1// SPDX-License-Identifier: GPL-2.0
2// rc-main.c - Remote Controller core module
3//
4// Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <media/rc-core.h>
9#include <linux/bsearch.h>
10#include <linux/spinlock.h>
11#include <linux/delay.h>
12#include <linux/input.h>
13#include <linux/leds.h>
14#include <linux/slab.h>
15#include <linux/idr.h>
16#include <linux/device.h>
17#include <linux/module.h>
18#include "rc-core-priv.h"
19
20/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21#define IR_TAB_MIN_SIZE	256
22#define IR_TAB_MAX_SIZE	8192
23
24static const struct {
25	const char *name;
26	unsigned int repeat_period;
27	unsigned int scancode_bits;
28} protocols[] = {
29	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31	[RC_PROTO_RC5] = { .name = "rc-5",
32		.scancode_bits = 0x1f7f, .repeat_period = 114 },
33	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34		.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36		.scancode_bits = 0x2fff, .repeat_period = 114 },
37	[RC_PROTO_JVC] = { .name = "jvc",
38		.scancode_bits = 0xffff, .repeat_period = 125 },
39	[RC_PROTO_SONY12] = { .name = "sony-12",
40		.scancode_bits = 0x1f007f, .repeat_period = 100 },
41	[RC_PROTO_SONY15] = { .name = "sony-15",
42		.scancode_bits = 0xff007f, .repeat_period = 100 },
43	[RC_PROTO_SONY20] = { .name = "sony-20",
44		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
45	[RC_PROTO_NEC] = { .name = "nec",
46		.scancode_bits = 0xffff, .repeat_period = 110 },
47	[RC_PROTO_NECX] = { .name = "nec-x",
48		.scancode_bits = 0xffffff, .repeat_period = 110 },
49	[RC_PROTO_NEC32] = { .name = "nec-32",
50		.scancode_bits = 0xffffffff, .repeat_period = 110 },
51	[RC_PROTO_SANYO] = { .name = "sanyo",
52		.scancode_bits = 0x1fffff, .repeat_period = 125 },
53	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54		.scancode_bits = 0xffffff, .repeat_period = 100 },
55	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56		.scancode_bits = 0x1fffff, .repeat_period = 100 },
57	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
58		.scancode_bits = 0xffff, .repeat_period = 114 },
59	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60		.scancode_bits = 0xfffff, .repeat_period = 114 },
61	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62		.scancode_bits = 0xffffff, .repeat_period = 114 },
63	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64		.scancode_bits = 0xffffffff, .repeat_period = 114 },
65	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66		.scancode_bits = 0xffff7fff, .repeat_period = 114 },
67	[RC_PROTO_SHARP] = { .name = "sharp",
68		.scancode_bits = 0x1fff, .repeat_period = 125 },
69	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71	[RC_PROTO_IMON] = { .name = "imon",
72		.scancode_bits = 0x7fffffff, .repeat_period = 114 },
73	[RC_PROTO_RCMM12] = { .name = "rc-mm-12",
74		.scancode_bits = 0x00000fff, .repeat_period = 114 },
75	[RC_PROTO_RCMM24] = { .name = "rc-mm-24",
76		.scancode_bits = 0x00ffffff, .repeat_period = 114 },
77	[RC_PROTO_RCMM32] = { .name = "rc-mm-32",
78		.scancode_bits = 0xffffffff, .repeat_period = 114 },
79	[RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
80};
81
82/* Used to keep track of known keymaps */
83static LIST_HEAD(rc_map_list);
84static DEFINE_SPINLOCK(rc_map_lock);
85static struct led_trigger *led_feedback;
86
87/* Used to keep track of rc devices */
88static DEFINE_IDA(rc_ida);
89
90static struct rc_map_list *seek_rc_map(const char *name)
91{
92	struct rc_map_list *map = NULL;
93
94	spin_lock(&rc_map_lock);
95	list_for_each_entry(map, &rc_map_list, list) {
96		if (!strcmp(name, map->map.name)) {
97			spin_unlock(&rc_map_lock);
98			return map;
99		}
100	}
101	spin_unlock(&rc_map_lock);
102
103	return NULL;
104}
105
106struct rc_map *rc_map_get(const char *name)
107{
108
109	struct rc_map_list *map;
110
111	map = seek_rc_map(name);
112#ifdef CONFIG_MODULES
113	if (!map) {
114		int rc = request_module("%s", name);
115		if (rc < 0) {
116			pr_err("Couldn't load IR keymap %s\n", name);
117			return NULL;
118		}
119		msleep(20);	/* Give some time for IR to register */
120
121		map = seek_rc_map(name);
122	}
123#endif
124	if (!map) {
125		pr_err("IR keymap %s not found\n", name);
126		return NULL;
127	}
128
129	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
130
131	return &map->map;
132}
133EXPORT_SYMBOL_GPL(rc_map_get);
134
135int rc_map_register(struct rc_map_list *map)
136{
137	spin_lock(&rc_map_lock);
138	list_add_tail(&map->list, &rc_map_list);
139	spin_unlock(&rc_map_lock);
140	return 0;
141}
142EXPORT_SYMBOL_GPL(rc_map_register);
143
144void rc_map_unregister(struct rc_map_list *map)
145{
146	spin_lock(&rc_map_lock);
147	list_del(&map->list);
148	spin_unlock(&rc_map_lock);
149}
150EXPORT_SYMBOL_GPL(rc_map_unregister);
151
152
153static struct rc_map_table empty[] = {
154	{ 0x2a, KEY_COFFEE },
155};
156
157static struct rc_map_list empty_map = {
158	.map = {
159		.scan     = empty,
160		.size     = ARRAY_SIZE(empty),
161		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
162		.name     = RC_MAP_EMPTY,
163	}
164};
165
166/**
167 * scancode_to_u64() - converts scancode in &struct input_keymap_entry
168 * @ke: keymap entry containing scancode to be converted.
169 * @scancode: pointer to the location where converted scancode should
170 *	be stored.
171 *
172 * This function is a version of input_scancode_to_scalar specialized for
173 * rc-core.
174 */
175static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode)
176{
177	switch (ke->len) {
178	case 1:
179		*scancode = *((u8 *)ke->scancode);
180		break;
181
182	case 2:
183		*scancode = *((u16 *)ke->scancode);
184		break;
185
186	case 4:
187		*scancode = *((u32 *)ke->scancode);
188		break;
189
190	case 8:
191		*scancode = *((u64 *)ke->scancode);
192		break;
193
194	default:
195		return -EINVAL;
196	}
197
198	return 0;
199}
200
201/**
202 * ir_create_table() - initializes a scancode table
203 * @dev:	the rc_dev device
204 * @rc_map:	the rc_map to initialize
205 * @name:	name to assign to the table
206 * @rc_proto:	ir type to assign to the new table
207 * @size:	initial size of the table
208 *
209 * This routine will initialize the rc_map and will allocate
210 * memory to hold at least the specified number of elements.
211 *
212 * return:	zero on success or a negative error code
213 */
214static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
215			   const char *name, u64 rc_proto, size_t size)
216{
217	rc_map->name = kstrdup(name, GFP_KERNEL);
218	if (!rc_map->name)
219		return -ENOMEM;
220	rc_map->rc_proto = rc_proto;
221	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
222	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
223	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
224	if (!rc_map->scan) {
225		kfree(rc_map->name);
226		rc_map->name = NULL;
227		return -ENOMEM;
228	}
229
230	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
231		rc_map->size, rc_map->alloc);
232	return 0;
233}
234
235/**
236 * ir_free_table() - frees memory allocated by a scancode table
237 * @rc_map:	the table whose mappings need to be freed
238 *
239 * This routine will free memory alloctaed for key mappings used by given
240 * scancode table.
