18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * MaxLinear MxL301RF OFDM tuner driver 48c2ecf20Sopenharmony_ci * 58c2ecf20Sopenharmony_ci * Copyright (C) 2014 Akihiro Tsukada <tskd08@gmail.com> 68c2ecf20Sopenharmony_ci */ 78c2ecf20Sopenharmony_ci 88c2ecf20Sopenharmony_ci/* 98c2ecf20Sopenharmony_ci * NOTICE: 108c2ecf20Sopenharmony_ci * This driver is incomplete and lacks init/config of the chips, 118c2ecf20Sopenharmony_ci * as the necessary info is not disclosed. 128c2ecf20Sopenharmony_ci * Other features like get_if_frequency() are missing as well. 138c2ecf20Sopenharmony_ci * It assumes that users of this driver (such as a PCI bridge of 148c2ecf20Sopenharmony_ci * DTV receiver cards) properly init and configure the chip 158c2ecf20Sopenharmony_ci * via I2C *before* calling this driver's init() function. 168c2ecf20Sopenharmony_ci * 178c2ecf20Sopenharmony_ci * Currently, PT3 driver is the only one that uses this driver, 188c2ecf20Sopenharmony_ci * and contains init/config code in its firmware. 198c2ecf20Sopenharmony_ci * Thus some part of the code might be dependent on PT3 specific config. 208c2ecf20Sopenharmony_ci */ 218c2ecf20Sopenharmony_ci 228c2ecf20Sopenharmony_ci#include <linux/kernel.h> 238c2ecf20Sopenharmony_ci#include "mxl301rf.h" 248c2ecf20Sopenharmony_ci 258c2ecf20Sopenharmony_cistruct mxl301rf_state { 268c2ecf20Sopenharmony_ci struct mxl301rf_config cfg; 278c2ecf20Sopenharmony_ci struct i2c_client *i2c; 288c2ecf20Sopenharmony_ci}; 298c2ecf20Sopenharmony_ci 308c2ecf20Sopenharmony_cistatic struct mxl301rf_state *cfg_to_state(struct mxl301rf_config *c) 318c2ecf20Sopenharmony_ci{ 328c2ecf20Sopenharmony_ci return container_of(c, struct mxl301rf_state, cfg); 338c2ecf20Sopenharmony_ci} 348c2ecf20Sopenharmony_ci 358c2ecf20Sopenharmony_cistatic int raw_write(struct mxl301rf_state *state, const u8 *buf, int len) 368c2ecf20Sopenharmony_ci{ 378c2ecf20Sopenharmony_ci int ret; 388c2ecf20Sopenharmony_ci 398c2ecf20Sopenharmony_ci ret = i2c_master_send(state->i2c, buf, len); 408c2ecf20Sopenharmony_ci if (ret >= 0 && ret < len) 418c2ecf20Sopenharmony_ci ret = -EIO; 428c2ecf20Sopenharmony_ci return (ret == len) ? 0 : ret; 438c2ecf20Sopenharmony_ci} 448c2ecf20Sopenharmony_ci 458c2ecf20Sopenharmony_cistatic int reg_write(struct mxl301rf_state *state, u8 reg, u8 val) 468c2ecf20Sopenharmony_ci{ 478c2ecf20Sopenharmony_ci u8 buf[2] = { reg, val }; 488c2ecf20Sopenharmony_ci 498c2ecf20Sopenharmony_ci return raw_write(state, buf, 2); 508c2ecf20Sopenharmony_ci} 518c2ecf20Sopenharmony_ci 528c2ecf20Sopenharmony_cistatic int reg_read(struct mxl301rf_state *state, u8 reg, u8 *val) 538c2ecf20Sopenharmony_ci{ 548c2ecf20Sopenharmony_ci u8 wbuf[2] = { 0xfb, reg }; 558c2ecf20Sopenharmony_ci int ret; 568c2ecf20Sopenharmony_ci 578c2ecf20Sopenharmony_ci ret = raw_write(state, wbuf, sizeof(wbuf)); 588c2ecf20Sopenharmony_ci if (ret == 0) 598c2ecf20Sopenharmony_ci ret = i2c_master_recv(state->i2c, val, 1); 608c2ecf20Sopenharmony_ci if (ret >= 0 && ret < 1) 618c2ecf20Sopenharmony_ci ret = -EIO; 628c2ecf20Sopenharmony_ci return (ret == 1) ? 