number of video frames per second, divide the
209		 * result by the number of USB frames (or micro-frames for
210		 * high-speed devices) per second and add the UVC header size
211		 * (assumed to be 12 bytes long).
212		 */
213		bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
214		bandwidth *= 10000000 / interval + 1;
215		bandwidth /= 1000;
216		if (stream->dev->udev->speed == USB_SPEED_HIGH)
217			bandwidth /= 8;
218		bandwidth += 12;
219
220		/* The bandwidth estimate is too low for many cameras. Don't use
221		 * maximum packet sizes lower than 1024 bytes to try and work
222		 * around the problem. According to measurements done on two
223		 * different camera models, the value is high enough to get most
224		 * resolutions working while not preventing two simultaneous
225		 * VGA streams at 15 fps.
226		 */
227		bandwidth = max_t(u32, bandwidth, 1024);
228
229		ctrl->dwMaxPayloadTransferSize = bandwidth;
230	}
231}
232
233static size_t uvc_video_ctrl_size(struct uvc_streaming *stream)
234{
235	/*
236	 * Return the size of the video probe and commit controls, which depends
237	 * on the protocol version.
238	 */
239	if (stream->dev->uvc_version < 0x0110)
240		return 26;
241	else if (stream->dev->uvc_version < 0x0150)
242		return 34;
243	else
244		return 48;
245}
246
247static int uvc_get_video_ctrl(struct uvc_streaming *stream,
248	struct uvc_streaming_control *ctrl, int probe, u8 query)
249{
250	u16 size = uvc_video_ctrl_size(stream);
251	u8 *data;
252	int ret;
253
254	if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
255			query == UVC_GET_DEF)
256		return -EIO;
257
258	data = kmalloc(size, GFP_KERNEL);
259	if (data == NULL)
260		return -ENOMEM;
261
262	ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
263		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
264		size, uvc_timeout_param);
265
266	if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
267		/* Some cameras, mostly based on Bison Electronics chipsets,
268		 * answer a GET_MIN or GET_MAX request with the wCompQuality
269		 * field only.
270		 */
271		uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
272			"compliance - GET_MIN/MAX(PROBE) incorrectly "
273			"supported. Enabling workaround.\n");
274		memset(ctrl, 0, sizeof(*ctrl));
275		ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
276		ret = 0;
277		goto out;
278	} else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
279		/* Many cameras don't support the GET_DEF request on their
280		 * video probe control. Warn once and return, the caller will
281		 * fall back to GET_CUR.
282		 */
283		uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
284			"compliance - GET_DEF(PROBE) not supported. "
285			"Enabling workaround.\n");
286		ret = -EIO;
287		goto out;
288	} else if (ret != size) {
289		uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : "
290			"%d (exp. %u).\n", query, probe ? "probe" : "commit",
291			ret, size);
292		ret = -EIO;
293		goto out;
294	}
295
296	ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
297	ctrl->bFormatIndex = data[2];
298	ctrl->bFrameIndex = data[3];
299	ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
300	ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
301	ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
302	ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
303	ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
304	ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
305	ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
306	ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
307
308	if (size >= 34) {
309		ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
310		ctrl->bmFramingInfo = data[30];
311		ctrl->bPreferedVersion = data[31];
312		ctrl->bMinVersion = data[32];
313		ctrl->bMaxVersion = data[33];
314	} else {
315		ctrl->dwClockFrequency = stream->dev->clock_frequency;
316		ctrl->bmFramingInfo = 0;
317		ctrl->bPreferedVersion = 0;
318		ctrl->bMinVersion = 0;
319		ctrl->bMaxVersion = 0;
320	}
321
322	/* Some broken devices return null or wrong dwMaxVideoFrameSize and
323	 * dwMaxPayloadTransferSize fields. Try to get the value from the
324	 * format and frame descriptors.
325	 */
326	uvc_fixup_video_ctrl(stream, ctrl);
327	ret = 0;
328
329out:
330	kfree(data);
331	return ret;
332}
333
334static int uvc_set_video_ctrl(struct uvc_streaming *stream,
335	struct uvc_streaming_control *ctrl, int probe)
336{
337	u16 size = uvc_video_ctrl_size(stream);
338	u8 *data;
339	int ret;
340
341	data = kzalloc(size, GFP_KERNEL);
342	if (data == NULL)
343		return -ENOMEM;
344
345	*(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
346	data[2] = ctrl->bFormatIndex;
347	data[3] = ctrl->bFrameIndex;
348	*(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
349	*(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
350	*(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
351	*(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
352	*(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
353	*(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
354	put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
355	put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
356
357	if (size >= 34) {
358		put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
359		data[30] = ctrl->bmFramingInfo;
360		data[31] = ctrl->bPreferedVersion;
361		data[32] = ctrl->bMinVersion;
362		data[33] = ctrl->bMaxVersion;
363	}
364
365	ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
366		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
367		size, uvc_timeout_param);
368	if (ret != size) {
369		uvc_printk(KERN_ERR, "Failed to set UVC %s control : "
370			"%d (exp. %u).\n", probe ? "probe" : "commit",
371			ret, size);
372		ret = -EIO;
373	}
374
375	kfree(data);
376	return ret;
377}
378
379int uvc_probe_video(struct uvc_streaming *stream,
380	struct uvc_streaming_control *probe)
381{
382	struct uvc_streaming_control probe_min, probe_max;
383	u16 bandwidth;
384	unsigned int i;
385	int ret;
386
387	/* Perform probing. The device should adjust the requested values
388	 * according to its capabilities. However, some devices, namely the
389	 * first generation UVC Logitech webcams, don't implement the Video
390	 * Probe control properly, and just return the needed bandwidth. For
391	 * that reason, if the needed bandwidth exceeds the maximum available
392	 * bandwidth, try to lower the quality.
393	 */
394	ret = uvc_set_video_ctrl(stream, probe, 1);
395	if (ret < 0)
396		goto done;
397
398	/* Get the minimum and maximum values for compression settings. */
399	if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
400		ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
401		if (ret < 0)
402			goto done;
403		ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
404		if (ret < 0)
405			goto done;
406
407		probe->wCompQuality = probe_max.wCompQuality;
408	}
409
410	for (i = 0; i < 2; ++i) {
411		ret = uvc_set_video_ctrl(stream, probe, 1);
412		if (ret < 0)
413			goto done;
414		ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
415		if (ret < 0)
416			goto done;
417
418		if (stream->intf->num_altsetting == 1)
419			break;
420
421		bandwidth = probe->dwMaxPayloadTransferSize;
422		if (bandwidth <= stream->maxpsize)
423			break;
424
425		if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
426			ret = -ENOSPC;
427			goto done;
428		}
429
430		/* TODO: negotiate compression parameters */
431		probe->wKeyFrameRate = probe_min.wKeyFrameRate;
432		probe->wPFrameRate = probe_min.wPFrameRate;
433		probe->wCompQuality = probe_max.wCompQuality;
434		probe->wCompWindowSize = probe_min.wCompWindowSize;
435	}
436
437done:
438	return ret;
439}
440
441static int uvc_commit_video(struct uvc_streaming *stream,
442			    struct uvc_streaming_control *probe)
443{
444	return uvc_set_video_ctrl(stream, probe, 0);
445}
446
447/* -----------------------------------------------------------------------------
448 * Clocks and timestamps
449 */
450
451static inline ktime_t uvc_video_get_time(void)
452{
453	if (uvc_clock_param == CLOCK_MONOTONIC)
454		return ktime_get();
455	else
456		return ktime_get_real();
457}
458
459static void
460uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
461		       const u8 *data, int len)
462{
463	struct uvc_clock_sample *sample;
464	unsigned int header_size;
465	bool has_pts = false;
466	bool has_scr = false;
467	unsigned long flags;
468	ktime_t time;
469	u16 host_sof;
470	u16 dev_sof;
471
472	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
473	case UVC_STREAM_PTS | UVC_STREAM_SCR:
474		header_size = 12;
475		has_pts = true;
476		has_scr = true;
477		break;
478	case UVC_STREAM_PTS:
479		header_size = 6;
480		has_pts = true;
481		break;
482	case UVC_STREAM_SCR:
483		header_size = 8;
484		has_scr = true;
485		break;
486	default:
487		header_size = 2;
488		break;
489	}
490
491	/* Check for invalid headers. */
492	if (len < header_size)
493		return;
494
495	/* Extract the timestamps:
496	 *
497	 * - store the frame PTS in the buffer structure
498	 * - if the SCR field is present, retrieve the host SOF counter and
499	 *   kernel timestamps and store them with the SCR STC and SOF fields
500	 *   in the ring buffer
501	 */
502	if (has_pts && buf != NULL)
503		buf->pts = get_unaligned_le32(&data[2]);
504
505	if (!has_scr)
506		return;
507
508	/* To limit the amount of data, drop SCRs with an SOF identical to the
509	 * previous one.