241 */
242static void ir_free_table(struct rc_map *rc_map)
243{
244	rc_map->size = 0;
245	kfree(rc_map->name);
246	rc_map->name = NULL;
247	kfree(rc_map->scan);
248	rc_map->scan = NULL;
249}
250
251/**
252 * ir_resize_table() - resizes a scancode table if necessary
253 * @dev:	the rc_dev device
254 * @rc_map:	the rc_map to resize
255 * @gfp_flags:	gfp flags to use when allocating memory
256 *
257 * This routine will shrink the rc_map if it has lots of
258 * unused entries and grow it if it is full.
259 *
260 * return:	zero on success or a negative error code
261 */
262static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
263			   gfp_t gfp_flags)
264{
265	unsigned int oldalloc = rc_map->alloc;
266	unsigned int newalloc = oldalloc;
267	struct rc_map_table *oldscan = rc_map->scan;
268	struct rc_map_table *newscan;
269
270	if (rc_map->size == rc_map->len) {
271		/* All entries in use -> grow keytable */
272		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
273			return -ENOMEM;
274
275		newalloc *= 2;
276		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
277	}
278
279	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
280		/* Less than 1/3 of entries in use -> shrink keytable */
281		newalloc /= 2;
282		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
283	}
284
285	if (newalloc == oldalloc)
286		return 0;
287
288	newscan = kmalloc(newalloc, gfp_flags);
289	if (!newscan)
290		return -ENOMEM;
291
292	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
293	rc_map->scan = newscan;
294	rc_map->alloc = newalloc;
295	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
296	kfree(oldscan);
297	return 0;
298}
299
300/**
301 * ir_update_mapping() - set a keycode in the scancode->keycode table
302 * @dev:	the struct rc_dev device descriptor
303 * @rc_map:	scancode table to be adjusted
304 * @index:	index of the mapping that needs to be updated
305 * @new_keycode: the desired keycode
306 *
307 * This routine is used to update scancode->keycode mapping at given
308 * position.
309 *
310 * return:	previous keycode assigned to the mapping
311 *
312 */
313static unsigned int ir_update_mapping(struct rc_dev *dev,
314				      struct rc_map *rc_map,
315				      unsigned int index,
316				      unsigned int new_keycode)
317{
318	int old_keycode = rc_map->scan[index].keycode;
319	int i;
320
321	/* Did the user wish to remove the mapping? */
322	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
323		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n",
324			index, rc_map->scan[index].scancode);
325		rc_map->len--;
326		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
327			(rc_map->len - index) * sizeof(struct rc_map_table));
328	} else {
329		dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n",
330			index,
331			old_keycode == KEY_RESERVED ? "New" : "Replacing",
332			rc_map->scan[index].scancode, new_keycode);
333		rc_map->scan[index].keycode = new_keycode;
334		__set_bit(new_keycode, dev->input_dev->keybit);
335	}
336
337	if (old_keycode != KEY_RESERVED) {
338		/* A previous mapping was updated... */
339		__clear_bit(old_keycode, dev->input_dev->keybit);
340		/* ... but another scancode might use the same keycode */
341		for (i = 0; i < rc_map->len; i++) {
342			if (rc_map->scan[i].keycode == old_keycode) {
343				__set_bit(old_keycode, dev->input_dev->keybit);
344				break;
345			}
346		}
347
348		/* Possibly shrink the keytable, failure is not a problem */
349		ir_resize_table(dev, rc_map, GFP_ATOMIC);
350	}
351
352	return old_keycode;
353}
354
355/**
356 * ir_establish_scancode() - set a keycode in the scancode->keycode table
357 * @dev:	the struct rc_dev device descriptor
358 * @rc_map:	scancode table to be searched
359 * @scancode:	the desired scancode
360 * @resize:	controls whether we allowed to resize the table to
361 *		accommodate not yet present scancodes
362 *
363 * This routine is used to locate given scancode in rc_map.
364 * If scancode is not yet present the routine will allocate a new slot
365 * for it.
366 *
367 * return:	index of the mapping containing scancode in question
368 *		or -1U in case of failure.
369 */
370static unsigned int ir_establish_scancode(struct rc_dev *dev,
371					  struct rc_map *rc_map,
372					  u64 scancode, bool resize)
373{
374	unsigned int i;
375
376	/*
377	 * Unfortunately, some hardware-based IR decoders don't provide
378	 * all bits for the complete IR code. In general, they provide only
379	 * the command part of the IR code. Yet, as it is possible to replace
380	 * the provided IR with another one, it is needed to allow loading
381	 * IR tables from other remotes. So, we support specifying a mask to
382	 * indicate the valid bits of the scancodes.
383	 */
384	if (dev->scancode_mask)
385		scancode &= dev->scancode_mask;
386
387	/* First check if we already have a mapping for this ir command */
388	for (i = 0; i < rc_map->len; i++) {
389		if (rc_map->scan[i].scancode == scancode)
390			return i;
391
392		/* Keytable is sorted from lowest to highest scancode */
393		if (rc_map->scan[i].scancode >= scancode)
394			break;
395	}
396
397	/* No previous mapping found, we might need to grow the table */
398	if (rc_map->size == rc_map->len) {
399		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
400			return -1U;
401	}
402
403	/* i is the proper index to insert our new keycode */
404	if (i < rc_map->len)
405		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
406			(rc_map->len - i) * sizeof(struct rc_map_table));
407	rc_map->scan[i].scancode = scancode;
408	rc_map->scan[i].keycode = KEY_RESERVED;
409	rc_map->len++;
410
411	return i;
412}
413
414/**
415 * ir_setkeycode() - set a keycode in the scancode->keycode table
416 * @idev:	the struct input_dev device descriptor
417 * @ke:		Input keymap entry
418 * @old_keycode: result
419 *
420 * This routine is used to handle evdev EVIOCSKEY ioctl.
421 *
422 * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
423 */
424static int ir_setkeycode(struct input_dev *idev,
425			 const struct input_keymap_entry *ke,
426			 unsigned int *old_keycode)
427{
428	struct rc_dev *rdev = input_get_drvdata(idev);
429	struct rc_map *rc_map = &rdev->rc_map;
430	unsigned int index;
431	u64 scancode;
432	int retval = 0;
433	unsigned long flags;
434
435	spin_lock_irqsave(&rc_map->lock, flags);
436
437	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
438		index = ke->index;
439		if (index >= rc_map->len) {
440			retval = -EINVAL;
441			goto out;
442		}
443	} else {
444		retval = scancode_to_u64(ke, &scancode);
445		if (retval)
446			goto out;
447
448		index = ir_establish_scancode(rdev, rc_map, scancode, true);
449		if (index >= rc_map->len) {
450			retval = -ENOMEM;
451			goto out;
452		}
453	}
454
455	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
456
457out:
458	spin_unlock_irqrestore(&rc_map->lock, flags);
459	return retval;
460}
461
462/**
463 * ir_setkeytable() - sets several entries in the scancode->keycode table
464 * @dev:	the struct rc_dev device descriptor
465 * @from:	the struct rc_map to copy entries from
466 *
467 * This routine is used to handle table initialization.
468 *
469 * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
470 */
471static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from)
472{
473	struct rc_map *rc_map = &dev->rc_map;
474	unsigned int i, index;
475	int rc;
476
477	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
478			     from->size);
479	if (rc)
480		return rc;
481
482	for (i = 0; i < from->size; i++) {
483		index = ir_establish_scancode(dev, rc_map,
484					      from->scan[i].scancode, false);
485		if (index >= rc_map->len) {
486			rc = -ENOMEM;
487			break;
488		}
489
490		ir_update_mapping(dev, rc_map, index,
491				  from->scan[i].keycode);
492	}
493
494	if (rc)
495		ir_free_table(rc_map);
496
497	return rc;
498}
499
500static int rc_map_cmp(const void *key, const void *elt)
501{
502	const u64 *scancode = key;
503	const struct rc_map_table *e = elt;
504
505	if (*scancode < e->scancode)
506		return -1;
507	else if (*scancode > e->scancode)
508		return 1;
509	return 0;
510}
511
512/**
513 * ir_lookup_by_scancode() - locate mapping by scancode
514 * @rc_map:	the struct rc_map to search
515 * @scancode:	scancode to look for in the table
516 *
517 * This routine performs binary search in RC keykeymap table for
518 * given scancode.