0 : ret; 638c2ecf20Sopenharmony_ci} 648c2ecf20Sopenharmony_ci 658c2ecf20Sopenharmony_ci/* tuner_ops */ 668c2ecf20Sopenharmony_ci 678c2ecf20Sopenharmony_ci/* get RSSI and update propery cache, set to *out in % */ 688c2ecf20Sopenharmony_cistatic int mxl301rf_get_rf_strength(struct dvb_frontend *fe, u16 *out) 698c2ecf20Sopenharmony_ci{ 708c2ecf20Sopenharmony_ci struct mxl301rf_state *state; 718c2ecf20Sopenharmony_ci int ret; 728c2ecf20Sopenharmony_ci u8 rf_in1, rf_in2, rf_off1, rf_off2; 738c2ecf20Sopenharmony_ci u16 rf_in, rf_off; 748c2ecf20Sopenharmony_ci s64 level; 758c2ecf20Sopenharmony_ci struct dtv_fe_stats *rssi; 768c2ecf20Sopenharmony_ci 778c2ecf20Sopenharmony_ci rssi = &fe->dtv_property_cache.strength; 788c2ecf20Sopenharmony_ci rssi->len = 1; 798c2ecf20Sopenharmony_ci rssi->stat[0].scale = FE_SCALE_NOT_AVAILABLE; 808c2ecf20Sopenharmony_ci *out = 0; 818c2ecf20Sopenharmony_ci 828c2ecf20Sopenharmony_ci state = fe->tuner_priv; 838c2ecf20Sopenharmony_ci ret = reg_write(state, 0x14, 0x01); 848c2ecf20Sopenharmony_ci if (ret < 0) 858c2ecf20Sopenharmony_ci return ret; 868c2ecf20Sopenharmony_ci usleep_range(1000, 2000); 878c2ecf20Sopenharmony_ci 888c2ecf20Sopenharmony_ci ret = reg_read(state, 0x18, &rf_in1); 898c2ecf20Sopenharmony_ci if (ret == 0) 908c2ecf20Sopenharmony_ci ret = reg_read(state, 0x19, &rf_in2); 918c2ecf20Sopenharmony_ci if (ret == 0) 928c2ecf20Sopenharmony_ci ret = reg_read(state, 0xd6, &rf_off1); 938c2ecf20Sopenharmony_ci if (ret == 0) 948c2ecf20Sopenharmony_ci ret = reg_read(state, 0xd7, &rf_off2); 958c2ecf20Sopenharmony_ci if (ret != 0) 968c2ecf20Sopenharmony_ci return ret; 978c2ecf20Sopenharmony_ci 988c2ecf20Sopenharmony_ci rf_in = (rf_in2 & 0x07) << 8 | rf_in1; 998c2ecf20Sopenharmony_ci rf_off = (rf_off2 & 0x0f) << 5 | (rf_off1 >> 3); 1008c2ecf20Sopenharmony_ci level = rf_in - rf_off - (113 << 3); /* x8 dBm */ 1018c2ecf20Sopenharmony_ci level = level * 1000 / 8; 1028c2ecf20Sopenharmony_ci rssi->stat[0].svalue = level; 1038c2ecf20Sopenharmony_ci rssi->stat[0].scale = FE_SCALE_DECIBEL; 1048c2ecf20Sopenharmony_ci /* *out = (level - min) * 100 / (max - min) */ 1058c2ecf20Sopenharmony_ci *out = (rf_in - rf_off + (1 << 9) - 1) * 100 / ((5 << 9) - 2); 1068c2ecf20Sopenharmony_ci return 0; 1078c2ecf20Sopenharmony_ci} 1088c2ecf20Sopenharmony_ci 1098c2ecf20Sopenharmony_ci/* spur shift parameters */ 1108c2ecf20Sopenharmony_cistruct shf { 1118c2ecf20Sopenharmony_ci u32 freq; /* Channel