510	 */
511	dev_sof = get_unaligned_le16(&data[header_size - 2]);
512	if (dev_sof == stream->clock.last_sof)
513		return;
514
515	stream->clock.last_sof = dev_sof;
516
517	host_sof = usb_get_current_frame_number(stream->dev->udev);
518	time = uvc_video_get_time();
519
520	/* The UVC specification allows device implementations that can't obtain
521	 * the USB frame number to keep their own frame counters as long as they
522	 * match the size and frequency of the frame number associated with USB
523	 * SOF tokens. The SOF values sent by such devices differ from the USB
524	 * SOF tokens by a fixed offset that needs to be estimated and accounted
525	 * for to make timestamp recovery as accurate as possible.
526	 *
527	 * The offset is estimated the first time a device SOF value is received
528	 * as the difference between the host and device SOF values. As the two
529	 * SOF values can differ slightly due to transmission delays, consider
530	 * that the offset is null if the difference is not higher than 10 ms
531	 * (negative differences can not happen and are thus considered as an
532	 * offset). The video commit control wDelay field should be used to
533	 * compute a dynamic threshold instead of using a fixed 10 ms value, but
534	 * devices don't report reliable wDelay values.
535	 *
536	 * See uvc_video_clock_host_sof() for an explanation regarding why only
537	 * the 8 LSBs of the delta are kept.
538	 */
539	if (stream->clock.sof_offset == (u16)-1) {
540		u16 delta_sof = (host_sof - dev_sof) & 255;
541		if (delta_sof >= 10)
542			stream->clock.sof_offset = delta_sof;
543		else
544			stream->clock.sof_offset = 0;
545	}
546
547	dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
548
549	spin_lock_irqsave(&stream->clock.lock, flags);
550
551	sample = &stream->clock.samples[stream->clock.head];
552	sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
553	sample->dev_sof = dev_sof;
554	sample->host_sof = host_sof;
555	sample->host_time = time;
556
557	/* Update the sliding window head and count. */
558	stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
559
560	if (stream->clock.count < stream->clock.size)
561		stream->clock.count++;
562
563	spin_unlock_irqrestore(&stream->clock.lock, flags);
564}
565
566static void uvc_video_clock_reset(struct uvc_streaming *stream)
567{
568	struct uvc_clock *clock = &stream->clock;
569
570	clock->head = 0;
571	clock->count = 0;
572	clock->last_sof = -1;
573	clock->sof_offset = -1;
574}
575
576static int uvc_video_clock_init(struct uvc_streaming *stream)
577{
578	struct uvc_clock *clock = &stream->clock;
579
580	spin_lock_init(&clock->lock);
581	clock->size = 32;
582
583	clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples),
584				       GFP_KERNEL);
585	if (clock->samples == NULL)
586		return -ENOMEM;
587
588	uvc_video_clock_reset(stream);
589
590	return 0;
591}
592
593static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
594{
595	kfree(stream->clock.samples);
596	stream->clock.samples = NULL;
597}
598
599/*
600 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
601 *
602 * Host SOF counters reported by usb_get_current_frame_number() usually don't
603 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
604 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
605 * controller and its configuration.
606 *
607 * We thus need to recover the SOF value corresponding to the host frame number.
608 * As the device and host frame numbers are sampled in a short interval, the
609 * difference between their values should be equal to a small delta plus an
610 * integer multiple of 256 caused by the host frame number limited precision.
611 *
612 * To obtain the recovered host SOF value, compute the small delta by masking
613 * the high bits of the host frame counter and device SOF difference and add it
614 * to the device SOF value.
615 */
616static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
617{
618	/* The delta value can be negative. */
619	s8 delta_sof;
620
621	delta_sof = (sample->host_sof - sample->dev_sof) & 255;
622
623	return (sample->dev_sof + delta_sof) & 2047;
624}
625
626/*
627 * uvc_video_clock_update - Update the buffer timestamp
628 *
629 * This function converts the buffer PTS timestamp to the host clock domain by
630 * going through the USB SOF clock domain and stores the result in the V4L2
631 * buffer timestamp field.
632 *
633 * The relationship between the device clock and the host clock isn't known.
634 * However, the device and the host share the common USB SOF clock which can be
635 * used to recover that relationship.
636 *
637 * The relationship between the device clock and the USB SOF clock is considered
638 * to be linear over the clock samples sliding window and is given by
639 *
640 * SOF = m * PTS + p
641 *
642 * Several methods to compute the slope (m) and intercept (p) can be used. As
643 * the clock drift should be small compared to the sliding window size, we
644 * assume that the line that goes through the points at both ends of the window
645 * is a good approximation. Naming those points P1 and P2, we get
646 *
647 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
648 *     + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
649 *
650 * or
651 *
652 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)   (1)
653 *
654 * to avoid losing precision in the division. Similarly, the host timestamp is
655 * computed with
656 *
657 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1)	     (2)
658 *
659 * SOF values are coded on 11 bits by USB. We extend their precision with 16
660 * decimal bits, leading to a 11.16 coding.
661 *
662 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
663 * be normalized using the nominal device clock frequency reported through the
664 * UVC descriptors.
665 *
666 * Both the PTS/STC and SOF counters roll over, after a fixed but device
667 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
668 * sliding window size is smaller than the rollover period, differences computed
669 * on unsigned integers will produce the correct result. However, the p term in
670 * the linear relations will be miscomputed.
671 *
672 * To fix the issue, we subtract a constant from the PTS and STC values to bring
673 * PTS to half the 32 bit STC range. The sliding window STC values then fit into
674 * the 32 bit range without any rollover.
675 *
676 * Similarly, we add 2048 to the device SOF values to make sure that the SOF
677 * computed by (1) will never be smaller than 0. This offset is then compensated
678 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
679 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
680 * lower than 4096, and the host SOF counters can have rolled over to 2048. This
681 * case is handled by subtracting 2048 from the SOF value if it exceeds the host
682 * SOF value at the end of the sliding window.
683 *
684 * Finally we subtract a constant from the host timestamps to bring the first
685 * timestamp of the sliding window to 1s.
686 */
687void uvc_video_clock_update(struct uvc_streaming *stream,
688			    struct vb2_v4l2_buffer *vbuf,
689			    struct uvc_buffer *buf)
690{
691	struct uvc_clock *clock = &stream->clock;
692	struct uvc_clock_sample *first;
693	struct uvc_clock_sample *last;
694	unsigned long flags;
695	u64 timestamp;
696	u32 delta_stc;
697	u32 y1;
698	u32 x1, x2;
699	u32 mean;
700	u32 sof;
701	u64 y, y2;
702
703	if (!uvc_hw_timestamps_param)
704		return;
705
706	/*
707	 * We will get called from __vb2_queue_cancel() if there are buffers
708	 * done but not dequeued by the user, but the sample array has already
709	 * been released at that time. Just bail out in that case.
710	 */
711	if (!clock->samples)
712		return;
713
714	spin_lock_irqsave(&clock->lock, flags);
715
716	if (clock->count < clock->size)
717		goto done;
718
719	first = &clock->samples[clock->head];
720	last = &clock->samples[(clock->head - 1) % clock->size];
721
722	/* First step, PTS to SOF conversion. */
723	delta_stc = buf->pts - (1UL << 31);
724	x1 = first->dev_stc - delta_stc;
725	x2 = last->dev_stc - delta_stc;
726	if (x1 == x2)
727		goto done;
728
729	y1 = (first->dev_sof + 2048) << 16;
730	y2 = (last->dev_sof + 2048) << 16;
731	if (y2 < y1)
732		y2 += 2048 << 16;
733
734	y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
735	  - (u64)y2 * (u64)x1;
736	y = div_u64(y, x2 - x1);
737
738	sof = y;
739
740	uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu "
741		  "(x1 %u x2 %u y1 %u y2 %llu SOF offset %u)\n",
742		  stream->dev->name, buf->pts,
743		  y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
744		  sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
745		  x1, x2, y1, y2, clock->sof_offset);
746
747	/* Second step, SOF to host clock conversion. */
748	x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
749	x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
750	if (x2 < x1)
751		x2 += 2048 << 16;
752	if (x1 == x2)
753		goto done;
754
755	y1 = NSEC_PER_SEC;
756	y2 = ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1;
757
758	/* Interpolated and host SOF timestamps can wrap around at slightly
759	 * different times. Handle this by adding or removing 2048 to or from
760	 * the computed SOF value to keep it close to the SOF samples mean
761	 * value.