519 *
520 * return:	index in the table, -1U if not found
521 */
522static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
523					  u64 scancode)
524{
525	struct rc_map_table *res;
526
527	res = bsearch(&scancode, rc_map->scan, rc_map->len,
528		      sizeof(struct rc_map_table), rc_map_cmp);
529	if (!res)
530		return -1U;
531	else
532		return res - rc_map->scan;
533}
534
535/**
536 * ir_getkeycode() - get a keycode from the scancode->keycode table
537 * @idev:	the struct input_dev device descriptor
538 * @ke:		Input keymap entry
539 *
540 * This routine is used to handle evdev EVIOCGKEY ioctl.
541 *
542 * return:	always returns zero.
543 */
544static int ir_getkeycode(struct input_dev *idev,
545			 struct input_keymap_entry *ke)
546{
547	struct rc_dev *rdev = input_get_drvdata(idev);
548	struct rc_map *rc_map = &rdev->rc_map;
549	struct rc_map_table *entry;
550	unsigned long flags;
551	unsigned int index;
552	u64 scancode;
553	int retval;
554
555	spin_lock_irqsave(&rc_map->lock, flags);
556
557	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
558		index = ke->index;
559	} else {
560		retval = scancode_to_u64(ke, &scancode);
561		if (retval)
562			goto out;
563
564		index = ir_lookup_by_scancode(rc_map, scancode);
565	}
566
567	if (index < rc_map->len) {
568		entry = &rc_map->scan[index];
569
570		ke->index = index;
571		ke->keycode = entry->keycode;
572		ke->len = sizeof(entry->scancode);
573		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
574	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
575		/*
576		 * We do not really know the valid range of scancodes
577		 * so let's respond with KEY_RESERVED to anything we
578		 * do not have mapping for [yet].
579		 */
580		ke->index = index;
581		ke->keycode = KEY_RESERVED;
582	} else {
583		retval = -EINVAL;
584		goto out;
585	}
586
587	retval = 0;
588
589out:
590	spin_unlock_irqrestore(&rc_map->lock, flags);
591	return retval;
592}
593
594/**
595 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
596 * @dev:	the struct rc_dev descriptor of the device
597 * @scancode:	the scancode to look for
598 *
599 * This routine is used by drivers which need to convert a scancode to a
600 * keycode. Normally it should not be used since drivers should have no
601 * interest in keycodes.
602 *
603 * return:	the corresponding keycode, or KEY_RESERVED
604 */
605u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode)
606{
607	struct rc_map *rc_map = &dev->rc_map;
608	unsigned int keycode;
609	unsigned int index;
610	unsigned long flags;
611
612	spin_lock_irqsave(&rc_map->lock, flags);
613
614	index = ir_lookup_by_scancode(rc_map, scancode);
615	keycode = index < rc_map->len ?
616			rc_map->scan[index].keycode : KEY_RESERVED;
617
618	spin_unlock_irqrestore(&rc_map->lock, flags);
619
620	if (keycode != KEY_RESERVED)
621		dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n",
622			dev->device_name, scancode, keycode);
623
624	return keycode;
625}
626EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
627
628/**
629 * ir_do_keyup() - internal function to signal the release of a keypress
630 * @dev:	the struct rc_dev descriptor of the device
631 * @sync:	whether or not to call input_sync
632 *
633 * This function is used internally to release a keypress, it must be
634 * called with keylock held.
635 */
636static void ir_do_keyup(struct rc_dev *dev, bool sync)
637{
638	if (!dev->keypressed)
639		return;
640
641	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
642	del_timer(&dev->timer_repeat);
643	input_report_key(dev->input_dev, dev->last_keycode, 0);
644	led_trigger_event(led_feedback, LED_OFF);
645	if (sync)
646		input_sync(dev->input_dev);
647	dev->keypressed = false;
648}
649
650/**
651 * rc_keyup() - signals the release of a keypress
652 * @dev:	the struct rc_dev descriptor of the device
653 *
654 * This routine is used to signal that a key has been released on the
655 * remote control.
656 */
657void rc_keyup(struct rc_dev *dev)
658{
659	unsigned long flags;
660
661	spin_lock_irqsave(&dev->keylock, flags);
662	ir_do_keyup(dev, true);
663	spin_unlock_irqrestore(&dev->keylock, flags);
664}
665EXPORT_SYMBOL_GPL(rc_keyup);
666
667/**
668 * ir_timer_keyup() - generates a keyup event after a timeout
669 *
670 * @t:		a pointer to the struct timer_list
671 *
672 * This routine will generate a keyup event some time after a keydown event
673 * is generated when no further activity has been detected.
674 */
675static void ir_timer_keyup(struct timer_list *t)
676{
677	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
678	unsigned long flags;
679
680	/*
681	 * ir->keyup_jiffies is used to prevent a race condition if a
682	 * hardware interrupt occurs at this point and the keyup timer
683	 * event is moved further into the future as a result.
684	 *
685	 * The timer will then be reactivated and this function called
686	 * again in the future. We need to exit gracefully in that case
687	 * to allow the input subsystem to do its auto-repeat magic or
688	 * a keyup event might follow immediately after the keydown.
689	 */
690	spin_lock_irqsave(&dev->keylock, flags);
691	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
692		ir_do_keyup(dev, true);
693	spin_unlock_irqrestore(&dev->keylock, flags);
694}
695
696/**
697 * ir_timer_repeat() - generates a repeat event after a timeout
698 *
699 * @t:		a pointer to the struct timer_list
700 *
701 * This routine will generate a soft repeat event every REP_PERIOD
702 * milliseconds.
703 */
704static void ir_timer_repeat(struct timer_list *t)
705{
706	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
707	struct input_dev *input = dev->input_dev;
708	unsigned long flags;
709
710	spin_lock_irqsave(&dev->keylock, flags);
711	if (dev->keypressed) {
712		input_event(input, EV_KEY, dev->last_keycode, 2);
713		input_sync(input);
714		if (input->rep[REP_PERIOD])
715			mod_timer(&dev->timer_repeat, jiffies +
716				  msecs_to_jiffies(input->rep[REP_PERIOD]));
717	}
718	spin_unlock_irqrestore(&dev->keylock, flags);
719}
720
721static unsigned int repeat_period(int protocol)
722{
723	if (protocol >= ARRAY_SIZE(protocols))
724		return 100;
725
726	return protocols[protocol].repeat_period;
727}
728
729/**
730 * rc_repeat() - signals that a key is still pressed
731 * @dev:	the struct rc_dev descriptor of the device
732 *
733 * This routine is used by IR decoders when a repeat message which does
734 * not include the necessary bits to reproduce the scancode has been
735 * received.
736 */
737void rc_repeat(struct rc_dev *dev)
738{
739	unsigned long flags;
740	unsigned int timeout = usecs_to_jiffies(dev->timeout) +
741		msecs_to_jiffies(repeat_period(dev->last_protocol));
742	struct lirc_scancode sc = {
743		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
744		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
745		.flags = LIRC_SCANCODE_FLAG_REPEAT |
746			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
747	};
748
749	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
750		lirc_scancode_event(dev, &sc);
751
752	spin_lock_irqsave(&dev->keylock, flags);
753
754	if (dev->last_scancode <= U32_MAX) {
755		input_event(dev->input_dev, EV_MSC, MSC_SCAN,
756			    dev->last_scancode);
757		input_sync(dev->input_dev);
758	}
759
760	if (dev->keypressed) {
761		dev->keyup_jiffies = jiffies + timeout;
762		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
763	}
764
765	spin_unlock_irqrestore(&dev->keylock, flags);
766}
767EXPORT_SYMBOL_GPL(rc_repeat);
768
769/**
770 * ir_do_keydown() - internal function to process a keypress
771 * @dev:	the struct rc_dev descriptor of the device
772 * @protocol:	the protocol of the keypress
773 * @scancode:   the scancode of the keypress
774 * @keycode:    the keycode of the keypress
775 * @toggle:     the toggle value of the keypress
776 *
777 * This function is used internally to register a keypress, it must be
778 * called with keylock held.
