18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * MaxLinear MxL301RF OFDM tuner driver
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2014 Akihiro Tsukada <tskd08@gmail.com>
68c2ecf20Sopenharmony_ci */
78c2ecf20Sopenharmony_ci
88c2ecf20Sopenharmony_ci/*
98c2ecf20Sopenharmony_ci * NOTICE:
108c2ecf20Sopenharmony_ci * This driver is incomplete and lacks init/config of the chips,
118c2ecf20Sopenharmony_ci * as the necessary info is not disclosed.
128c2ecf20Sopenharmony_ci * Other features like get_if_frequency() are missing as well.
138c2ecf20Sopenharmony_ci * It assumes that users of this driver (such as a PCI bridge of
148c2ecf20Sopenharmony_ci * DTV receiver cards) properly init and configure the chip
158c2ecf20Sopenharmony_ci * via I2C *before* calling this driver's init() function.
168c2ecf20Sopenharmony_ci *
178c2ecf20Sopenharmony_ci * Currently, PT3 driver is the only one that uses this driver,
188c2ecf20Sopenharmony_ci * and contains init/config code in its firmware.
198c2ecf20Sopenharmony_ci * Thus some part of the code might be dependent on PT3 specific config.
208c2ecf20Sopenharmony_ci */
218c2ecf20Sopenharmony_ci
228c2ecf20Sopenharmony_ci#include <linux/kernel.h>
238c2ecf20Sopenharmony_ci#include "mxl301rf.h"
248c2ecf20Sopenharmony_ci
258c2ecf20Sopenharmony_cistruct mxl301rf_state {
268c2ecf20Sopenharmony_ci	struct mxl301rf_config cfg;
278c2ecf20Sopenharmony_ci	struct i2c_client *i2c;
288c2ecf20Sopenharmony_ci};
298c2ecf20Sopenharmony_ci
308c2ecf20Sopenharmony_cistatic struct mxl301rf_state *cfg_to_state(struct mxl301rf_config *c)
318c2ecf20Sopenharmony_ci{
328c2ecf20Sopenharmony_ci	return container_of(c, struct mxl301rf_state, cfg);
338c2ecf20Sopenharmony_ci}
348c2ecf20Sopenharmony_ci
358c2ecf20Sopenharmony_cistatic int raw_write(struct mxl301rf_state *state, const u8 *buf, int len)
368c2ecf20Sopenharmony_ci{
378c2ecf20Sopenharmony_ci	int ret;
388c2ecf20Sopenharmony_ci
398c2ecf20Sopenharmony_ci	ret = i2c_master_send(state->i2c, buf, len);
408c2ecf20Sopenharmony_ci	if (ret >= 0 && ret < len)
418c2ecf20Sopenharmony_ci		ret = -EIO;
428c2ecf20Sopenharmony_ci	return (ret == len) ? 0 : ret;
438c2ecf20Sopenharmony_ci}
448c2ecf20Sopenharmony_ci
458c2ecf20Sopenharmony_cistatic int reg_write(struct mxl301rf_state *state, u8 reg, u8 val)
468c2ecf20Sopenharmony_ci{
478c2ecf20Sopenharmony_ci	u8 buf[2] = { reg, val };
488c2ecf20Sopenharmony_ci
498c2ecf20Sopenharmony_ci	return raw_write(state, buf, 2);
508c2ecf20Sopenharmony_ci}
518c2ecf20Sopenharmony_ci
528c2ecf20Sopenharmony_cistatic int reg_read(struct mxl301rf_state *state, u8 reg, u8 *val)
538c2ecf20Sopenharmony_ci{
548c2ecf20Sopenharmony_ci	u8 wbuf[2] = { 0xfb, reg };
558c2ecf20Sopenharmony_ci	int ret;
568c2ecf20Sopenharmony_ci