762	 */
763	mean = (x1 + x2) / 2;
764	if (mean - (1024 << 16) > sof)
765		sof += 2048 << 16;
766	else if (sof > mean + (1024 << 16))
767		sof -= 2048 << 16;
768
769	y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
770	  - (u64)y2 * (u64)x1;
771	y = div_u64(y, x2 - x1);
772
773	timestamp = ktime_to_ns(first->host_time) + y - y1;
774
775	uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %llu "
776		  "buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %llu)\n",
777		  stream->dev->name,
778		  sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
779		  y, timestamp, vbuf->vb2_buf.timestamp,
780		  x1, first->host_sof, first->dev_sof,
781		  x2, last->host_sof, last->dev_sof, y1, y2);
782
783	/* Update the V4L2 buffer. */
784	vbuf->vb2_buf.timestamp = timestamp;
785
786done:
787	spin_unlock_irqrestore(&clock->lock, flags);
788}
789
790/* ------------------------------------------------------------------------
791 * Stream statistics
792 */
793
794static void uvc_video_stats_decode(struct uvc_streaming *stream,
795		const u8 *data, int len)
796{
797	unsigned int header_size;
798	bool has_pts = false;
799	bool has_scr = false;
800	u16 scr_sof;
801	u32 scr_stc;
802	u32 pts;
803
804	if (stream->stats.stream.nb_frames == 0 &&
805	    stream->stats.frame.nb_packets == 0)
806		stream->stats.stream.start_ts = ktime_get();
807
808	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
809	case UVC_STREAM_PTS | UVC_STREAM_SCR:
810		header_size = 12;
811		has_pts = true;
812		has_scr = true;
813		break;
814	case UVC_STREAM_PTS:
815		header_size = 6;
816		has_pts = true;
817		break;
818	case UVC_STREAM_SCR:
819		header_size = 8;
820		has_scr = true;
821		break;
822	default:
823		header_size = 2;
824		break;
825	}
826
827	/* Check for invalid headers. */
828	if (len < header_size || data[0] < header_size) {
829		stream->stats.frame.nb_invalid++;
830		return;
831	}
832
833	/* Extract the timestamps. */
834	if (has_pts)
835		pts = get_unaligned_le32(&data[2]);
836
837	if (has_scr) {
838		scr_stc = get_unaligned_le32(&data[header_size - 6]);
839		scr_sof = get_unaligned_le16(&data[header_size - 2]);
840	}
841
842	/* Is PTS constant through the whole frame ? */
843	if (has_pts && stream->stats.frame.nb_pts) {
844		if (stream->stats.frame.pts != pts) {
845			stream->stats.frame.nb_pts_diffs++;
846			stream->stats.frame.last_pts_diff =
847				stream->stats.frame.nb_packets;
848		}
849	}
850
851	if (has_pts) {
852		stream->stats.frame.nb_pts++;
853		stream->stats.frame.pts = pts;
854	}
855
856	/* Do all frames have a PTS in their first non-empty packet, or before
857	 * their first empty packet ?
858	 */
859	if (stream->stats.frame.size == 0) {
860		if (len > header_size)
861			stream->stats.frame.has_initial_pts = has_pts;
862		if (len == header_size && has_pts)
863			stream->stats.frame.has_early_pts = true;
864	}
865
866	/* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
867	if (has_scr && stream->stats.frame.nb_scr) {
868		if (stream->stats.frame.scr_stc != scr_stc)
869			stream->stats.frame.nb_scr_diffs++;
870	}
871
872	if (has_scr) {
873		/* Expand the SOF counter to 32 bits and store its value. */
874		if (stream->stats.stream.nb_frames > 0 ||
875		    stream->stats.frame.nb_scr > 0)
876			stream->stats.stream.scr_sof_count +=
877				(scr_sof - stream->stats.stream.scr_sof) % 2048;
878		stream->stats.stream.scr_sof = scr_sof;
879
880		stream->stats.frame.nb_scr++;
881		stream->stats.frame.scr_stc = scr_stc;
882		stream->stats.frame.scr_sof = scr_sof;
883
884		if (scr_sof < stream->stats.stream.min_sof)
885			stream->stats.stream.min_sof = scr_sof;
886		if (scr_sof > stream->stats.stream.max_sof)
887			stream->stats.stream.max_sof = scr_sof;
888	}
889
890	/* Record the first non-empty packet number. */
891	if (stream->stats.frame.size == 0 && len > header_size)
892		stream->stats.frame.first_data = stream->stats.frame.nb_packets;
893
894	/* Update the frame size. */
895	stream->stats.frame.size += len - header_size;
896
897	/* Update the packets counters. */
898	stream->stats.frame.nb_packets++;
899	if (len <= header_size)
900		stream->stats.frame.nb_empty++;
901
902	if (data[1] & UVC_STREAM_ERR)
903		stream->stats.frame.nb_errors++;
904}
905
906static void uvc_video_stats_update(struct uvc_streaming *stream)
907{
908	struct uvc_stats_frame *frame = &stream->stats.frame;
909
910	uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, "
911		  "%u/%u/%u pts (%searly %sinitial), %u/%u scr, "
912		  "last pts/stc/sof %u/%u/%u\n",
913		  stream->sequence, frame->first_data,
914		  frame->nb_packets - frame->nb_empty, frame->nb_packets,
915		  frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
916		  frame->has_early_pts ? "" : "!",
917		  frame->has_initial_pts ? "" : "!",
918		  frame->nb_scr_diffs, frame->nb_scr,
919		  frame->pts, frame->scr_stc, frame->scr_sof);
920
921	stream->stats.stream.nb_frames++;
922	stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
923	stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
924	stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
925	stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
926
927	if (frame->has_early_pts)
928		stream->stats.stream.nb_pts_early++;
929	if (frame->has_initial_pts)
930		stream->stats.stream.nb_pts_initial++;
931	if (frame->last_pts_diff <= frame->first_data)
932		stream->stats.stream.nb_pts_constant++;
933	if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
934		stream->stats.stream.nb_scr_count_ok++;
935	if (frame->nb_scr_diffs + 1 == frame->nb_scr)
936		stream->stats.stream.nb_scr_diffs_ok++;
937
938	memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
939}
940
941size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
942			    size_t size)
943{
944	unsigned int scr_sof_freq;
945	unsigned int duration;
946	size_t count = 0;
947
948	/* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
949	 * frequency this will not overflow before more than 1h.
950	 */
951	duration = ktime_ms_delta(stream->stats.stream.stop_ts,
952				  stream->stats.stream.start_ts);
953	if (duration != 0)
954		scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
955			     / duration;
956	else
957		scr_sof_freq = 0;
958
959	count += scnprintf(buf + count, size - count,
960			   "frames:  %u\npackets: %u\nempty:   %u\n"
961			   "errors:  %u\ninvalid: %u\n",
962			   stream->stats.stream.nb_frames,
963			   stream->stats.stream.nb_packets,
964			   stream->stats.stream.nb_empty,
965			   stream->stats.stream.nb_errors,
966			   stream->stats.stream.nb_invalid);
967	count += scnprintf(buf + count, size - count,
968			   "pts: %u early, %u initial, %u ok\n",
969			   stream->stats.stream.nb_pts_early,
970			   stream->stats.stream.nb_pts_initial,
971			   stream->stats.stream.nb_pts_constant);
972	count += scnprintf(buf + count, size - count,
973			   "scr: %u count ok, %u diff ok\n",
974			   stream->stats.stream.nb_scr_count_ok,
975			   stream->stats.stream.nb_scr_diffs_ok);
976	count += scnprintf(buf + count, size - count,
977			   "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
978			   stream->stats.stream.min_sof,
979			   stream->stats.stream.max_sof,
980			   scr_sof_freq / 1000, scr_sof_freq % 1000);
981
982	return count;
983}
984
985static void uvc_video_stats_start(struct uvc_streaming *stream)
986{
987	memset(&stream->stats, 0, sizeof(stream->stats));
988	stream->stats.stream.min_sof = 2048;
989}
990
991static void uvc_video_stats_stop(struct uvc_streaming *stream)
992{
993	stream->stats.stream.stop_ts = ktime_get();
994}
995
996/* ------------------------------------------------------------------------
997 * Video codecs
998 */
999
1000/* Video payload decoding is handled by uvc_video_decode_start(),
1001 * uvc_video_decode_data() and uvc_video_decode_end().