779 */
780static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
781			  u64 scancode, u32 keycode, u8 toggle)
782{
783	bool new_event = (!dev->keypressed		 ||
784			  dev->last_protocol != protocol ||
785			  dev->last_scancode != scancode ||
786			  dev->last_toggle   != toggle);
787	struct lirc_scancode sc = {
788		.scancode = scancode, .rc_proto = protocol,
789		.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
790		.keycode = keycode
791	};
792
793	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
794		lirc_scancode_event(dev, &sc);
795
796	if (new_event && dev->keypressed)
797		ir_do_keyup(dev, false);
798
799	if (scancode <= U32_MAX)
800		input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
801
802	dev->last_protocol = protocol;
803	dev->last_scancode = scancode;
804	dev->last_toggle = toggle;
805	dev->last_keycode = keycode;
806
807	if (new_event && keycode != KEY_RESERVED) {
808		/* Register a keypress */
809		dev->keypressed = true;
810
811		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
812			dev->device_name, keycode, protocol, scancode);
813		input_report_key(dev->input_dev, keycode, 1);
814
815		led_trigger_event(led_feedback, LED_FULL);
816	}
817
818	/*
819	 * For CEC, start sending repeat messages as soon as the first
820	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
821	 * is non-zero. Otherwise, the input layer will generate repeat
822	 * messages.
823	 */
824	if (!new_event && keycode != KEY_RESERVED &&
825	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
826	    !timer_pending(&dev->timer_repeat) &&
827	    dev->input_dev->rep[REP_PERIOD] &&
828	    !dev->input_dev->rep[REP_DELAY]) {
829		input_event(dev->input_dev, EV_KEY, keycode, 2);
830		mod_timer(&dev->timer_repeat, jiffies +
831			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
832	}
833
834	input_sync(dev->input_dev);
835}
836
837/**
838 * rc_keydown() - generates input event for a key press
839 * @dev:	the struct rc_dev descriptor of the device
840 * @protocol:	the protocol for the keypress
841 * @scancode:	the scancode for the keypress
842 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
843 *              support toggle values, this should be set to zero)
844 *
845 * This routine is used to signal that a key has been pressed on the
846 * remote control.
847 */
848void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode,
849		u8 toggle)
850{
851	unsigned long flags;
852	u32 keycode = rc_g_keycode_from_table(dev, scancode);
853
854	spin_lock_irqsave(&dev->keylock, flags);
855	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
856
857	if (dev->keypressed) {
858		dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) +
859			msecs_to_jiffies(repeat_period(protocol));
860		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
861	}
862	spin_unlock_irqrestore(&dev->keylock, flags);
863}
864EXPORT_SYMBOL_GPL(rc_keydown);
865
866/**
867 * rc_keydown_notimeout() - generates input event for a key press without
868 *                          an automatic keyup event at a later time
869 * @dev:	the struct rc_dev descriptor of the device
870 * @protocol:	the protocol for the keypress
871 * @scancode:	the scancode for the keypress
872 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
873 *              support toggle values, this should be set to zero)
874 *
875 * This routine is used to signal that a key has been pressed on the
876 * remote control. The driver must manually call rc_keyup() at a later stage.
877 */
878void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
879			  u64 scancode, u8 toggle)
880{
881	unsigned long flags;
882	u32 keycode = rc_g_keycode_from_table(dev, scancode);
883
884	spin_lock_irqsave(&dev->keylock, flags);
885	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
886	spin_unlock_irqrestore(&dev->keylock, flags);
887}
888EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
889
890/**
891 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
892 *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
893 * @proto:	protocol
894 * @scancode:	scancode
895 */
896bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
897{
898	switch (proto) {
899	/*
900	 * NECX has a 16-bit address; if the lower 8 bits match the upper
901	 * 8 bits inverted, then the address would match regular nec.
902	 */
903	case RC_PROTO_NECX:
904		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
905			return false;
906		break;
907	/*
908	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
909	 * of the command match the upper 8 bits inverted, then it would
910	 * be either NEC or NECX.
911	 */
912	case RC_PROTO_NEC32:
913		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
914			return false;
915		break;
916	/*
917	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
918	 * is regular mode-6a 32 bit
919	 */
920	case RC_PROTO_RC6_MCE:
921		if ((scancode & 0xffff0000) != 0x800f0000)
922			return false;
923		break;
924	case RC_PROTO_RC6_6A_32:
925		if ((scancode & 0xffff0000) == 0x800f0000)
926			return false;
927		break;
928	default:
929		break;
930	}
931
932	return true;
933}
934
935/**
936 * rc_validate_filter() - checks that the scancode and mask are valid and
937 *			  provides sensible defaults
938 * @dev:	the struct rc_dev descriptor of the device
939 * @filter:	the scancode and mask
940 *
941 * return:	0 or -EINVAL if the filter is not valid
942 */
943static int rc_validate_filter(struct rc_dev *dev,
944			      struct rc_scancode_filter *filter)
945{
946	u32 mask, s = filter->data;
947	enum rc_proto protocol = dev->wakeup_protocol;
948
949	if (protocol >= ARRAY_SIZE(protocols))
950		return -EINVAL;
951
952	mask = protocols[protocol].scancode_bits;
953
954	if (!rc_validate_scancode(protocol, s))
955		return -EINVAL;
956
957	filter->data &= mask;
958	filter->mask &= mask;
959
960	/*
961	 * If we have to raw encode the IR for wakeup, we cannot have a mask
962	 */
963	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
964		return -EINVAL;
965
966	return 0;
967}
968
969int rc_open(struct rc_dev *rdev)
970{
971	int rval = 0;
972
973	if (!rdev)
974		return -EINVAL;
975
976	mutex_lock(&rdev->lock);
977
978	if (!rdev->registered) {
979		rval = -ENODEV;
980	} else {
981		if (!rdev->users++ && rdev->open)
982			rval = rdev->open(rdev);
983
984		if (rval)
985			rdev->users--;
986	}
987
988	mutex_unlock(&rdev->lock);
989
990	return rval;
991}
992
993static int ir_open(struct input_dev *idev)
994{
995	struct rc_dev *rdev = input_get_drvdata(idev);
996
997	return rc_open(rdev);
998}
999
1000void rc_close(struct rc_dev *rdev)
1001{
1002	if (rdev) {
1003		mutex_lock(&rdev->lock);
1004
1005		if (!--rdev->users && rdev->close && rdev->registered)
1006			rdev->close(rdev);
1007
1008		mutex_unlock(&rdev->lock);
1009	}
1010}
1011
1012static void ir_close(struct input_dev *idev)
1013{
1014	struct rc_dev *rdev = input_get_drvdata(idev);
1015	rc_close(rdev);
1016}
1017
1018/* class for /sys/class/rc */
1019static char *rc_devnode(struct device *dev, umode_t *mode)
1020{
1021	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
1022}
1023
1024static struct class rc_class = {
1025	.name		= "rc",
1026	.devnode	= rc_devnode,
1027};
1028
1029/*
1030 * These are the protocol textual descriptions that are
1031 * used by the sysfs protocols file. Note that the order
1032 * of the entries is relevant.