578c2ecf20Sopenharmony_ci	ret = raw_write(state, wbuf, sizeof(wbuf));
588c2ecf20Sopenharmony_ci	if (ret == 0)
598c2ecf20Sopenharmony_ci		ret = i2c_master_recv(state->i2c, val, 1);
608c2ecf20Sopenharmony_ci	if (ret >= 0 && ret < 1)
618c2ecf20Sopenharmony_ci		ret = -EIO;
628c2ecf20Sopenharmony_ci	return (ret == 1) ? 0 : ret;
638c2ecf20Sopenharmony_ci}
648c2ecf20Sopenharmony_ci
658c2ecf20Sopenharmony_ci/* tuner_ops */
668c2ecf20Sopenharmony_ci
678c2ecf20Sopenharmony_ci/* get RSSI and update propery cache, set to *out in % */
688c2ecf20Sopenharmony_cistatic int mxl301rf_get_rf_strength(struct dvb_frontend *fe, u16 *out)
698c2ecf20Sopenharmony_ci{
708c2ecf20Sopenharmony_ci	struct mxl301rf_state *state;
718c2ecf20Sopenharmony_ci	int ret;
728c2ecf20Sopenharmony_ci	u8  rf_in1, rf_in2, rf_off1, rf_off2;
738c2ecf20Sopenharmony_ci	u16 rf_in, rf_off;
748c2ecf20Sopenharmony_ci	s64 level;
758c2ecf20Sopenharmony_ci	struct dtv_fe_stats *rssi;
768c2ecf20Sopenharmony_ci
778c2ecf20Sopenharmony_ci	rssi = &fe->dtv_property_cache.strength;
788c2ecf20Sopenharmony_ci	rssi->len = 1;
798c2ecf20Sopenharmony_ci	rssi->stat[0].scale = FE_SCALE_NOT_AVAILABLE;
808c2ecf20Sopenharmony_ci	*out = 0;
818c2ecf20Sopenharmony_ci
828c2ecf20Sopenharmony_ci	state = fe->tuner_priv;
838c2ecf20Sopenharmony_ci	ret = reg_write(state, 0x14, 0x01);
848c2ecf20Sopenharmony_ci	if (ret < 0)
858c2ecf20Sopenharmony_ci		return ret;
868c2ecf20Sopenharmony_ci	usleep_range(1000, 2000);
878c2ecf20Sopenharmony_ci
888c2ecf20Sopenharmony_ci	ret = reg_read(state, 0x18, &rf_in1);
898c2ecf20Sopenharmony_ci	if (ret == 0)
908c2ecf20Sopenharmony_ci		ret = reg_read(state, 0x19, &rf_in2);
918c2ecf20Sopenharmony_ci	if (ret == 0)
928c2ecf20Sopenharmony_ci		ret = reg_read(state, 0xd6, &rf_off1);
938c2ecf20Sopenharmony_ci	if (ret == 0)
948c2ecf20Sopenharmony_ci		ret = reg_read(state, 0xd7, &rf_off2);
958c2ecf20Sopenharmony_ci	if (ret != 0)
968c2ecf20Sopenharmony_ci		return ret;
978c2ecf20Sopenharmony_ci
988c2ecf20Sopenharmony_ci	rf_in = (rf_in2 & 0x07) << 8 | rf_in1;
998c2ecf20Sopenharmony_ci	rf_off = (rf_off2 & 0x0f) << 5 | (rf_off1 >> 3);
1008c2ecf20Sopenharmony_ci	level = rf_in - rf_off - (113 << 3); /* x8 dBm */
1018c2ecf20Sopenharmony_ci	level = level * 1000 / 8;
1028c2ecf20Sopenharmony_ci	rssi->stat[0].svalue = level;
1038c2ecf20Sopenharmony_ci	rssi->stat[0].scale = FE_SCALE_DECIBEL;
1048c2ecf20Sopenharmony_ci	/* *out = (level - min) * 100 / (max - min) */
1058c2ecf20Sopenharmony_ci	*out = (rf_in - rf_off + (1 << 9) - 1) * 100 / ((5 << 9) - 2);
1068c2ecf20Sopenharmony_ci	return 0;
1078c2ecf20Sopenharmony_ci}
1088c2ecf20Sopenharmony_ci
1098c2ecf20Sopenharmony_ci/* spur shift parameters */
1108c2ecf20Sopenharmony_cistruct shf {
1118c2ecf20Sopenharmony_ci	u32	freq;		/* Channel center frequency */