center frequency */ 1128c2ecf20Sopenharmony_ci u32 ofst_th; /* Offset frequency threshold */ 1138c2ecf20Sopenharmony_ci u8 shf_val; /* Spur shift value */ 1148c2ecf20Sopenharmony_ci u8 shf_dir; /* Spur shift direction */ 1158c2ecf20Sopenharmony_ci}; 1168c2ecf20Sopenharmony_ci 1178c2ecf20Sopenharmony_cistatic const struct shf shf_tab[] = { 1188c2ecf20Sopenharmony_ci { 64500, 500, 0x92, 0x07 }, 1198c2ecf20Sopenharmony_ci { 191500, 300, 0xe2, 0x07 }, 1208c2ecf20Sopenharmony_ci { 205500, 500, 0x2c, 0x04 }, 1218c2ecf20Sopenharmony_ci { 212500, 500, 0x1e, 0x04 }, 1228c2ecf20Sopenharmony_ci { 226500, 500, 0xd4, 0x07 }, 1238c2ecf20Sopenharmony_ci { 99143, 500, 0x9c, 0x07 }, 1248c2ecf20Sopenharmony_ci { 173143, 500, 0xd4, 0x07 }, 1258c2ecf20Sopenharmony_ci { 191143, 300, 0xd4, 0x07 }, 1268c2ecf20Sopenharmony_ci { 207143, 500, 0xce, 0x07 }, 1278c2ecf20Sopenharmony_ci { 225143, 500, 0xce, 0x07 }, 1288c2ecf20Sopenharmony_ci { 243143, 500, 0xd4, 0x07 }, 1298c2ecf20Sopenharmony_ci { 261143, 500, 0xd4, 0x07 }, 1308c2ecf20Sopenharmony_ci { 291143, 500, 0xd4, 0x07 }, 1318c2ecf20Sopenharmony_ci { 339143, 500, 0x2c, 0x04 }, 1328c2ecf20Sopenharmony_ci { 117143, 500, 0x7a, 0x07 }, 1338c2ecf20Sopenharmony_ci { 135143, 300, 0x7a, 0x07 }, 1348c2ecf20Sopenharmony_ci { 153143, 500, 0x01, 0x07 } 1358c2ecf20Sopenharmony_ci}; 1368c2ecf20Sopenharmony_ci 1378c2ecf20Sopenharmony_cistruct reg_val { 1388c2ecf20Sopenharmony_ci u8 reg; 1398c2ecf20Sopenharmony_ci u8 val; 1408c2ecf20Sopenharmony_ci} __attribute__ ((__packed__)); 1418c2ecf20Sopenharmony_ci 1428c2ecf20Sopenharmony_cistatic const struct reg_val set_idac[] = { 1438c2ecf20Sopenharmony_ci { 0x0d, 0x00 }, 1448c2ecf20Sopenharmony_ci { 0x0c, 0x67 }, 1458c2ecf20Sopenharmony_ci { 0x6f, 0x89 }, 1468c2ecf20Sopenharmony_ci { 0x70, 0x0c }, 1478c2ecf20Sopenharmony_ci { 0x6f, 0x8a }, 1488c2ecf20Sopenharmony_ci { 0x70, 0x0e }, 1498c2ecf20Sopenharmony_ci { 0x6f, 0x8b }, 1508c2ecf20Sopenharmony_ci { 0x70, 0x1c }, 1518c2ecf20Sopenharmony_ci}; 1528c2ecf20Sopenharmony_ci 1538c2ecf20Sopenharmony_cistatic int mxl301rf_set_params(struct dvb_frontend *fe) 1548c2ecf20Sopenharmony_ci{ 1558c2ecf20Sopenharmony_ci struct reg_val tune0[] = { 1568c2ecf20Sopenharmony_ci { 0x13, 0x00 }, /* abort tuning */ 1578c2ecf20Sopenharmony_ci { 0x3b, 0xc0 }, 1588c2ecf20Sopenharmony_ci { 0x3b, 0x80 }, 1598c2ecf20Sopenharmony_ci { 0x10, 0x95 }, /* BW */ 1608c2ecf20Sopenharmony_ci { 0x1a, 0x05 }, 1618c2ecf20Sopenharmony_ci { 0x61, 0x00 }, /* spur shift value (placeholder) */ 1628c2ecf20Sopenharmony_ci { 0x62, 0xa0 } /* spur shift direction (placeholder) */ 1638c2ecf20Sopenharmony_ci }; 1648c2ecf20Sopenharmony_ci 1658c2ecf20Sopenharmony_ci struct reg_val tune1[] = { 1668c2ecf20Sopenharmony_ci { 0x11, 0x40 }, /* RF