1033 */
1034static const struct {
1035	u64	type;
1036	const char	*name;
1037	const char	*module_name;
1038} proto_names[] = {
1039	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
1040	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
1041	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
1042	{ RC_PROTO_BIT_RC5 |
1043	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
1044	{ RC_PROTO_BIT_NEC |
1045	  RC_PROTO_BIT_NECX |
1046	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
1047	{ RC_PROTO_BIT_RC6_0 |
1048	  RC_PROTO_BIT_RC6_6A_20 |
1049	  RC_PROTO_BIT_RC6_6A_24 |
1050	  RC_PROTO_BIT_RC6_6A_32 |
1051	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
1052	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
1053	{ RC_PROTO_BIT_SONY12 |
1054	  RC_PROTO_BIT_SONY15 |
1055	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
1056	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1057	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1058	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1059	{ RC_PROTO_BIT_MCIR2_KBD |
1060	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1061	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1062	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1063	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
1064	{ RC_PROTO_BIT_RCMM12 |
1065	  RC_PROTO_BIT_RCMM24 |
1066	  RC_PROTO_BIT_RCMM32,	"rc-mm",	"ir-rcmm-decoder"	},
1067	{ RC_PROTO_BIT_XBOX_DVD, "xbox-dvd",	NULL			},
1068};
1069
1070/**
1071 * struct rc_filter_attribute - Device attribute relating to a filter type.
1072 * @attr:	Device attribute.
1073 * @type:	Filter type.
1074 * @mask:	false for filter value, true for filter mask.
1075 */
1076struct rc_filter_attribute {
1077	struct device_attribute		attr;
1078	enum rc_filter_type		type;
1079	bool				mask;
1080};
1081#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1082
1083#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1084	struct rc_filter_attribute dev_attr_##_name = {			\
1085		.attr = __ATTR(_name, _mode, _show, _store),		\
1086		.type = (_type),					\
1087		.mask = (_mask),					\
1088	}
1089
1090/**
1091 * show_protocols() - shows the current IR protocol(s)
1092 * @device:	the device descriptor
1093 * @mattr:	the device attribute struct
1094 * @buf:	a pointer to the output buffer
1095 *
1096 * This routine is a callback routine for input read the IR protocol type(s).
1097 * it is triggered by reading /sys/class/rc/rc?/protocols.
1098 * It returns the protocol names of supported protocols.
1099 * Enabled protocols are printed in brackets.
1100 *
1101 * dev->lock is taken to guard against races between
1102 * store_protocols and show_protocols.
1103 */
1104static ssize_t show_protocols(struct device *device,
1105			      struct device_attribute *mattr, char *buf)
1106{
1107	struct rc_dev *dev = to_rc_dev(device);
1108	u64 allowed, enabled;
1109	char *tmp = buf;
1110	int i;
1111
1112	mutex_lock(&dev->lock);
1113
1114	enabled = dev->enabled_protocols;
1115	allowed = dev->allowed_protocols;
1116	if (dev->raw && !allowed)
1117		allowed = ir_raw_get_allowed_protocols();
1118
1119	mutex_unlock(&dev->lock);
1120
1121	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1122		__func__, (long long)allowed, (long long)enabled);
1123
1124	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1125		if (allowed & enabled & proto_names[i].type)
1126			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1127		else if (allowed & proto_names[i].type)
1128			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1129
1130		if (allowed & proto_names[i].type)
1131			allowed &= ~proto_names[i].type;
1132	}
1133
1134#ifdef CONFIG_LIRC
1135	if (dev->driver_type == RC_DRIVER_IR_RAW)
1136		tmp += sprintf(tmp, "[lirc] ");
1137#endif
1138
1139	if (tmp != buf)
1140		tmp--;
1141	*tmp = '\n';
1142
1143	return tmp + 1 - buf;
1144}
1145
1146/**
1147 * parse_protocol_change() - parses a protocol change request
1148 * @dev:	rc_dev device
1149 * @protocols:	pointer to the bitmask of current protocols
1150 * @buf:	pointer to the buffer with a list of changes
1151 *
1152 * Writing "+proto" will add a protocol to the protocol mask.
1153 * Writing "-proto" will remove a protocol from protocol mask.
1154 * Writing "proto" will enable only "proto".
1155 * Writing "none" will disable all protocols.
1156 * Returns the number of changes performed or a negative error code.
1157 */
1158static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1159				 const char *buf)
1160{
1161	const char *tmp;
1162	unsigned count = 0;
1163	bool enable, disable;
1164	u64 mask;
1165	int i;
1166
1167	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1168		if (!*tmp)
1169			break;
1170
1171		if (*tmp == '+') {
1172			enable = true;
1173			disable = false;
1174			tmp++;
1175		} else if (*tmp == '-') {
1176			enable = false;
1177			disable = true;
1178			tmp++;
1179		} else {
1180			enable = false;
1181			disable = false;
1182		}
1183
1184		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1185			if (!strcasecmp(tmp, proto_names[i].name)) {
1186				mask = proto_names[i].type;
1187				break;
1188			}
1189		}
1190
1191		if (i == ARRAY_SIZE(proto_names)) {
1192			if (!strcasecmp(tmp, "lirc"))
1193				mask = 0;
1194			else {
1195				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1196					tmp);
1197				return -EINVAL;
1198			}
1199		}
1200
1201		count++;
1202
1203		if (enable)
1204			*protocols |= mask;
1205		else if (disable)
1206			*protocols &= ~mask;
1207		else
1208			*protocols = mask;
1209	}
1210
1211	if (!count) {
1212		dev_dbg(&dev->dev, "Protocol not specified\n");
1213		return -EINVAL;
1214	}
1215
1216	return count;
1217}
1218
1219void ir_raw_load_modules(u64 *protocols)
1220{
1221	u64 available;
1222	int i, ret;
1223
1224	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1225		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1226		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1227					   RC_PROTO_BIT_UNKNOWN))
1228			continue;
1229
1230		available = ir_raw_get_allowed_protocols();
1231		if (!(*protocols & proto_names[i].type & ~available))
1232			continue;
1233
1234		if (!proto_names[i].module_name) {
1235			pr_err("Can't enable IR protocol %s\n",
1236			       proto_names[i].name);
1237			*protocols &= ~proto_names[i].type;
1238			continue;
1239		}
1240
1241		ret = request_module("%s", proto_names[i].module_name);
1242		if (ret < 0) {
1243			pr_err("Couldn't load IR protocol module %s\n",
1244			       proto_names[i].module_name);
1245			*protocols &= ~proto_names[i].type;
1246			continue;
1247		}
1248		msleep(20);
1249		available = ir_raw_get_allowed_protocols();
1250		if (!(*protocols & proto_names[i].type & ~available))
1251			continue;
1252
1253		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1254		       proto_names[i].module_name,
1255		       proto_names[i].name);
1256		*protocols &= ~proto_names[i].type;
1257	}
1258}
1259
1260/**
1261 * store_protocols() - changes the current/wakeup IR protocol(s)
1262 * @device:	the device descriptor
1263 * @mattr:	the device attribute struct
1264 * @buf:	a pointer to the input buffer
1265 * @len:	length of the input buffer
1266 *
1267 * This routine is for changing the IR protocol type.
1268 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1269 * See parse_protocol_change() for the valid commands.
1270 * Returns @len on success or a negative error code.
1271 *
1272 * dev->lock is taken to guard against races between
1273 * store_protocols and show_protocols.