1002 *
1003 * uvc_video_decode_start is called with URB data at the start of a bulk or
1004 * isochronous payload. It processes header data and returns the header size
1005 * in bytes if successful. If an error occurs, it returns a negative error
1006 * code. The following error codes have special meanings.
1007 *
1008 * - EAGAIN informs the caller that the current video buffer should be marked
1009 *   as done, and that the function should be called again with the same data
1010 *   and a new video buffer. This is used when end of frame conditions can be
1011 *   reliably detected at the beginning of the next frame only.
1012 *
1013 * If an error other than -EAGAIN is returned, the caller will drop the current
1014 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
1015 * made until the next payload. -ENODATA can be used to drop the current
1016 * payload if no other error code is appropriate.
1017 *
1018 * uvc_video_decode_data is called for every URB with URB data. It copies the
1019 * data to the video buffer.
1020 *
1021 * uvc_video_decode_end is called with header data at the end of a bulk or
1022 * isochronous payload. It performs any additional header data processing and
1023 * returns 0 or a negative error code if an error occurred. As header data have
1024 * already been processed by uvc_video_decode_start, this functions isn't
1025 * required to perform sanity checks a second time.
1026 *
1027 * For isochronous transfers where a payload is always transferred in a single
1028 * URB, the three functions will be called in a row.
1029 *
1030 * To let the decoder process header data and update its internal state even
1031 * when no video buffer is available, uvc_video_decode_start must be prepared
1032 * to be called with a NULL buf parameter. uvc_video_decode_data and
1033 * uvc_video_decode_end will never be called with a NULL buffer.
1034 */
1035static int uvc_video_decode_start(struct uvc_streaming *stream,
1036		struct uvc_buffer *buf, const u8 *data, int len)
1037{
1038	u8 fid;
1039
1040	/* Sanity checks:
1041	 * - packet must be at least 2 bytes long
1042	 * - bHeaderLength value must be at least 2 bytes (see above)
1043	 * - bHeaderLength value can't be larger than the packet size.
1044	 */
1045	if (len < 2 || data[0] < 2 || data[0] > len) {
1046		stream->stats.frame.nb_invalid++;
1047		return -EINVAL;
1048	}
1049
1050	fid = data[1] & UVC_STREAM_FID;
1051
1052	/* Increase the sequence number regardless of any buffer states, so
1053	 * that discontinuous sequence numbers always indicate lost frames.
1054	 */
1055	if (stream->last_fid != fid) {
1056		stream->sequence++;
1057		if (stream->sequence)
1058			uvc_video_stats_update(stream);
1059	}
1060
1061	uvc_video_clock_decode(stream, buf, data, len);
1062	uvc_video_stats_decode(stream, data, len);
1063
1064	/* Store the payload FID bit and return immediately when the buffer is
1065	 * NULL.
1066	 */
1067	if (buf == NULL) {
1068		stream->last_fid = fid;
1069		return -ENODATA;
1070	}
1071
1072	/* Mark the buffer as bad if the error bit is set. */
1073	if (data[1] & UVC_STREAM_ERR) {
1074		uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit "
1075			  "set).\n");
1076		buf->error = 1;
1077	}
1078
1079	/* Synchronize to the input stream by waiting for the FID bit to be
1080	 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
1081	 * stream->last_fid is initialized to -1, so the first isochronous
1082	 * frame will always be in sync.
1083	 *
1084	 * If the device doesn't toggle the FID bit, invert stream->last_fid
1085	 * when the EOF bit is set to force synchronisation on the next packet.
1086	 */
1087	if (buf->state != UVC_BUF_STATE_ACTIVE) {
1088		if (fid == stream->last_fid) {
1089			uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of "
1090				"sync).\n");
1091			if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1092			    (data[1] & UVC_STREAM_EOF))
1093				stream->last_fid ^= UVC_STREAM_FID;
1094			return -ENODATA;
1095		}
1096
1097		buf->buf.field = V4L2_FIELD_NONE;
1098		buf->buf.sequence = stream->sequence;
1099		buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time());
1100
1101		/* TODO: Handle PTS and SCR. */
1102		buf->state = UVC_BUF_STATE_ACTIVE;
1103	}
1104
1105	/* Mark the buffer as done if we're at the beginning of a new frame.
1106	 * End of frame detection is better implemented by checking the EOF
1107	 * bit (FID bit toggling is delayed by one frame compared to the EOF
1108	 * bit), but some devices don't set the bit at end of frame (and the
1109	 * last payload can be lost anyway). We thus must check if the FID has
1110	 * been toggled.
1111	 *
1112	 * stream->last_fid is initialized to -1, so the first isochronous
1113	 * frame will never trigger an end of frame detection.
1114	 *
1115	 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1116	 * as it doesn't make sense to return an empty buffer. This also
1117	 * avoids detecting end of frame conditions at FID toggling if the
1118	 * previous payload had the EOF bit set.
1119	 */
1120	if (fid != stream->last_fid && buf->bytesused != 0) {
1121		uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit "
1122				"toggled).\n");
1123		buf->state = UVC_BUF_STATE_READY;
1124		return -EAGAIN;
1125	}
1126
1127	stream->last_fid = fid;
1128
1129	return data[0];
1130}
1131
1132/*
1133 * uvc_video_decode_data_work: Asynchronous memcpy processing
1134 *
1135 * Copy URB data to video buffers in process context, releasing buffer
1136 * references and requeuing the URB when done.
1137 */
1138static void uvc_video_copy_data_work(struct work_struct *work)
1139{
1140	struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work);
1141	unsigned int i;
1142	int ret;
1143
1144	for (i = 0; i < uvc_urb->async_operations; i++) {
1145		struct uvc_copy_op *op = &uvc_urb->copy_operations[i];
1146
1147		memcpy(op->dst, op->src, op->len);
1148
1149		/* Release reference taken on this buffer. */
1150		uvc_queue_buffer_release(op->buf);
1151	}
1152
1153	ret = usb_submit_urb(uvc_urb->urb, GFP_KERNEL);
1154	if (ret < 0)
1155		uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n",
1156			   ret);
1157}
1158
1159static void uvc_video_decode_data(struct uvc_urb *uvc_urb,
1160		struct uvc_buffer *buf, const u8 *data, int len)
1161{
1162	unsigned int active_op = uvc_urb->async_operations;
1163	struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op];
1164	unsigned int maxlen;
1165
1166	if (len <= 0)
1167		return;
1168
1169	maxlen = buf->length - buf->bytesused;
1170
1171	/* Take a buffer reference for async work. */
1172	kref_get(&buf->ref);
1173
1174	op->buf = buf;
1175	op->src = data;
1176	op->dst = buf->mem + buf->bytesused;
1177	op->len = min_t(unsigned int, len, maxlen);
1178
1179	buf->bytesused += op->len;
1180
1181	/* Complete the current frame if the buffer size was exceeded. */
1182	if (len > maxlen) {
1183		uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n");
1184		buf->error = 1;
1185		buf->state = UVC_BUF_STATE_READY;
1186	}
1187
1188	uvc_urb->async_operations++;
1189}
1190
1191static void uvc_video_decode_end(struct uvc_streaming *stream,
1192		struct uvc_buffer *buf, const u8 *data, int len)
1193{
1194	/* Mark the buffer as done if the EOF marker is set. */
1195	if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1196		uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n");
1197		if (data[0] == len)
1198			uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n");
1199		buf->state = UVC_BUF_STATE_READY;
1200		if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1201			stream->last_fid ^= UVC_STREAM_FID;
1202	}
1203}
1204
1205/* Video payload encoding is handled by uvc_video_encode_header() and
1206 * uvc_video_encode_data(). Only bulk transfers are currently supported.