1128c2ecf20Sopenharmony_ci	u32	ofst_th;	/* Offset frequency threshold */
1138c2ecf20Sopenharmony_ci	u8	shf_val;	/* Spur shift value */
1148c2ecf20Sopenharmony_ci	u8	shf_dir;	/* Spur shift direction */
1158c2ecf20Sopenharmony_ci};
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_cistatic const struct shf shf_tab[] = {
1188c2ecf20Sopenharmony_ci	{  64500, 500, 0x92, 0x07 },
1198c2ecf20Sopenharmony_ci	{ 191500, 300, 0xe2, 0x07 },
1208c2ecf20Sopenharmony_ci	{ 205500, 500, 0x2c, 0x04 },
1218c2ecf20Sopenharmony_ci	{ 212500, 500, 0x1e, 0x04 },
1228c2ecf20Sopenharmony_ci	{ 226500, 500, 0xd4, 0x07 },
1238c2ecf20Sopenharmony_ci	{  99143, 500, 0x9c, 0x07 },
1248c2ecf20Sopenharmony_ci	{ 173143, 500, 0xd4, 0x07 },
1258c2ecf20Sopenharmony_ci	{ 191143, 300, 0xd4, 0x07 },
1268c2ecf20Sopenharmony_ci	{ 207143, 500, 0xce, 0x07 },
1278c2ecf20Sopenharmony_ci	{ 225143, 500, 0xce, 0x07 },
1288c2ecf20Sopenharmony_ci	{ 243143, 500, 0xd4, 0x07 },
1298c2ecf20Sopenharmony_ci	{ 261143, 500, 0xd4, 0x07 },
1308c2ecf20Sopenharmony_ci	{ 291143, 500, 0xd4, 0x07 },
1318c2ecf20Sopenharmony_ci	{ 339143, 500, 0x2c, 0x04 },
1328c2ecf20Sopenharmony_ci	{ 117143, 500, 0x7a, 0x07 },
1338c2ecf20Sopenharmony_ci	{ 135143, 300, 0x7a, 0x07 },
1348c2ecf20Sopenharmony_ci	{ 153143, 500, 0x01, 0x07 }
1358c2ecf20Sopenharmony_ci};
1368c2ecf20Sopenharmony_ci
1378c2ecf20Sopenharmony_cistruct reg_val {
1388c2ecf20Sopenharmony_ci	u8 reg;
1398c2ecf20Sopenharmony_ci	u8 val;
1408c2ecf20Sopenharmony_ci} __attribute__ ((__packed__));
1418c2ecf20Sopenharmony_ci
1428c2ecf20Sopenharmony_cistatic const struct reg_val set_idac[] = {
1438c2ecf20Sopenharmony_ci	{ 0x0d, 0x00 },
1448c2ecf20Sopenharmony_ci	{ 0x0c, 0x67 },
1458c2ecf20Sopenharmony_ci	{ 0x6f, 0x89 },
1468c2ecf20Sopenharmony_ci	{ 0x70, 0x0c },
1478c2ecf20Sopenharmony_ci	{ 0x6f, 0x8a },
1488c2ecf20Sopenharmony_ci	{ 0x70, 0x0e },
1498c2ecf20Sopenharmony_ci	{ 0x6f, 0x8b },
1508c2ecf20Sopenharmony_ci	{ 0x70, 0x1c },
1518c2ecf20Sopenharmony_ci};
1528c2ecf20Sopenharmony_ci
1538c2ecf20Sopenharmony_cistatic int mxl301rf_set_params(struct dvb_frontend *fe)
1548c2ecf20Sopenharmony_ci{
1558c2ecf20Sopenharmony_ci	struct reg_val tune0[] = {
1568c2ecf20Sopenharmony_ci		{ 0x13, 0x00 },		/* abort tuning */
1578c2ecf20Sopenharmony_ci		{ 0x3b, 0xc0 },
1588c2ecf20Sopenharmony_ci		{ 0x3b, 0x80 },
1598c2ecf20Sopenharmony_ci		{ 0x10, 0x95 },		/* BW */
1608c2ecf20Sopenharmony_ci		{ 0x1a, 0x05 },
1618c2ecf20Sopenharmony_ci		{ 0x61, 0x00 },		/* spur shift value (placeholder) */
1628c2ecf20Sopenharmony_ci		{ 0x62, 0xa0 }		/* spur shift direction (placeholder) */
1638c2ecf20Sopenharmony_ci	};
1648c2ecf20Sopenharmony_ci
1658c2ecf20Sopenharmony_ci	struct reg_val tune1[] = {
1668c2ecf20Sopenharmony_ci		{ 0x11, 0x40 },		/* RF frequency L (placeholder) */