1274 */
1275static ssize_t store_protocols(struct device *device,
1276			       struct device_attribute *mattr,
1277			       const char *buf, size_t len)
1278{
1279	struct rc_dev *dev = to_rc_dev(device);
1280	u64 *current_protocols;
1281	struct rc_scancode_filter *filter;
1282	u64 old_protocols, new_protocols;
1283	ssize_t rc;
1284
1285	dev_dbg(&dev->dev, "Normal protocol change requested\n");
1286	current_protocols = &dev->enabled_protocols;
1287	filter = &dev->scancode_filter;
1288
1289	if (!dev->change_protocol) {
1290		dev_dbg(&dev->dev, "Protocol switching not supported\n");
1291		return -EINVAL;
1292	}
1293
1294	mutex_lock(&dev->lock);
1295	if (!dev->registered) {
1296		mutex_unlock(&dev->lock);
1297		return -ENODEV;
1298	}
1299
1300	old_protocols = *current_protocols;
1301	new_protocols = old_protocols;
1302	rc = parse_protocol_change(dev, &new_protocols, buf);
1303	if (rc < 0)
1304		goto out;
1305
1306	if (dev->driver_type == RC_DRIVER_IR_RAW)
1307		ir_raw_load_modules(&new_protocols);
1308
1309	rc = dev->change_protocol(dev, &new_protocols);
1310	if (rc < 0) {
1311		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1312			(long long)new_protocols);
1313		goto out;
1314	}
1315
1316	if (new_protocols != old_protocols) {
1317		*current_protocols = new_protocols;
1318		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1319			(long long)new_protocols);
1320	}
1321
1322	/*
1323	 * If a protocol change was attempted the filter may need updating, even
1324	 * if the actual protocol mask hasn't changed (since the driver may have
1325	 * cleared the filter).
1326	 * Try setting the same filter with the new protocol (if any).
1327	 * Fall back to clearing the filter.
1328	 */
1329	if (dev->s_filter && filter->mask) {
1330		if (new_protocols)
1331			rc = dev->s_filter(dev, filter);
1332		else
1333			rc = -1;
1334
1335		if (rc < 0) {
1336			filter->data = 0;
1337			filter->mask = 0;
1338			dev->s_filter(dev, filter);
1339		}
1340	}
1341
1342	rc = len;
1343
1344out:
1345	mutex_unlock(&dev->lock);
1346	return rc;
1347}
1348
1349/**
1350 * show_filter() - shows the current scancode filter value or mask
1351 * @device:	the device descriptor
1352 * @attr:	the device attribute struct
1353 * @buf:	a pointer to the output buffer
1354 *
1355 * This routine is a callback routine to read a scancode filter value or mask.
1356 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1357 * It prints the current scancode filter value or mask of the appropriate filter
1358 * type in hexadecimal into @buf and returns the size of the buffer.
1359 *
1360 * Bits of the filter value corresponding to set bits in the filter mask are
1361 * compared against input scancodes and non-matching scancodes are discarded.
1362 *
1363 * dev->lock is taken to guard against races between
1364 * store_filter and show_filter.
1365 */
1366static ssize_t show_filter(struct device *device,
1367			   struct device_attribute *attr,
1368			   char *buf)
1369{
1370	struct rc_dev *dev = to_rc_dev(device);
1371	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1372	struct rc_scancode_filter *filter;
1373	u32 val;
1374
1375	mutex_lock(&dev->lock);
1376
1377	if (fattr->type == RC_FILTER_NORMAL)
1378		filter = &dev->scancode_filter;
1379	else
1380		filter = &dev->scancode_wakeup_filter;
1381
1382	if (fattr->mask)
1383		val = filter->mask;
1384	else
1385		val = filter->data;
1386	mutex_unlock(&dev->lock);
1387
1388	return sprintf(buf, "%#x\n", val);
1389}
1390
1391/**
1392 * store_filter() - changes the scancode filter value
1393 * @device:	the device descriptor
1394 * @attr:	the device attribute struct
1395 * @buf:	a pointer to the input buffer
1396 * @len:	length of the input buffer
1397 *
1398 * This routine is for changing a scancode filter value or mask.
1399 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1400 * Returns -EINVAL if an invalid filter value for the current protocol was
1401 * specified or if scancode filtering is not supported by the driver, otherwise
1402 * returns @len.
1403 *
1404 * Bits of the filter value corresponding to set bits in the filter mask are
1405 * compared against input scancodes and non-matching scancodes are discarded.
1406 *
1407 * dev->lock is taken to guard against races between
1408 * store_filter and show_filter.
1409 */
1410static ssize_t store_filter(struct device *device,
1411			    struct device_attribute *attr,
1412			    const char *buf, size_t len)
1413{
1414	struct rc_dev *dev = to_rc_dev(device);
1415	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1416	struct rc_scancode_filter new_filter, *filter;
1417	int ret;
1418	unsigned long val;
1419	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1420
1421	ret = kstrtoul(buf, 0, &val);
1422	if (ret < 0)
1423		return ret;
1424
1425	if (fattr->type == RC_FILTER_NORMAL) {
1426		set_filter = dev->s_filter;
1427		filter = &dev->scancode_filter;
1428	} else {
1429		set_filter = dev->s_wakeup_filter;
1430		filter = &dev->scancode_wakeup_filter;
1431	}
1432
1433	if (!set_filter)
1434		return -EINVAL;
1435
1436	mutex_lock(&dev->lock);
1437	if (!dev->registered) {
1438		mutex_unlock(&dev->lock);
1439		return -ENODEV;
1440	}
1441
1442	new_filter = *filter;
1443	if (fattr->mask)
1444		new_filter.mask = val;
1445	else
1446		new_filter.data = val;
1447
1448	if (fattr->type == RC_FILTER_WAKEUP) {
1449		/*
1450		 * Refuse to set a filter unless a protocol is enabled
1451		 * and the filter is valid for that protocol
1452		 */
1453		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1454			ret = rc_validate_filter(dev, &new_filter);
1455		else
1456			ret = -EINVAL;
1457
1458		if (ret != 0)
1459			goto unlock;
1460	}
1461
1462	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1463	    val) {
1464		/* refuse to set a filter unless a protocol is enabled */
1465		ret = -EINVAL;
1466		goto unlock;
1467	}
1468
1469	ret = set_filter(dev, &new_filter);
1470	if (ret < 0)
1471		goto unlock;
1472
1473	*filter = new_filter;
1474
1475unlock:
1476	mutex_unlock(&dev->lock);
1477	return (ret < 0) ? ret : len;
1478}
1479
1480/**
1481 * show_wakeup_protocols() - shows the wakeup IR protocol
1482 * @device:	the device descriptor
1483 * @mattr:	the device attribute struct
1484 * @buf:	a pointer to the output buffer
1485 *
1486 * This routine is a callback routine for input read the IR protocol type(s).
1487 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1488 * It returns the protocol names of supported protocols.
1489 * The enabled protocols are printed in brackets.
1490 *
1491 * dev->lock is taken to guard against races between
1492 * store_wakeup_protocols and show_wakeup_protocols.
1493 */
1494static ssize_t show_wakeup_protocols(struct device *device,
1495				     struct device_attribute *mattr,
1496				     char *buf)
1497{
1498	struct rc_dev *dev = to_rc_dev(device);
1499	u64 allowed;
1500	enum rc_proto enabled;
1501	char *tmp = buf;
1502	int i;
1503
1504	mutex_lock(&dev->lock);
1505
1506	allowed = dev->allowed_wakeup_protocols;
1507	enabled = dev->wakeup_protocol;
1508
1509	mutex_unlock(&dev->lock);
1510
1511	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1512		__func__, (long long)allowed, enabled);
1513
1514	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1515		if (allowed & (1ULL << i)) {
1516			if (i == enabled)
1517				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1518			else
1519				tmp += sprintf(tmp, "%s ", protocols[i].name);
1520		}
1521	}
1522
1523	if (tmp != buf)
1524		tmp--;
1525	*tmp = '\n';
1526
1527	return tmp + 1 - buf;
1528}
1529
1530/**
1531 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1532 * @device:	the device descriptor
1533 * @mattr:	the device attribute struct
1534 * @buf:	a pointer to the input buffer
1535 * @len:	length of the input buffer
1536 *
1537 * This routine is for changing the IR protocol type.
1538 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1539 * Returns @len on success or a negative error code.
1540 *
1541 * dev->lock is taken to guard against races between
1542 * store_wakeup_protocols and show_wakeup_protocols.