1207 *
1208 * uvc_video_encode_header is called at the start of a payload. It adds header
1209 * data to the transfer buffer and returns the header size. As the only known
1210 * UVC output device transfers a whole frame in a single payload, the EOF bit
1211 * is always set in the header.
1212 *
1213 * uvc_video_encode_data is called for every URB and copies the data from the
1214 * video buffer to the transfer buffer.
1215 */
1216static int uvc_video_encode_header(struct uvc_streaming *stream,
1217		struct uvc_buffer *buf, u8 *data, int len)
1218{
1219	data[0] = 2;	/* Header length */
1220	data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1221		| (stream->last_fid & UVC_STREAM_FID);
1222	return 2;
1223}
1224
1225static int uvc_video_encode_data(struct uvc_streaming *stream,
1226		struct uvc_buffer *buf, u8 *data, int len)
1227{
1228	struct uvc_video_queue *queue = &stream->queue;
1229	unsigned int nbytes;
1230	void *mem;
1231
1232	/* Copy video data to the URB buffer. */
1233	mem = buf->mem + queue->buf_used;
1234	nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1235	nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1236			nbytes);
1237	memcpy(data, mem, nbytes);
1238
1239	queue->buf_used += nbytes;
1240
1241	return nbytes;
1242}
1243
1244/* ------------------------------------------------------------------------
1245 * Metadata
1246 */
1247
1248/*
1249 * Additionally to the payload headers we also want to provide the user with USB
1250 * Frame Numbers and system time values. The resulting buffer is thus composed
1251 * of blocks, containing a 64-bit timestamp in  nanoseconds, a 16-bit USB Frame
1252 * Number, and a copy of the payload header.
1253 *
1254 * Ideally we want to capture all payload headers for each frame. However, their
1255 * number is unknown and unbound. We thus drop headers that contain no vendor
1256 * data and that either contain no SCR value or an SCR value identical to the
1257 * previous header.
1258 */
1259static void uvc_video_decode_meta(struct uvc_streaming *stream,
1260				  struct uvc_buffer *meta_buf,
1261				  const u8 *mem, unsigned int length)
1262{
1263	struct uvc_meta_buf *meta;
1264	size_t len_std = 2;
1265	bool has_pts, has_scr;
1266	unsigned long flags;
1267	unsigned int sof;
1268	ktime_t time;
1269	const u8 *scr;
1270
1271	if (!meta_buf || length == 2)
1272		return;
1273
1274	if (meta_buf->length - meta_buf->bytesused <
1275	    length + sizeof(meta->ns) + sizeof(meta->sof)) {
1276		meta_buf->error = 1;
1277		return;
1278	}
1279
1280	has_pts = mem[1] & UVC_STREAM_PTS;
1281	has_scr = mem[1] & UVC_STREAM_SCR;
1282
1283	if (has_pts) {
1284		len_std += 4;
1285		scr = mem + 6;
1286	} else {
1287		scr = mem + 2;
1288	}
1289
1290	if (has_scr)
1291		len_std += 6;
1292
1293	if (stream->meta.format == V4L2_META_FMT_UVC)
1294		length = len_std;
1295
1296	if (length == len_std && (!has_scr ||
1297				  !memcmp(scr, stream->clock.last_scr, 6)))
1298		return;
1299
1300	meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused);
1301	local_irq_save(flags);
1302	time = uvc_video_get_time();
1303	sof = usb_get_current_frame_number(stream->dev->udev);
1304	local_irq_restore(flags);
1305	put_unaligned(ktime_to_ns(time), &meta->ns);
1306	put_unaligned(sof, &meta->sof);
1307
1308	if (has_scr)
1309		memcpy(stream->clock.last_scr, scr, 6);
1310
1311	meta->length = mem[0];
1312	meta->flags  = mem[1];
1313	memcpy(meta->buf, &mem[2], length - 2);
1314	meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof);
1315
1316	uvc_trace(UVC_TRACE_FRAME,
1317		  "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
1318		  __func__, ktime_to_ns(time), meta->sof, meta->length,
1319		  meta->flags,
1320		  has_pts ? *(u32 *)meta->buf : 0,
1321		  has_scr ? *(u32 *)scr : 0,
1322		  has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0);
1323}
1324
1325/* ------------------------------------------------------------------------
1326 * URB handling
1327 */
1328
1329/*
1330 * Set error flag for incomplete buffer.
1331 */
1332static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1333				      struct uvc_buffer *buf)
1334{
1335	if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1336	    !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1337		buf->error = 1;
1338}
1339
1340/*
1341 * Completion handler for video URBs.
1342 */
1343
1344static void uvc_video_next_buffers(struct uvc_streaming *stream,
1345		struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf)
1346{
1347	uvc_video_validate_buffer(stream, *video_buf);
1348
1349	if (*meta_buf) {
1350		struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf;
1351		const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf;
1352
1353		vb2_meta->sequence = vb2_video->sequence;
1354		vb2_meta->field = vb2_video->field;
1355		vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp;
1356
1357		(*meta_buf)->state = UVC_BUF_STATE_READY;
1358		if (!(*meta_buf)->error)
1359			(*meta_buf)->error = (*video_buf)->error;
1360		*meta_buf = uvc_queue_next_buffer(&stream->meta.queue,
1361						  *meta_buf);
1362	}
1363	*video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf);
1364}
1365
1366static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb,
1367			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1368{
1369	struct urb *urb = uvc_urb->urb;
1370	struct uvc_streaming *stream = uvc_urb->stream;
1371	u8 *mem;
1372	int ret, i;
1373
1374	for (i = 0; i < urb->number_of_packets; ++i) {
1375		if (urb->iso_frame_desc[i].status < 0) {
1376			uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame "
1377				"lost (%d).\n", urb->iso_frame_desc[i].status);
1378			/* Mark the buffer as faulty. */
1379			if (buf != NULL)
1380				buf->error = 1;
1381			continue;
1382		}
1383
1384		/* Decode the payload header. */
1385		mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1386		do {
1387			ret = uvc_video_decode_start(stream, buf, mem,
1388				urb->iso_frame_desc[i].actual_length);
1389			if (ret == -EAGAIN)
1390				uvc_video_next_buffers(stream, &buf, &meta_buf);
1391		} while (ret == -EAGAIN);
1392
1393		if (ret < 0)
1394			continue;
1395
1396		uvc_video_decode_meta(stream, meta_buf, mem, ret);
1397
1398		/* Decode the payload data. */
1399		uvc_video_decode_data(uvc_urb, buf, mem + ret,
1400			urb->iso_frame_desc[i].actual_length - ret);
1401
1402		/* Process the header again. */
1403		uvc_video_decode_end(stream, buf, mem,
1404			urb->iso_frame_desc[i].actual_length);
1405
1406		if (buf->state == UVC_BUF_STATE_READY)
1407			uvc_video_next_buffers(stream, &buf, &meta_buf);
1408	}
1409}
1410
1411static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb,
1412			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1413{
1414	struct urb *urb = uvc_urb->urb;
1415	struct uvc_streaming *stream = uvc_urb->stream;
1416	u8 *mem;
1417	int len, ret;
1418
1419	/*
1420	 * Ignore ZLPs if they're not part of a frame, otherwise process them
1421	 * to trigger the end of payload detection.
1422	 */
1423	if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1424		return;
1425
1426	mem = urb->transfer_buffer;
1427	len = urb->actual_length;
1428	stream->bulk.payload_size += len;
1429
1430	/* If the URB is the first of its payload, decode and save the
1431	 * header.
1432	 */
1433	if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1434		do {
1435			ret = uvc_video_decode_start(stream, buf, mem, len);
1436			if (ret == -EAGAIN)
1437				uvc_video_next_buffers(stream, &buf, &meta_buf);
1438		} while (ret == -EAGAIN);
1439
1440		/* If an error occurred skip the rest of the payload. */
1441		if (ret < 0 || buf == NULL) {
1442			stream->bulk.skip_payload = 1;
1443		} else {
1444			memcpy(stream->bulk.header, mem, ret);
1445			stream->bulk.header_size = ret;
1446
1447			uvc_video_decode_meta(stream, meta_buf, mem, ret);
1448
1449			mem += ret;
1450			len -= ret;
1451		}
1452	}
1453
1454	/* The buffer queue might have been cancelled while a bulk transfer
1455	 * was in progress, so we can reach here with buf equal to NULL. Make
1456	 * sure buf is never dereferenced if NULL.