frequency L (placeholder) */ 1678c2ecf20Sopenharmony_ci { 0x12, 0x0e }, /* RF frequency H (placeholder) */ 1688c2ecf20Sopenharmony_ci { 0x13, 0x01 } /* start tune */ 1698c2ecf20Sopenharmony_ci }; 1708c2ecf20Sopenharmony_ci 1718c2ecf20Sopenharmony_ci struct mxl301rf_state *state; 1728c2ecf20Sopenharmony_ci u32 freq; 1738c2ecf20Sopenharmony_ci u16 f; 1748c2ecf20Sopenharmony_ci u32 tmp, div; 1758c2ecf20Sopenharmony_ci int i, ret; 1768c2ecf20Sopenharmony_ci 1778c2ecf20Sopenharmony_ci state = fe->tuner_priv; 1788c2ecf20Sopenharmony_ci freq = fe->dtv_property_cache.frequency; 1798c2ecf20Sopenharmony_ci 1808c2ecf20Sopenharmony_ci /* spur shift function (for analog) */ 1818c2ecf20Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(shf_tab); i++) { 1828c2ecf20Sopenharmony_ci if (freq >= (shf_tab[i].freq - shf_tab[i].ofst_th) * 1000 && 1838c2ecf20Sopenharmony_ci freq <= (shf_tab[i].freq + shf_tab[i].ofst_th) * 1000) { 1848c2ecf20Sopenharmony_ci tune0[5].val = shf_tab[i].shf_val; 1858c2ecf20Sopenharmony_ci tune0[6].val = 0xa0 | shf_tab[i].shf_dir; 1868c2ecf20Sopenharmony_ci break; 1878c2ecf20Sopenharmony_ci } 1888c2ecf20Sopenharmony_ci } 1898c2ecf20Sopenharmony_ci ret = raw_write(state, (u8 *) tune0, sizeof(tune0)); 1908c2ecf20Sopenharmony_ci if (ret < 0) 1918c2ecf20Sopenharmony_ci goto failed; 1928c2ecf20Sopenharmony_ci usleep_range(3000, 4000); 1938c2ecf20Sopenharmony_ci 1948c2ecf20Sopenharmony_ci /* convert freq to 10.6 fixed point float [MHz] */ 1958c2ecf20Sopenharmony_ci f = freq / 1000000; 1968c2ecf20Sopenharmony_ci tmp = freq % 1000000; 1978c2ecf20Sopenharmony_ci div = 1000000; 1988c2ecf20Sopenharmony_ci for (i = 0; i < 6; i++) { 1998c2ecf20Sopenharmony_ci f <<= 1; 2008c2ecf20Sopenharmony_ci div >>= 1; 2018c2ecf20Sopenharmony_ci if (tmp > div) { 2028c2ecf20Sopenharmony_ci tmp -= div; 2038c2ecf20Sopenharmony_ci f |= 1; 2048c2ecf20Sopenharmony_ci } 2058c2ecf20Sopenharmony_ci } 2068c2ecf20Sopenharmony_ci if (tmp > 7812) 2078c2ecf20Sopenharmony_ci f++; 2088c2ecf20Sopenharmony_ci tune1[0].val = f & 0xff; 2098c2ecf20Sopenharmony_ci tune1[1].val = f >> 8; 2108c2ecf20Sopenharmony_ci ret = raw_write(state, (u8 *) tune1, sizeof(tune1)); 2118c2ecf20Sopenharmony_ci if (ret < 0) 2128c2ecf20Sopenharmony_ci goto failed; 2138c2ecf20Sopenharmony_ci msleep(31); 2148c2ecf20Sopenharmony_ci 2158c2ecf20Sopenharmony_ci ret = reg_write(state, 0x1a, 0x0d); 2168c2ecf20Sopenharmony_ci if (ret < 0) 2178c2ecf20Sopenharmony_ci goto failed; 2188c2ecf20Sopenharmony_ci ret = raw_write(state, (u8 *) set_idac, sizeof(set_idac)); 2198c2ecf20Sopenharmony_ci if (ret < 0) 2208c2ecf20Sopenharmony_ci goto failed; 2218c2ecf20Sopenharmony_ci return 0; 2228c2ecf20Sopenharmony_ci 2238c2ecf20Sopenharmony_cifailed: 2248c2ecf20Sopenharmony_ci dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n", 2258c2ecf20Sopenharmony_ci __func__, fe->dvb->num, fe->id); 2268c2ecf20Sopenharmony_ci return ret; 2278c2ecf20Sopenharmony_ci} 2288c2ecf20Sopenharmony_ci 2298c2ecf20Sopenharmony_cistatic const struct reg_val standby_data[] = { 2308c2ecf20Sopenharmony_ci { 0x01, 0x00 }, 2318c2ecf20Sopenharmony_ci { 0x13, 0x00 } 2328c2ecf20Sopenharmony_ci}; 2338c2ecf20Sopenharmony_ci 2348c2ecf20Sopenharmony_cistatic int mxl301rf_sleep(struct dvb_frontend *fe) 2358c2ecf20Sopenharmony_ci{ 2368c2ecf20Sopenharmony_ci struct mxl301rf_state *state; 2378c2ecf20Sopenharmony_ci int ret; 2388c2ecf20Sopenharmony_ci 2398c2ecf20Sopenharmony_ci state = fe->tuner_priv; 2408c2ecf20Sopenharmony_ci ret = raw_write(state, (u8 *)standby_data, sizeof(standby_data)); 2418c2ecf20Sopenharmony_ci if (ret < 0) 2428c2ecf20Sopenharmony_ci dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n", 2438c2ecf20Sopenharmony_ci __func__, fe->dvb->num, fe->id); 2448c2ecf20Sopenharmony_ci return ret; 2458c2ecf20Sopenharmony_ci} 2468c2ecf20Sopenharmony_ci 2478c2ecf20Sopenharmony_ci 2488c2ecf20Sopenharmony_ci/* init sequence is not public. 2498c2ecf20Sopenharmony_ci * the parent must have init'ed the device. 2508c2ecf20Sopenharmony_ci * just wake up here. 2518c2ecf20Sopenharmony_ci */ 2528c2ecf20Sopenharmony_cistatic int mxl301rf_init(struct dvb_frontend *fe) 2538c2ecf20Sopenharmony_ci{ 2548c2ecf20Sopenharmony_ci struct mxl301rf_state *state; 2558c2ecf20Sopenharmony_ci int ret; 2568c2ecf20Sopenharmony_ci 2578c2ecf20Sopenharmony_ci state = fe->tuner_priv; 2588c2ecf20Sopenharmony_ci 2598c2ecf20Sopenharmony_ci ret = reg_write(state, 0x01, 0x01); 2608c2ecf20Sopenharmony_ci if (ret < 0) { 2618c2ecf20Sopenharmony_ci dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n", 2628c2ecf20Sopenharmony_ci __func__, fe->dvb->num, fe->id); 2638c2ecf20Sopenharmony_ci return ret; 2648c2ecf20Sopenharmony_ci } 2658c2ecf20Sopenharmony_ci return 0; 2668c2ecf20Sopenharmony_ci} 2678c2ecf20Sopenharmony_ci 2688c2ecf20Sopenharmony_ci/* I2C driver functions */ 2698c2ecf20Sopenharmony_ci 2708c2ecf20Sopenharmony_cistatic const struct dvb_tuner_ops mxl301rf_ops = { 2718c2ecf20Sopenharmony_ci .info = { 2728c2ecf20Sopenharmony_ci .name = "MaxLinear MxL301RF", 2738c2ecf20Sopenharmony_ci 2748c2ecf20Sopenharmony_ci .frequency_min_hz = 93 * MHz, 2758c2ecf20Sopenharmony_ci .frequency_max_hz = 803 * MHz + 142857, 2768c2ecf20Sopenharmony_ci }, 2778c2ecf20Sopenharmony_ci 2788c2ecf20Sopenharmony_ci .init = mxl301rf_init, 2798c2ecf20Sopenharmony_ci .sleep = mxl301rf_sleep, 2808c2ecf20Sopenharmony_ci 2818c2ecf20Sopenharmony_ci .set_params = mxl301rf_set_params, 2828c2ecf20Sopenharmony_ci .get_rf_strength = mxl301rf_get_rf_strength, 2838c2ecf20Sopenharmony_ci}; 