1543 */
1544static ssize_t store_wakeup_protocols(struct device *device,
1545				      struct device_attribute *mattr,
1546				      const char *buf, size_t len)
1547{
1548	struct rc_dev *dev = to_rc_dev(device);
1549	enum rc_proto protocol = RC_PROTO_UNKNOWN;
1550	ssize_t rc;
1551	u64 allowed;
1552	int i;
1553
1554	mutex_lock(&dev->lock);
1555	if (!dev->registered) {
1556		mutex_unlock(&dev->lock);
1557		return -ENODEV;
1558	}
1559
1560	allowed = dev->allowed_wakeup_protocols;
1561
1562	if (!sysfs_streq(buf, "none")) {
1563		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1564			if ((allowed & (1ULL << i)) &&
1565			    sysfs_streq(buf, protocols[i].name)) {
1566				protocol = i;
1567				break;
1568			}
1569		}
1570
1571		if (i == ARRAY_SIZE(protocols)) {
1572			rc = -EINVAL;
1573			goto out;
1574		}
1575
1576		if (dev->encode_wakeup) {
1577			u64 mask = 1ULL << protocol;
1578
1579			ir_raw_load_modules(&mask);
1580			if (!mask) {
1581				rc = -EINVAL;
1582				goto out;
1583			}
1584		}
1585	}
1586
1587	if (dev->wakeup_protocol != protocol) {
1588		dev->wakeup_protocol = protocol;
1589		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1590
1591		if (protocol == RC_PROTO_RC6_MCE)
1592			dev->scancode_wakeup_filter.data = 0x800f0000;
1593		else
1594			dev->scancode_wakeup_filter.data = 0;
1595		dev->scancode_wakeup_filter.mask = 0;
1596
1597		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1598		if (rc == 0)
1599			rc = len;
1600	} else {
1601		rc = len;
1602	}
1603
1604out:
1605	mutex_unlock(&dev->lock);
1606	return rc;
1607}
1608
1609static void rc_dev_release(struct device *device)
1610{
1611	struct rc_dev *dev = to_rc_dev(device);
1612
1613	kfree(dev);
1614}
1615
1616static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1617{
1618	struct rc_dev *dev = to_rc_dev(device);
1619	int ret = 0;
1620
1621	mutex_lock(&dev->lock);
1622
1623	if (!dev->registered)
1624		ret = -ENODEV;
1625	if (ret == 0 && dev->rc_map.name)
1626		ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
1627	if (ret == 0 && dev->driver_name)
1628		ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
1629	if (ret == 0 && dev->device_name)
1630		ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
1631
1632	mutex_unlock(&dev->lock);
1633
1634	return ret;
1635}
1636
1637/*
1638 * Static device attribute struct with the sysfs attributes for IR's
1639 */
1640static struct device_attribute dev_attr_ro_protocols =
1641__ATTR(protocols, 0444, show_protocols, NULL);
1642static struct device_attribute dev_attr_rw_protocols =
1643__ATTR(protocols, 0644, show_protocols, store_protocols);
1644static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1645		   store_wakeup_protocols);
1646static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1647		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1648static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1649		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1650static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1651		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1652static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1653		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1654
1655static struct attribute *rc_dev_rw_protocol_attrs[] = {
1656	&dev_attr_rw_protocols.attr,
1657	NULL,
1658};
1659
1660static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1661	.attrs	= rc_dev_rw_protocol_attrs,
1662};
1663
1664static struct attribute *rc_dev_ro_protocol_attrs[] = {
1665	&dev_attr_ro_protocols.attr,
1666	NULL,
1667};
1668
1669static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1670	.attrs	= rc_dev_ro_protocol_attrs,
1671};
1672
1673static struct attribute *rc_dev_filter_attrs[] = {
1674	&dev_attr_filter.attr.attr,
1675	&dev_attr_filter_mask.attr.attr,
1676	NULL,
1677};
1678
1679static const struct attribute_group rc_dev_filter_attr_grp = {
1680	.attrs	= rc_dev_filter_attrs,
1681};
1682
1683static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1684	&dev_attr_wakeup_filter.attr.attr,
1685	&dev_attr_wakeup_filter_mask.attr.attr,
1686	&dev_attr_wakeup_protocols.attr,
1687	NULL,
1688};
1689
1690static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1691	.attrs	= rc_dev_wakeup_filter_attrs,
1692};
1693
1694static const struct device_type rc_dev_type = {
1695	.release	= rc_dev_release,
1696	.uevent		= rc_dev_uevent,
1697};
1698
1699struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1700{
1701	struct rc_dev *dev;
1702
1703	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1704	if (!dev)
1705		return NULL;
1706
1707	if (type != RC_DRIVER_IR_RAW_TX) {
1708		dev->input_dev = input_allocate_device();
1709		if (!dev->input_dev) {
1710			kfree(dev);
1711			return NULL;
1712		}
1713
1714		dev->input_dev->getkeycode = ir_getkeycode;
1715		dev->input_dev->setkeycode = ir_setkeycode;
1716		input_set_drvdata(dev->input_dev, dev);
1717
1718		dev->timeout = IR_DEFAULT_TIMEOUT;
1719		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1720		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1721
1722		spin_lock_init(&dev->rc_map.lock);
1723		spin_lock_init(&dev->keylock);
1724	}
1725	mutex_init(&dev->lock);
1726
1727	dev->dev.type = &rc_dev_type;
1728	dev->dev.class = &rc_class;
1729	device_initialize(&dev->dev);
1730
1731	dev->driver_type = type;
1732
1733	__module_get(THIS_MODULE);
1734	return dev;
1735}
1736EXPORT_SYMBOL_GPL(rc_allocate_device);
1737
1738void rc_free_device(struct rc_dev *dev)
1739{
1740	if (!dev)
1741		return;
1742
1743	input_free_device(dev->input_dev);
1744
1745	put_device(&dev->dev);
1746
1747	/* kfree(dev) will be called by the callback function
1748	   rc_dev_release() */
1749
1750	module_put(THIS_MODULE);
1751}
1752EXPORT_SYMBOL_GPL(rc_free_device);
1753
1754static void devm_rc_alloc_release(struct device *dev, void *res)
1755{
1756	rc_free_device(*(struct rc_dev **)res);
1757}
1758
1759struct rc_dev *devm_rc_allocate_device(struct device *dev,
1760				       enum rc_driver_type type)
1761{
1762	struct rc_dev **dr, *rc;
1763
1764	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1765	if (!dr)
1766		return NULL;
1767
1768	rc = rc_allocate_device(type);
1769	if (!rc) {
1770		devres_free(dr);
1771		return NULL;
1772	}
1773
1774	rc->dev.parent = dev;
1775	rc->managed_alloc = true;
1776	*dr = rc;
1777	devres_add(dev, dr);
1778
1779	return rc;
1780}
1781EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1782
1783static int rc_prepare_rx_device(struct rc_dev *dev)
1784{
1785	int rc;
1786	struct rc_map *rc_map;
1787	u64 rc_proto;
1788
1789	if (!dev->map_name)
1790		return -EINVAL;
1791
1792	rc_map = rc_map_get(dev->map_name);
1793	if (!rc_map)
1794		rc_map = rc_map_get(RC_MAP_EMPTY);
1795	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1796		return -EINVAL;
1797
1798	rc = ir_setkeytable(dev, rc_map);
1799	if (rc)
1800		return rc;
1801
1802	rc_proto = BIT_ULL(rc_map->rc_proto);
1803
1804	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1805		dev->enabled_protocols = dev->allowed_protocols;
1806
1807	if (dev->driver_type == RC_DRIVER_IR_RAW)
1808		ir_raw_load_modules(&rc_proto);
1809
1810	if (dev->change_protocol) {
1811		rc = dev->change_protocol(dev, &rc_proto);
1812		if (rc < 0)
1813			goto out_table;
1814		dev->enabled_protocols = rc_proto;
1815	}
1816
1817	/* Keyboard events */
1818	set_bit(EV_KEY, dev->input_dev->evbit);
1819	set_bit(EV_REP, dev->input_dev->evbit);
1820	set_bit(EV_MSC, dev->input_dev->evbit);
1821	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1822
1823	/* Pointer/mouse events */
1824	set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
1825	set_bit(EV_REL, dev->input_dev->evbit);
1826	set_bit(REL_X, dev->input_dev->relbit);
1827	set_bit(REL_Y, dev->input_dev->relbit);
1828
1829	if (dev->open)
1830		dev->input_dev->open = ir_open;
1831	if (dev->close)
1832		dev->input_dev->close = ir_close;
1833
1834	dev->input_dev->dev.parent = &dev->dev;
1835	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1836	dev->input_dev->phys = dev->input_phys;
1837	dev->input_dev->name = dev->device_name;
1838
1839	return 0;
1840
1841out_table:
1842	ir_free_table(&dev->rc_map);
1843
1844	return rc;
1845}
1846
1847static int rc_setup_rx_device(struct rc_dev *dev)
1848{
1849	int rc;
1850
1851	/* rc_open will be called here */
1852	rc = input_register_device(dev->input_dev);
1853	if (rc)
1854		return rc;
1855
1856	/*
1857	 * Default delay of 250ms is too short for some protocols, especially
1858	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1859	 * to avoid wrong repetition of the keycodes. Note that this must be
1860	 * set after the call to input_register_device().