1457	 */
1458
1459	/* Prepare video data for processing. */
1460	if (!stream->bulk.skip_payload && buf != NULL)
1461		uvc_video_decode_data(uvc_urb, buf, mem, len);
1462
1463	/* Detect the payload end by a URB smaller than the maximum size (or
1464	 * a payload size equal to the maximum) and process the header again.
1465	 */
1466	if (urb->actual_length < urb->transfer_buffer_length ||
1467	    stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1468		if (!stream->bulk.skip_payload && buf != NULL) {
1469			uvc_video_decode_end(stream, buf, stream->bulk.header,
1470				stream->bulk.payload_size);
1471			if (buf->state == UVC_BUF_STATE_READY)
1472				uvc_video_next_buffers(stream, &buf, &meta_buf);
1473		}
1474
1475		stream->bulk.header_size = 0;
1476		stream->bulk.skip_payload = 0;
1477		stream->bulk.payload_size = 0;
1478	}
1479}
1480
1481static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb,
1482	struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1483{
1484	struct urb *urb = uvc_urb->urb;
1485	struct uvc_streaming *stream = uvc_urb->stream;
1486
1487	u8 *mem = urb->transfer_buffer;
1488	int len = stream->urb_size, ret;
1489
1490	if (buf == NULL) {
1491		urb->transfer_buffer_length = 0;
1492		return;
1493	}
1494
1495	/* If the URB is the first of its payload, add the header. */
1496	if (stream->bulk.header_size == 0) {
1497		ret = uvc_video_encode_header(stream, buf, mem, len);
1498		stream->bulk.header_size = ret;
1499		stream->bulk.payload_size += ret;
1500		mem += ret;
1501		len -= ret;
1502	}
1503
1504	/* Process video data. */
1505	ret = uvc_video_encode_data(stream, buf, mem, len);
1506
1507	stream->bulk.payload_size += ret;
1508	len -= ret;
1509
1510	if (buf->bytesused == stream->queue.buf_used ||
1511	    stream->bulk.payload_size == stream->bulk.max_payload_size) {
1512		if (buf->bytesused == stream->queue.buf_used) {
1513			stream->queue.buf_used = 0;
1514			buf->state = UVC_BUF_STATE_READY;
1515			buf->buf.sequence = ++stream->sequence;
1516			uvc_queue_next_buffer(&stream->queue, buf);
1517			stream->last_fid ^= UVC_STREAM_FID;
1518		}
1519
1520		stream->bulk.header_size = 0;
1521		stream->bulk.payload_size = 0;
1522	}
1523
1524	urb->transfer_buffer_length = stream->urb_size - len;
1525}
1526
1527static void uvc_video_complete(struct urb *urb)
1528{
1529	struct uvc_urb *uvc_urb = urb->context;
1530	struct uvc_streaming *stream = uvc_urb->stream;
1531	struct uvc_video_queue *queue = &stream->queue;
1532	struct uvc_video_queue *qmeta = &stream->meta.queue;
1533	struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue;
1534	struct uvc_buffer *buf = NULL;
1535	struct uvc_buffer *buf_meta = NULL;
1536	unsigned long flags;
1537	int ret;
1538
1539	switch (urb->status) {
1540	case 0:
1541		break;
1542
1543	default:
1544		uvc_printk(KERN_WARNING, "Non-zero status (%d) in video "
1545			"completion handler.\n", urb->status);
1546		fallthrough;
1547	case -ENOENT:		/* usb_poison_urb() called. */
1548		if (stream->frozen)
1549			return;
1550		fallthrough;
1551	case -ECONNRESET:	/* usb_unlink_urb() called. */
1552	case -ESHUTDOWN:	/* The endpoint is being disabled. */
1553		uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1554		if (vb2_qmeta)
1555			uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN);
1556		return;
1557	}
1558
1559	buf = uvc_queue_get_current_buffer(queue);
1560
1561	if (vb2_qmeta) {
1562		spin_lock_irqsave(&qmeta->irqlock, flags);
1563		if (!list_empty(&qmeta->irqqueue))
1564			buf_meta = list_first_entry(&qmeta->irqqueue,
1565						    struct uvc_buffer, queue);
1566		spin_unlock_irqrestore(&qmeta->irqlock, flags);
1567	}
1568
1569	/* Re-initialise the URB async work. */
1570	uvc_urb->async_operations = 0;
1571
1572	/*
1573	 * Process the URB headers, and optionally queue expensive memcpy tasks
1574	 * to be deferred to a work queue.
1575	 */
1576	stream->decode(uvc_urb, buf, buf_meta);
1577
1578	/* If no async work is needed, resubmit the URB immediately. */
1579	if (!uvc_urb->async_operations) {
1580		ret = usb_submit_urb(uvc_urb->urb, GFP_ATOMIC);
1581		if (ret < 0)
1582			uvc_printk(KERN_ERR,
1583				   "Failed to resubmit video URB (%d).\n",
1584				   ret);
1585		return;
1586	}
1587
1588	queue_work(stream->async_wq, &uvc_urb->work);
1589}
1590
1591/*
1592 * Free transfer buffers.
1593 */
1594static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1595{
1596	struct uvc_urb *uvc_urb;
1597
1598	for_each_uvc_urb(uvc_urb, stream) {
1599		if (!uvc_urb->buffer)
1600			continue;
1601
1602#ifndef CONFIG_DMA_NONCOHERENT
1603		usb_free_coherent(stream->dev->udev, stream->urb_size,
1604				  uvc_urb->buffer, uvc_urb->dma);
1605#else
1606		kfree(uvc_urb->buffer);
1607#endif
1608		uvc_urb->buffer = NULL;
1609	}
1610
1611	stream->urb_size = 0;
1612}
1613
1614/*
1615 * Allocate transfer buffers. This function can be called with buffers
1616 * already allocated when resuming from suspend, in which case it will
1617 * return without touching the buffers.
1618 *
1619 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1620 * system is too low on memory try successively smaller numbers of packets
1621 * until allocation succeeds.
1622 *
1623 * Return the number of allocated packets on success or 0 when out of memory.
1624 */
1625static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1626	unsigned int size, unsigned int psize, gfp_t gfp_flags)
1627{
1628	unsigned int npackets;
1629	unsigned int i;
1630
1631	/* Buffers are already allocated, bail out. */
1632	if (stream->urb_size)
1633		return stream->urb_size / psize;
1634
1635	/* Compute the number of packets. Bulk endpoints might transfer UVC
1636	 * payloads across multiple URBs.
1637	 */
1638	npackets = DIV_ROUND_UP(size, psize);
1639	if (npackets > UVC_MAX_PACKETS)
1640		npackets = UVC_MAX_PACKETS;
1641
1642	/* Retry allocations until one succeed. */
1643	for (; npackets > 1; npackets /= 2) {
1644		for (i = 0; i < UVC_URBS; ++i) {
1645			struct uvc_urb *uvc_urb = &stream->uvc_urb[i];
1646
1647			stream->urb_size = psize * npackets;
1648#ifndef CONFIG_DMA_NONCOHERENT
1649			uvc_urb->buffer = usb_alloc_coherent(
1650				stream->dev->udev, stream->urb_size,
1651				gfp_flags | __GFP_NOWARN, &uvc_urb->dma);
1652#else
1653			uvc_urb->buffer =
1654			    kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN);
1655#endif
1656			if (!uvc_urb->buffer) {
1657				uvc_free_urb_buffers(stream);
1658				break;
1659			}
1660
1661			uvc_urb->stream = stream;
1662		}
1663
1664		if (i == UVC_URBS) {
1665			uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers "
1666				"of %ux%u bytes each.\n", UVC_URBS, npackets,
1667				psize);
1668			return npackets;
1669		}
1670	}
1671
1672	uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes "
1673		"per packet).\n", psize);
1674	return 0;
1675}
1676
1677/*
1678 * Uninitialize isochronous/bulk URBs and free transfer buffers.
1679 */
1680static void uvc_video_stop_transfer(struct uvc_streaming *stream,
1681				    int free_buffers)
1682{
1683	struct uvc_urb *uvc_urb;
1684
1685	uvc_video_stats_stop(stream);
1686
1687	/*
1688	 * We must poison the URBs rather than kill them to ensure that even
1689	 * after the completion handler returns, any asynchronous workqueues
1690	 * will be prevented from resubmitting the URBs.