1678c2ecf20Sopenharmony_ci		{ 0x12, 0x0e },		/* RF frequency H (placeholder) */
1688c2ecf20Sopenharmony_ci		{ 0x13, 0x01 }		/* start tune */
1698c2ecf20Sopenharmony_ci	};
1708c2ecf20Sopenharmony_ci
1718c2ecf20Sopenharmony_ci	struct mxl301rf_state *state;
1728c2ecf20Sopenharmony_ci	u32 freq;
1738c2ecf20Sopenharmony_ci	u16 f;
1748c2ecf20Sopenharmony_ci	u32 tmp, div;
1758c2ecf20Sopenharmony_ci	int i, ret;
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci	state = fe->tuner_priv;
1788c2ecf20Sopenharmony_ci	freq = fe->dtv_property_cache.frequency;
1798c2ecf20Sopenharmony_ci
1808c2ecf20Sopenharmony_ci	/* spur shift function (for analog) */
1818c2ecf20Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(shf_tab); i++) {
1828c2ecf20Sopenharmony_ci		if (freq >= (shf_tab[i].freq - shf_tab[i].ofst_th) * 1000 &&
1838c2ecf20Sopenharmony_ci		    freq <= (shf_tab[i].freq + shf_tab[i].ofst_th) * 1000) {
1848c2ecf20Sopenharmony_ci			tune0[5].val = shf_tab[i].shf_val;
1858c2ecf20Sopenharmony_ci			tune0[6].val = 0xa0 | shf_tab[i].shf_dir;
1868c2ecf20Sopenharmony_ci			break;
1878c2ecf20Sopenharmony_ci		}
1888c2ecf20Sopenharmony_ci	}
1898c2ecf20Sopenharmony_ci	ret = raw_write(state, (u8 *) tune0, sizeof(tune0));
1908c2ecf20Sopenharmony_ci	if (ret < 0)
1918c2ecf20Sopenharmony_ci		goto failed;
1928c2ecf20Sopenharmony_ci	usleep_range(3000, 4000);
1938c2ecf20Sopenharmony_ci
1948c2ecf20Sopenharmony_ci	/* convert freq to 10.6 fixed point float [MHz] */
1958c2ecf20Sopenharmony_ci	f = freq / 1000000;
1968c2ecf20Sopenharmony_ci	tmp = freq % 1000000;
1978c2ecf20Sopenharmony_ci	div = 1000000;
1988c2ecf20Sopenharmony_ci	for (i = 0; i < 6; i++) {
1998c2ecf20Sopenharmony_ci		f <<= 1;
2008c2ecf20Sopenharmony_ci		div >>= 1;
2018c2ecf20Sopenharmony_ci		if (tmp > div) {
2028c2ecf20Sopenharmony_ci			tmp -= div;
2038c2ecf20Sopenharmony_ci			f |= 1;
2048c2ecf20Sopenharmony_ci		}
2058c2ecf20Sopenharmony_ci	}
2068c2ecf20Sopenharmony_ci	if (tmp > 7812)
2078c2ecf20Sopenharmony_ci		f++;
2088c2ecf20Sopenharmony_ci	tune1[0].val = f & 0xff;
2098c2ecf20Sopenharmony_ci	tune1[1].val = f >> 8;
2108c2ecf20Sopenharmony_ci	ret = raw_write(state, (u8 *) tune1, sizeof(tune1));
2118c2ecf20Sopenharmony_ci	if (ret < 0)
2128c2ecf20Sopenharmony_ci		goto failed;
2138c2ecf20Sopenharmony_ci	msleep(31);
2148c2ecf20Sopenharmony_ci
2158c2ecf20Sopenharmony_ci	ret = reg_write(state, 0x1a, 0x0d);
2168c2ecf20Sopenharmony_ci	if (ret < 0)
2178c2ecf20Sopenharmony_ci		goto failed;
2188c2ecf20Sopenharmony_ci	ret = raw_write(state, (u8 *) set_idac, sizeof(set_idac));
2198c2ecf20Sopenharmony_ci	if (ret < 0)
2208c2ecf20Sopenharmony_ci		goto failed;
2218c2ecf20Sopenharmony_ci	return 0;
2228c2ecf20Sopenharmony_ci
2238c2ecf20Sopenharmony_cifailed:
2248c2ecf20Sopenharmony_ci	dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
2258c2ecf20Sopenharmony_ci		__func__, fe->dvb->num, fe->id);
2268c2ecf20Sopenharmony_ci	return ret;
2278c2ecf20Sopenharmony_ci}
2288c2ecf20Sopenharmony_ci
2298c2ecf20Sopenharmony_cistatic const struct reg_val standby_data[] = {
2308c2ecf20Sopenharmony_ci	{ 0x01, 0x00 },
2318c2ecf20Sopenharmony_ci	{ 0x13, 0x00 }
2328c2ecf20Sopenharmony_ci};
2338c2ecf20Sopenharmony_ci
2348c2ecf20Sopenharmony_cistatic int mxl301rf_sleep(struct dvb_frontend *fe)
2358c2ecf20Sopenharmony_ci{
2368c2ecf20Sopenharmony_ci	struct mxl301rf_state *state;
2378c2ecf20Sopenharmony_ci	int ret;
2388c2ecf20Sopenharmony_ci
2398c2ecf20Sopenharmony_ci	state = fe->tuner_priv;
2408c2ecf20Sopenharmony_ci	ret = raw_write(state, (u8 *)standby_data, sizeof(standby_data));
2418c2ecf20Sopenharmony_ci	if (ret < 0)
2428c2ecf20Sopenharmony_ci		dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
2438c2ecf20Sopenharmony_ci			__func__, fe->dvb->num, fe->id);
2448c2ecf20Sopenharmony_ci	return ret;
2458c2ecf20Sopenharmony_ci}
2468c2ecf20Sopenharmony_ci
2478c2ecf20Sopenharmony_ci
2488c2ecf20Sopenharmony_ci/* init sequence is not public.
2498c2ecf20Sopenharmony_ci * the parent must have init'ed the device.
2508c2ecf20Sopenharmony_ci * just wake up here.
2518c2ecf20Sopenharmony_ci */
2528c2ecf20Sopenharmony_cistatic int mxl301rf_init(struct dvb_frontend *fe)
2538c2ecf20Sopenharmony_ci{
2548c2ecf20Sopenharmony_ci	struct mxl301rf_state *state;
2558c2ecf20Sopenharmony_ci	int ret;
2568c2ecf20Sopenharmony_ci
2578c2ecf20Sopenharmony_ci	state = fe->tuner_priv;
2588c2ecf20Sopenharmony_ci
2598c2ecf20Sopenharmony_ci	ret = reg_write(state, 0x01, 0x01);
2608c2ecf20Sopenharmony_ci	if (ret < 0) {
2618c2ecf20Sopenharmony_ci		dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
2628c2ecf20Sopenharmony_ci			 __func__, fe->dvb->num, fe->id);
2638c2ecf20Sopenharmony_ci		return ret;
2648c2ecf20Sopenharmony_ci	}
2658c2ecf20Sopenharmony_ci	return 0;
2668c2ecf20Sopenharmony_ci}
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_ci/* I2C driver functions */
2698c2ecf20Sopenharmony_ci
2708c2ecf20Sopenharmony_cistatic const struct dvb_tuner_ops mxl301rf_ops = {
2718c2ecf20Sopenharmony_ci	.info = {
2728c2ecf20Sopenharmony_ci		.name = "MaxLinear MxL301RF",
2738c2ecf20Sopenharmony_ci
2748c2ecf20Sopenharmony_ci		.frequency_min_hz =  93 * MHz,
2758c2ecf20Sopenharmony_ci		.frequency_max_hz = 803 * MHz + 142857,
2768c2ecf20Sopenharmony_ci	},
2778c2ecf20Sopenharmony_ci
2788c2ecf20Sopenharmony_ci	.init = mxl301rf_init,
2798c2ecf20Sopenharmony_ci	.sleep = mxl301rf_sleep,
2808c2ecf20Sopenharmony_ci
2818c2ecf20Sopenharmony_ci	.set_params = mxl301rf_set_params,
2828c2ecf20Sopenharmony_ci	.get_rf_strength = mxl301rf_get_rf_strength,
2838c2ecf20Sopenharmony_ci};