1861	 */
1862	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1863		dev->input_dev->rep[REP_DELAY] = 0;
1864	else
1865		dev->input_dev->rep[REP_DELAY] = 500;
1866
1867	/*
1868	 * As a repeat event on protocols like RC-5 and NEC take as long as
1869	 * 110/114ms, using 33ms as a repeat period is not the right thing
1870	 * to do.
1871	 */
1872	dev->input_dev->rep[REP_PERIOD] = 125;
1873
1874	return 0;
1875}
1876
1877static void rc_free_rx_device(struct rc_dev *dev)
1878{
1879	if (!dev)
1880		return;
1881
1882	if (dev->input_dev) {
1883		input_unregister_device(dev->input_dev);
1884		dev->input_dev = NULL;
1885	}
1886
1887	ir_free_table(&dev->rc_map);
1888}
1889
1890int rc_register_device(struct rc_dev *dev)
1891{
1892	const char *path;
1893	int attr = 0;
1894	int minor;
1895	int rc;
1896
1897	if (!dev)
1898		return -EINVAL;
1899
1900	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1901	if (minor < 0)
1902		return minor;
1903
1904	dev->minor = minor;
1905	dev_set_name(&dev->dev, "rc%u", dev->minor);
1906	dev_set_drvdata(&dev->dev, dev);
1907
1908	dev->dev.groups = dev->sysfs_groups;
1909	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1910		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1911	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1912		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1913	if (dev->s_filter)
1914		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1915	if (dev->s_wakeup_filter)
1916		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1917	dev->sysfs_groups[attr++] = NULL;
1918
1919	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1920		rc = ir_raw_event_prepare(dev);
1921		if (rc < 0)
1922			goto out_minor;
1923	}
1924
1925	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1926		rc = rc_prepare_rx_device(dev);
1927		if (rc)
1928			goto out_raw;
1929	}
1930
1931	dev->registered = true;
1932
1933	rc = device_add(&dev->dev);
1934	if (rc)
1935		goto out_rx_free;
1936
1937	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1938	dev_info(&dev->dev, "%s as %s\n",
1939		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1940	kfree(path);
1941
1942	/*
1943	 * once the the input device is registered in rc_setup_rx_device,
1944	 * userspace can open the input device and rc_open() will be called
1945	 * as a result. This results in driver code being allowed to submit
1946	 * keycodes with rc_keydown, so lirc must be registered first.
1947	 */
1948	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1949		rc = lirc_register(dev);
1950		if (rc < 0)
1951			goto out_dev;
1952	}
1953
1954	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1955		rc = rc_setup_rx_device(dev);
1956		if (rc)
1957			goto out_lirc;
1958	}
1959
1960	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1961		rc = ir_raw_event_register(dev);
1962		if (rc < 0)
1963			goto out_rx;
1964	}
1965
1966	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1967		dev->driver_name ? dev->driver_name : "unknown");
1968
1969	return 0;
1970
1971out_rx:
1972	rc_free_rx_device(dev);
1973out_lirc:
1974	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1975		lirc_unregister(dev);
1976out_dev:
1977	device_del(&dev->dev);
1978out_rx_free:
1979	ir_free_table(&dev->rc_map);
1980out_raw:
1981	ir_raw_event_free(dev);
1982out_minor:
1983	ida_simple_remove(&rc_ida, minor);
1984	return rc;
1985}
1986EXPORT_SYMBOL_GPL(rc_register_device);
1987
1988static void devm_rc_release(struct device *dev, void *res)
1989{
1990	rc_unregister_device(*(struct rc_dev **)res);
1991}
1992
1993int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1994{
1995	struct rc_dev **dr;
1996	int ret;
1997
1998	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1999	if (!dr)
2000		return -ENOMEM;
2001
2002	ret = rc_register_device(dev);
2003	if (ret) {
2004		devres_free(dr);
2005		return ret;
2006	}
2007
2008	*dr = dev;
2009	devres_add(parent, dr);
2010
2011	return 0;
2012}
2013EXPORT_SYMBOL_GPL(devm_rc_register_device);
2014
2015void rc_unregister_device(struct rc_dev *dev)
2016{
2017	if (!dev)
2018		return;
2019
2020	if (dev->driver_type == RC_DRIVER_IR_RAW)
2021		ir_raw_event_unregister(dev);
2022
2023	del_timer_sync(&dev->timer_keyup);
2024	del_timer_sync(&dev->timer_repeat);
2025
2026	mutex_lock(&dev->lock);
2027	if (dev->users && dev->close)
2028		dev->close(dev);
2029	dev->registered = false;
2030	mutex_unlock(&dev->lock);
2031
2032	rc_free_rx_device(dev);
2033
2034	/*
2035	 * lirc device should be freed with dev->registered = false, so
2036	 * that userspace polling will get notified.
2037	 */
2038	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
2039		lirc_unregister(dev);
2040
2041	device_del(&dev->dev);
2042
2043	ida_simple_remove(&rc_ida, dev->minor);
2044
2045	if (!dev->managed_alloc)
2046		rc_free_device(dev);
2047}
2048
2049EXPORT_SYMBOL_GPL(rc_unregister_device);
2050
2051/*
2052 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2053 */
2054
2055static int __init rc_core_init(void)
2056{
2057	int rc = class_register(&rc_class);
2058	if (rc) {
2059		pr_err("rc_core: unable to register rc class\n");
2060		return rc;
2061	}
2062
2063	rc = lirc_dev_init();
2064	if (rc) {
2065		pr_err("rc_core: unable to init lirc\n");
2066		class_unregister(&rc_class);
2067		return rc;
2068	}
2069
2070	led_trigger_register_simple("rc-feedback", &led_feedback);
2071	rc_map_register(&empty_map);
2072#ifdef CONFIG_MEDIA_CEC_RC
2073	rc_map_register(&cec_map);
2074#endif
2075
2076	return 0;
2077}
2078
2079static void __exit rc_core_exit(void)
2080{
2081	lirc_dev_exit();
2082	class_unregister(&rc_class);
2083	led_trigger_unregister_simple(led_feedback);
2084#ifdef CONFIG_MEDIA_CEC_RC
2085	rc_map_unregister(&cec_map);
2086#endif
2087	rc_map_unregister(&empty_map);
2088}
2089
2090subsys_initcall(rc_core_init);
2091module_exit(rc_core_exit);
2092
2093MODULE_AUTHOR("Mauro Carvalho Chehab");
2094MODULE_LICENSE("GPL v2");
2095