1691	 */
1692	for_each_uvc_urb(uvc_urb, stream)
1693		usb_poison_urb(uvc_urb->urb);
1694
1695	flush_workqueue(stream->async_wq);
1696
1697	for_each_uvc_urb(uvc_urb, stream) {
1698		usb_free_urb(uvc_urb->urb);
1699		uvc_urb->urb = NULL;
1700	}
1701
1702	if (free_buffers)
1703		uvc_free_urb_buffers(stream);
1704}
1705
1706/*
1707 * Compute the maximum number of bytes per interval for an endpoint.
1708 */
1709static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev,
1710					 struct usb_host_endpoint *ep)
1711{
1712	u16 psize;
1713	u16 mult;
1714
1715	switch (dev->speed) {
1716	case USB_SPEED_SUPER:
1717	case USB_SPEED_SUPER_PLUS:
1718		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1719	case USB_SPEED_HIGH:
1720		psize = usb_endpoint_maxp(&ep->desc);
1721		mult = usb_endpoint_maxp_mult(&ep->desc);
1722		return psize * mult;
1723	case USB_SPEED_WIRELESS:
1724		psize = usb_endpoint_maxp(&ep->desc);
1725		return psize;
1726	default:
1727		psize = usb_endpoint_maxp(&ep->desc);
1728		return psize;
1729	}
1730}
1731
1732/*
1733 * Initialize isochronous URBs and allocate transfer buffers. The packet size
1734 * is given by the endpoint.
1735 */
1736static int uvc_init_video_isoc(struct uvc_streaming *stream,
1737	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1738{
1739	struct urb *urb;
1740	struct uvc_urb *uvc_urb;
1741	unsigned int npackets, i;
1742	u16 psize;
1743	u32 size;
1744
1745	psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1746	size = stream->ctrl.dwMaxVideoFrameSize;
1747
1748	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1749	if (npackets == 0)
1750		return -ENOMEM;
1751
1752	size = npackets * psize;
1753
1754	for_each_uvc_urb(uvc_urb, stream) {
1755		urb = usb_alloc_urb(npackets, gfp_flags);
1756		if (urb == NULL) {
1757			uvc_video_stop_transfer(stream, 1);
1758			return -ENOMEM;
1759		}
1760
1761		urb->dev = stream->dev->udev;
1762		urb->context = uvc_urb;
1763		urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1764				ep->desc.bEndpointAddress);
1765#ifndef CONFIG_DMA_NONCOHERENT
1766		urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1767		urb->transfer_dma = uvc_urb->dma;
1768#else
1769		urb->transfer_flags = URB_ISO_ASAP;
1770#endif
1771		urb->interval = ep->desc.bInterval;
1772		urb->transfer_buffer = uvc_urb->buffer;
1773		urb->complete = uvc_video_complete;
1774		urb->number_of_packets = npackets;
1775		urb->transfer_buffer_length = size;
1776
1777		for (i = 0; i < npackets; ++i) {
1778			urb->iso_frame_desc[i].offset = i * psize;
1779			urb->iso_frame_desc[i].length = psize;
1780		}
1781
1782		uvc_urb->urb = urb;
1783	}
1784
1785	return 0;
1786}
1787
1788/*
1789 * Initialize bulk URBs and allocate transfer buffers. The packet size is
1790 * given by the endpoint.
1791 */
1792static int uvc_init_video_bulk(struct uvc_streaming *stream,
1793	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1794{
1795	struct urb *urb;
1796	struct uvc_urb *uvc_urb;
1797	unsigned int npackets, pipe;
1798	u16 psize;
1799	u32 size;
1800
1801	psize = usb_endpoint_maxp(&ep->desc);
1802	size = stream->ctrl.dwMaxPayloadTransferSize;
1803	stream->bulk.max_payload_size = size;
1804
1805	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1806	if (npackets == 0)
1807		return -ENOMEM;
1808
1809	size = npackets * psize;
1810
1811	if (usb_endpoint_dir_in(&ep->desc))
1812		pipe = usb_rcvbulkpipe(stream->dev->udev,
1813				       ep->desc.bEndpointAddress);
1814	else
1815		pipe = usb_sndbulkpipe(stream->dev->udev,
1816				       ep->desc.bEndpointAddress);
1817
1818	if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1819		size = 0;
1820
1821	for_each_uvc_urb(uvc_urb, stream) {
1822		urb = usb_alloc_urb(0, gfp_flags);
1823		if (urb == NULL) {
1824			uvc_video_stop_transfer(stream, 1);
1825			return -ENOMEM;
1826		}
1827
1828		usb_fill_bulk_urb(urb, stream->dev->udev, pipe,	uvc_urb->buffer,
1829				  size, uvc_video_complete, uvc_urb);
1830#ifndef CONFIG_DMA_NONCOHERENT
1831		urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1832		urb->transfer_dma = uvc_urb->dma;
1833#endif
1834
1835		uvc_urb->urb = urb;
1836	}
1837
1838	return 0;
1839}
1840
1841/*
1842 * Initialize isochronous/bulk URBs and allocate transfer buffers.
1843 */
1844static int uvc_video_start_transfer(struct uvc_streaming *stream,
1845				    gfp_t gfp_flags)
1846{
1847	struct usb_interface *intf = stream->intf;
1848	struct usb_host_endpoint *ep;
1849	struct uvc_urb *uvc_urb;
1850	unsigned int i;
1851	int ret;
1852
1853	stream->sequence = -1;
1854	stream->last_fid = -1;
1855	stream->bulk.header_size = 0;
1856	stream->bulk.skip_payload = 0;
1857	stream->bulk.payload_size = 0;
1858
1859	uvc_video_stats_start(stream);
1860
1861	if (intf->num_altsetting > 1) {
1862		struct usb_host_endpoint *best_ep = NULL;
1863		unsigned int best_psize = UINT_MAX;
1864		unsigned int bandwidth;
1865		unsigned int altsetting;
1866		int intfnum = stream->intfnum;
1867
1868		/* Isochronous endpoint, select the alternate setting. */
1869		bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1870
1871		if (bandwidth == 0) {
1872			uvc_trace(UVC_TRACE_VIDEO, "Device requested null "
1873				"bandwidth, defaulting to lowest.\n");
1874			bandwidth = 1;
1875		} else {
1876			uvc_trace(UVC_TRACE_VIDEO, "Device requested %u "
1877				"B/frame bandwidth.\n", bandwidth);
1878		}
1879
1880		for (i = 0; i < intf->num_altsetting; ++i) {
1881			struct usb_host_interface *alts;
1882			unsigned int psize;
1883
1884			alts = &intf->altsetting[i];
1885			ep = uvc_find_endpoint(alts,
1886				stream->header.bEndpointAddress);
1887			if (ep == NULL)
1888				continue;
1889
1890			/* Check if the bandwidth is high enough. */
1891			psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1892			if (psize >= bandwidth && psize <= best_psize) {
1893				altsetting = alts->desc.bAlternateSetting;
1894				best_psize = psize;
1895				best_ep = ep;
1896			}
1897		}
1898
1899		if (best_ep == NULL) {
1900			uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting "
1901				"for requested bandwidth.\n");
1902			return -EIO;
1903		}
1904
1905		uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u "
1906			"(%u B/frame bandwidth).\n", altsetting, best_psize);
1907
1908		/*
1909		 * Some devices, namely the Logitech C910 and B910, are unable
1910		 * to recover from a USB autosuspend, unless the alternate
1911		 * setting of the streaming interface is toggled.