2848c2ecf20Sopenharmony_ci
2858c2ecf20Sopenharmony_ci
2868c2ecf20Sopenharmony_cistatic int mxl301rf_probe(struct i2c_client *client,
2878c2ecf20Sopenharmony_ci			  const struct i2c_device_id *id)
2888c2ecf20Sopenharmony_ci{
2898c2ecf20Sopenharmony_ci	struct mxl301rf_state *state;
2908c2ecf20Sopenharmony_ci	struct mxl301rf_config *cfg;
2918c2ecf20Sopenharmony_ci	struct dvb_frontend *fe;
2928c2ecf20Sopenharmony_ci
2938c2ecf20Sopenharmony_ci	state = kzalloc(sizeof(*state), GFP_KERNEL);
2948c2ecf20Sopenharmony_ci	if (!state)
2958c2ecf20Sopenharmony_ci		return -ENOMEM;
2968c2ecf20Sopenharmony_ci
2978c2ecf20Sopenharmony_ci	state->i2c = client;
2988c2ecf20Sopenharmony_ci	cfg = client->dev.platform_data;
2998c2ecf20Sopenharmony_ci
3008c2ecf20Sopenharmony_ci	memcpy(&state->cfg, cfg, sizeof(state->cfg));
3018c2ecf20Sopenharmony_ci	fe = cfg->fe;
3028c2ecf20Sopenharmony_ci	fe->tuner_priv = state;
3038c2ecf20Sopenharmony_ci	memcpy(&fe->ops.tuner_ops, &mxl301rf_ops, sizeof(mxl301rf_ops));
3048c2ecf20Sopenharmony_ci
3058c2ecf20Sopenharmony_ci	i2c_set_clientdata(client, &state->cfg);
3068c2ecf20Sopenharmony_ci	dev_info(&client->dev, "MaxLinear MxL301RF attached.\n");
3078c2ecf20Sopenharmony_ci	return 0;
3088c2ecf20Sopenharmony_ci}
3098c2ecf20Sopenharmony_ci
3108c2ecf20Sopenharmony_cistatic int mxl301rf_remove(struct i2c_client *client)
3118c2ecf20Sopenharmony_ci{
3128c2ecf20Sopenharmony_ci	struct mxl301rf_state *state;
3138c2ecf20Sopenharmony_ci
3148c2ecf20Sopenharmony_ci	state = cfg_to_state(i2c_get_clientdata(client));
3158c2ecf20Sopenharmony_ci	state->cfg.fe->tuner_priv = NULL;
3168c2ecf20Sopenharmony_ci	kfree(state);
3178c2ecf20Sopenharmony_ci	return 0;
3188c2ecf20Sopenharmony_ci}
3198c2ecf20Sopenharmony_ci
3208c2ecf20Sopenharmony_ci
3218c2ecf20Sopenharmony_cistatic const struct i2c_device_id mxl301rf_id[] = {
3228c2ecf20Sopenharmony_ci	{"mxl301rf", 0},
3238c2ecf20Sopenharmony_ci	{}
3248c2ecf20Sopenharmony_ci};
3258c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(i2c, mxl301rf_id);
3268c2ecf20Sopenharmony_ci
3278c2ecf20Sopenharmony_cistatic struct i2c_driver mxl301rf_driver = {
3288c2ecf20Sopenharmony_ci	.driver = {
3298c2ecf20Sopenharmony_ci		.name	= "mxl301rf",
3308c2ecf20Sopenharmony_ci	},
3318c2ecf20Sopenharmony_ci	.probe		= mxl301rf_probe,
3328c2ecf20Sopenharmony_ci	.remove		= mxl301rf_remove,
3338c2ecf20Sopenharmony_ci	.id_table	= mxl301rf_id,
3348c2ecf20Sopenharmony_ci};
3358c2ecf20Sopenharmony_ci
3368c2ecf20Sopenharmony_cimodule_i2c_driver(mxl301rf_driver);
3378c2ecf20Sopenharmony_ci
3388c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("MaxLinear MXL301RF tuner");
3398c2ecf20Sopenharmony_ciMODULE_AUTHOR("Akihiro TSUKADA");
3408c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL");
341