2848c2ecf20Sopenharmony_ci 2858c2ecf20Sopenharmony_ci 2868c2ecf20Sopenharmony_cistatic int mxl301rf_probe(struct i2c_client *client, 2878c2ecf20Sopenharmony_ci const struct i2c_device_id *id) 2888c2ecf20Sopenharmony_ci{ 2898c2ecf20Sopenharmony_ci struct mxl301rf_state *state; 2908c2ecf20Sopenharmony_ci struct mxl301rf_config *cfg; 2918c2ecf20Sopenharmony_ci struct dvb_frontend *fe; 2928c2ecf20Sopenharmony_ci 2938c2ecf20Sopenharmony_ci state = kzalloc(sizeof(*state), GFP_KERNEL); 2948c2ecf20Sopenharmony_ci if (!state) 2958c2ecf20Sopenharmony_ci return -ENOMEM; 2968c2ecf20Sopenharmony_ci 2978c2ecf20Sopenharmony_ci state->i2c = client; 2988c2ecf20Sopenharmony_ci cfg = client->dev.platform_data; 2998c2ecf20Sopenharmony_ci 3008c2ecf20Sopenharmony_ci memcpy(&state->cfg, cfg, sizeof(state->cfg)); 3018c2ecf20Sopenharmony_ci fe = cfg->fe; 3028c2ecf20Sopenharmony_ci fe->tuner_priv = state; 3038c2ecf20Sopenharmony_ci memcpy(&fe->ops.tuner_ops, &mxl301rf_ops, sizeof(mxl301rf_ops)); 3048c2ecf20Sopenharmony_ci 3058c2ecf20Sopenharmony_ci i2c_set_clientdata(client, &state->cfg); 3068c2ecf20Sopenharmony_ci dev_info(&client->dev, "MaxLinear MxL301RF attached.\n"); 3078c2ecf20Sopenharmony_ci return 0; 3088c2ecf20Sopenharmony_ci} 3098c2ecf20Sopenharmony_ci 3108c2ecf20Sopenharmony_cistatic int mxl301rf_remove(struct i2c_client *client) 3118c2ecf20Sopenharmony_ci{ 3128c2ecf20Sopenharmony_ci struct mxl301rf_state *state; 3138c2ecf20Sopenharmony_ci 3148c2ecf20Sopenharmony_ci state = cfg_to_state(i2c_get_clientdata(client)); 3158c2ecf20Sopenharmony_ci state->cfg.fe->tuner_priv = NULL; 3168c2ecf20Sopenharmony_ci kfree(state); 3178c2ecf20Sopenharmony_ci return 0; 3188c2ecf20Sopenharmony_ci} 3198c2ecf20Sopenharmony_ci 3208c2ecf20Sopenharmony_ci 3218c2ecf20Sopenharmony_cistatic const struct i2c_device_id mxl301rf_id[] = { 3228c2ecf20Sopenharmony_ci {"mxl301rf", 0}, 3238c2ecf20Sopenharmony_ci {} 3248c2ecf20Sopenharmony_ci}; 3258c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(i2c, mxl301rf_id); 3268c2ecf20Sopenharmony_ci 3278c2ecf20Sopenharmony_cistatic struct i2c_driver mxl301rf_driver = { 3288c2ecf20Sopenharmony_ci .driver = { 3298c2ecf20Sopenharmony_ci .name = "mxl301rf", 3308c2ecf20Sopenharmony_ci }, 3318c2ecf20Sopenharmony_ci .probe = mxl301rf_probe, 3328c2ecf20Sopenharmony_ci .remove = mxl301rf_remove, 3338c2ecf20Sopenharmony_ci .id_table = mxl301rf_id, 3348c2ecf20Sopenharmony_ci}; 3358c2ecf20Sopenharmony_ci 3368c2ecf20Sopenharmony_cimodule_i2c_driver(mxl301rf_driver); 3378c2ecf20Sopenharmony_ci 3388c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("MaxLinear MXL301RF tuner"); 3398c2ecf20Sopenharmony_ciMODULE_AUTHOR("Akihiro TSUKADA"); 3408c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL"); 341