1912		 */
1913		if (stream->dev->quirks & UVC_QUIRK_WAKE_AUTOSUSPEND) {
1914			usb_set_interface(stream->dev->udev, intfnum,
1915					  altsetting);
1916			usb_set_interface(stream->dev->udev, intfnum, 0);
1917		}
1918
1919		ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
1920		if (ret < 0)
1921			return ret;
1922
1923		ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
1924	} else {
1925		/* Bulk endpoint, proceed to URB initialization. */
1926		ep = uvc_find_endpoint(&intf->altsetting[0],
1927				stream->header.bEndpointAddress);
1928		if (ep == NULL)
1929			return -EIO;
1930
1931		/* Reject broken descriptors. */
1932		if (usb_endpoint_maxp(&ep->desc) == 0)
1933			return -EIO;
1934
1935		ret = uvc_init_video_bulk(stream, ep, gfp_flags);
1936	}
1937
1938	if (ret < 0)
1939		return ret;
1940
1941	/* Submit the URBs. */
1942	for_each_uvc_urb(uvc_urb, stream) {
1943		ret = usb_submit_urb(uvc_urb->urb, gfp_flags);
1944		if (ret < 0) {
1945			uvc_printk(KERN_ERR, "Failed to submit URB %u (%d).\n",
1946				   uvc_urb_index(uvc_urb), ret);
1947			uvc_video_stop_transfer(stream, 1);
1948			return ret;
1949		}
1950	}
1951
1952	/* The Logitech C920 temporarily forgets that it should not be adjusting
1953	 * Exposure Absolute during init so restore controls to stored values.
1954	 */
1955	if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
1956		uvc_ctrl_restore_values(stream->dev);
1957
1958	return 0;
1959}
1960
1961/* --------------------------------------------------------------------------
1962 * Suspend/resume
1963 */
1964
1965/*
1966 * Stop streaming without disabling the video queue.
1967 *
1968 * To let userspace applications resume without trouble, we must not touch the
1969 * video buffers in any way. We mark the device as frozen to make sure the URB
1970 * completion handler won't try to cancel the queue when we kill the URBs.
1971 */
1972int uvc_video_suspend(struct uvc_streaming *stream)
1973{
1974	if (!uvc_queue_streaming(&stream->queue))
1975		return 0;
1976
1977	stream->frozen = 1;
1978	uvc_video_stop_transfer(stream, 0);
1979	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1980	return 0;
1981}
1982
1983/*
1984 * Reconfigure the video interface and restart streaming if it was enabled
1985 * before suspend.
1986 *
1987 * If an error occurs, disable the video queue. This will wake all pending
1988 * buffers, making sure userspace applications are notified of the problem
1989 * instead of waiting forever.
1990 */
1991int uvc_video_resume(struct uvc_streaming *stream, int reset)
1992{
1993	int ret;
1994
1995	/* If the bus has been reset on resume, set the alternate setting to 0.
1996	 * This should be the default value, but some devices crash or otherwise
1997	 * misbehave if they don't receive a SET_INTERFACE request before any
1998	 * other video control request.
1999	 */
2000	if (reset)
2001		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2002
2003	stream->frozen = 0;
2004
2005	uvc_video_clock_reset(stream);
2006
2007	if (!uvc_queue_streaming(&stream->queue))
2008		return 0;
2009
2010	ret = uvc_commit_video(stream, &stream->ctrl);
2011	if (ret < 0)
2012		return ret;
2013
2014	return uvc_video_start_transfer(stream, GFP_NOIO);
2015}
2016
2017/* ------------------------------------------------------------------------
2018 * Video device
2019 */
2020
2021/*
2022 * Initialize the UVC video device by switching to alternate setting 0 and
2023 * retrieve the default format.
2024 *
2025 * Some cameras (namely the Fuji Finepix) set the format and frame
2026 * indexes to zero. The UVC standard doesn't clearly make this a spec
2027 * violation, so try to silently fix the values if possible.
2028 *
2029 * This function is called before registering the device with V4L.
2030 */
2031int uvc_video_init(struct uvc_streaming *stream)
2032{
2033	struct uvc_streaming_control *probe = &stream->ctrl;
2034	struct uvc_format *format = NULL;
2035	struct uvc_frame *frame = NULL;
2036	struct uvc_urb *uvc_urb;
2037	unsigned int i;
2038	int ret;
2039
2040	if (stream->nformats == 0) {
2041		uvc_printk(KERN_INFO, "No supported video formats found.\n");
2042		return -EINVAL;
2043	}
2044
2045	atomic_set(&stream->active, 0);
2046
2047	/* Alternate setting 0 should be the default, yet the XBox Live Vision
2048	 * Cam (and possibly other devices) crash or otherwise misbehave if
2049	 * they don't receive a SET_INTERFACE request before any other video
2050	 * control request.
2051	 */
2052	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2053
2054	/* Set the streaming probe control with default streaming parameters
2055	 * retrieved from the device. Webcams that don't support GET_DEF
2056	 * requests on the probe control will just keep their current streaming
2057	 * parameters.
2058	 */
2059	if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
2060		uvc_set_video_ctrl(stream, probe, 1);
2061
2062	/* Initialize the streaming parameters with the probe control current
2063	 * value. This makes sure SET_CUR requests on the streaming commit
2064	 * control will always use values retrieved from a successful GET_CUR
2065	 * request on the probe control, as required by the UVC specification.
2066	 */
2067	ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
2068	if (ret < 0)
2069		return ret;
2070
2071	/* Check if the default format descriptor exists. Use the first
2072	 * available format otherwise.
2073	 */
2074	for (i = stream->nformats; i > 0; --i) {
2075		format = &stream->format[i-1];
2076		if (format->index == probe->bFormatIndex)
2077			break;
2078	}
2079
2080	if (format->nframes == 0) {
2081		uvc_printk(KERN_INFO, "No frame descriptor found for the "
2082			"default format.\n");
2083		return -EINVAL;
2084	}
2085
2086	/* Zero bFrameIndex might be correct. Stream-based formats (including
2087	 * MPEG-2 TS and DV) do not support frames but have a dummy frame
2088	 * descriptor with bFrameIndex set to zero. If the default frame
2089	 * descriptor is not found, use the first available frame.
2090	 */
2091	for (i = format->nframes; i > 0; --i) {
2092		frame = &format->frame[i-1];
2093		if (frame->bFrameIndex == probe->bFrameIndex)
2094			break;
2095	}
2096
2097	probe->bFormatIndex = format->index;
2098	probe->bFrameIndex = frame->bFrameIndex;
2099
2100	stream->def_format = format;
2101	stream->cur_format = format;
2102	stream->cur_frame = frame;
2103
2104	/* Select the video decoding function */
2105	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
2106		if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
2107			stream->decode = uvc_video_decode_isight;
2108		else if (stream->intf->num_altsetting > 1)
2109			stream->decode = uvc_video_decode_isoc;
2110		else
2111			stream->decode = uvc_video_decode_bulk;
2112	} else {
2113		if (stream->intf->num_altsetting == 1)
2114			stream->decode = uvc_video_encode_bulk;
2115		else {
2116			uvc_printk(KERN_INFO, "Isochronous endpoints are not "
2117				"supported for video output devices.\n");
2118			return -EINVAL;
2119		}
2120	}
2121
2122	/* Prepare asynchronous work items. */
2123	for_each_uvc_urb(uvc_urb, stream)
2124		INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work);
2125
2126	return 0;
2127}
2128
2129int uvc_video_start_streaming(struct uvc_streaming *stream)
2130{
2131	int ret;
2132
2133	ret = uvc_video_clock_init(stream);
2134	if (ret < 0)
2135		return ret;
2136
2137	/* Commit the streaming parameters. */
2138	ret = uvc_commit_video(stream, &stream->ctrl);
2139	if (ret < 0)
2140		goto error_commit;
2141
2142	ret = uvc_video_start_transfer(stream, GFP_KERNEL);
2143	if (ret < 0)
2144		goto error_video;
2145
2146	return 0;
2147
2148error_video:
2149	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2150error_commit:
2151	uvc_video_clock_cleanup(stream);
2152
2153	return ret;
2154}
2155
2156void uvc_video_stop_streaming(struct uvc_streaming *stream)
2157{
2158	uvc_video_stop_transfer(stream, 1);
2159
2160	if (stream->intf->num_altsetting > 1) {
2161		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2162	} else {
2163		/* UVC doesn't specify how to inform a bulk-based device
2164		 * when the video stream is stopped. Windows sends a
2165		 * CLEAR_FEATURE(HALT) request to the video streaming
2166		 * bulk endpoint, mimic the same behaviour.
2167		 */
2168		unsigned int epnum = stream->header.bEndpointAddress
2169				   & USB_ENDPOINT_NUMBER_MASK;
2170		unsigned int dir = stream->header.bEndpointAddress
2171				 & USB_ENDPOINT_DIR_MASK;
2172		unsigned int pipe;
2173
2174		pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
2175		usb_clear_halt(stream->dev->udev, pipe);
2176	}
2177
2178	uvc_video_clock_cleanup(stream);
2179}
2180